Q‘ TEXAS
INSTRUMENTS

MSP430x4xx Family

User’'s Guide

April 2013

SLAUOS6L

About This Manual

Preface

Read This First

This manual discusses modules and peripherals of the MSP430x4xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections and operational parameters differ
from device to device. The user should consult the device-specific data sheet
for these details.

Related Documentation From Texas Instruments

FCC Warning

For related documentation see the web site http://www.ti.com/msp430.

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to subpart
J of part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which
case the user at his own expense will be required to take whatever measures
may be required to correct this interference.

Notational Conventions

Program examples, are shown in a speci al typeface.

Glossary

Glossary

ACLK
ADC
BOR
BSL
CPU
DAC
DCO
dst
FLL
GIE
INT(N/2)
110
ISR
LSB
LSD
LPM
MAB
MCLK
MDB
MSB
MSD
NMI
PC
POR
PUC
RAM
SCG
SFR
SMCLK
SP
SR
src
TOS
WDT

Auxiliary Clock
Analog-to-Digital Converter
Brown-Out Reset
Bootstrap Loader

Central Processing Unit

Digital-to-Analog Converter

Digitally Controlled Oscillator

Destination

Frequency Locked Loop
General Interrupt Enable
Integer portion of N/2
Input/Output

Interrupt Service Routine
Least-Significant Bit
Least-Significant Digit
Low-Power Mode
Memory Address Bus
Master Clock

Memory Data Bus
Most-Significant Bit
Most-Significant Digit
(Non)-Maskable Interrupt
Program Counter
Power-On Reset
Power-Up Clear

Random Access Memory
System Clock Generator
Special Function Register
Sub-System Master Clock
Stack Pointer

Status Register

Source

Top-of-Stack

Watchdog Timer

See Basic Clock Module

See System Resets, Interrupts, and Operating Modes
See www.ti.com/msp430 for application reports
See RISC 16-Bit CPU

See FLL+ Module
See RISC 16-Bit CPU
See FLL+ Module

See System Resets Interrupts and Operating Modes

See Digital I/0O

See System Resets Interrupts and Operating Modes

See FLL+ Module

See System Resets Interrupts and Operating Modes
See RISC 16-Bit CPU
See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See FLL+ Module

See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See Watchdog Timer

Register Bit Conventions

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility

rw Read/write

r Read only

ro Read as 0

rl Read as 1

w Write only

w0 Write as 0

wl Write as 1

(w) No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as 0.

hO Cleared by hardware

hl Set by hardware

-0,-1 Condition after PUC
-(0),-(1) Condition after POR

vi

Contents

1 INtrodUCHION . .o 1-1
1.1 ArChIteCtUre . ..o 1-2
1.2 Flexible CloCK Systemo e e 1-2
1.3 Embedded Emulation 1-3
14 AdAreSS SPACEttt 1-4

1.4.1 Flash/ROM e e 1-4
14,2 RAM . 1-5
1.4.3 Peripheral Modules 1-5
1.4.4 Special Function Registers (SFRS) oo 1-5
1.45 Memory Organizationt 1-5
2 System Resets, Interrupts, and Operating Modes 2-1
2.1 System Reset and Initialization i 2-2
2.1.1 BrownoutReset (BOR) ...t e 2-3
2.1.2 Device Initial Conditions After System Reset 2-4
2.2 I EITUPES . .t te 2-5
2.2.1 (Non)-Maskable Interrupts (NMI)ot 2-6
2.2.2 Maskable Interrupts 2-9
2.2.3 INterrupt ProCeSSING . .ottt e 2-10
224 Interrupt VECIOISot 2-12
2.2.,5 Special Function Registers (SFRS) 2-12
2.3 0perating MOOeS 2-13
2.3.1 Entering and Exiting Low-Power Modes 2-15
2.4 Principles for Low-Power Applicationst 2-16
2.5 Connection of Unused PiNS ittt 2-16

vii

Contents

3 RISC 16-Bit CPU .. i e e 3-1
3.1 CPRUINrOdUCHION ..o e e e e e 3-2
3.2 CPU REGISIEIS .ttt 3-4

3.2.1 Program Counter (PC) ...ttt e 3-4
3.2.2 Stack Pointer (SP) . ..o e 3-5
3.2.3 Status Register (SR)t 3-6
3.2.4 Constant Generator Registers CG1and CG2couv... 3-7
3.2.5 General-Purpose Registers R4toR15 i, 3-8
3.3 AdAressing Modeso 3-9
3.3. 1 Register MOAe 3-10
3.3.2 Indexed Mode o 3-11
3.3.3 SymbolicMode 3-12
3.34 ADSOIUtE MOOE . ..o 3-13
3.3.5 Indirect Register MOOeot e 3-14
3.3.6 Indirect AutoincrementMode 3-15
3.3.7 Immediate Mode 3-16
3.4 INSHIUCHION Set 3-17
3.4.1 Double-Operand (Format I) Instructions 3-18
3.4.2 Single-Operand (Format Il) Instructions 3-19
4.3 JUMIPS ot 3-20
3.4.4 Instruction CyclesandLengths 3-72
3.4.5 Instruction Set Descriptiono i 3-74

4 16-Bit MSPA30X CPU . .ottt e e e 4-1
4.1 CPUINrodUCtioN o e 4-2
4.2 I BITUPES . ot e 4-4
4.3 CPU REQISIEIS .o 4-5

4.3.1 The Program Counter PCot i 4-5
4.3.2 Stack Pointer (SP)t 4-7
4.3.3 Status Register (SR)t 4-9
4.3.4 The Constant Generator Registers CG1land CG2 4-11
4.3.5 The General Purpose Registers R4toR15 4-12
4.4 Addressing MOESt e 4-15
441 Register Mode 4-16
442 Indexed MOeo 4-18
443 SymbolicMode 4-24
4.4.4 ADSOIUtE MOOE 4-29
4.45 Indirect RegisterMode 4-32
4.4.6 Indirect, AutoincrementMode 4-33
447 Immediate Mode 4-34
4.5 MSP430 and MSP430X INStruCtionS oot 4-36
451 MSPA30INStrUCtiONS . ..ot 4-37
45.2 MSP430X Extended INStructions i 4-44
4.6 Instruction Set DesCriptionot 4-58
4.6.1 Extended Instruction Binary Descriptions 4-59
4.6.2 MSP430 INStrUCtiONS . ..ottt 4-61
4.6.3 Extended InStructions i 4-113
4.6.4 Address INStrUCLIONS ot 4-156

viii

Contents

5 FLL+Clock Module
5.1 FLL+ Clock Module Introductionot
5.2 FLL+ Clock Module Operationot

5.2.1 FLL+ Clock features for Low-Power Applications
5.2.2 Internal Very Low-Power, Low-Frequency Oscillator
5.2.3 LEXTLOscIllator e
524 XT2O0SCIllatoro
5.2.5 Digitally Controlled Oscillator (DCO)c.ciiiiiiiiiiin...
5.2.6 Frequency Locked Loop (FLL)ouuiiii it
5.2.7 DCO MoAUIALOr
5.2.8 Disabling the FLL Hardware and Modulator
5.2.9 FLL Operation from Low-Power Modescovvn...
5.2.10 Buffered CIoCK QUIPULo e
5.2.11 FLL+ Fail-Safe Operation
5.3 FLL+ Clock Module RegiStersot

6 Flash Memory Controller e e e e
6.1 Flash Memory Introductionc it i i e
6.2 Flash Memory Segmentation ittt

6.2.1 SegmentA on MSP430FG47x, MSP430F47x, MSP430F47x3/4,
MSPA30FA7IXX DEVICES . ..ottt e
6.3 Flash Memory Operationiiinii i
6.3.1 Flash Memory Timing Generatorcouiiiiiiinnneenn...
6.3.2 Erasing Flash Memory e
6.3.3 Writing Flash Memory
6.3.4 Flash Memory Access During Write or Erase
6.3.5 StoppingaWriteorErase Cycle i,
6.3.6 MarginalRead Mode
6.3.7 Configuring and Accessing the Flash Memory Controller
6.3.8 Flash Memory Controller Interrupts
6.3.9 Programming Flash Memory Devicescciiiiiinn...
6.4 Flash Memory RegiSters e e

7 Supply Voltage SUPeIVISOrt e e e e e e
7.1 SVSINrodUCHION
7.2 SVS Operation ...t

7.2.1 Configuringthe SVS
7.2.2 SVS Comparator Operationouuieiiineiineeineenn...
7.2.3 Changingthe VLDX BItSot e e
7.24 SVSOperatingRange ...
7.3 SV S REQISIIS .ottt

8 16-Bit Hardware Multiplier
8.1 Hardware Multiplier Introduction i
8.2 Hardware Multiplier Operation

8.2.1 Operand Registers e
8.2.2 ReSUIt RegIStersot
8.2.3 Software Examples
8.2.4 Indirect Addressing of RESLO i
8.25 USING INtEITUPLS . ..ot
8.3 Hardware Multiplier Registers

5-10
5-11
5-11
5-12
5-13
5-13
5-13
5-14
5-15

6-1
6-2
6-4
and
6-5
6-6

6-7
6-11
6-17
6-18
6-18
6-18
6-19
6-19
6-21

7-2
7-4

7-4
7-5
7-6
7-7

Contents

9

10

11

32-Bit Hardware Multiplier o
9.1 32-Bit Hardware Multiplier Introduction
9.2 32-Bit Hardware Multiplier Operationc. i,
9.2.1 Operand RegiSters
9.2.2 ReSUIt RegISterSt
9.2.3 Software Examples i
9.2.4 Fractional Numbers
9.2.5 Putting It All Together i e
9.2.6 Indirect Addressing of Result Registers,
9.2.7 USINg INterruptS . ..ot e
9.2.8 USINg DMA .o
9.3 32-Bit Hardware Multiplier Registers,

DMA CoNtroller .o
10.1 DMA INtrOdUCHION . ..ottt e e e e
10.2 DMA OPEIatiONottt et e e e e e e e e e e
10.2.1 DMA AddressSing MOdESottt
10.2.2 DMA Transfer MOOESottt e
10.2.3 Initiating DMA Transfers e
10.2.4 Stopping DMA Transfers
10.2.5 DMA Channel Priorities
10.2.6 DMA Transfer Cycle TiIme i i
10.2.7 Using DMA with System Interrupts,
10.2.8 DMA Controller INterruptst
10.2.9 DMAIV, DMA Interrupt Vector Generatorc..ocoiiennen...
10.2.10 Using the USCI_B 12C Module with the DMA Controller
10.2.11 Using ADC12 with the DMA Controller
10.2.12 Using DAC12 With the DMA Controller
10.2.13 Using SD16 or SD16_A With the DMA Controller
10.2.14 Writing to Flash With the DMA Controller
10.3 DMA REQISIEIS . ittt e e e e e

Digital /O ..

11.1 Digital HO IntroduCtionot e e

11.2 Digital /O Operationt
11.2.1 Input Register PXIN e e e
11.2.2 Output Registers PXOUTo i
11.2.3 Direction Registers PXDIR

11.2.4 Pullup/Pulldown Resistor Enable Registers PXREN
(MSP430F47x3/4 and MSP430F471xxonly),

11.2.5 Function Select Registers PXSEL,
1126 Pland P2 INterruptst e
11.2.7 Configuring Unused Port Pinso,
11.3 Digital /O ReQISEIS e

Contents

12 Watchdog Timer, Watchdog Timer+t e i 12-1
12.1 Watchdog Timer Introduction it i 12-2
12.2 Watchdog Timer Operationt 12-4

12.2.1 Watchdog Timer Countert i 12-4
12.2.2 Watchdog Mode 12-4
12.2.3 Interval Timer Mode i e 12-4
12.2.4 Watchdog Timer Interruptst i 12-5
12.2.5 WDT+ ENhancementst 12-5
12.2.6 Operation in Low-Power Modes, 12-6
12.2.7 Software EXamples e 12-6
12.3 Watchdog Timer RegiSterst e e 12-7

13 BasiC TIMer L .o e e 13-1
13.1 Basic Timerl Introductiont e 13-2
13.2 Basic TImerl Operationttt e 13-4

13.2.1 Basic Timerl Counter ONeottt e 13-4
13.2.2 Basic TImerl Counter TWOottt e e 13-4
13.2.3 16-Bit Counter MOdeo 13-4
13.2.4 Basic Timerl Operation: Signal fLCD 13-5
13.2.5 Basic TimerL INterruptso ot 13-5
13.3 Basic TImerl RegiStersttt e e et et 13-6

14 Real Time CloCK 14-1
14.1 RTCINrodUuCtioN e e e 14-2
14.2 Real-Time Clock Operationiiiiiii e 14-4

14.2.1 Counter MOAE . ..o e e 14-4
14.2.2 Calendar Modet e 14-5
14.2.3 RTC and Basic Timerl Interactionccuiiiiiienn... 14-5
14.2.4 Real-Time Clock Interruptst 14-6
14.3 Real-Time CloCck RegISIErSo e 14-7

1D TiMEr A o 15-1
15.1 Timer_A IntroducCtion i 15-2
15.2 Timer_A OpPerationttt e e e 154

15.2.1 16-Bit Timer COUNter et 15-4
15.2.2 Startingthe TiImer e 15-5
15.2.3 Timer Mode CoNntrol e 15-5
15.2.4 Capture/Compare Blocks i i e 15-11
15.2.5 OUutpUt UNIt ... o e 15-13
15.2.6 Timer_A INEIrrUPLSottt e e 15-17
15.3 Timer_A ReQISterS . ..o 15-19

Xi

Contents

16 TIMEr B o 16-1
16.1 Timer_B INtroducCtiont 16-2
16.1.1 Similarities and Differences From Timer_A 16-2

16.2 Timer_B Operation e e 16-4
16.2.1 16-Bit TIimer COUNLErot 16-4
16.2.2 Starting the Timer e et 16-5
16.2.3 Timer Mode Controlt 16-5
16.2.4 Capture/Compare Blocks i 16-11
16.2.5 Output Unit 16-14
16.2.6 Timer B INterruptso e 16-18

16.3 Timer_B RegiSters 16-20
17 USART Peripheral Interface, UART Mode ...t 17-1
17.1 USART Introduction: UART MOdeottt e 17-2
17.2 USART Operation: UART Modet 17-4
17.2.1 USART Initializationand Reset i, 17-4
17.2.2 Character Format i i i e e 17-4
17.2.3 Asynchronous Communication Formats 17-5
17.2.4 USART Receive Enable i 17-9
17.2.5 USART TransmitEnable i, 17-10
17.2.6 USART Baud Rate Generationc..couiiiiiiiiinnennneenn. 17-11
17.2.7 USART INtEITUPLS . oo e e 17-17

17.3 USART Registers: UART Modeooo it e e 17-21
18 USART Peripheral Interface, SPIMoOde i e 18-1
18.1 USART Introduction: SPIMOAEt e 18-2
18.2 USART Operation: SPIMOde e 18-4
18.2.1 USART Initializationand Reset i, 18-4
18.2.2 MaSter MOOEt e 18-5
18.2.3 Slave Mode e 18-6
18.2.4 SPIENabIe 18-7
18.2.5 Serial Clock CoNntrolt 18-9
18.2.6 SPIINteIrUPLS ..ot e 18-11

18.3 USART Registers: SPIMOAEttt e et 18-13

Xii

Contents

19 Universal Serial Communication Interface, UARTMode 19-1
19.1 USCI OVeIVIBW . ottt e e e e e e e 19-2
19.2 USCI Introduction: UART Modeot e 19-3
19.3 USCI Operation: UART Modeo e 19-5

19.3.1 USCI Initializationand Reset i 19-5
19.3.2 Character Format 19-5
19.3.3 Asynchronous Communication Formats 19-6
19.3.4 Automatic Baud Rate Detection oo, 19-10
19.3.5 IrDA Encodingand Decodingcouuiiiiiniiiineiinnn, 19-12
19.3.6 Automatic Error Detection 19-13
19.3.7 USCIReceive Enable e 19-14
19.3.8 Receive Data Glitch SUPPression, 19-14
19.3.9 USCITransmitEnable 19-15
19.3.10 UART Baud Rate Generationc.cciiiiiiiiiiiinnnnn.n. 19-15
19.3.11 SettingaBaud Rate i 19-18
19.3.12 Transmit Bit TIMINGot e i e 19-19
19.3.13 Receive Bit TIMING . ..o oo vt e e e e e e 19-20
19.3.14 Typical Baud Rates and EITOrscoiiiineiniinannn 19-21
19.3.15 Using the USCI Module in UART Mode with Low-Power Modes 19-25
19.3.16 USCI INterruptS . ..ot e e e e e 19-25
19.4 USCI Registers: UART MOeot 19-27

20 Universal Serial Communication Interface, SPIMode 20-1
20.1 USCI OVEIVIBW . . it e ettt e et et e e e e e e e e 20-2
20.2 USCI Introduction: SPIMoOde e e 20-3
20.3 USCI Operation: SPIMOde i e 20-5

20.3.1 USCl Initializationand Reset i 20-6
20.3.2 Character Formatottt 20-6
20.3.3 MaSter MOAeo 20-7
20.3.4 Slave MOOEo 20-9
20.3.5 SPIENAble o 20-10
20.3.6 Serial Clock Controlt e e e e 20-11
20.3.7 Using the SPI Mode with Low Power Modes 20-12
20.3.8 SPIINterITUPLS . ..t 20-12
20.4 USCIRegisters: SPIMoOde e 20-14

21 Universal Serial Communication Interface, 12CMode 21-1
211 USCI OVEIVIBW . . ittt e e e e e e e e e e e 21-2
21.2 USCI Introduction: I2CModeo e 21-3
21.3 USCI Operation: I2C Mode e 21-5

21.3.1 USCI Initializationand Reset i 21-6
21.3.2 12C Serial Datao e 21-7
21.3.3 12C Addressing Modesttt e 21-8
21.3.4 12C Module OperatingModesccv i 21-9
21.3.5 12C Clock Generation and Synchronization 21-22
21.3.6 Using the USCI Module in 12C Mode With Low-Power Modes 21-23
21.3.7 USClInterruptsin 1I2C Modeot e 21-24
21.4 USCIRegisters: I2C MOOet 21-26

xiii

Contents

23

24

Xiv

22.1 OAINtrodUCHION . .. o e e e
22,2 OA OPEIatION . ..ttt et e
22.2.1 OA Amplifier ..o
22.2.2 OA INPUL o
22.2.3 OA OUIPUL .« oottt e e e e
22.2.4 OA Configurationst
22.3 OA Modules in MSP430FG42X0 DEVICES vvti it it
22.3.1 OA Amplifier ...
22.3.2 OA INPUIS . e e
22.3.3 OA OUIPULS . o\ttt e e e
22.3.4 OA Configurationscoiiiii i i
22.3.5 Switch Control
22.3.6 Offset Calibration e
22.4 OA Modules in MSP430FG47X DEeVICESttt
22.4.1 OA AMplifier ..o
22.4.2 OA INPUES .o
22.4.3 OA OUIPULS .« oottt et e et e e e e
22.4.4 OA Configurationst
22.4.5 Switch Control of the FG47x devices
22.4.6 Offset Calibration i e
22,5 OA REISIEIS . ottt
22.6 OA Registers in MSP430FG42X0 DeVICeSouuiiiii i
22.7 OA Registers in MSP430FG47X DEVICES . ..o ittt

oM P A A0 A . o
23.1 Comparator_ A Introduction i e
23.2 Comparator_ A OpPerationouuuie e
23.2. 1 COMPAralOr ottt e e
23.2.2 Input Analog SWItChes i
23.2.3 Output Filter
23.2.4 Voltage Reference Generatoriiiiiniiineiinannnn..
23.2.5 Comparator_A, Port Disable Register CAPD
23.2.6 Comparator_A INterruptst i
23.2.7 Comparator_A Used to Measure Resistive Elements
23.3 Comparator_ A RegiSterSo

COMIPaAr A0 At o e
24.1 Comparator A+ Introduction
24.2 Comparator_A+ Operationoutii i
24.2.1 COMPATALOF . . . oottt et e e e e
24.2.2 Input Analog Switches i
24.2.3 Input Short SWitCh
24.2.4 Output Filter o
24.2.5 Voltage Reference Generatoriiiiiniiiniinnnnnn..
24.2.6 Comparator_A+, Port Disable Register CAPD
24.2.7 Comparator_A+ Interrupts
24.2.8 Comparator_A+ Used to Measure Resistive Elements
24.3 Comparator A+ RegiSterst

Contents

25 LCD CoNtroller ottt e

26

25.1 LCD Controller IntroducCtiont e
25.2 LCD Controller Operationuueti et

25.2.1 LCD MEBMOIY ..ttt e e e e e e e
25.2.2 Blinkingthe LCD i e
25.2.3 LCD Timing Generationttt
25.2.4 LCD Voltage Generationttt et
25.2.5 LCD OUIPULS . oot e e e e
25.2.6 StaticModet
25.2.7 2-MUX MOOE . ..
25.2.8 3-MUXMOAE
25.2.9 A-MUXMOAE

25.3 LCD Controller RegiStersSt e

LCD_A Controller . ..o
26.1 LCD_A Controller Introductiont e
26.2 LCD_A Controller Operationiiiiiiie e

26.2.1 LCD MEMOIY ..ttt e e e
26.2.2 BlinKingthe LCD i e e e
26.2.3 LCD_A Voltage And Bias Generationciieiiiinnnnnn..
26.2.4 LCD Timing Generationouuierieunin i,
26.2.5 LCD OUIPULS . . oottt et e et e e e e e
26.2.6 StaticModet
26.2.7 2-MUX MOAE ... i
26.2.8 3-MUXMOAE
26.2.9 A-MUX MOAE

26.3 LCD Controller RegiSterst e

27.2 ADCILI0 OPerationttt et e e e e e e e

27.2.1 10-Bit ADC €O .ottt t ettt et e e
27.2.2 ADCI10 Inputs and Multiplexer
27.2.3 Voltage Reference Generatorc.oiiiiieiiiiinnnennann.
27.2.4 AULO POWEr-DOWN ... e
27.2.5 Sample and Conversion TIMINGvertiin it eineeenn
27.2.6 Conversion MOAeSottt e e
27.2.7 ADC10 Data Transfer Controller
27.2.8 Using the Integrated Temperature Sensorccovvvnn...
27.2.9 ADC10 Grounding and Noise Considerations
27.2.10 ADCI0 INtEITUPES .« ottt e e

27.3 ADCL0 REQISIEIS . ottt ittt e

XV

Contents

28 ADC L .. 28-1
28.1 ADCIL2 INtrodUCiON\ttt 28-2
28.2 ADCIL2 OPEIAtiON . . .ottt e e 28-4

28.2.1 12-Bit ADC COrE . vttt ettt et ettt 28-4
28.2.2 ADCI12 Inputs and Multiplexer 28-5
28.2.3 Voltage Reference Generatorc.cuiiiiiiiiiinnnennnn. 28-6
28.2.4 AUt0 POWEIr-DOWN . ..o 28-6
28.2.5 Sample and Conversion TIMINGovtiiie it 28-7
28.2.6 Conversion MEMOIYttt e 28-10
28.2.7 ADC12 Conversion Modesottt 28-10
28.2.8 Using the Integrated Temperature SENSOrc.covvvuneenn.n. 28-16
28.2.9 ADC12 Grounding and Noise Considerations 28-17
28.2.10 ADCL2 INteITUPES . oo\ttt e e e e e 28-18
28.3 ADCIL2 REQISIEIS . ottt ittt ettt e e e 28-20

20 S .. 29-1
29.1 SDI16 INtrodUCtiON 29-2
29.2 SDI16 OPEratiON\ttt e e e 29-4

20.2.1 ADC COME . ittt ettt et e 29-4
29.2.2 AnaloginputRangeand PGA i 29-4
29.2.3 Voltage Reference Generatorc.covuiiiiiiinenennnnnnan. 29-4
29.2.4 AUt POWEr-DOWN 29-4
29.2.5 Analog Input Pair Selection i e 29-5
29.2.6 Analog Input CharacteristiCsouuiiiiiiniii .. 29-6
20.2.7 Digital Filter 29-7
29.2.8 Conversion Memory Registers: SDI6MEMX oo, 29-10
29.2.9 Conversion Modesot 29-11
29.2.10 Conversion Operation Using Preload oo, 29-14
29.2.11 Using the Integrated Temperature SENSOrc.cvvvieunnnnn.n. 29-16
29.2. 12 Interrupt Handling i 29-17
29.3 SDIB REQISIEIS ..ttt 29-19

B0 S8 A o 30-1
30.1 SDI16 A INtroduCtionottt 30-2
30.2 SDI16 A OPEratioN . .. v ittt ettt 30-5

30.2.1 ADC COrE . ittt ittt 30-5
30.2.2 Analog InputRange and PGA i 30-5
30.2.3 Voltage Reference Generatorc.oiiiuiiiiiineiinaennn.. 30-5
30.2.4 AUt POWEr-DowWN 30-5
30.2.5 Analog Input Pair Selection 30-6
30.2.6 Analog Input Characteristicsc.o i 30-7
30.2.7 Digital Filter e 30-8
30.2.8 Conversion Memory Register: SD1I6MEMXccn.n.. 30-12
30.2.9 Conversion MOOESottt 30-14
30.2.10 Conversion Operation Using Preload, 30-17
30.2.11 Using the Integrated Temperature Sensorccovvvnnn.. 30-19
30.2.22 Interrupt Handling 30-20
30.3 SDI16 A REQISIEIS . ottt ittt 30-22

XVi

Contents

Bl DA C L . e e 31-1
31.1 DACIL2 INtrodUCtiONottt e e e 31-2
31.2 DACILI2 OPEratiONttt ettt et e e e e e 31-6

3L1.2.0 DACL2 COIE vttt ettt e e e e e 31-6
31.2.2 DACIL2 ReferenCe e 31-7
31.2.3 Updating the DAC12 Voltage Output, 31-8
31.2.4 DAC12 xDAT DataFormatcoiiiiiiiiiiii i, 31-9
31.2.5 DAC12 Output Amplifier Offset Calibration 31-10
31.2.6 Grouping Multiple DAC12 Modulesccoiiiiiiiiiiiinn... 31-11
31.2.7 DACLZ2 INteITUPLS . ottt e e e 31-12
31.3 DACIL2 REQISIEIS . ottt ettt 31-13

32 SCaAN IF o 32-1
32.1 Scan IF INtroducCtion i 32-2
32.2 Scan IF Operationiu it e 32-4

32.2.1 ScanlF Analog FrontEnd 32-4
32.2.2 Scan IF Timing State Machine i, 32-14
32.2.3 Scan IF Processing State Machine i, 32-20
32.2.4 ScanlFDebug Registero e 32-26
32.25 Scan Ik INterruptst e 32-27
32.2.6 Usingthe ScanIFwithLC Sensorsccovviiiiiniinennann. 32-28
32.2.7 Using the Scan IF With Resistive Sensors 32-32
32.2.8 Quadrature Decodingc.uiuiiiie i e 32-33
32.3 Scan IF ReQISIErS ..t e 32-35

33 Embedded Emulation Module (EEM) i e 33-1
33.1 EEMINtroduCtion 33-2
33.2 EEMBUIldINg BIOCKS 334

33.2. 1 THgOEIS .ottt e 33-4
33.2.2 Trigger SEQUENCET . .. ottt ettt et e 33-5
33.2.3 State Storage (Internal Trace Buffer) o .. 33-5
33.2.4 Clock Control o 33-5
33.3 EEM Configurationst e 33-6

XVii

xviii

Chapter 1

Introduction

This chapter describes the architecture of the MSP430.

Topic Page
1.1 ArChiteCIUre . o 1-2
1.2 Flexible Clock System 1-2
1.3 Embedded Emulation i 1-3
1.4 AdAreSS SPaACEttt 1-4

1-1

Architecture

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von Neumann common memory address bus
(MAB) and memory data bus (MDB). Partnering a modern CPU with modular
memory-mapped analog and digital peripherals, the MSP430 offers solutions
for demanding mixed-signal applications.

Key features of the MSP430x4xx family include:

[Ultralow-power architecture extends battery life
H 0.1-uA RAM retention
B 0.8-pA real-time clock mode

W 250-uA/ MIPS active

[High-performance analog ideal for precision measurement
W 12-bit or 10-bit ADC — 200 ksps, temperature sensor, VRes
B 12-bit dual DAC
B Comparator-gated timers for measuring resistive elements

W Supply voltage supervisor

[0 16-bit RISC CPU enables new applications at a fraction of the code size.
W Large register file eliminates working file bottleneck
W Compact core design reduces power consumption and cost
W Optimized for modern high-level programming
B Only 27 core instructions and seven addressing modes

B Extensive vectored-interrupt capability

[In-system programmable Flash permits flexible code changes, field
upgrades, and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency auxiliary clock (ACLK) is driven directly from a common 32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source the master clock (MCLK) used by the CPU and high-speed
peripherals. By design, the DCO is active and stable in less than 6 us.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

(1 Low-frequency auxiliary clock = Ultralow-power standby mode

(4 High-speed master clock = High performance signal processing

1-2 Introduction

Embedded Emulation

Figure 1-1. MSP430 Architecture

r-------"-"—-—-—-—-—-—-—---=-=-=-="-="-F="="-"F="=-¥=—-¥/="="¥=—-""=""-"""" A
| |
Clock [ACLK Flash/ : ’)
RAM Peripheral[—]Peripheral[—|Peripheral
I System > SMCLK ROM p || p || p =
| MCLK JANPAN AN AN N\ AN |
I |
| gl Maees > >
| |Risccpu| |8 |
|| 16-Bit S |
| s I
| 5T MDB 16-Bit Bus K" MDB 8-Bit) |
| = . Conv. |\ sl .> |
JTAG |
I N NS \l\/ N ¥ AR J AR J |
| ACLK —9! — — — |
} SMCLK —® Watchdog [|Peripheral Peripheral[| Peripheral[|Peripheral I
I I
e e e Jd

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

(1 Unobtrusive development and debug with full-speed execution,
breakpoints, and single steps in an application are supported.

(1 Development is in-system and subject to the same characteristics as the
final application.

[Mixed-signal integrity is preserved and not subject to cabling interference.

Introduction 1-3

Address Space

1.4 Address Space

The MSP430 von Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROM memory
as shown in Figure 1-2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data
can be accessed as bytes or words.

The addressable memory space is 128 KB with future expansion planned.

Figure 1-2. Memory Map

141 Flash/ROM

1-4 Introduction

* Access
v
Flash/ROM Word/Byte
10000h
OFFFFh
Interrupt Vector Table Word/Byte
OFFEOh
OFFDFh
Flash/ROM Word/Byte
;
v RAM Word/Byte
0200h
01FFh
16-Bit Peripheral Modules Word
0100h
OFFh . .
8-Bit Peripheral Modules Byte
010h
OFh . . .
oh Special Function Registers Byte

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is OFFFFh for
devices with less than 60kB of Flash/ROM; otherwise, it is device dependent.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (OFFFEh).

Address Space

142 RAM

RAM starts at 0200h. The end address of RAM depends on the amount of RAM
present and varies by device. RAM can be used for both code and data.

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to OFFh is reserved for 8-bit peripheral modules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.45 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1-3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Introduction 1-5

Address Space

Figure 1-3. Bits, Bytes, and Words in a Byte-Organized Memory

PYYS XxxAh

15 14 .. Bits .. 9 8 xxx9h
7 6 .. Bits .. 1 0 xxx8h
Byte XxX7h

Byte xxx6h

Word (High Byte) xxx5h

Word (Low Byte) xxx4h

oo xxx3h

1-6 Introduction

Chapter 2

System Resets, Interrupts,
and Operating Modes

This chapter describes the MSP430x4xx system resets, interrupts, and
operating modes.

Topic Page
2.1 System Reset and Initialization 2-2
2.2 N eITUPES . 2-5
2.3 Operating Modesttt 2-13
2.4 Principles for Low-Power Applications 2-16
25 Connectionof Unused Pinsttt 2-16

2-1

System Reset and Initialization

2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2-1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2-1. Power-On Reset and Power-Up Clear Schematic

Brownout
Reset POR
»1S Latch » POR
| —»r
ov ~ 50us
SVS_POR ﬂ E
RST/NMI
WDTNMIT _
WDTTMSEL! @\ v
wDTQnt R i »
WDTIFG! —E—/ esetw >
ols PUC
EQU' Resetwd2 L»{R

KEYV
(from flash module) *

t From watchdog timer peripheral module

A POR is a device reset. A POR is only generated by the following three
events:

[0 Powering up the device
[A low signal on the RST/NMI pin when configured in the reset mode
[An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

1 A POR signal

(1 Watchdog timer expiration when in watchdog mode only
[0 Watchdog timer security key violation
4

A Flash memory security key violation

2-2 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.1.1 Brownout Reset (BOR)

All MSP430x4xx devices have a brownout reset circuit. The brownout reset
circuit detects low supply voltages such as when a supply voltage is applied
to or removed from the V¢ terminal. The brownout reset circuit resets the
device by triggering a POR signal when power is applied or removed. The
operating levels are shown in Figure 2-2.

The POR signal becomes active when Vcc crosses the Vecstary) level. It
remains active until Vcc crosses the V(g |1+) threshold and the delay tgor)
elapses. The delay tgoR) is adaptive being longer for a slow ramping Vcc The
hysteresis Vhys@ 7o) ensures that the supply voltage must drop below
V(s_iT-) to generate another POR signal from the brownout reset circuitry.

Figure 2-2. Brownout Timing

A
| | v | |
| | < | |
v, | I | I
hys(B_IT-) | | |
v
I v | < D S
VB_IT-) TFE T A <
I I | |
Veestart) | A e e +—— I o R

Set Signal for
POR circuitry

“ttgoR)

As the V(g 1) level is significantly above the V) level of the POR circuit,
the BOR provides a reset for power failures where V¢ does not fall below
V(min). See the device-specific data sheet for parameters.

System Resets, Interrupts, and Operating Modes 2-3

System Reset and Initialization

2.1.2 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

-
4

(]

Software Initialization

2-4

The RST/NMI pin is configured in the reset mode.
I/O pins are switched to input mode as described in the Digital I1/0O chapter.

Other peripheral modules and registers are initialized as described in their
respective chapters in this manual.

Status register (SR) is reset.
The watchdog timer powers up active in watchdog mode.

Program counter (PC) is loaded with address contained at reset vector
location (OFFFEh). CPU execution begins at that address.

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

J
a

Initialize the SP, typically to the top of RAM.

Initialize the watchdog to the requirements of the application.

[d Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization
2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the
modules in the connection chain as shown in Figure 2-3. The nearer a module
is to the CPU/NMIRS, the higher the priority. Interrupt priorities determine what
interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

[System reset
(1 (Non)-maskable NMI
(1 Maskable

Figure 2-3. Interrupt Priority

Priority High Low
GMIRS
s @i
CPU Module Module WDT Module Module
1 2 Timer m n
NMIRS 1 2 12 1 2 1 2 1
< > — —
Y | AN Y. 4 A IPAY
PUC ; 3 s 3 ®
Grant
PUC
Circuit OSCfault
Flash ACCV
Nl Reset/NMI
T N\
WDT Security Key]
N/ FlashSecuiyKey N\ 7 N/ NS N NS N
< MAB - 5LSBs >

System Resets, Interrupts, and Operating Modes 2-5

System Reset and Initialization

2.2.1 (Non)-Maskable Interrupts (NMI)

Reset/NMI Pin

(Non)-maskable NMI interrupts are not masked by the general interrupt enable
bit (GIE), but are enabled by individual interrupt enable bits (ACCVIE, NMIIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, OFFFCh. User software must set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2-4.

A (non)-maskable NMI interrupt can be generated by three sources:
[An edge on the RST/NMI pin when configured in NMI mode
[An oscillator fault occurs

[d An access violation to the flash memory

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, OFFFEh.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the WDTNMIES bit generates an NMI interrupt if the NMIIE
bit is set. The RST/NMI flag NMIIFG is also set.

Note: Holding RST/NMI Low

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
the NMI signal is low, the device will be held in the reset state because a PUC
changes the RST/NMI pin to the reset function.

Note: Modifying WDTNMIES

When NMI mode is selected and the WDTNMIES bit is changed, an NMI can
be generated, depending on the actual level at the RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

2-6 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Figure 2-4. Block Diagram of (Non)-Maskable Interrupt Sources

ACCV

FCTL3.2

IE1.5

PUCJ+

RST/NMI

IFG1.4

PUC

IEL4

PUC

OSCFault

IFG1.1

IE1.1

F>u<:J t

.

ACCVIFG
S }
ACCVIE
Clear
Flash Module
POR PUC
\ KEYV SVS_POR BOR
i > —»— PUC
» System Reset
Ll
f Generator
> —»— POR
A A A
Y AMmiFG
5 T\ X\
p— NMIRS
o [— WDTTMSEL
car WDTNMIES + WDTNMI WDTQn EQU PUC POR
NMIIE ,_____|__}____ __——j__l‘—}_‘l
| < WDTIFG |
Clear | IFG1.0 — |
| Clear |
| WDT |
| Counter |
j | POR |
OFIFG | |
s) | |
_J | |
| IRQA |
| S S— |
OFIE | WDTTMSEL |
| WDTIE |
Clear l l
| IE1.0 o |
ear
NMI_IRQA o | |
| 4 |
| Watchdog Timer Module PUC l
IRQA: Interrupt Request Accepted - - - |
System Resets, Interrupts, and Operating Modes 2-7

System Reset and Initialization

Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LF mode, therefore switching off the HF mode. The PUC signal also
switches off the XT2 oscillator.

Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIE bit. The ACCVIFG flag can then be tested by NMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

2-8 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Example of an NMI Interrupt Handler

The NMI interrupt is a multiple-source interrupt. An NMI interrupt automatically
resets the NMIIE, OFIE, and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2-5.

Figure 2-5. NMI Interrupt Handler

Reset by HW:

Start of NMI Interrupt Handler
OFIE, NMIIE, ACCVIE

»
L

Reset OFIFG

Reset ACCVIFG

Reset NMIIFG

-

-

-

User’s Software,

User’s Software,

User’s Software,

Oscillator Fault Flash Access External NMI
Handler Violation Handler Handler
Optional 4
RETI A
End of NMI Interrupt
Handler

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

To prevent nested NMI interrupts, the ACCVIE, NMIIE, and OFIE enable bits
should not be set inside of an NMI interrupt service routine.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in interval-timer mode. Each maskable
interrupt source can be disabled individually by an interrupt enable bit, or all
maskable interrupts can be disabled by the general interrupt enable (GIE) bit
in the status register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

System Resets, Interrupts, and Operating Modes 2-9

System Reset and Initialization

2.2.3

Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only

the

individual enable bit must be set for (non)-maskable interrupts to be

requested.

Interrupt Acceptance

The interrupt latency is six cycles, starting with the acceptance of an interrupt
request and lasting until the start of execution of the first instruction of the
interrupt-service routine, as shown in Figure 2-6. The interrupt logic executes
the following:

1)
2)
3)

4)

5)

6)

7

Any currently executing instruction is completed.
The PC, which points to the next instruction, is pushed onto the stack.
The SR is pushed onto the stack.

The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

The SR is cleared with the exception of SCGO, which is left unchanged.
This terminates any low-power mode. Because the GIE bit is cleared,
further interrupts are disabled.

The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2-6. Interrupt Processing

2-10

SP—»

Before After
Interrupt Interrupt
lteml lteml
Item2 TOS Item2
PC
SP —» SR TOS

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Return From Interrupt
The interrupt handling routine terminates with the instruction:

RET!I (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions
and is illustrated in Figure 2-7.

1) The SR with all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where it was
interrupted.

Figure 2-7. Return From Interrupt

Before After
Return From Interrupt

lteml lteml
Iltem2 SP —» Iltem2 TOS
PC PC
SP —» SR TOS SR

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service
routine. When interrupt nesting is enabled, any interrupt occurring during an
interrupt service routine will interrupt the routine, regardless of the interrupt
priorities.

System Resets, Interrupts, and Operating Modes 2-11

System Reset and Initialization

224

Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the

address range OFFFFh to OFFEOh as described in Table 2-1. A vector is
programmed by the user with the 16-bit address of the corresponding interrupt

service routine. Some devices may contain more interrupt vectors. See the

device-specific data sheet for the complete interrupt vector list.

Table 2-1. Interrupt Sources,Flags, and Vectors

INTERRUPT SOURCE INTEBE(;JPT INiEiLiNFI,T AI\DND%REDSS PRIORITY
Fe()svgsrvyziéﬁgts;al :’(VSJ\'/FG Reset OFFFEh 15, highest
flash password

NMI, oscillator fault, NMIIFG (non)-maskable
flash memory access OFIFG (non)-maskable OFFFCh 14
violation ACCVIFG (non)-maskable

Device-specific OFFFAhD 13
Device-specific OFFF8h 12
Device-specific OFFF6h 11
Watchdog timer WDTIFG maskable OFFF4h 10
Device-specific OFFF2h 9
Device-specific OFFFOh 8
Device-specific OFFEEh 7
Device-specific OFFECh 6
Device-specific OFFEAhA 5
Device-specific OFFE8h 4
Device-specific OFFEG6h 3
Device-specific OFFE4h 2
Device-specific OFFE2h 1
Device-specific OFFEOh 0, lowest

2.2.5 Special Function Registers (SFRs)

2-12

Some module enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.

See the device-specific data sheet for the SFR configuration.

System Resets, Interrupts, and Operating Modes

Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2-9.

The operating modes take into account three different needs:
(1 Ultralow-power
(1 Speed and data throughput

(1 Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2-8.

Figure 2-8. Typical Current Consumption of 41x Devices vs Operating Modes

ICC/uA @ 1 MHz

315 300
270 +
225 1
180
135 +

90

45

B Vec=3V
. Vec=22V

17 11

0907 0101 |

AM LPMO LPM2 ' LPM3 ' LPM4
Operating Modes

The low-power modes 0 to 4 are configured with the CPUOFF, OSCOFF,
SCGO, and SCG1 bits in the status register. The advantage of including the
CPUOFF, OSCOFF, SCGO0, and SCG1 mode-control bits in the status register
is that the present operating mode is saved onto the stack during an interrupt
service routine. Program flow returns to the previous operating mode if the
saved SR value is not altered during the interrupt service routine. Program flow
can be returned to a different operating mode by manipulating the saved SR
value on the stack inside of the interrupt service routine. The mode-control bits
and the stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

System Resets, Interrupts, and Operating Modes 2-13

Operating Modes

Figure 2-9. MSP430x4xx Operating Modes For FLL+ Clock System

RST/NMI Vee On
Reset Active
POR
WDT Active,
Time Expired, Overflow WDTIFG = 1 WDTIFG =0
PUC) RST/NMI s Reset Pin
WDTIFG =1 WDT is Active
. RST/NMI
WDT Active, NMI Active
Security Key Violation
Active Mode
CPUOFF = 1 _ CPUIsActive CPUOFF = 1
SCG0 =0 Peripheral Modules Are Active OSCOFF =1
SCG1=0 SCG0=1
SCGl=1
LPMO
CPU Off, FLL+ On, LPM4
41x/42x MCLK On, 43x/44x CPU Off, FLL+ Off,
MCLK off, ACLK On MCLK Off, ACLK Off
CPUOFF=1 CG off
- enerator
gggg = é CPUOFF = 1
B CPUOFF = 1 SCGo=1
LPM1 SCG0=0 SCGl=1 LPM3
CPU Off, FLL+ Off, SCe1=1 CPU Off, FLL+ Off,
41x/42x MCLK On, 43x/44x MCLK Off, ACLK On
MCLK off ACLK On LPM2
CPU Off, FLL+ Off,
MCLK Off, ACLK On DC Generator Off
SCG1 SCGO0 OSCOFF CPUOFF Mode CPU and Clocks Status
0 0 0 0 Active CPU is active, all enabled clocks are active
0 0 0 1 LPMO CPU, MCLK are disabled (41x/42x peripheral MCLK
remains on)
SMCLK , ACLK are active
0 1 0 1 LPM1 CPU, MCLK, DCO oscillator are disabled (41x/42x

peripheral MCLK remains on)

DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode

SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO oscillator are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO oscillator are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

2-14 System Resets, Interrupts, and Operating Modes

Operating Modes

2.3.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power
operating modes. The program flow is:

(1 Enter interrupt service routine:

B The PC and SR are stored on the stack
B The CPUOFF, SCG1, and OSCOFF bits are automatically reset

(] Options for returning from the interrupt service routine:

B The original SR is popped from the stack, restoring the previous
operating mode.

B The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operating mode when the RETI
instruction is executed.

; Enter LPMD Exanple
Bl S #d E+CPUOCFF, SR ; Enter LPM
.. ; Program stops here

; Exit LPMD Interrupt Service Routine
BIC #CPUCFF, O(SP) ; Exit LPMD on RETI
RETI

; Enter LPM3 Exanple
Bl S #d E+CPUOFF+SCGL+SCQ0, SR ; Enter LPM3
.. ; Program stops here

; Exit LPM3 Interrupt Service Routine
Bl C #CPUOFF+SCGL+SCQ®0, 0(SP) ; Exit LPMB on RETI
RETI

Extended Time in Low-Power Modes

The negative temperature coefficient of the DCO should be considered when
the DCO is disabled for extended low-power mode periods. If the temperature
changes significantly, the DCO frequency at wake-up may be significantly
different from when the low-power mode was entered and may be out of the
specified operating range. To avoid this, the DCO can be set to it lowest value
before entering the low-power mode for extended periods of time where
temperature can change.

; Enter LPM4 Exanple with | owest DCO Setting
BIC. B #FN_8+FN_4+FN _3+FN_2, &SCFI 0 ; Lowest Range
MOV. B #010h, &SCFI 1 ; Select Tap 2
Bl S #d E+CPUOFF+0OSCOFF+SCGL+SCQ0, SR; Enter LPMA
. ; Program stops
; Interrupt Service Routine
BIC #CPUOFF+OSCOFF+SCGL+SCA0, O(SP); Exit LPM4 on RETI
RETI

System Resets, Interrupts, and Operating Modes 2-15

Principles for Low-Power Applications

2.4 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430's clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 pA typical with both a real-time clock function and
all interrupts active. A 32-kHz watch crystal is used for the ACLK, and the CPU
is clocked from the DCO (normally off) which has a 6-us wake-up time.

4
a

Use interrupts to wake the processor and control program flow.
Peripherals should be switched on only when needed.

Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

Avoid frequent subroutine and function calls due to overhead.

For longer software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The

correct termination of all unused pins is listed in Table 2-2.

Table 2-2. Connection of Unused Pins

Pin Potential Comment

AVcc DVce

AVss DVss

VREF+ Open

Verer+ DVss

VRer-/Vergr- DVss

XIN DVce

XOouT Open

XT2IN DVsg 43x, 44x. and 46x devices

XT20UT Open 43x, 44x, and 46x devices

Px.0 to Px.7 Open Switched to port function, output direction
RST/NMI DVcc or Vee 47-kQ pullup with 10-nF (2.2 nFT) pulldown
RO3 DVsg

COMO Open

TDO/TDI/TMS/ Open

TCK

Ax (dedicated) Open 42x devices

SXX Open

T MSP430F41x2 only: The pulldown capacitor should not exceed 2.2 nF when using Spy-Bi-Wire
interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with Tl toals like FET interfaces or GANG
programmers.

2-16 System Resets, Interrupts, and Operating Modes

Chapter 3

RISC 16-Bit CPU

This chapter describes the MSP430 CPU, addressing modes, and instruction
set.

Topic Page
3.1 CPRU INtroductionot 3-2
3.2 CPU REQISIEIS .\ttt ittt e e 3-4
3.3 Addressing Modesttt 3-9
3.4 INStrUCtioN Set 3-17

3-1

CPU Introduction

3.1 CPU Introduction

3-2

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The CPU can address the complete
address range without paging.

The CPU features include:

a
-

4
J

RISC architecture with 27 instructions and 7 addressing modes

Orthogonal architecture with every instruction usable with every
addressing mode

Full register access including program counter, status registers, and stack
pointer

Single-cycle register operations
Large 16-bit register file reduces fetches to memory

16-bit address bus allows direct access and branching throughout entire
memory range

16-bit data bus allows direct manipulation of word-wide arguments

Constant generator provides six most used immediate values and
reduces code size

Direct memory-to-memory transfers without intermediate register holding

Word and byte addressing and instruction formats

The block diagram of the CPU is shown in Figure 3-1.

RISC 16-Bit CPU

Figure 3-1. CPU Block

MDB - Memory Data Bus

16

Diagram

AN

15 0

RO/PC Program Counter |0

R1/SP Stack Pointer 0

R2/SR/CG1 Status

R3/CG2 Constant Generator

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

UL 0]]

Zero, Z
Carry, C
Overflow, V
Negative, N

16-bit ALU

LOGII00E0T0EIITT

CPU Introduction

Memory Address Bus - MAB

AN

16

RISC 16-Bit CPU

3-3

CPU Registers

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. RO, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3-2 shows the program counter.

Figure 3-2. Program Counter

15 1 0

Program Counter Bits 15 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV #LABEL, PC; Branch to address LABEL
MOV LABEL, PC ; Branch to address contai ned in LABEL
MOV @14,PC ; Branch indirect to address in Rl14

3-4 RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

CPU Registers

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3-3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3-4 shows stack usage.

Figure 3-3. Stack Pointer
15

Stack Pointer Bits 15to 1

Ilteml2 -> R6
Overwite TOS with R7
Put 0123h onto TOS

R8 = 0123h

PUSH #0123h

MoV 2(SP),R6 ;
MOV R7,0(SP) ;
PUSH #0123h ;
POP R8 ;
Figure 3-4. Stack Usage

Address

Oxxxh 11

Oxxxh — 2 12

Oxxxh - 4 13 <4— SP

Oxxxh - 6

Oxxxh - 8

POP R8

¢— SP

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

PUSH SP

SPoig —®

sp, —® SPi

The stack pointer is changed after
a PUSH SP instruction.

POP SP

SP, —»

SP,

The stack pointer is not changed after a POP SP

instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

RISC 16-Bit CPU 3-5

CPU Registers

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The
remaining combinations of addressing modes are used to support the
constant generator. Figure 3-6 shows the SR bits.

Figure 3-6. Status Register Bits

15

OSC|CPU

SCGL OFF |OFF

Reserved \% SCGO GIE| N|Zz|C

nw-0

Table 3-1 describes the status register bits.

Table 3-1.Description of Status Register Bits

Bit

Description

\Y

SCG1

SCGO

OSCOFF

CPUOFF
GIE

Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

ADD(. B) , ADDC(. B) Set when:
Positive + Positive = Negative
Negative + Negative = Positive,

otherwise reset

Set when:

Positive — Negative = Negative
Negative - Positive = Positive,
otherwise reset

SUB(. B), SUBC(. B) , CVP(. B)

System clock generator 1. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

System clock generator 0. This bit, when set, turns off the FLL+ loop
control

Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPU off. This bit, when set, turns off the CPU.

General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

Negative bhit. This bit is set when the result of a byte or word operation
is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the
result

N is set to the value of bit 7 of the
result

Byte operation:

Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not O.

Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.

3-6 RISC 16-Bit CPU

CPU Registers

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3-2.

Table 3-2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 o0 ----- Register mode

R2 01 0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 OFFFFh -1, word processing

The constant generator advantages are:

(1 No special instructions required

[J No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator — Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3, dst

where the #0 is replaced by the assembler, and R3 is used with As = 00.
I NC dst

is replaced by:

ADD 0(R3), dst

RISC 16-Bit CPU 3-7

CPU Registers

3.2.5 General-Purpose Registers R4 to R15

Twelve registers, R4 to R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values, and
they can be accessed with byte or word instructions as shown in Figure 3-7.

Figure 3-7. Register-Byte/Byte-Register Operations

3-8

Register-Byte Operation

High Byte Low Byte

Unused Register

A

Byte Memory

Example Register-Byte Operation
R5 = 0A28Fh

R6 = 0203h

Mem(0203h) = 012h

ADD. B R5, O(R6)
08Fh
+012h

0Alh

Mem (0203h) = 0A1lh
C=0,Z=0,N=1

(Low byte of register)
+ (Addressed byte)

->(Addressed byte)

RISC 16-Bit CPU

Byte-Register Operation

High Byte Low Byte

Example Byte-Register Operation
R5 = 01202h

R6 = 0223h

Mem(0223h) = 05Fh

ADD. B @r6, R5

05Fh
+ 002h

00061h

R5 = 00061h
C=0,Z=0,N=0

(Addressed byte)
+ (Low byte of register)

->(Low byte of register, zero to High byte)

Byte Memory

Oh Register

3.3 Addressing Modes

Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3-3 describe the contents of the As
(source) and Ad (destination) mode bits.

Table 3-3. Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @Rn Rn is used as a pointer to the

mode operand.

11/- Indirect @Rn+ Rn is used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note:

Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation, EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

RISC 16-Bit CPU 3-9

Addressing Modes

3.3.1 Register Mode

The register mode is described in Table 3-4.

Table 3-4. Register Mode Description

Assembler Code Content of ROM
MOV R10, R11 MOV R10, R11
Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.
Comment: Valid for source and destination
Example: MOV R10, R11
Before: After:

R10 0A023h R10 0A023h

R11 OFA15h R11 0A023h

PC PCoig PC PCqig + 2

Note: Datain Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

3-10 RISC 16-Bit CPU

3.3.2 Indexed Mode

The indexed mode is described in Table 3-5.

Table 3-5.Indexed Mode Description

Addressing Modes

Assembler Code

Content of ROM

MoV

2(R5), 6(R6) MOV X(R5), Y(R6)

X=2
Y=6

is incremented

PC
R5
R6

Register

01080h
0108Ch

Length: Two or three words
Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter
automatically so that program execution continues with the
next instruction.
Comment: Valid for source and destination
Example: MOV 2(R5), 6(R6);
Before: After:
Address Register Address
Space Space
Oxxxxh
OFF16h | 00006h R5| 01080h OFF16h | 00006h
OFF14h | 00002h R6| 0108Ch OFF14h | 00002h
OFF12h | 04596h | PC OFF12h | 04596h
0108Ch
01094h | Oxxxxh +0006h 01094h | Oxxxxh
01092h | 05555h 01092h 51092h [01234n
01090h | Oxxxxh 01090h | Oxxxxh
01080h
01084h | Oxxxxh +0002h 01084h | Oxxxxh
01082h
01082h | 01234h 01082h | 01234h
01080h | Oxxxxh 01080h | Oxxxxh

RISC 16-Bit CPU

3-11

Addressing Modes

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3-6.

Table 3-6. Symbolic Mode Description

3-12

Assembler Code Content of ROM
MOV EDE, TONI MOV X(PC), Y(PQ)
X =EDE - PC
Y =TONI - PC

Length: Two or three words
Operation: Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC +Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.
Comment: Valid for source and destination
Example: MOV EDE, TONI ; Source address EDE = 0OF016h
; Dest. address TONI =01114h
Before:) After:)
Address Register Address Register
Space Space
Oxxxxh | PC
OFF16h 011FEh OFF16h 011FEh
OFF14h 0F102h OFF14h 0F102h
OFF12h 04090h | PC OFF12h | 04090h
OFF14h
0F018h Oxxxxh +0F102h 0F018h Oxxxxh
OFo16h | 0A123h OF016h oro1eh | 0A123h
0F014h Oxxxxh 0F014h Oxxxxh
OFF16h
01116h | Oxxxxh +011FEh 01116h | Oxxxxh
01114h
01114h | 05555h 01114h | 0A123h
01112h Oxxxxh 01112h Oxxxxh

RISC 16-Bit CPU

3.3.4 Absolute Mode

The absolute mode is described in Table 3-7.

Table 3-7. Absolute Mode Description

Addressing Modes

Assembler Code

Content of ROM

MOV &EDE, &TONI

X =EDE
Y = TONI

MOV X(0), Y(O)

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0F018h
0F016h
0F014h

01116h
01114h
01112h

Two or three words

Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the
next instruction.

Valid for source and destination

MoV

Address
Space

01114h

0F016h

04292h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

01234h

Oxxxxh

&EDE, &TONI

PC

: Sour ce address EDE=0F016h,

;dest. address TON =01114h

. fter:
Register

OFF16h
OFF14h
OFF12h

0F018h
0F016h
0F014h

01116h
01114h
01112h

Address
Space
Oxxxxh

01114h

0F016h

04292h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

0A123h

Oxxxxh

Register

PC

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

RISC 16-Bit CPU 3-13

Addressing Modes

3.35

Table 3-8. Indirect Mode Description

3-14

Indirect Register Mode

The indirect register mode is described in Table 3-8.

Assembler Code

Content of ROM

MOV @R10, O(R11)

MOV @R10, O(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

O0FA34h
O0FA32h
OFA30h

002A8h
002A7h
002A6h

RISC 16-Bit CPU

Address
Space
0xxxxh

One or two words

Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Valid only for source operand. The substitute for destination
operand is O(Rd).

MOV. B @R10, O(RL1)

0000h

R10

04AEBh

PC R11

Oxxxxh

Oxxxxh

05BC1h

0xxxxh

Oxxh

012h

Oxxh

Register

OFA33h

002A7h

fter:

OFF16h
OFF14h
OFF12h

OFA34h
OFA32h
OFA30h

002A8h
002A7h
002A6h

Address

Space
Oxxxxh

0000h

04AEBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

05Bh

Oxxh

PC
R10
R11

Register

OFA33h

002A7h

3.3.6 Indirect Autoincrement Mode

Addressing Modes

The indirect autoincrement mode is described in Table 3-9.

Table 3-9. Indirect Autoincrement Mode Description

Assembler Code

Content of ROM

MOV @R10+, O(RL1)

MOV @R10+, O(RL1)

Length:

Operation:

Comment:

Example:

Before:

OFF18h
OFF16h

OFF14h
OFF12h

OFA34h
O0FA32h
OFA30h

010AAhN
010A8h
010A6h

One or two words

Move the contents of the source address (contents of R10) to

the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without

any overhead. This is useful for table processing.

Valid only for source operand. The substitute for destination

operand is O(Rd) plus second instruction INCD Rd.

Address
Space

Oxxxxh

00000h

04ABBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxxxh

01234h

0xxxxh

R10
pPC Ri1

MOV @R10+, O(RL1)

Register

0FA32h
010A8h

OFF18h
OFF16h

OFF14h
OFF12h

OFA34h
O0FA32h
OFA30h

010AAh
010A8h
010A6h

Address
Space

Oxxxxh

PC

00000h

R10

04ABBh

R11

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxxxh

05BC1h

0xxxxh

Register

O0FA34h

010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 3-8.

Figure 3-8. Operand Fetch Operation

Instruction

Address

Operand

+1/ +2

RISC 16

-Bit CPU

3-15

Addressing Modes

3.3.7

Table 3-10.Immediate Mode Description

3-16

Immediate Mode

The immediate mode is described in Table 3-10.

Assembler Code

Content of ROM

MOV #45h, TONI

MOV @C+, X(PC)

X =TONI - PC

45

Length:

Operation:

Comment:

Example:

Before:

OFF16h
O0FF14h
OFF12h

010AAh
010A8h
010A6h

RISC 16-Bit CPU

Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Valid only for a source operand.

MOV #45h, TONI

Address
Space

01192h

00045h

040B0Oh

Oxxxxh

01234h

0xxxxh

Register

PC

OFF16h
+01192h

010A8h

fter:

OFF18h
OFF16h

OFF14h
O0FF12h

010AAhN
010A8h
010A6h

Address
Space
Oxxxxh

01192h

00045h

040B0Oh

Oxxxxh

00045h

Oxxxxh

Register

PC

Instruction Set

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:
(g Dual operand

1 Single operand

d Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:

0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

RISC 16-Bit CPU 3-17

Instruction Set

3.4.1 Double-Operand (Format I) Instructions

Figure 3-9 illustrates the double-operand instruction format.

Figure 3-9. Double-Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code S-Reg Ad | B/W As D-Reg

Table 3-11 lists and describes the double operand instructions.

Table 3-11. Double-Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z cC
MOV(. B) src,dst src — dst - - - -
ADD . B) src, dst src + dst — dst * * * *
ADDC(.B) src,dst src+dst+C — dst * * * *
SUB(. B) src, dst dst+ .not.src +1 — dst * * * *
SUBC(.B) src,dst dst+.not.src +C — dst * * * *
CVP(. B) src, dst dst-src * * * *
DADD(.B) src,dst src+dst+ C — dst(decimally) * * * *
Bl T(. B) src, dst src .and. dst 0 * * *

Bl C(. B) src, dst .not.src .and. dst — dst - - - -
Bl S(. B) src, dst src.or. dst — dst - - - -
XOR(. B) src, dst src .xor. dst — dst * * * *
AND(. B) src, dst src.and. dst — dst 0 * * *

* The status bit is affected

- The status bit is not affected
The status bit is cleared

1 The status bit is set

Note: Instructions CVP and SUB

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the Bl T and AND instructions.

3-18 RISC 16-Bit CPU

Instruction Set

3.4.2 Single-Operand (Format Il) Instructions

Figure 3-10 illustrates the single-operand instruction format.

Figure 3-10. Single-Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code B/W Ad D/S-Reg

Table 3-12 lists and describes the single operand instructions.

Table 3-12.Single-Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V. N zZ ¢C
RRC(. B) dst C > MSB —....... LSB - C * * * *
RRA(. B) dst MSB - MSB —....LSB - C 0 * * *
PUSH(.B) src SP -2 - SP, src - @SP - - - -
SWPB dst Swap bytes - - - -
CALL dst SP -2 5 SP, PC+2 - @SP - - - -
dst - PC
RETI TOS - SR, SP +2 - SP * * * *
TOS - PC,SP +2 - SP
SXT dst Bit 7 - Bit 8........ Bit 15 0 * * *

* The status bit is affected

- The status bit is not affected
The status bit is cleared

1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE), or
the indexed mode x(RN) is used, the word that follows contains the address
information.

RISC 16-Bit CPU 3-19

Instruction Set

3.4.3 Jumps

Figure 3-11 shows the conditional-jump instruction format.

Figure 3-11. Jump Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code C 10-Bit PC Offset

Table 3-13 lists and describes the jump instructions.

Table 3-13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ JZ Label Jump to label if zero bit is set
JNE/ INZ Label Jump to label if zero bit is reset
JC Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) =1
JVP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from -511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PChew = PColg *+ 2 + PCoffset X 2

3-20 RISC 16-Bit CPU

* ADC[.W]
* ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z. Setif resultis zero, reset otherwise

C: Setif dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.

ADD @R13,0(R12) ; Add LSDs

ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

RISC 16-Bit CPU 3-21

Instruction Set

ADD[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Add source to destination
Add source to destination

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst —> dst

The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive

Z. Setif result is zero, reset otherwise

C. Setif there is a carry from the result, cleared if not
V. Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) > 246 [0Ah+0F6h]
...... ; No carry

3-22 RISC 16-Bit CPU

ADDC[.W]
ADDC.B
Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add source and carry to destination
Add source and carry to destination

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C —> dst

The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

N: Set if result is negative, reset if positive

Z. Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise
V. Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
; resulting from the LSDs

The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry

; resulting from the LSDs

RISC 16-Bit CPU 3-23

Instruction Set

AND[.W] Source AND destination
AND.B Source AND destination
Syntax AND src,dst or AND.W src,dst
AND.B src,dst
Operation src .AND. dst —> dst
Description The source operand and the destination operand are logically ANDed. The

result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Setif result is zero, reset otherwise
C. Setif result is not zero, reset otherwise (= .NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.
MOV #0AAB5h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
Jz TONI ;

...... : Result is not zero

; or
AND #0AA55h, TOM
Jz TONI
Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.
AND.B #0A5h, TOM ; mask Lowbyte TOM with 0A5h
Jz TONI ;

...... : Result is not zero

3-24 RISC 16-Bit CPU

BIC[.W]
BIC.B

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Clear bits in destination
Clear bits in destination

BIC src,dst or BIC.W src,dst
BIC.B src,dst

.NOT.src .AND. dst —> dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status bits are not affected.

OSCOFF, CPUOFF, and GIE are not affected.

The six MSBs of the RAM word LEO are cleared.

BIC #0FCOOh,LEO ; Clear 6 MSBs in MEM(LEO)
The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

RISC 16-Bit CPU 3-25

Instruction Set

BIS[.W] Set bits in destination
BIS.B Set bits in destination
Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst
Operation src .OR. dst —> dst
Description The source operand and the destination operand are logically ORed. The

result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The six LSBs of the RAM word TOM are set.
BIS #003Fh,TOM; set the six LSBs in RAM location TOM
Example The three MSBs of RAM byte TOM are set.
BIS.B #0EOh,TOM ; set the three MSBs in RAM location TOM

3-26 RISC 16-Bit CPU

BIT[.W]
BIT.B

Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Test bits in destination
Test bits in destination

BIT src,dst or BIT.W src,dst
src .AND. dst

The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

N: Setif MSB of result is set, reset otherwise

Z. Setif result is zero, reset otherwise

C: Setif result is not zero, reset otherwise (.NOT. zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?

INZ TOM : Yes, branch to TOM
; No, proceed

If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8

JC TOM

A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.

Serial communication with LSB is shifted first:
DXXXX OXXXX XXXX XXXX

BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry —> MSB of RECBUF
; CXXX XXXX
...... ; repeat previous two instructions
...... ; 8 times
; CCCC cCcCcC
; N N
; MSB LSB
; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry —> LSB of RECBUF
; XXXX XXXC
...... ; repeat previous two instructions
...... ; 8 times
; cccc ccee
i LSB
; MSB

RISC 16-Bit CPU 3-27

Instruction Set

* BR, BRANCH Branch to destination

Syntax BR dst

Operation dst -> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address

space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.
BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)

; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 : Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect RS
BR @R5 : Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

3-28 RISC 16-Bit CPU

CALL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Subroutine

CALL dst

dst ->tmp dst is evaluated and stored
SP-2 ->SP

PC -> @SP PC updated to TOS

tmp ->PC dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status bits are not affected.

Examples for all addressing modes are given.

CALL

CALL

CALL

CALL

CALL

CALL

CALL

#EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; SP-2 —» SP, PC+2 - @SP, @PC+ — PC

EXEC ; Call on the address contained in EXEC
; SP-2 — SP, PC+2 —» @SP, X(PC) —» PC
; Indirect address

&EXEC ; Call on the address contained in absolute address
: EXEC
; SP-2 — SP, PC+2 — @SP, X(0) - PC
; Indirect address

R5 : Call on the address contained in R5
: SP-2 —» SP, PC+2 - @SP, R5 — PC
; Indirect R5
@R5 ; Call on the address contained in the word

; pointed to by R5
: SP-2 — SP, PC+2 - @SP, @R5 — PC
; Indirect, indirect R5

@R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP-2 —» SP, PC+2 - @SP, @R5 —» PC
; Indirect, indirect R5 with autoincrement

X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 - SP, PC+2 —» @SP, X(R5) — PC
; Indirect, indirect R5 + X

RISC 16-Bit CPU 3-29

Instruction Set

* CLR[.W] Clear destination
*CLR.B Clear destination
Syntax CLR dst or CLR.W dst
CLR.B dst
Operation 0 —>dst
Emulation MOV #0,dst
MOV.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.
CLR TONI ;0 —>TONI
Example Register R5 is cleared.
CLR RS
Example RAM byte TONI is cleared.
CLR.B TONI ;0 ->TONI

3-30 RISC 16-Bit CPU

*CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Clear carry bit

CLRC

0->C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C = 0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

RISC 16-Bit CPU 3-31

Instruction Set

* CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

Clear negative bit
CLRN

0—->N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto 0
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

3-32 RISC 16-Bit CPU

*CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Clear zero bit
CLRZ

027
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto 0

C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.

CLRZ

RISC 16-Bit CPU 3-33

Instruction Set

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Compare source and destination
Compare source and destination

CMP src,dst or CMP.W src,dst
CMP.B src,dst

dst + .NOT.src + 1
or
(dst - src)

The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

N: Setif result is negative, reset if positive (src >= dst)

Z. Setifresult is zero, reset otherwise (src = dst)

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Setif an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R6?
JEQ EQUAL » YES, JUMP

Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; hnumber of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK?2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
INZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI : MEM(EDE) = MEM(TONI)?
JEQ EQUAL . YES, JUMP

3-34 RISC 16-Bit CPU

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Setif MSBis 1

Z. Setifdstis 0, reset otherwise

C: Setif destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit
decimal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

RISC 16-Bit CPU 3-35

Instruction Set

DADD[.W]
DADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Source and carry added decimally to destination
Source and carry added decimally to destination

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C —> dst (decimally)

The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

N: Set if the MSB is 1, reset otherwise
Z. Setif result is zero, reset otherwise
C: Setif the result is greater than 9999

Set if the result is greater than 99
V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; clear carry

DADD R5,R3 ; add LSDs

DADD R6,R4 ; add MSDs with carry

JC OVERFLOW ; If carry occurs go to error handling routine

The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; Clear carry

DADD.B #1,CNT ; increment decimal counter
or

SETC

DADD.B #0,CNT :=DADC.B CNT

3-36 RISC 16-Bit CPU

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Decrement destination
Decrement destination

DEC dst or DECW dst
DEC.B dst
dst - 1 —>dst

SuUB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

N: Set if result is negative, reset if positive

Z: Setif dst contained 1, reset otherwise

C: Reset if dst contained 0, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.
Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 : Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

: to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255,R10

MOV.B @R6+,TONI-EDE-1(R6)
DEC R10

INZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3-12.

Figure 3-12. Decrement Overlap

EDE
4 —>
TONI
EDE+254
TONI+254

RISC 16-Bit CPU 3-37

Instruction Set

* DECD[.W]
* DECD.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Double-decrement destination
Double-decrement destination

DECD dst or DECD.W dst
DECD.B dst

dst — 2 —> dst

SUB #2,dst
SUB.B #2,dst

The destination operand is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z. Set if dst contained 2, reset otherwise

C: Reset if dst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.
Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location

; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+OFEh

Example

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+ TONI-EDE-2(R6)
DECD R10
INZ L$1

Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)
Decrement status byte STATUS by two.

DECD.B STATUS

3-38 RISC 16-Bit CPU

*DINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Instruction Set

Disable (general) interrupts
DINT

0 - GIE
or
(OFFF7h .AND. SR - SR / .NOT.src .AND. dst —> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status bits are not affected.
GIE is reset. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

RISC 16-Bit CPU 3-39

Instruction Set

*EINT Enable (general) interrupts
Syntax EINT
Operation 1->GIE

or

(0008h .OR. SR —> SR / .src .OR. dst —> dst)
Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.
PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
MaskOK BIC #Mask, @SP
INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.
RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

3-40 RISC 16-Bit CPU

* INC[.W]
*INC.B

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst
dst + 1 —> dst

ADD #1,dst
The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMPB #11,STATUS
JEQ OVFL

RISC 16-Bit CPU 3-41

Instruction Set

* INCD[.W]
* INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD dst or INCD.W dst
INCD.B dst

dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Setif dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

3-42 RISC 16-Bit CPU

* INV[.W]
* INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Invert destination
Invert destination

INV dst
INV.B dst

.NOT.dst —> dst

XOR #O0FFFFh,dst
XOR.B #OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = OFF51h
INC R5 ; R5is now negated, R5 = 0FF52h

Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = OAEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

RISC 16-Bit CPU 3-43

Instruction Set
JC

JHS

Syntax

Operation

Description

Status Bits

Example

Example

Jump if carry set
Jump if higher or same

JC label
JHS label

If C=1: PC + 2 x offset —> PC
If C = 0: execute following instruction

The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.
The P1IN.1 signal is used to define or control the program flow.

BIT #01h,&P1IN ; State of signal -> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 > 15
...... ; Continue here if R5 < 15

3-44 RISC 16-Bit CPU

JEQ, JZ
Syntax

Operation

Description

Status Bits

Example

Example

Example

Instruction Set
Jump if equal, jump if zero
JEQ label, JZ label

If Z=1: PC + 2 x offset -> PC
If Z = 0: execute following instruction

The status register zero bit (2) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 contains zero.

TST R7 : Test R7
JZ TONI :if zero: JUMP

Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal

...... ; No, data are not equal, continue here

Branch to LABEL if R5 is 0.

TST R5
JZ LABEL

RISC 16-Bit CPU 3-45

Instruction Set

JGE
Syntax

Operation

Description

Status Bits

Example

Jump if greater or equal
JGE label

If (N .XOR. V) =0 then jump to label: PC + 2 x offset -> PC
If (N .XOR. V) = 1 then execute the following instruction

The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 > (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 > (R7)
...... ; No, proceed

3-46 RISC 16-Bit CPU

JL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if less
JL label

If (N .XOR. V) =1 then jump to label: PC + 2 x offset -> PC
If (N .XOR. V) = 0 then execute following instruction

The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed

RISC 16-Bit CPU 3-47

Instruction Set

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 x offset -> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the

program counter.
Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
-511 to +512 words relative to the current program counter.

3-48 RISC 16-Bit CPU

JN
Syntax

Operation

Description

Status Bits

Example

L$1

Instruction Set
Jump if negative
JN label

if N=1: PC + 2 x offset -> PC
if N = O0: execute following instruction

The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status bits are not affected.

The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT - R5 —> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT=>0

CLR COUNT

RISC 16-Bit CPU 3-49

Instruction Set

JNC Jump if carry not set
JLO Jump if lower
Syntax JNC label
JLO label
Operation if C =0: PC + 2 x offset —> PC

if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 —> BUFFER

JNC CONT ; No carry, jump to CONT
ERROR ... ; Error handler start
CONT .. ; Continue with normal program flow
Example Branch to STL 2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 : STATUS < 2
...... ; STATUS > 2, continue here

3-50 RISC 16-Bit CPU

JNE

JNZ

Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if not equal
Jump if not zero

JNE label
INZ label

If Z=0: PC + 2 x offset —-> PC
If Z = 1: execute following instruction

The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

RISC 16-Bit CPU 3-51

Instruction Set
MOVI[.W]
MOV.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Loop

Example

Loop

Move source to destination
Move source to destination

MOV src,dst or MOV.W src,dst
MOV.B src,dst
src —> dst

The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.

The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer

MOV #020h,R9 ; Prepare counter

MOV @R10+,TOM-EDE-2(R10) ; Use pointerin R10 for both tables
DEC R9 ; Decrement counter

JNZ Loop ; Counter = 0, continue copying
...... ; Copying completed

The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV.B @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for

; both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue
; copying

...... ; Copying completed

3-52 RISC 16-Bit CPU

* NOP
Syntax
Operation
Emulation

Description

Status Bits

Instruction Set

No operation
NOP

None

MOV #0, R3

No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status bits are not affected.

The NOP instruction is mainly used for two purposes:

[J Tofill one, two, or three memory words
[J To adjust software timing

I
Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), O(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

RISC 16-Bit CPU 3-53

Instruction Set

* POP[.W]
* POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP ->temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOVW @SP+,dst
MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7
POP SR

; Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 =20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

3-54 RISC 16-Bit CPU

PUSH[.W]
PUSH.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Push word onto stack
Push byte onto stack

PUSH src or PUSH.W src
PUSH.B src

SP-2—-5SP
src - @SP

The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

RISC 16-Bit CPU 3-55

Instruction Set

*RET Return from subroutine
Syntax RET
Operation @SP— PC
SP+2—SP
Emulation MOV @SP+,PC
Description The return address pushed onto the stack by a CALL instruction is moved to

the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

3-56 RISC 16-Bit CPU

Instruction Set

RETI Return from interrupt
Syntax RETI
Operation TOS — SR
SP +2 — SP
TOS — PC
SP +2 — SP
Description The status register is restored to the value at the beginning of the interrupt

service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3-13 illustrates the main program interrupt.

Figure 3-13. Main Program Interrupt

PC -6 P YY)
PC -4
Interrupt Request
PC -2 /
PC v Interrupt Accepted
PC +2 PC+2 is Stored PC = PCi (YY)
Onto Stack
PC +4 PCi+2
PC +6 PCi +4
PC +8 °
v .
PCi +n-4
PCi +n-2
PCi +n RETI
4

RISC 16-Bit CPU 3-57

Instruction Set

* RLA[.W] Rotate left arithmetically

*RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C<-MSB <- MSB-1.... LSB+1<-LSB<-0

Emulation ADD dst,dst

ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3-14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst > 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3-14. Destination Operand—Arithmetic Shift Left

Word 15 0
__________________ o
Byte 7 0

An overflow occurs if dst > 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Status Bits Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 . Shift left R7 (x 2)
Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

'Note: RLA Substitution
The assembler does not recognize the instruction:
RLA @R5+, RLA.B @R5+, or RLA(.B) @R5
It must be substituted by:
ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) or ADD(.B) @R5

3-58 RISC 16-Bit CPU

* RLC[.W]
*RLC.B

Syntax

Operation
Emulation

Description

Instruction Set

Rotate left through carry
Rotate left through carry

RLC dst or RLC.W dst
RLC.B dst

C<-MSB<-MSB-1... LSB+1<-LSB<-C
ADDC dst,dst

The destination operand is shifted left one position as shown in Figure 3-15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3-15. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Word 15 0
——————————————————
Byte 7 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

<oNzZ

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted left one position.

RLC R5 i (R5x2)+C->R5

The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information —> Carry
RLC R5 ; Carry=P0in.1 —> LSB of R5

The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C -> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5
It must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) or ADDC(.B) @R5

RISC 16-Bit CPU 3-59

Instruction Set

RRA[W]
RRA.B

Syntax

Operation

Description

Figure 3-16.

Status Bits

Mode Bits

Example

Example

Rotate right arithmetically
Rotate right arithmetically

RRA dst or RRA.W dst
RRA.B dst

MSB -> MSB, MSB -> MSB-1, ... LSB+1 ->LSB, LSB->C

The destination operand is shifted right one position as shown in Figure 3-16.
The MSB is shifted into the MSB, the MSB is shifted into the MSB-1, and the
LSB+1 is shifted into the LSB.

Destination Operand—Avrithmetic Right Shift

Word 15 0
S >
Byte J
15 0

Set if result is negative, reset if positive
Set if result is zero, reset otherwise
Loaded from the LSB

Reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2 -> R5

The value in R5 is multiplied by 0.75 (0.5 + 0.25).

PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ;R5x0.5 -> R5

ADD @SP+R5 ;R5x05+R5=15xR5 ->R5
RRA R5 ; (L.5xR5)x05=0.75xR5 ->R5

The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 —> R5: operation is on low byte only
; High byte of R5 is reset
PUSH.B R5 ;R5x 0.5 —> TOS
RRA.B @SP ; TOSx05=05xR5x05=0.25xR5 —>TOS
ADD.B @SP+,R5 ;R5x05+R5x0.25=0.75xR5 ->R5

3-60 RISC 16-Bit CPU

RRC[.W]
RRC.B

Syntax

Operation

Description

Instruction Set

Rotate right through carry
Rotate right through carry

RRC dst or RRC.W dst
RRC dst

C->MSB ->MSB-1.... LSB+1 ->LSB ->C

The destination operand is shifted right one position as shown in Figure 3-17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3-17. Destination Operand—Carry Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0
——————————————————
Byte 7 0

Set if result is negative, reset if positive
Set if result is zero, reset otherwise
Loaded from the LSB

Reset

<oNzZ

OSCOFF, CPUOFF, and GIE are not affected.
R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h —> R5

R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h —> R5; low byte of R5 is used

RISC 16-Bit CPU 3-61

Instruction Set

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V. Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SuUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-62 RISC 16-Bit CPU

* SETC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSUB

Instruction Set

Set carry bit
SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C:. Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 =03987h + 06666h = 09FED
INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
- R6 =R6 + R5 + 1
- R6 = 0150h

RISC 16-Bit CPU 3-63

Instruction Set

*SETN Set negative bit

Syntax SETN

Operation 1->N

Emulation BIS #4,SR
Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

3-64 RISC 16-Bit CPU

Instruction Set

*SETZ Set zero bit
Syntax SETZ
Operation 1->Z7
Emulation BIS #2,SR
Description The zero bit (2) is set.
Status Bits N: Not affected

Z: Set

C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

RISC 16-Bit CPU 3-65

Instruction Set

SUB[.W] Subtract source from destination

SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 —> dst
or

[(dst — src —> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Setif result is negative, reset if positive
Z. Setif result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.
V. Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example See example at the SBC instruction.
Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-66 RISC 16-Bit CPU

SUBC[.W]|SBB[.W]
SUBC.B,SBB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

dst + .NOT.src + C —> dst
or
(dst—src -1+ C —> dst)

The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive.

Z. Setif result is zero, reset otherwise.

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
; resulting from the LSDs

I
Note: Borrow Implementation

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

RISC 16-Bit CPU 3-67

Instruction Set

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15t0 8 <->bits 7to 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3-18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-18. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 —> R7

SWPB R7 ; 1011111101000000 in R7
Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;

MOV R5,R4 ;Copy the swapped value to R4

BIC #0FFOOh,R5 ;Correct the result

BIC #00FFh,R4 ;Correct the result

3-68 RISC 16-Bit CPU

SXT

Syntax
Operation
Description

Status Bits

Mode Bits

Instruction Set

Extend Sign

SXT dst

Bit7 ->Bit8 Bit 15

The sign of the low byte is extended into the high byte as shown in Figure 3-19.

N: Set if result is negative, reset if positive

Z: Setifresultis zero, reset otherwise

C. Setif result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Figure 3-19. Destination Operand Sign Extension

Example

15 8 7 0

R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h:1000 0000
SXT R7 ; R7 = OFF80h: 1111 1111 1000 0000

RISC 16-Bit CPU 3-69

Instruction Set

* TST[.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C. Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG,; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

Jz R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG,; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

JZ R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG .. ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

3-70 RISC 16-Bit CPU

XOR[.W]
XOR.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Exclusive OR of source with destination
Exclusive OR of source with destination

XOR src,dst or XOR.W src,dst
XOR.B src,dst

src .XOR. dst —> dst

The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

N: Set if result MSB is set, reset if not set

Z: Setif result is zero, reset otherwise

C:. Setif result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6
The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7Y ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is Oh

RISC 16-Bit CPU 3-71

Instruction Set

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3-14 lists the CPU cycles for interrupt overhead and reset.

Table 3-14.Interrupt and Reset Cycles

No. of Length of

Action Cycles Instruction
Return from interrupt (RETI) 5 1
Interrupt accepted 6 -
WDT reset 4 _
Reset (RST/NMI) 4 -

Format-1l (Single Operand) Instruction Cycles and Lengths

Table 3-15 lists the length and CPU cycles for all addressing modes of
format-1l instructions.

Table 3-15.Format-Il Instruction Cycles and Lengths

No. of Cycles

Addressing RRA, RRC Length of

Mode SWPB, SXT PUSH CALL Instruction Example
Rn 1 3 4 1 SWPB R5
@Rn 3 4 4 1 RRC @r9
@Rn+ 3 5 5 1 SWPB @R10+
#N (See note) 4 5 2 CALL #O0FOOh
X(Rn) 4 5 5 2 CALL 2(RY7)
EDE 4 5 5 2 PUSH EDE
&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format Il Immediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-1ll (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

3-72 RISC 16-Bit CPU

Format-1 (Double Operand) Instruction Cycles and Lengths

Instruction Set

Table 3-16 lists the length and CPU cycles for all addressing modes of format-I

instructions.

Table 3-16.Format | Instruction Cycles and Lengths

Addressing Mode No. of Length of
Src Dst Cycles Instruction Example
Rn Rm 1 1 MV R5 R8
PC 2 1 BR R9
x(Rm) 4 2 ADD R5, 4(R6)
EDE 4 2 XOR RS, EDE
&EDE 4 2 MOV R5, &EDE
@Rn Rm 2 1 AND @4, R5
PC 2 1 BR @rs
x(Rm) 5 2 XOR @5, 8(R6)
EDE 5 2 MOV @RS, EDE
&EDE 5 2 XOR @85, &EDE
@Rn+ Rm 2 1 ADD @5+, R6
PC 3 1 BR @aro+
x(Rm) 5 2 XOR @5, 8(R6)
EDE 5 2 MOV @R9+, EDE
&EDE 5 2 MOV @R9+, &EDE
#N Rm 2 2 MOV #20, R9
PC 3 2 BR #2AEh
x(Rm) 5 3 MOV #0300h, O(SP)
EDE 5 3 ADD #33, EDE
&EDE 5 3 ADD #33, &EDE
x(Rn) Rm 3 2 MOV 2(R5),R7
PC 3 2 BR 2(R6)
TONI 6 3 MV 4(R7), TONI
X(Rm) 6 3 ADD 4(R4),6(R9)
&TONI 6 3 MOV 2(R4), &TONI
EDE Rm 3 2 AND EDE, R6
PC 3 2 BR EDE
TONI 6 3 CwP EDE, TONI
X(Rm) 6 3 MOV EDE, O(SP)
&TONI 6 3 MOV EDE, &TON
&EDE Rm 3 2 MOV &EDE, R8
PC 3 2 BRA &EDE
TONI 6 3 MOV &EDE, TON
x(Rm) 6 3 MOV &EDE, O(SP)
&TONI 6 3 MOV &EDE, &TONI

RISC 16-Bit CPU 3-73

Instruction Set

3.4.5 |Instruction Set Description

The instruction map is shown in Figure 3-20 and the complete instruction set
is summarized in Table 3-17.

Figure 3-20. Core Instruction Map

000 040 080 O0CO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

OXXX

4xXXX

8XXX

CXXX

1xxx | RRC |RRC.B | swrB RRA | RRAB| sXT PUSH |PUSH.B| CALL RETI
14xx

18xx

1Cxx

20xx JNE/INZ

24xX JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

AXXX MOV, MOV.B
5XXX ADD, ADD.B
BXXX ADDC, ADDC.B
TXXX SUBC, SUBC.B
8xxx SUB, SUB.B
9XXX CMP, CMP.B
AXXX DADD, DADD.B
Bxxx BIT, BIT.B

CxxX BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
FXxx AND, AND.B

3-74 RISC 16-Bit CPU

Table 3-17.MSP430 Instruction Set

Instruction Set

Mnemonic Description \Y N z C
ADC(.B) T dst Add C to destination dst + C — dst * * * *
ADD(. B) src, dst Add source to destination src + dst — dst * * * *
ADDC(. B) src,dst Add source and C to destination src + dst + C — dst * * * *
AND(. B) src,dst AND source and destination src .and. dst — dst 0 * * *
Bl C(. B) src, dst Clear bits in destination .not.src .and. dst — dst - - - -
Bl S(. B) src, dst Set bits in destination src .or. dst — dst - - - -
BI T(. B) src,dst Test bits in destination src .and. dst 0 * * *
BR' dst Branch to destination dst - PC - - - -
CALL dst Call destination PC+2 — stack, dst — PC - - - -
CLR(.B)T dst Clear destination 0 — dst - - - -
CLRCT Clear C 0->C - - - 0
CLRNF Clear N 0N -0 - -
CLRzT Clear Z 02 - - 0 -
CMP(. B) src, dst Compare source and destination dst - src * * * *
DADC(.B) T dst Add C decimally to destination dst + C — dst (decimally) * * * *
DADIX . B) src,dst Add source and C decimally to dst. src + dst + C — dst (decimally) * * * *
DEC(.B) T dst Decrement destination dst -1 —dst * * * *
DECD(.B) T dst Double-decrement destination dst -2 — dst * * * *
DI NTT Disable interrupts 0-GIE - - - -
EI NTT Enable interrupts 1> GIE - - - -
INC(.B) T dst Increment destination dst +1 — dst * * * *
INCD(.B) T dst Double-increment destination dst+2 — dst * * * *
INV(.B)t dst Invert destination .not.dst — dst * * * *
JC/ JHS | abel Jump if C set/Jump if higher or same - - - -
JEQ JZ | abel Jump if equal/Jump if Z set - - - -
JGE | abel Jump if greater or equal - - - -
JL | abel Jump if less - - - -
JMWP | abel Jump PC + 2 x offset - PC - - - -
JN | abel Jump if N set - - - -
JNC/ JLO | abel Jump if C not set/Jump if lower - - - -
JNE/ INZ | abel Jump if not equal/Jump if Z not set - - - -
MOV(. B) src,dst Move source to destination src — dst - - - -
Nopt No operation - - - -
POP(.B) T dst Pop item from stack to destination @SP — dst, SP+2 — SP - - - -
PUSH(. B) src Push source onto stack SP -2 — SP, src > @SP - - - -
RETT Return from subroutine @SP - PC,SP +2 — SP - - - -
RETI Return from interrupt * * * *
RLA(.B)T dst Rotate left arithmetically * * * *
RLC(.B)t dst Rotate left through C * * * *
RRA(. B) dst Rotate right arithmetically 0 * * *
RRC(. B) dst Rotate right through C * * * *
SBC(.B) T dst Subtract not(C) from destination dst + OFFFFh + C — dst * * * *
SETCt SetC 1-C - - - 1
SETNF SetN 1->N - 1 - -
SeTZf Setz 1-C - - 1 -
SUB(. B) src, dst Subtract source from destination dst + .not.src + 1 — dst * * * *
SUBC(. B) src, dst Subtract source and not(C) from dst. dst + .not.src + C — dst * * * *
SWPB dst Swap bytes - - - -
SXT dst Extend sign 0 * * *
TST(.B)T dst Test destination dst + OFFFFh + 1 0 * * 1
XOR(. B) src, dst Exclusive OR source and destination src .xor. dst — dst * * * *

T Emulated Instruction

RISC 16-Bit CPU 3-75

3-76 RISC 16-Bit CPU

Chapter 4

16-Bit MSP430X CPU

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB
memory access, its addressing modes, and instruction set. The MSP430X
CPU is implemented in all MSP430 devices that exceed 64-KB of address
space.

Topic Page
4.1 CPRUINtroduCtionttt 4-2
4.2 INEEITUPES .ottt ettt e 4-4
4.3 CPUREQISIEIS . oottt e e e 4-5
4.4 Addressing MOdesot 4-15
4.5 MSP430 and MSP430X INStructionsc.cuuiinnnneen... 4-36
4.6 Instruction Set DescCriptionc..iiiiiiiiiiiiineainn, 4-58

4-1

CPU Introduction

4.1 CPU Introduction

4-2

The MSP430X CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The MSP430X CPU can address
a 1-MB address range without paging. In addition, the MSP430X CPU has
fewer interrupt overhead cycles and fewer instruction cycles in some cases
than the MSP430 CPU, while maintaining the same or better code density than
the MSP430 CPU. The MSP430X CPU is completely backwards compatible
with the MSP430 CPU.

The MSP430X CPU features include:

J
J

4
J

RISC architecture.
Orthogonal architecture.

Full register access including program counter, status register and stack
pointer.

Single-cycle register operations.
Large register file reduces fetches to memory.

20-bit address bus allows direct access and branching throughout the
entire memory range without paging.

16-bit data bus allows direct manipulation of word-wide arguments.

Constant generator provides the six most often used immediate values
and reduces code size.

Direct memory-to-memory transfers without intermediate register holding.

Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 4-1.

16-Bit MSP430X CPU

Figure 4-1. MSP430X CPU Block Diagram

16

MDB - Memory

Data Bus

19 16 15

Memory Address Bus - MAB

RO/PC Program Counter 0

T

R1/SP Pointer Stack 0

|

R2/SR Status Register

R3/CG2 Constant Generator

o 1
<):’l> R4 General Purpose ::)
I I
<):’l> R5 General Purpose :" >
|| ||
<::l’> R6 General Purpose — >
I I
<):’l> R7 General Purpose :>
|| ||
<:> R8 General Purpose :>
Il Il
<):’l> R9 General Purpose :" N
Il Il
<}:{> R10 General Purpose :" >
|| ||
<::’l> R11 General Purpose :>
T T
<::l’> R12 General Purpose :>
|| ||
<::l/’\ R13 General Purpose :>
I I
<::l'> R14 General Purpose :>
T T
<|1:1/'\ R15 General Purpose :: N
4L R
Zero, Z src -
Carry, C .
Overflow,V 16/20-bit ALU MCLK
Negative,N
/l
N
N

CPU Introduction

16-Bit MSP430X CPU

4-3

Interrupts

4.2

Interrupts

The MSP430X uses the same interrupt structure as the MSP430:
(O Vectored interrupts with no polling necessary
[Interrupt vectors are located downward from address OFFFEh

Interrupt operation for both MSP430 and MSP430X CPUs is described in
Chapter 2 System Resets, Interrupts, and Operating modes, Section 2
Interrupts. The interrupt vectors contain 16-bit addresses that point into the
lower 64-KB memory. This means all interrupt handlers must start in the lower
64-KB memory - even in MSP430X devices.

During an interrupt, the program counter and the status register are pushed
onto the stack as shown in Figure 4-2. The MSP430X architecture efficiently
stores the complete 20-bit PC value by automatically appending the PC bits
19:16 to the stored SR value on the stack. When the RETI instruction is
executed, the full 20-bit PC is restored making return from interrupt to any
address in the memory range possible.

Figure 4-2. Program Counter Storage on the Stack for Interrupts

4-4

SPolg —W Item n-1
PC.15:0
SP —» PC.19:16 SR.11:0

16-Bit MSP430X CPU

4.3 CPU Registers

CPU Registers

The CPU incorporates sixteen registers RO to R15. Registers RO, R1, R2, and
R3 have dedicated functions. R4 to R15 are working registers for general use.

4.3.1 The Program Counter PC

The 20-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, six or
eight bytes), and the PC is incremented accordingly. Instruction accesses are
performed on word boundaries, and the PC is aligned to even addresses.
Figure 4-3 shows the program counter.

Figure 4-3. Program Counter PC
19 16 15

Program Counter Bits 19 to 1 0

The PC can be addressed with all instructions and addressing modes. A few

examples:

MOV. W #LABEL, PC;
MOVA #LABEL, PC;
MOV. W LABEL, PC ;

MOV. W @14, PC

ADDA #4, PC ;

Branch to address LABEL (| ower 64 KB)
Branch to address LABEL (1MB nenory)

Branch to address in word LABEL
(1 ower 64 KB)

Branch indirect to address in
R14 (|l ower 64 KB)

Skip two words (1 MB nenory)

The BR and CALL instructions reset the upper four PC bits to 0. Only
addresses in the lower 64-KB address range can be reached with the BR or
CALL instruction. When branching or calling, addresses beyond the lower
64-KB range can only be reached using the BRA or CALLA instructions. Also,
any instruction to directly modify the PC does so according to the used
addressing mode. For example, MOV. W #val ue, PCwill clear the upper four
bits of the PC because it is a . Winstruction.

16-Bit MSP430X CPU 4-5

CPU Registers

The program counter is automatically stored on the stack with CALL, or CALLA
instructions, and during an interrupt service routine. Figure 4-4 shows the
storage of the program counter with the return address after a CALLA
instruction. A CALL instruction stores only bits 15:0 of the PC.

Figure 4-4. Program Counter Storage on the Stack for CALLA

SPolg —W

Itemn

PC.19:16

SP —p

PC.15:0

The RETA instruction restores bits 19:0 of the program counter and adds 4 to
the stack pointer. The RET instruction restores bits 15:0 to the program

counter and adds 2 to the stack pointer.

4-6 16-Bit MSP430X CPU

CPU Registers

4.3.2 Stack Pointer (SP)

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return
addresses of subroutine calls and interrupts. It uses a predecrement,
postincrement scheme. In addition, the SP can be used by software with all
instructions and addressing modes. Figure 4-5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.

Figure 4-6 shows the stack usage. Figure 4-7 shows the stack usage when
20-bit address-words are pushed.

Figure 4-5. Stack Pointer

19 1 0
Stack Pointer Bits 19to 1 0
MOV. W 2(SP), R6 ; Copy Iteml12 to R6
MOV. W R7, O(SP) ; Overwite TOS with R7

PUSH #0123h ; Put 0123h on stack

pPoP R8 ; R8 = 0123h
Figure 4-6. Stack Usage
Address PUSH #0123h POP R8
Oxxxh 11 11 11
Oxxxh - 2 12 12 12
Oxxxh - 4 13 <4— SP 13 13 <4— SP
Oxxxh - 6 0123h [¢— SP
Oxxxh - 8
Figure 4-7. PUSHX.A Format on the Stack
SPoid —W Item n-1
Iltem.19:16
SP —p Item.15:0

16-Bit MSP430X CPU 4-7

CPU Registers

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 4-8.

Figure 4-8. PUSH SP - POP SP Sequence

PUSH SP

SPolg —»

sp, —¥ SP1

The stack pointer is changed after
a PUSH SP instruction.

4-8 16-Bit MSP430X CPU

POP SP

SP, —»

SPq

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

4.3.3 Status Register (SR)

CPU Registers

The 16-bit status register (SR/R2), used as a source or destination register,
can only be used in register mode addressed with word instructions. The
remaining combinations of addressing modes are used to support the
constant generator. Figure 4-9 shows the SR bits. Do not write 20-bit values
to the SR. Unpredictable operation can result.

Figure 4-9. Status Register Bits

15

OSC|CPU

Reserved V| SCGL | SCGO [~er |lopr

GIE|N|Z|C

rw-0

Table 4-1 describes the status register bits.

Table 4-1.Description of Status Register Bits

Bit Description

Reserved Reserved

\% Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.
ADD(. B), ADDX(.B,.A), Set when:
ADDC(. B), ADDCX(.B. A), positive + positive = negative
ADDA negative + negative = positive

otherwise reset

SUB(.B), SUBX(.B,.A), Set when:
SUBC(. B), SUBCX(. B, .A), positive - negative = negative
SUBA, CMP(. B), negative — positive = positive
CWPX(. B,.A), CWPA otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the DCO dc
generator if DCOCLK is not used for MCLK or SMCLK.

SCGO System clock generator 0. This bit, when set, turns off the FLL+ loop
control.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator
when LFXT1CLK is not used for MCLK or SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable inter-
rupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of an operation is negative

and cleared when the result is positive.

16-Bit MSP430X CPU 4-9

CPU Registers

Bit Description

z Zero bit. This bit is set when the result of an operation is zero and
cleared when the result is not zero.

C Carry bit. This bit is set when the result of an operation produced a
carry and cleared when no carry occurred.

4-10 16-Bit MSP430X CPU

CPU Registers

4.3.4 The Constant Generator Registers CG1 and CG2

Six commonly used constants are generated with the constant generator
registers R2 (CG1) and R3 (CG2), without requiring an additional 16-bit word
of program code. The constants are selected with the source register
addressing modes (As), as described in Table 4-2.

Table 4-2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 - Register mode

R2 01) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh -1, word processing

The constant generator advantages are:

[No special instructions required

[No additional code word for the six constants

[No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator — Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MoV R3, dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
I NC dst

is replaced by:

ADD 0(R3), dst

16-Bit MSP430X CPU 4-11

CPU Registers

4.3.5 The General Purpose Registers R4 to R15

The twelve CPU registers R4 to R15, contain 8-bit, 16-bit, or 20-bit values. Any
byte-write to a CPU register clears bits 19:8. Any word-write to a register clears
bits 19:16. The only exception is the SXT instruction. The SXT instruction
extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data.
Note the reset of the leading MSBs, if a register is the destination of a byte or
word instruction.

Figure 4-10 shows byte handling (8-bit data, .B suffix). The handling is shown
for a source register and a destination memory byte and for a source memory
byte and a destination register.

Figure 4-10. Register-Byte/Byte-Register Operation

Register-Byte Operation Byte-Register Operation
High Byte Low Byte High Byte Low Byte
19 16 15 87 0
Un- 1 Unused Register Memor

used 9 y

19 16 15 87 0
Memo Un- 1 Gnused Register

vy used 9
‘ Operation ' (Operation)

Memory 0 0 Register

4-12 16-Bit MSP430X CPU

CPU Registers

Figure 4-11 and Figure 4-12 show 16-bit word handling (\W suffix). The
handling is shown for a source register and a destination memory word and
for a source memory word and a destination register.

Figure 4-11. Register-Word Operation
Register-Word Operation

High Byte Low Byte

19 16 15 87 0
Un- .
used Register
Memory
A\ 4
(Operation)
y
Memory

Figure 4-12. Word-Register Operation
Word-Register Operation

High Byte Low Byte

Memory
19 16 15 8|7 0
Un- .
used Register

A 4

(Operation)

0 Register

16-Bit MSP430X CPU

4-13

CPU Registers

Figure 4-13 and Figure 4-14 show 20-bit address-word handling (.A suffix).
The handling is shown for a source register and a destination memory
address-word and for a source memory address-word and a destination
register.

Figure 4-13. Register — Address-Word Operation
Register - Address-Word Operation
High Byte Low Byte

19 16 15 87 0
Register
Memory +2 Unused Memory
A A 4
(Operation)
A y
Memory +2 0 Memory
Figure 4-14. Address-Word - Register Operation
Address-Word - Register Operation
High Byte Low Byte
19 16 15 87 0
Memory +2 Unused Memory
Register
A 4 A 4
(Operation)
A y
Register

4-14 16-Bit MSP430X CPU

4.4 Addressing Modes

CPU Registers

Seven addressing modes for the source operand and four addressing modes
for the destination operand use 16-bit or 20-bit addresses. The MSP430 and
MSP430X instructions are usable throughout the entire 1-MB memory range.

Table 4-3. Source/Destination Addressing

As/Ad

Addressing Mode Syntax

Description

00/0
01/1

01/1

01/1

10/-

11/-

11/-

Register mode Rn

Indexed mode X(Rn)

Symbolic mode ADDR

Absolute mode &ADDR

Indirect register
mode

@RnNn

Indirect
autoincrement

@Rn+

Immediate mode #N

Register contents are operand

(Rn + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word.

(PC + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(PC) is
used.

The word following the instruction
contains the absolute address. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(SR) is
used.

Rn is used as a pointer to the
operand.

Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions.
by 2 for .W instructions, and by 4
for .A instructions.

N is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indirect autoincrement
mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

16-Bit MSP430X CPU 4-15

CPU Registers

4.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU
register.

Length: One, two, or three words
Comment: Valid for source and destination

Byte operation: Byte operation reads only the 8 LSBs of the source register
Rsrc and writes the result to the 8 LSBs of the destination
register Rdst. The bits Rdst.19:8 are cleared. The register
Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc
and writes the result to the 16 LSBs of the destination register
Rdst. The bits Rdst.19:16 are cleared. The register Rsrc is not
modified.

Address-Word operation: Address-word operation reads the 20 bits of the
source register Rsrc and writes the result to the 20 bits of the
destination register Rdst. The register Rsrc is hot modified

SXT Exception: The SXT instruction is the only exception for register
operation. The sign of the low byte in bit 7 is extended to the
bits Rdst.19:8.

Example: BISW R5 R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

Before: After:
Address Register Address Register
Space Space
21036h xxxxh R5| AA550h 21036h xxxxh PC R5| AA550h
21034h| D506h pPC R6| 11111h 21034h | D506h R6| 0B551h

A550h.or.1111h = B551h

4-16 16-Bit MSP430X CPU

Example:

BISXA R5 R6 ;

CPU Registers

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit

contents of R6.

The extension word contains the A/L-bit for 20-bit data. The instruction word
uses byte mode with bits A/L:B/W = 01. The result of the instruction is:

Before:
Address

Space

21036h xxxxh

21034h| D546h

21032h| 1800h

PC

After:

Register Address
Space

R5| AA550h 21036h xxxxh

R6| 11111h 21034h| D546h

21032h| 1800h

AA550h.0r.11111h = BB551h

PC R5
R6

16-Bit MSP430X CPU

Register

AA550h
BB551h

4-17

CPU Registers

4.4.2 Indexed Mode

The Indexed mode calculates the address of the operand by adding the signed
index to a CPU register. The Indexed mode has three addressing possibilities:

1 Indexed mode in lower 64-KB memory

[0 MSP430 instruction with Indexed mode addressing memory above the
lower 64-KB memory.

(1 MSP430X instruction with Indexed mode

Indexed Mode in Lower 64 KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory
range, the calculated memory address bits 19:16 are cleared after the addition
of the CPU register Rn and the signed 16-bit index. This means, the calculated
memory address is always located in the lower 64 KB and does not overflow
or underflow out of the lower 64-KB memory space. The RAM and the
peripheral registers can be accessed this way and existing MSP430 software
is usable without modifications as shown in Figure 4-15.

