

SN65LVPE502A to TUSB522P Change Document

Undrea Fields

ABSTRACT

This document defines pinout differences between the SN65LVPE502A and the TUSB522P and highlights possible changes needed to convert existing system designs from using the SN65LVPE502A to the TUSB522P.

NOTE: This document also applies to the following devices: SN65LVPE502, SN65LVPE512, and SN65LVPE502B.

Contents

1	Pinout Comparison	2
2	VCC/GND	3
3	No Connect	3
4	High-Speed Differential Signals	3
5	Equalization (EQ)	3
6	Output Swing (OS)	3
7	De-Emphasis (DE)	4

List of Tables

2
3
3
3
3
4
4

All trademarks are the property of their respective owners.

1

www.ti.com

1 Pinout Comparison

Table 1 documents the changes in the pin definitions of the SN65LVPE502A and TUSB522P devices and highlights pin configurations that may need to change when using the TUSB522P to replace the SN65LVPE502A in an existing system.

Pin	SN65LVPE502A	TUSB522P	SN65LVPE502A to TUSB522P Change Notes	
1	VCC	VCC	No change required	
2	EQ1	EQ1	Low = 3 dB, Floating = 6 dB, High = 9 dB	
3	DE1	DE2	{OS = Low} Low = 0 dB, Floating = -3.5 dB, High = -6.2 dB {OS = High} Low = -2.6 dB, Floating = -5.9 dB, High = -8.3 dB	
4	OS1	OS2	Low(Floating) = 900 mV, High = 1200 mV	
5	EN_RXD	EN_RXD	Requires Pull-up to VCC	
6	GND	NC	Can be tied to GND or left as NC	
7	NC	NC	No change required	
8	Host_RX1–	RX1N	Can be connected to either Host or Device	
9	Host_RX1+	RX1P	Can be connected to either Host or Device	
10	GND	GND	No change required	
11	Host_TX2-	TX2N	Can be connected to either Host or Device	
12	Host_TX2+	TX2P	Can be connected to either Host or Device	
13	VCC	VCC	No change required	
14	RSVD	RSV	No change required	
15	OS2	OS1	Low(Floating) = 900 mV, High = 1200 mV	
16	DE2	DE1	{OS = Low} Low = 0 dB, Floating = -3.5 dB, High = -6.2 dB {OS = High} Low = -2.6 dB, Floating = -5.9 dB, High = -8.3 dB	
17	EQ2	EQ2	Low = 3 dB, Floating = 6 dB, High = 9 dB	
18	GND	NC	Can be tied to GND or left as NC	
19	Device_RX2+	RX2P	Can be connected to either Host or Device	
20	Device_RX2-	RX2N	Can be connected to either Host or Device	
21	GND	GND	No change required	
22	Device_TX1+	TX1P	Can be connected to either Host or Device	
23	Device_TX1+	TX1N	Can be connected to either Host or Device	
24	NC	NC	No change required	
No Changes Required				
Possible Changes Required				
Required for Normal Operation				

Table 1. SN65LVPE502A to TUSB522P Pinout Change

2

www.ti.com

2 VCC/GND

No changes are required for the VCC/GND pins. The TUSB522P has NC pins which are GND pins on the SN65LVPE502A (Pins 6 and 18), these pins can also be tied to GND.

3 No Connect

No changes are required for NC pins.

4 High-Speed Differential Signals

The TUSB522P high-speed differential signals require no changes. The TUSB522P design no longer requires dedicated pin connections for host and device as was needed for the SN65LVPE502A.

5 Equalization (EQ)

The equalization settings have changed from the SN65LVPE502A to the TUSB522P which may require changes in the configuration of the EQ1/2 pins. For example, an EQ setting of "Low" configures the SN65LVPE502A to use 7 dB of equalization, this same EQ setting should change to "Floating" to provide 6 dB equalization when configuring the TUSB522P. Table 2 and Table 3 show the EQ pin definitions for the TUSB522P and SN65LVPE502A.

Pin	Description	Logic State	Gain (dB)
EQ1/EQ2	Equalization Amount	Low	3
		Floating	6
		High	9

Table 2. TUSB522P Equalization Control Pin Settings

Table 3. SN65LVPE502A Equalization Control Pin Settings

Pin	Description	Logic State	Gain (dB)
EQ1/EQ2	Equalization Amount	Low	7
		Floating	0
		High	15

6 Output Swing (OS)

The output swing settings have changed from the SN65LVPE502A to the TUSB522P which also may require changes in the configuration of the OS1/2 pins. OS control for channels 1 and 2 are also swapped in the TUSB522P. Table 4 and Table 5 show the OS1/2 pin definitions for the TUSB522P and the SN65LVPE502A.

Table 4. TUSB522P OS Control Pin Settings

Pin	Description	Logic State	Transition Bit Output Differential Voltage (mV)
OS1/2	Output Swing	Low (Floating)	900
		High	1200

Table 5. SN65LVPE502A OS Control Pin Settings

Pin	Description	Logic State	Transition Bit Output Differential Voltage (mV)
OS1/2	Output Swing	Low	908
		Floating	1042
		High	1127

7 De-Emphasis (DE)

De-emphasis configuration settings have changed between the TUSB522P and the SN65LVPE502A. DE control for channels 1 and 2 are also swapped in the TUSB522P. These changes may require configuration changes when moving from the SN65LVPE502A to the TUSB522P. Table 6 and Table 7 show the DE pin definitions for the TUSB522P and the SN65LVPE502A.

Table 6. TUSB522P De-Emphasis Control Pin Settings

Pin	Description	Logic State	De-Emphasis Ratio (dB)	
			OS = Low(Floating)	OS = High
DE1/2	De-Emphasis Amount	Low	0	-2.6
		Floating	-3.5	-5.9
		High	-6.2	-8.3

Table 7. SN65LVPE502A De-Emphasis Control Pin Settings

Pin	Description	Logic State D		De-Emphasis Ratio (dB)	
			OS = Floating	OS = Low	OS = High
DE1/2	De-Emphasis Amount	Low	-3.5	-2.2	-4.4
		Floating	0	0	0
		High	-6.0	-5.2	-6.0

4

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconn	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated