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This low-side voltage-to-current (V-I) converter 
delivers a well-regulated current to a floating load.  
The design uses a small-signal op amp to control an 
NPN emitter-follower that sources current to the load.  
The current is accurately regulated by feeding back 
the voltage drop across a low-side current-sense 
resistor to the op amp.
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1 Design Summary 

The design requirements are as follows: 

 Supply Voltage: 12 V dc 

 Input: 0-5 V dc 

 Output: 0-500 mA dc 

The design goals and performance are summarized in Table 1.  Figure 1 depicts the measured transfer 
function of the design. 

Table 1. Comparison of Design Goals, Simulated, and Measured Performance 

 Goals Simulated Measured 

Offset (%FSR) 0.1 <0.001 <0.001 

Gain Error (%FSR) 1 0.579 0.846 

Load Compliance (V) 10 10.27 11.07 

   

 

Figure 1:  Measured Transfer Function 
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2 Theory of Operation 

A more complete schematic for this design is shown in Figure 2. The V-I transfer function of the circuit is 
based on the relationship between the input voltage, VIN, the input resistor divider network, and the 
current sensing resistor, RS.   
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Figure 2:  Complete Circuit Schematic 

The transfer function for this design is defined in Equation 1. 
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2.1 Rs 

The sense resistor, RS, is placed in series with the load and will develop a voltage drop proportional to the 
current through the load.  This sense voltage is fed back into the inverting input of the op amp. Through 
negative feedback, the op amp will control the current that flows through the BJT such that it sets the 
voltage at the inverting node (IN-) equal to the voltage applied to the non-inverting node (IN+), achieving 
the V-I transfer function.   

The voltage drop across RS subtracts from the load compliance voltage and was limited to 100 mV at full-
scale to maximize the load compliance voltage.  Limiting the voltage drop to 100mV also limits the power 
dissipated in the sense resistor to 50 mW at full-scale output reducing self-heating effects.  

 200mΩ
500mA

100mV
RS   (2) 
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2.2 R1 and R2 

By limiting the maximum voltage at the inverting terminal to 100 mV at full-scale, the voltage at the non-
inverting terminal is also limited to 100 mV.  In order to use this circuit with a standard voltage input range 
of 0-5 V dc, a resistor divider is implemented between the input voltage and the non-inverting input. 
Resistor values were calculated to ensure that only 100 µA of current would be drawn from the input 
source at full-scale. Using standard resistor values may require the use of multiple resistors in series (i.e. 
R1A and R1B) to realize the calculated ratio below.   

R2 is sized based on the desired input current and input voltage at IN+: 

 
2RuA 100mV 100IN   (3) 

 kΩ  1R2   (4) 

R1 is calculated such that the resistor divider produces 100 mV with a full-scale input of 5 V: 
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 kΩ 49R1   (7) 

By setting the voltage across the sense resistor, VRS, equal to the voltage applied to IN+, one can derive 
the transfer function for linear operation of the current source as shown in the equations below. 
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2.3 R1B 

The voltage drop across the base resistor, RB will subtract from the maximum compliance voltage of this 
design.  Therefore, RB is sized such that it only subtracts 100 mV of headroom across the output stage at 
full-scale.  For a transistor with a β of 100, the TIP33 is expected to pull approximately 5 mA of base 
current when IOUT nears the full-scale current of 500 mA.     

 Ω 20
mA  5

mV  100
RB   (10) 

2.4 RF and CF 

The feedback components RF and CF provide compensation to this circuit to ensure stability during input or 
load transients. The compensation works by removing the BJT gain from the control loop at higher 
frequencies by providing feedback to the inverting input directly from the amplifier output through CF 
instead of at the BJT emitter through RF.  The frequency that this occurs is roughly based on the RC time 
constant formed from RF and CF.  The values in this circuit were chosen such that frequency is within the 
usable bandwidth of the amplifier, but above 100 kHz so the response wasn’t too over-damped.  The value 
of RF should be sized much larger than the load resistance but not so large that the op amp input bias 
current flowing through it creates a large offset voltage. 
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The transient response of this circuit is examined in Section 6.4. Based on the small-signal response of the 
amplifier and load outputs, it is clear that the selected values for RF and CF provide adequate stability for a 
purely resistive load.  

RF and/or CF can be increased to provide additional compensation in order to accommodate applications 
with inductive loads. As the RC time constant is increased, it is important to evaluate the step-response of 
the system as the circuit settling time will increase as well.  

RB also provides compensation to the circuit. The user should refrain from making RB too large since it will 
limit the voltage headroom across the output stage. Consequently, this reduces the maximum full-scale 
load that the circuit can drive before reaching compliance (see Section 6.5 on Compliance Voltage).  For a 
more detailed study on op amp stability please refer to Reference 1. 

2.5 Summary 

This circuit’s operation is dependent on the appropriate sizing of RS, R1, R2, and RB. The output current 
that passes through RS creates the voltage potential that is fed into the inverting input of the OPA735. The 
sense voltage is limited to 100 mV at full-scale in order to minimize power dissipation across RS.  This is 
accomplished by limiting the voltage at the non-inverting terminal to 100mV using a proper resistor divider 
to divide down the dc input voltage without drawing more than 100 µA from the source. RB is kept small so 
as to reduce the voltage headroom lost across the output stage. 

3 Component Selection 

3.1 Operational Amplifier 

For a successful design, one must pay careful attention to the DC characteristics of the op amp chosen for 
the application. To meet the performance goals, this application will benefit from an op amp with low 
offset voltage, low temperature drift, and rail-to-rail output. 

The OPA735 CMOS operational amplifier is a high-precision device with 5 µV of offset and 0.05uV/C of 
drift and is optimized for single-supply operation with output swing to within 50mV of the positive rail.   

Using auto-zeroing techniques, the OPA735 provides low initial offset voltage and near-zero drift over 
temperature. Low offset voltage and low drift will reduce the offset error in the system, making these 
devices appropriate for precise DC control.  The rail-to-rail output stage of the OPA735 will allow for the full 
headroom across the load.  

Other amplifier options for this application are the chopper-stabilized OPA188 or OPA333 as further 
discussed in Section 7. 

3.2 NPN Transistor 

The TIP33 NPN transistor chosen for this design is rated for a continuous collector current of 10A and a 
maximum collector-emitter voltage of 40V. Choosing a transistor that exceeds the requirements of the 
circuit will dissipate heat more effectively and allow for operation without an external heat-sink. The TIP33 
has a rated base-emitter voltage of 1.6 V at 3 A and a small-signal gain (β) of 100. 

3.3 Passive Component Selection 

The critical passive components for this design are the resistors that are part of the transfer function: R1A 
and R1B, R2, and RS.   
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To meet the design requirements of 1% FSR gain error, the tolerance of these resistors must be selected 
appropriately.  R1A, R1B, and R2 were chosen with 0.1% tolerance as these parts were easier to obtain 
while keeping the design cost-effective. RS was chosen to be 1% as the price for low-tolerance 200 mΩ 
resistors was significantly higher.  Although the design performance will benefit from using the most 
precise components available, cost is a tradeoff that each designer must evaluate individually. 

Other passive components in this design may be selected for 1% or greater because they will not directly 
affect the transfer function of this design. 

4 Simulation 

The TINA-TI
TM

 schematic shown in Figure 3 includes the circuit values obtained in the design process. 

 

Figure 3:  TINA-TI
TM

 Simulation Schematic 
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4.1 DC Transfer Function 

The dc transfer function results of the simulation are shown in Figure 4.  The simulation results showed an 
offset current of -14.78 pA and a full-scale current of 499.94 mA.  These results do not include the 
tolerance of the passive components and help analyze amplifier and active device accuracy.   

 

Figure 4:  Simulated Full-Scale Transfer Function 

A 20-sweep Monte-Carlo simulation was run with the actual component tolerances to produce more 
realistic results. The results are shown in Table 2 and Figure 5.   
 

Table 2:  Average Monte-Carlo DC Transfer Results 

 Min Max Average Std. Dev. (σ) 

IOUT Offset (pA) -14.778 -14.762 -14.778 0.006 

Full-Scale IOUT (mA) 498.205 501.641 499.904 0.9654 

Full-Scale IOUT |Error| (mA) 0.0573 1.795 0.193 n/A 
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Figure 5:  Simulated Monte-Carlo Full-Scale Transfer Function 

The full-scale gain error was calculated using three standard deviations of the full-scale load current, which 
should encompass roughly 99.7% of the designs (3-σ). 
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4.2 Step Response 

The small-signal stability of the system was verified by applying a step response to the input of the op amp 
that caused the output to change by roughly 100 mV.  The results are shown in Figure 6. 

 

Figure 6:  Small-Signal Step Response Simulation 
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4.3 Compliance Voltage 

To test the maximum load compliance voltage and load resistance, the output was set to full-scale (500 
mA) and the load resistor, RLOAD, was swept from 0 Ω - 25 Ω.  It was found that the output compliance 
voltage was 10.27 V and the maximum output resistance was 20.55 Ω. 

Simulation also verifies that the VOA of the amplifier is the limiting factor in compliance voltage as further 
discussed in Section 6.5. 

 

Figure 7:  Maximum Load Impedance and Compliance Voltage Simulation 

4.4 Simulated Result Summary 

The simulation results are compared against the design goals in Table 3. 

Table 3:  Simulated Result Summary 

 Goals Simulated 

IOUT Offset (%FSR) 0.1 <0.0001 

IOUT Gain Error (%FSR) 1 0.386 

Load Compliance (V 10 10.27 
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5 PCB Design 

The PCB schematic and bill of materials can be found in Appendix A.1 and 0. 

5.1 PCB Layout 

For optimal performance in this design, much importance is placed on the high-current path from V1+ to 
the GND through the transistor, load, and sense resistor. 

Since the full-scale output current in this design is 500 mA and the full-scale sense voltage is only 100 mV, 
even small amounts of PCB resistance in series with the sense resistor will create error voltages that 
cause gain errors in the circuit transfer function.  To avoid this situation, a 4-wire Kelvin connection is used 
to separate the high-current path through RS from the path used to sense the voltage drop across it.   

The high-current path through the BJT and the load is made with wide traces in order to reduce PCB trace 
resistance and facilitate current flow. Keeping the high-current traces wide near the NPN transistor will 
allow for the heat to dissipate away from the IC, lowering the device temperature.  The layout for the 
design is shown in Figure 8. 

 

Figure 8:  Altium PCB Layout 

In addition to these rules, please reference and abide by general PCB layout guidelines.  
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6 Verification and Measured Performance 

6.1 Transfer Function 

Data was collected by sweeping VIN from 0-5 V dc while measuring the output current, IOUT. Figure 9 
displays a plot of IOUT versus VIN. 

 

Figure 9:  Measured IOUT vs VIN 

6.2 Offset Error 

Due to the input low offset voltage and rail-to-rail output of the OPA735, the offset error in this circuit is 
negligible.  With VIN at the zero-scale input of 0V, an offset error of only 12pA was observed. 

6.3 Gain Error 

To observe the errors in the transfer function more clearly, Figure 10 shows the full-scale percent error in 
IOUT plotted as a function of VIN.  A slight 2nd order effect can be seen as the sense resistor began to heat 
up near the full-scale currents.  This could be minimized by using a lower temperature coefficient (TC) 
sense resistor. 

 
 

Figure 10:  Measured IOUT Error(%FSR) vs. VIN 
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Although the desired output span was from 0-500 mA, the gain errors in the circuit limited the output to a 
maximum of 495.1 mA.  The gain error was calculated over the operating range of the circuit as shown in 
Equation 12. 

 %.
)Ideal(I

)Measured(I)Ideal(I
Error(%) Gain

OUT

OUTOUT 8460



  (12) 

Resistor tolerances in the input resistor divider, the output sense resistor, and parasitic PCB resistances 
create gain errors in the circuit.  The accuracy of this design is largely limited to the tolerance of the sense 
resistor, RS. In this case, the RS used in the design has a tolerance of 1%.  Parasitic PCB resistances are 
likely the reason that the measured gain error was higher than the simulated gain error.     

6.4 Transient Response 

The operation of the design was verified over the full-scale input range.  A 0-5 V triangle wave input was 
fed into the system at 100 Hz while measuring the output current with an ac/dc current probe.  The results 
are shown in Figure 11. 

 

Figure 11:  Measured IOUT vs. Full-Scale VIN 
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The large-signal settling time of the system was also tested to determine how quickly the output settles 
from a full-scale input transient.  Figure 12 shows a 1 kHz, 0-5 V square wave input, which produced an 
output current through the load that settled in a little over 200µs. 

 

Figure 12:  IOUT Full-Scale Step Response 

 

The small-signal response is indicative of the stability of the current source. An unstable design would 
present unwanted overshoot, ringing, and long settling times. This would require better compensation in 
the feedback network by adjusting RB, RF, and CF. 

In Figure 13, a 1 kHz, 200 mVpp square wave input was centered around mid-scale. This produced 
approximately 200 mVpp of change in the op amp’s output and 20 mApp of change in output current 
through the load. As there was minimal overshoot and ringing, this circuit is considered largely over-
damped and stable. 
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Figure 13:  Small-Signal Step Response 

6.5 Compliance Voltage 

This current source will operate correctly as long as the voltage across the load resistance does not 
exceed the compliance voltage of the design. The maximum load impedance that this design can 
successfully drive is determined by analyzing the path from the op amp output to the emitter of the BJT, 
including the maximum output of the amplifier, the voltage drop across the sense resistor, and the base-
emitter voltage ,VBE, of the transistor at full-scale output.   

The datasheet specifies that the output of the op amp, VOA, has an output voltage swing within 50 mV of 
the positive rail at light loads.  Therefore, the circuit should be designed under the assumption that VOA 
cannot exceed 11.95 V.  The voltage drop across the RB resistor was designed to be 100 mV, and the VBE 
of the BJT is 1.6 V. The maximum voltage that should be expected at the emitter of the BJT at full-scale 
output current can be calculated as shown in the following equations. 
 

 )VV(V(max)V BEBOAE   (13) 

  V10.25 V)1.6mV (100 V11.95(max)VE   (14) 

The emitter voltage VE must remain less than 10.25 V in order for the op amp to output the appropriate 
output voltage at full-scale. This means that the maximum allowable load impedance can be calculated as 
shown in the following equation. 

 )RR(IVVV SLOADOUTRSLOADE   (15) 

  mΩ 200RmA 500 V10.25 LOAD   (16) 

 Ω 21.94RLOAD   (17) 
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The increase in measured compliance voltage compared to the calculated values was due to better swing-
to-rail performance from the OPA735 and a smaller BJT VBE voltage of 0.75V. 
 
Although it was not the case in this design, in some instances the saturation voltage of the BJT may be the 
limiting factor in the load compliance voltage.   

6.6 Measured Result Summary 

The measured results are compared against the design goals in Table 4. 

Table 4: Measured Result Summary 

 Goals Measured 

IOUT Offset (%FSR) 0.1 <0.0001 

IOUT Gain Error (%FSR) 1 0.846 

Load Compliance (V) 10 11.07 

7 Modifications 

Other amplifier options for this application are the chopper-stabilized OPA188 or OPA333. The OPA188 
offers a wider supply voltage range of 36V for applications that may require larger current outputs or 
compliance voltages.  For designs with supply voltages less than +5.5V, the OPA333 offers unmatched 
offset, drift, and quiescent current performance.  Other amplifiers provide lower quiescent current or higher 
bandwidths.  Table 5 provides a few options with key specifications for this design. 

If this design is to be used over a wide temperature range, it is also recommended to select low TC 
devices in addition to low tolerances for the critical components. This design will produce significant 
amounts of heat when operating near the full-scale output current. Devices with low TC will tend to 
fluctuate less over changes in temperature and provide more consistent results.  

For higher current designs that require high accuracy, consider using a 4-lead Kelvin connected sense 
resistor for RS that will help further minimize errors due to PCB parasitic resistance.  Care should be taken 
to ensure that the BJT and other components in the design are not overstressed in modifying the design 
for higher voltages or larger output currents. 