Figure 4-15. Indexed Mode in Lower 64 KB

Lower 64 KB.
Rn.19:16 = 0
==t 19 1615 0
CPU Register
0
Rn
S 16-bit byte index | 18Pt
signed index
10000
OFFFF
2 (16-bit signed add)
RN.19:0 —¥ ©
5]
=
3
00000 0 Memory address
Length: Two or three words
Operation: The signed 16-bit index is located in the next word after the
instruction and is added to the CPU register Rn. The resulting
bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range
00000h to OFFFFh. The operand is the content of the
addressed memory location.
Comment: Valid for source and destination. The assembler calculates

the register index and inserts it.

4-18 16-Bit MSP430X CPU

CPU Registers

Example: ADD. B 1000h(R5), OFO00h(R6) ;

The previous instruction adds the 8-bit data contained in source byte
1000h(R5) and the destination byte OFO00h(R6) and places the result into the
destination byte. Source and destination bytes are both located in the lower
64 KB due to the cleared bits 19:16 of registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch
+ 1000h = 0579Ch after truncation to a 16-bit address.

Destination: The byte pointed to by R6 + FOOOh results in address 01778h
+ FOOOh = 00778h after truncation to a 16-bit address.

Before: After:
Address Register Address Register
Space Space
1103Ah xxxxh R5| 0479Ch 1103Ah xxxxh PC R5| 0479Ch
11038h FOO0Oh R6| 01778h 11038h FO00h R6| 01778h
11036h 1000h 11036h 1000h
11034h 55D6h | PC 11034h 55D6h
01778h 32h src
0077Ah xxxxh +F000h 0077Ah xxxxh +45h dst
00778h | xx45h 00778h 00778h | xx77h 77h - Sum
0479Ch
0579Eh xxxxh +1000h 0579Eh XXxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

16-Bit MSP430X CPU 4-19

CPU Registers

MSP430 Instruction with Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64-KB memory,
the Rn bits 19:16 are used for the address calculation of the operand. The
operand may be located in memory in the range Rn £32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can
overflow or underflow into the lower 64-KB memory space. See Figure 4-16
and Figure 4-17.

Figure 4-16. Indexed Mode in Upper Memory

Upper Memory

Rn.19:16 >0
 FFFFF
Rn.19:0—¥] Rn +32 KB
_ 10000
OFFFF
00000

Lower 64 KB

19

16 15

.. 15

CPU Register
Rn

S 16-bit byte index

16-bit signed index
(sign extended to

20 bits)

A 4

20-bit signed add)

Memory address

Figure 4-17. Overflow and Underflow for the Indexed Mode

 FFFFF

+32KB

10000

_____ Rw:o_i&\\\\%

Lower 64 KB

4-20 16-Bit MSP430X CPU

Rn.19:0

NN

v

NN

+32KB

NN

Length:

Operation:

Comment:

Example:

CPU Registers

Two or three words

The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the CPU register Rn. This
delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the
addressed memory location.

Valid for source and destination. The assembler calculates
the register index and inserts it.

ADD. W 8346h(R5), 2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the
destination addresses and places the 16-bit result into the destination. Source
and destination operand can be located in the entire address range.

Source:

Destination:

The word pointed to by R5 + 8346h. The negative index
8346h is sign-extended, which results in address 23456h +
F8346h = 1B79Ch.

The word pointed to by R6 + 2100h results in address
15678h + 2100h = 17778h.

Figure 4-18. Example for the Indexed Mode

Before:

After:

Address Register Address Register
Space Space
1103Ah xxxxh R5| 23456h 1103Ah xxxxh PC R5| 23456h
11038h 2100h R6| 15678h 11038h 2100h R6| 15678h
11036h 8346h 11036h 8346h
11034h 5596h | PC 11034h 5596h
15678h 05432h src
1777Ah xxxxh +02100h 1777Ah xxxxh +02345h _ dst
17778h | 2345h Lr7rgn 17778h | 7777h 0r777h - Sum
23456h
1B79Eh xxxxh +F8346h 1B79Eh xxxxh
1B79Ch 5432h 1B79Ch 1B79Ch 5432h

16-Bit MSP430X CPU 4-21

CPU Registers

MSP430X Instruction with Indexed Mode

4-22

When using an MSP430X instruction with Indexed mode, the operand can be
located anywhere in the range of Rn + 19 hits.

Length:

Operation:

Comment:

Example:

Three or four words

The operand address is the sum of the 20-bit CPU register
content and the 20-bit index. The four MSBs of the index are
contained in the extension word, the 16 LSBs are contained
in the word following the instruction. The CPU register is not
modified.

Valid for source and destination. The assembler calculates
the register index and inserts it.

ADDX. A 12346h(R5), 32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the
destination addresses and places the result into the destination.

Source:

Destination:

16-Bit MSP430X CPU

Two words pointed to by R5 + 12346h which results in
address 23456h + 12346h = 3579Ch.

Two words pointed to by R6 + 32100h which results in
address 45678h + 32100h = 77778h.

CPU Registers

The extension word contains the MSBs of the source index and of the
destination index and the A/L-bit for 20-bit data. The instruction word uses byte
mode due to the 20-bit data length with bits A/L:B/W = 01.

Before:

2103Ah
21038h
21036h
21034h
21032h

7777Ah
77778h

3579Eh
3579Ch

Address
Space

xxxxh

2100h

2346h

55D6h

1883h

0001h

2345h

0006h

5432h

After:
Register Address Register
Space
R5| 23456h 2103Ah xxxxh | PC R5| 23456h
R6| 45678h 21038h 2100h R6| 45678h

21036h 2346h
21034h 55D6h

PC 21032h 1883h
45678h 65432h src
+32100h 7777Ah | 0007h +12345h _ dst
77778h 77777h Sum

77778h 7777h

23456h
+12346h 3579Eh 0006h

3579Ch
3579Ch 5432h

16-Bit MSP430X CPU 4-23

CPU Registers

4.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the
signed index to the program counter. The Symbolic mode has three
addressing possibilities:

(1 Symbolic mode in lower 64-KB memory

[0 MSP430 instruction with symbolic mode addressing memory above the
lower 64-KB memory.

[MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the
calculated memory address bits 19:16 are cleared after the addition of the PC
and the signed 16-bit index. This means, the calculated memory address is
always located in the lower 64 KB and does not overflow or underflow out of
the lower 64-KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without
modifications as shown in Figure 4-15.

Figure 4-19. Symbolic Mode Running in Lower 64 KB

Lower 64 KB.
PC.19:16 =0
—— 19 16 15 0
FFFFF
0 Program
counter PC
S 16-bit byte index 16'?“ signed
PC index
__ 10000
OFFFF
m . .
fr (16-bit signed add)
PC.19:0 —¥ ©
3]
=
o
|
00000 0 Memory address

Operation: The signed 16-bit index in the next word after the instruction is
added temporarily to the PC. The resulting bits 19:16 are cleared giving a
truncated 16-bit memory address, which points to an operand address in the
range 00000h, to OFFFFh. The operand is the content of the addressed
memory location.

Length: Two or three words

Comment: Valid for source and destination. The assembler calculates
the PC index and inserts it.

Example: ADD. B EDE, TONI ;

4-24 16-Bit MSP430X CPU

CPU Registers

The previous instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.
Bytes EDE and TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC +
4766h where the PC index 4766h is the result of 0579Ch -
01036h = 04766h. Address 01036h is the location of the index
for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC +
F740h, is the truncated 16-bit result of
00778h - 1038h = FF740h. Address 01038h is the location
of the index for this example.

Before: After:

Address Address
Space Space
0103Ah Xxxxxh 0103Ah Xxxxh PC
01038h | F740h 01038h | F740h
01036h 4766h 01036h 4766h
01034h 05DO0h PC 01034h 50D0h
01038h 32h src
0077Ah xxxxh +0F740h 0077Ah Xxxxh +45h dst
00778h | xx4sh 00778h 00778h | xx77h 77h - Sum
01036h
0579Eh xxxxh +04766h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

16-Bit MSP430X CPU 4-25

CPU Registers

MSP430 Instruction with Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits
19:16 are used for the address calculation of the operand. The operand may
be located in memory in the range PC £32 KB, because the index, X, is a
signed 16-bit value. In this case, the address of the operand can overflow or
underflow into the lower 64-KB memory space as shown in Figure 4-20 and
Figure 4-21.

Figure 4-20. Symbolic Mode Running in Upper Memory

Upper Memory
PC.19:16 >0

19 1615 0

Program
.15 counter PC

 FFFFF

PC.19:0 —» PC +32 KB

S S 16-bit byte index 16-bit signed PC

index (sign
_ 10000 extended to

OFFFF J 20 bits)

m

X (20-bit signed add)

3

@

2

]

|
00000 Memory address

Figure 4-21. Overflow and Underflow for the Symbolic Mode

NN
DAANNNNNN

PC.19:0

A 4

 FFFFF

~Grrer § ————— P E-lﬁro_tm

0000C

+32KB

+32KB

Lower 64 KB

4-26 16-Bit MSP430X CPU

Length:

Operation:

Comment:

Example:

CPU Registers

Two or three words

The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the PC. This delivers a
20-bit address, which points to an address in the range 0 to
FFFFFh. The operand is the content of the addressed
memory location.

Valid for source and destination. The assembler calculates
the PC index and inserts it

ADD. W EDE, &TONI

This instruction adds the 16-bit data contained in source word EDE and
destination word TONI and places the 16-bit result into the destination word
TONI. For this example, the instruction is located at address 2,F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h
which is the 16-bit result of 3379Ch - 2F036h = 04766h.
Address 2F036h is the location of the index for this example.
Destination: Word TONI located at address 00778h pointed to by the
absolute address 00778h.
Before: After:
Address Address
Space Space
2F03Ah Xxxxh 2F03Ah Xxxxh PC
2F038h | 0778h 2F038h | 0778h
2F036h 4766h 2F036h 4766h
2F034h 5092h | PC 2F034h 5092h
2F036h
3379Eh xxxxh +04766h 3379Eh xxxxh
3379Ch 5432h 3379Ch 3379Ch 5432h
5432h src
0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | 7777h 7777h - Sum

16-Bit MSP430X CPU 4-27

CPU Registers

MSP430X Instruction with Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can
be located anywhere in the range of PC + 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit PC and the
20-bit index. The four MSBs of the index are contained in the
extension word, the 16 LSBs are contained in the word
following the instruction.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADDX. B EDE, TONI ;

The instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by
PC + 14766h, is the 20-bit result of
3579Ch - 21036h = 14766h. Address 21036h is the address
of the index in this example.

Destination: Byte TONI located at address 77778h, pointed to by
PC + 56740h, is the 20-bit result of
77778h - 21038h = 56740h. Address 21038h is the address
of the index in this example..

Before: Address Space After: Address Space
2103Ah xXxxxh 2103Ah xxxxh PC
21038h 6740h 21038h 6740h
21036h 4766h 21036h 4766h
21034h 50D0h 21034h 50D0h
21032h 18C5h | PC 21032h 18C5h
21038h 32h src
7777Ah Xxxxh +56740h _ 7777Ah xxxxh +45h dst
77778h xx45h 77778h 77778h XX77h 77h Sum
21036h
3579Eh XXxxh __+14766h 3579Eh xxxxh
3579Ch
3579Ch xx32h 3579Ch xx32h

4-28 16-Bit MSP430X CPU

CPU Registers
4.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as
the address of the operand. The Absolute mode has two addressing
possibilities:

(1 Absolute mode in lower 64-KB memory

[MSP430X instruction with Absolute mode

16-Bit MSP430X CPU 4-29

CPU Registers

Absolute Mode in Lower 64 KB

4-30

If an MSP430 instruction is used with Absolute addressing mode, the absolute
address is a 16-bit value and therefore points to an address in the lower 64 KB
of the memory range. The address is calculated as an index from 0 and is
stored in the word following the instruction The RAM and the peripheral
registers can be accessed this way and existing MSP430 software is usable
without modifications.

Length: Two or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates

the index from 0 and inserts it
Example: ADD. W &EDE, &TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE

Destination: Word at address TONI

Before: Address Space After: Address Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 579Ch 21036h 579Ch
21034h 5292h | PC 21034h 5292h

5432h src
0777Ah xxxxh 0777Ah xxxxh +2345h dst
07778h | 2345h 07778 | 7777h 77TTh - Sum
0579Eh XXxxh 0579Eh xxxxh
0579Ch 5432h 0579Ch 5432h

16-Bit MSP430X CPU

CPU Registers

MSP430X Instruction with Absolute Mode

If an MSP430X instruction is used with Absolute addressing mode, the
absolute address is a 20-bit value and therefore points to any address in the
memory range. The address value is calculated as an index from 0. The four
MSBs of the index are contained in the extension word, and the 16 LSBs are
contained in the word following the instruction.

Length: Three or four words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates

the index from 0 and inserts it
Example: ADDX. A &EDE, &TONI

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE

Destination: Two words beginning with address TONI

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah XXxxh PC
21038h 7778h 21038h 7778h
21036h 579Ch 21036h 579Ch
21034h 52D2h 21034h 52D2h
21032h 1987h | PC 21032h 1987h

65432h src

7777Ah 0001h 7777Ah 0007h +12345h dst
77778h | 2345h 77778h | 7777h 7rTTTh Sum
3579Eh 0006h 3579Eh 0006h
3579Ch 5432h 3579Ch 5432h

16-Bit MSP430X CPU 4-31

CPU Registers

445

4-32

Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the
source operand. The Indirect Register mode always uses a 20-bit address.

Length:

Operation:

Comment:

Example:

One, two, or three words

The operand is the content the addressed memory location.
The source register Rsrc is not modified.

Valid only for the source operand. The substitute for the
destination operand is O(Rdst).

ADDX. W @5, 2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3,579Ch for this
example.
Destination: Word pointed to by R6 + 2100h which results in address
45678h + 2100h = 7778h.
Before: After:
Address Register Address Register
Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Ch
21036h | 2100h R6| 45678h 21036h | 2100h R6| 45678h
21034h | 55A6h | PC 21034h | 55A6h
45678h 5432h src
4777Ah xxxxh +02100h A777Ah xxxxh +2345h _ dst
47778h | 2345h 47778h 477780 | 7777h 7777h - Sum
3579Eh xxxxh 3579Eh xxxxh
3579Ch 5432h | R5 3579Ch | 5432h | R5

16-Bit MSP430X CPU

CPU Registers

4.4.6 Indirect, Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc

as the sou
instruction
immediate

rce operand. Rsrc is then automatically incremented by 1 for byte
s, by 2 for word instructions, and by 4 for address-word instructions
ly after accessing the source operand. If the same register is used

for source and destination, it contains the incremented address for the
destination access. Indirect Autoincrement mode always uses 20-bit
addresses.

Length:

Operation:

Comment:

Example:

One, two, or three words

The operand is the content of the addressed memory
location.

Valid only for the source operand.

ADD.B @5+, O(R6)

This instruction adds the 8-bit data contained in the source and the destination

addresses

Source:

and places the result into the destination.

Byte pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Byte pointed to by R6 + Oh which results in address 0778h for

this example.

Before: After:

Address Register Address Register

Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Dh
21036h 0000h R6| 00778h 21036h 0000h R6| 00778h
21034h 55F6h | PC 21034h 55F6h

00778h 32h src

0077Ah xxxxh +0000h 0077Ah xxxxh +45h _ dst
00778h | xx4sh 00778h 00778h | xx77h 77h - Sum
3579Dh xxh 3579Dh xxh R5
3579Ch 32h R5 3579Ch xx32h

16-Bit MSP430X CPU 4-33

CPU Registers

4.4.7 Immediate Mode

The Immediate mode allows accessing constants as operands by including
the constant in the memory location following the instruction. The program
counter PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the
immediate operand, the PC is incremented by 2 for byte, word, or
address-word instructions. The Immediate mode has two addressing
possibilities:

[J 8- or 16-bit constants with MSP430 instructions

[0 20-bit constants with MSP430X instruction

MSP430 Instructions with Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the
constant is an 8- or 16-bit value and is stored in the word following the

instruction.

Length: Two or three words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with
the 16-bit destination operand.

Comment: Valid only for the source operand.

Example: ADD #3456h, &TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h.

Destination: Word at address TONI.

Before: After:

Address Address

Space Space
2103Ah Xxxxh 2103Ah xxxxh PC
21038h 0778h 21038h 0778h
21036h 3456h 21036h 3456h
21034h 50B2h PC 21034h 50B2h

3456h src

0077Ah XxXxxh 0077Ah xxxxh +2345h _ dst
00778h | 2345h oo77h | s79Bn | B579BM Sum

4-34 16-Bit MSP430X CPU

CPU Registers

MSP430X Instructions with Immediate Mode

If an MSP430X instruction is used with immediate addressing mode, the
constant is a 20-bit value. The 4 MSBs of the constant are stored in the
extension word and the 16 LSBs of the constant are stored in the word
following the instruction.

Length: Three or four words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with
the 20-bit destination operand.

Comment: Valid only for the source operand.
Example: ADDX. A #23456h, &TONIl ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h.

Destination: Two words beginning with address TONI.

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 3456h 21036h 3456h
21034h 50F2h 21034h 50F2h
21032h 1907h | PC 21032h 1907h

23456h src

7777Ah 0001h 7777Ah 0003h +12345h dst
77778h | 2345h 77778h | 579h | S°79BM Sum

16-Bit MSP430X CPU 4-35

MSP430 and MSP430X Instructions

45 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430
CPU. These instructions are used throughout the 1-MB memory range unless
their 16-bit capability is exceeded. The MSP430X instructions are used when
the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and
MSP430X instruction:

[To use only the MSP430 instructions: The only exceptions are the CALLA
and the RETA instruction. This can be done if a few, simple rules are met:

B Placement of all constants, variables, arrays, tables, and data in the
lower 64 KB. This allows the use of MSP430 instructions with 16-bit
addressing for all data accesses. No pointers with 20-bit addresses
are needed.