Table 5:  Alternate Op Amps 

Amplifier Max Supply Voltage 
(V) 

Max Offset Voltage 
(uV) 

Max Offset Drift 
(uV/°C) 

Bandwidth (MHz) Quiescent 
Current (uA) 

OPA333 5.5 5 0.05 0.35 25 

OPA335 5.5 5 0.05 2 350 

OPA320 5.5 150 5 20 1750 

OPA188 36 25 0.085 2 475 

OPA277 36 20 0.15 1 825 

8 Potential Application  

 Using the OPA735 in low-side V-I converter configuration rewards the user with the ability to provide an 
accurately controlled, linear current source with minimal transfer error. An example application for this 
topology is precise LED current control as shown in Figure 14.  

Depending on the available power supply and the amount of headroom across the output stage, one could 
easily string multiple LEDs in series between the emitter of the transistor and the sense resistor, RS. 
Adjusting the current flow through the LEDs directly controls their brightness level. The input and output 
stages of the circuit can be reconfigured within the limitations of the OPA735 to accommodate other input 
voltage and output current ranges to fit your specific design requirements. 
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Figure 14:  LED Driver Application Circuit 
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Appendix A.   

A.1 Electrical Schematic  

The Altium electrical schematic for this design can be seen in Figure 15. 

 

Figure 15:  Altium Schematic 
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A.2 Bill of Materials 

The bill of materials for this circuit can be seen in Figure 16. 

 

Figure 16:  Bill of Materials 

 
 

Line # Quantity Value Designator Description Manufacturer PartNumber Supplier Part Number 1

1 1 10uF C1 CAP, TANT, 10uF, 25V, +/-10%, 0.3 ohm, 6032-28 SMD AVX TPSC106K025R0300 478-3360-1-ND

2 1 0.1uF C2 CAP, CERM, 0.1uF, 25V, +/-10%, X7R, 0805 MuRata GRM21BR71E104KA01L 490-1673-1-ND

3 2 100pF C3, C5 CAP, CERM, 100pF, 50V, +/-5%, C0G/NP0, 0805 Kemet C0805C101J5GACTU 399-1122-1-ND

4 1 0.1uF C4 CAP, CERM, 0.1uF, 50V, +/-5%, X7R, 0805 AVX 08055C104JAT2A 478-3352-1-ND

5 1 J1 Standard Banana Jack, Uninsulated, 5.5mm Keystone 575-4 575-4K-ND

6 1 J2 Standard Banana Jack, Uninsulated, 5.5mm Keystone 575-4 575-4K-ND

7 1 J3 Connector, TH, SMA Emerson Network Power 142-0701-201 J500-ND

8 1 J4 Conn Term Block, 2POS, 3.81mm PCB Phoenix Contact 1727010 277-1947-ND

9 1 Q1 TRANS NPN 10A 100V HI PWR TO218 ON Semiconductor TIP33CGOS-ND TIP33CG

10 1 20R R1 RES, 20.0 ohm, 0.5%, 0.1W, 0805 Susumu Co Ltd RR1220Q-200-D RR12Q20DCT-ND

11 1 47.0k R2 RES, 47.0k ohm, 0.1%, 0.125W, 0805 Susumu Co Ltd RG2012P-473-B-T5 RG20P47KBCT-ND

12 1 2.00k R3 RES, 2.00k ohm, 0.1%, 0.125W, 0805 Susumu Co Ltd RG2012P-202-B-T5 RG20P2.0KBCT-ND

13 1 1.00k R4 RES, 1.00k ohm, 0.1%, 0.125W, 0805 Susumu Co Ltd RG2012P-102-B-T5 RG20P1.0KBCT-ND

14 1 10.0k R5 RES, 10.0k ohm, 1%, 0.125W, 0805 Vishay-Dale CRCW080510K0FKEA 541-10.0KCCT-ND

15 1 0.2 R6 RES 0.2 OHM 1/4W 1% 0805 SMD Stackpole CSR0805FKR200 CSR0805FKR200CT-ND

16 2 Red TP1, TP9 Test Point, TH, Miniature, Red Keystone 5000 5000K-ND

17 6 Black TP2, TP3, TP4, TP5, TP6, TP7 Test Point, TH, Miniature, Black Keystone 5001 5001K-ND

18 4 White TP8, TP10, TP11, TP12 Test Point, TH, Miniature, White Keystone 5002 5002K-ND

19 1 U1 IC OPAMP CHOP R-R 1.6MHZ 8SOIC Texas Instruments OPA735AID 296-17995-ND
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