B Placement of subroutine constants immediately after the subroutine
code. This allows the use of the symbolic addressing mode with its
16-bit index to reach addresses within the range of PC +32 KB.

[To use only MSP430X instructions: The disadvantages of this method are
the reduced speed due to the additional CPU cycles and the increased
program space due to the necessary extension word for any double
operand instruction.

[d Use the best fitting instruction where needed

The following sections list and describe the MSP430 and MSP430X
instructions.

4-36 16-Bit MSP430X CPU

45.1 MSP430 Instructions

MSP430 and MSP430X Instructions

The MSP430 instructions can be used, regardless if the program resides in the
lower 64 KB or beyond it. The only exceptions are the instructions CALL and
RET which are limited to the lower 64 KB address range. CALLA and RETA
instructions have been added to the MSP430X CPU to handle subroutines in

the entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions

Figure 4-22 shows the format of the MSP430 double operand instructions.
Source and destination words are appended for the Indexed, Symbolic,
Absolute and Immediate modes. Table 4-4 lists the twelve MSP430 double
operand instructions.

Figure 4-22. MSP430 Double Operand Instruction Format

15 12 11 8 7 6 5 0
Op-code Rsrc Ad | B/W As Rdst
Source or Destination 15:0
Destination 15:0
Table 4-4. MSP430 Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits

D-Reg N 7 c
MOV(. B) src, dst src — dst - - -
ADI . B) src, dst src +dst — dst * * *
ADDC(.B) src,dst src+dst+C — dst * * *
SUB(. B) src, dst dst+ .not.src + 1 — dst * * *
SUBC(.B) src,dst dst+.not.src+C — dst * * *
CVP(. B) src, dst dst-src * * *
DADD(.B) src,dst src+dst+ C — dst(decimally) * * *
BI T(.B) src, dst src.and. dst * * 4
Bl C(. B) src, dst .not.src .and. dst — dst - - -
Bl S(. B) src, dst src.or. dst — dst - - -
XOR(. B) src, dst src.xor. dst — dst * * Z
AND(. B) src, dst src.and. dst — dst * * 4
* The status bit is affected
- The status bit is not affected

The status bit is cleared
1 The status bit is set
16-Bit MSP430X CPU 4-37

MSP430 and MSP430X Instructions

Single Operand (Format Il) Instructions

Figure 4-23 shows the format for MSP430 single operand instructions, except
RETI. The destination word is appended for the Indexed, Symbolic, Absolute
and Immediate modes .Table 4-5 lists the seven single operand instructions.

Figure 4-23. MSP430 Single Operand Instructions

15 7 6 5 4 0

Op-code B/W Ad Rdst

Destination 15:0

Table 4-5.MSP430 Single Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg vV N Z ¢C
RRC(.B) dst C 5 MSBLSB» C LA S
RRA(. B) dst MSB - MSB —....LSB - C 0 * * *
PUSH(.B) src SP -2 - SP, src - @SP - - - -
SWPB dst bit 15...bit 8 & bit 7...bit 0 - - - -
CALL dst Call subroutine in lower 64 KB - - - -
RETI TOS - SR,SP +2 - SP * * * *
TOS - PC,SP +2 > SP
SXT dst Register mode: 0 * * d

bit 7 — bit 8 ...bit 19
Other modes:
bit 7 — bit 8 ...bit 15

* The status bit is affected

- The status bit is not affected
The status bit is cleared

1 The status bit is set

4-38 16-Bit MSP430X CPU

MSP430 and MSP430X Instructions

Jumps

Figure 4-24 shows the format for MSP430 and MSP430X jump instructions.
The signed 10-bit word offset of the jump instruction is multiplied by two,
sign-extended to a 20-bit address, and added to the 20-bit program counter.
This allows jumps in a range of -511 to +512 words relative to the program
counter in the full 20-bit address space Jumps do not affect the status bits.
Table 4-6 lists and describes the eight jump instructions.

Figure 4-24. Format of the Conditional Jump Instructions

15 13 12 10 9 8 0

Op-Code Condition S 10-Bit Signed PC Offset

Table 4-6. Conditional Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ JZ Label Jump to label if zero bit is set
JNE/ INZ Label Jump to label if zero bit is reset
JC Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) =1
JwP Label Jump to label unconditionally

16-Bit MSP430X CPU 4-39

MSP430 and MSP430X Instructions

Emulated Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions
are instructions that make code easier to write and read, but do not have
op-codes themselves. Instead, they are replaced automatically by the
assembler with a core instruction. There is no code or performance penalty for
using emulated instructions. The emulated instructions are listed in Table 4-7.

Table 4-7. Emulated Instructions

Instruction Explanation Emulation

ADC(. B) dst Add Carry to dst ADDC(. B) #0, dst

BR dst Branch indirectly dst MOV dst, PC

CLR(.B) dst Clear dst MOV(. B) #0, dst

CLRC Clear Carry bit Bl C #1, SR

CLRN Clear Negative bit Bl C #4, SR

CLRz Clear Zero bit BI C #2, SR

DADC(. B) dst Add Carry to dst decimally DADD(. B) #0, dst

DEC(. B) dst Decrement dst by 1 SUB(. B) #1, dst

DECD(. B) dst Decrement dst by 2 SUB(. B) #2, dst

DI NT Disable interrupt Bl C #8, SR

El NT Enable interrupt Bl S #8, SR

I NC(. B) dst Increment dst by 1 ADD(. B) #1, dst

I NCD(. B) dst Increment dst by 2 ADD(. B) #2, dst

I NV(. B) dst Invert dst XOR(.B) #-1,dst

NOP No operation MOV R3, R3

POP dst Pop operand from stack MOV @BP+, dst

RET Return from subroutine MOV @BP+, PC

RLA(. B) dst Shift left dst arithmetically ADD(. B) dst, dst

RLC(. B) dst Shift left dst ADDC(. B) dst, dst
logically through Carry

SBC(. B) dst Subtract Carry from dst SUBC(. B) #0, dst

SETC Set Carry bit Bl S #1, SR

SETN Set Negative bit Bl S #4, SR

SETZ Set Zero bit BI S #2, SR

TST(.B) dst Test dst CVP(. B) #0, dst

(compare with 0)

16-Bit MSP430X CPU

MSP430 Instruction Execution

MSP430 and MSP430X Instructions

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines

Table 4-8 lists the length and the CPU cycles for reset, interrupts and

subroutines.

Table 4-8. Interrupt, Return and Reset Cycles and Length

Execution Time Length of

Action MCLK Cycles Instruction (Words)
Return from interrupt RETI 3t 1

Return from subroutine RET 3 1

Interrupt request service (cycles 5+ -

needed before 15t instruction)

WDT reset 4 -

Reset (RST/NMI) 4 -

T The cycle count in MSP430 CPU is 5.
* The cycle count in MSP430 CPU is 6.

16-Bit MSP430X CPU

4-41

MSP430 and MSP430X Instructions

Format-Il (Single Operand) Instruction Cycles and Lengths

Table 4-9 lists the length and the CPU cycles for all addressing modes of the
MSP430 single operand instructions.

Table 4-9. MSP430 Format-Il Instruction Cycles and Length

No. of Cycles Length of
Instruction Example
Addressing RRA, RRC Length of
Mode SWPB, SXT PUSH CALL Instruction Example
Rn 1 3 3t 1 SWPB R5
@Rn 3 3f 4 1 RRC @R9
@Rn+ 3 af 4% 1 SWPB @R10+
#N n.a. 3t 4% 2 CALL #LABEL
X(Rn) 4 4% 4% 2 CALL 2(R7)
EDE 4 4% 4% 2 PUSH EDE
&EDE 4 4% 4% 2 SXT &EDE

T The cycle count in MSP430 CPU is 4.
* The cycle count in MSP430 CPU is 5. Also, the cycle count is 5 for X(Rn) addressing mode, when
Rn = SP.

Jump Instructions. Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

4-42 16-Bit MSP430X CPU

Format-I (Double Operand) Instruction Cycles and Lengths

MSP430 and MSP430X Instructions

Table 4-10 lists the length and CPU cycles for all addressing modes of the
MSP430 format-I instructions.

Table 4-10.MSP430 Format-I Instructions Cycles and Length

Addressing Mode No. of Length of
Sre Dst Cycles Instruction Example
Rn Rm 1 1 MoV R5, R8
PC 2 1 BR R9
x(Rm) 4t 2 ADD RS, 4(R6)
EDE 4t 2 XOR R8, EDE
&EDE 4t 2 MOV R5, &EDE
@Rn Rm 2 1 AND @4, R5
PC 3 1 BR @8
x(Rm) 5t 2 XOR @R5, 8(R6)
EDE 5t 2 MV @5, EDE
&EDE 5t 2 XOR @R5, &EDE
@Rn+ Rm 2 1 ADD @R5+, R6
PC 3 1 BR @ro+
x(Rm) 5t 2 XOR @R5, 8(R6)
EDE 5t 2 MOV @R9+, EDE
&EDE 5f 2 MOV @9+, &EDE
#N Rm 2 2 MOV #20, R9
PC 2 BR #2AEh
x(Rm) 5f 3 MOV #0300h, O(SP)
EDE 5f 3 ADD #33, EDE
&EDE 5f 3 ADD #33, &EDE
X(Rn) Rm 3 2 MV 2(R5),R7
PC 2 BR 2(R6)
TONI 6f 3 MOV 4(R7), TONI
x(Rm) 6' 3 ADD 4(R4), 6(R9)
&TONI 6f 3 MOV 2(R4), &TONI
EDE Rm 3 2 AND EDE, R6
PC 3 2 BR EDE
TONI 6' 3 CMP EDE, TONI
x(Rm) 6" 3 MOV EDE, O(SP)
&TONI 6" 3 MOV EDE, &TONI
&EDE Rm 3 2 MOV &EDE, R8
PC 3 2 BR &EDE
TONI 6" 3 MOV &EDE, TONI
x(Rm) 6" 3 MOV &EDE, O(SP)
&TONI 67 3 MOV &EDE, &TONI

T MOV, BIT, and CMP instructions execute in 1 fewer cycle

16-Bit MSP430X CPU 4-43

MSP430X Extended Instructions

452 MSP430X Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its
20-bit address space. Most MSP430X instructions require an additional word
of op-code called the extension word. Some extended instructions do not
require an additional word and are noted in the instruction description. All
addresses, indexes and immediate numbers have 20-bit values, when
preceded by the extension word.

There are two types of extension word:

[0 Register/register mode for Format-| instructions and register mode for
Format-Il instructions.

[0 Extension word for all other address mode combinations.

4-44 16-Bit MSP430X CPU

MSP430X Extended Instructions

Register Mode Extension Word

The register mode extension word is shown in Figure 4-25 and described in
Table 4-11. An example is shown in Figure 4-27.

Figure 4-25. The Extension Word for Register Modes

15

12 11 10 9 8 7 6 5 4 3 0

0001

1 00 zc| # |aL] o] o (n-1)/Rn

Table 4-11. Description of the Extension Word Bits for Register Mode

Bit

Description

1511

10:9

ZC

AL

5:4

3.0

Extension word op-code. Op-codes 1800h to 1FFFh are extension
words.

Reserved

Zero carry bit.
0: The executed instruction uses the status of the carry bit C.

1. The executed instruction uses the carry bit as 0. The carry bit will
be defined by the result of the final operation after instruction execu-
tion.

Repetition bit.

0: The number of instruction repetitions is set by extension-word bits
3:0.

1: The number of instructions repetitions is defined by the value of the
four LSBs of Rn. See description for bits 3:0.

Data length extension bit. Together with the B/W-bits of the following
MSP430 instruction, the AL bit defines the used data length of the
instruction.

A/L B/W Comment
0 0 Reserved
0 1 20-bit address-word
1 0 16-bit word
1 1 8-bitbyte
Reserved

Repetition Count.

#=0: These four bits set the repetition count n. These bits contain
n-1.

#=1: These four bits define the CPU register whose bits 3:0 set the
number of repetitions. Rn.3:0 contain n - 1.

16-Bit MSP430X CPU 4-45

MSP430X Extended Instructions

Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 4-26 and
described in Table 4-12. An example is shown in Figure 4-28.

Figure 4-26. The Extension Word for Non-Register Modes

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 AlL] O 0 | Destination bits 19:16

Table 4-12.Description of the Extension Word Bits for Non-Register Modes

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are exten-
sion words.

Source Bits The four MSBs of the 20-bit source. Depending on the source

19:16 addressing mode, these four MSBs may belong to an immedi-

ate operand, an index or to an absolute address.

AlL Data length extension bit. Together with the B/W-bits of the fol-
lowing MSP430 instruction, the AL bit defines the used data
length of the instruction.

A/lL B/W Comment
0 0 Reserved
0 1 20 bit address-word
1 0 16 bitword
1 1 8 bit byte
5:4 Reserved

Destination Bits The four MSBs of the 20-bit destination. Depending on the des-
19:16 tination addressing mode, these four MSBs may belong to an
index or to an absolute address.

Note: B/W and A/L Bit Settings for SWPBX and SXTX
The B/W and A/L bit settings for SWPBX and SXTX are:

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 n.a.
1 0 SWPB.W, SXTX.W
1 1 n.a.

4-46 16-Bit MSP430X CPU

MSP430X Extended Instructions

Figure 4-27. Example for an Extended Register/Register Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o o0 1 1 00 zc| # |AL]| Rswvd (n-1)/Rn

Op-code Rsrc Ad | B/W As Rdst

XORX. A R9, R8

1: Repetition count
in bits 3:0

0: Use Carry 01: Address word

|

0 0 0 1 1 0 0 0 0 0 0
14(XOR) 9 0 1 0 8(R8)
XORX instruction Source R9 T Destination R8
Destination

register mode
9 Source

register mode

Figure 4-28. Example for an Extended Immediate/Indexed Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad |B/W As Rdst

Source 15:0

Destination 15:0

XORX. A #12345h, 45678h(R15)

X(Rn)
01: Address @PC+
ord
18xx extension word 12345h j
0 0 0 1 1 1 l 0 l 0 4
14 (XOR) 0 (PC) 1 1 3 15 (R15)

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

16-Bit MSP430X CPU 4-47

MSP430X Extended Instructions

Extended Double Operand (Format-I) Instructions

All twelve double-operand instructions have extended versions as listed in
Table 4-13.

Table 4-13.Extended Double Operand Instructions

Status Bits
Mnemonic Operands Operation V N zZz C
MOVX(. B, . A) src, dst src — dst - - - -
ADDX(. B, . A) src, dst src + dst — dst S A
ADDCX(.B,.A) src,dst src + dst + C — dst ook kX
SUBX(. B, . A) src, dst dst + .not.src + 1 — dst A A
SUBCX(.B,.A) src,dst dst + .not.src + C — dst ook kX
CWPX(. B, . A) src, dst dst - src S A
DADDX(. B, . A) src, dst src + dst + C — dst (decimal) ook ok x
BITX(.B,.A) src,dst src .and. dst o * * Z
BI CX(.B,.A src, dst .not.src .and. dst — dst - - - -
Bl SX(. B, . A) src, dst src .or. dst — dst - - - -
XORX(. B, . A) src, dst src .xor. dst — dst * ok %7
ANDX(.B,.A) src,dst src .and. dst — dst o * * Z

* The status bit is affected

- The status bit is not affected
The status bit is cleared

1 The status bit is set

4-48 16-Bit MSP430X CPU

MSP430X Extended Instructions

The four possible addressing combinations for the extension word for format-|
instructions are shown in Figure 4-29.

Figure 4-29. Extended Format-I Instruction Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 0
0 0 0 1 1 0 0O |zC| # |AL] O 0 n-1/Rn
Op-code src 0 |BW]| O 0 dst
0 0 0 1 1 src.19:16 ALl O 0 0 0 0 0
Op-code src Ad | B/W As dst
src.15:0
0 0 0 1 1 0 0 0 0 JAL| O 0 dst.19:16
Op-code src Ad |B/W As dst
dst.15:0
0 0 0 1 1 src.19:16 ALl O 0 dst.19:16
Op-code src Ad |B/W As dst
src.15:0
dst.15:0

If the 20-bit address of a source or destination operand is located in memory,
not in a CPU register, then two words are used for this operand as shown in
Figure 4-30.

Figure 4-30. 20-Bit Addresses in Memory

15 14 13 12 112 10 9 8 7 6 5 4 3 2 1 O

AArESSTH2 | O oot 0 19:16

Address Operand LSBs 15:0

16-Bit MSP430X CPU 4-49

MSP430X Extended Instructions

Extended Single Operand (Format-Il) Instructions

Extended MSP430X Format-Il instructions are listed in Table 4-14.

Table 4-14.Extended Single-Operand Instructions

Operation Status Bits
Mnemonic Operands n V. N Zz C
CALLA dst Call indirect to subroutine (20-bit address) - - - -
POPM A #n, Rdst Pop n 20-bit registers from stack 1-16 - - - -
POPM W #n, Rdst Pop n 16-bit registers from stack 1-16 - - - -
PUSHM A #n, Rsr ¢ Push n 20-bit registers to stack 1-16 - - - -
PUSHM W #n, Rsrc Push n 16-bit registers to stack 1-16
PUSHX(. B, .A) src Push 8/16/20-bit source to stack - - - -
RRCM . A) #n, Rdst Rotate right Rdst n bits through carry 1-4 0 * * *
(16-/20-bit register)
RRUM . A) #n, Rdst Rotate right Rdst n bits unsigned 1-4 0 * * *
(16-/20-bit register)
RRAM . A) #n, Rdst Rotate right Rdst n bits arithmetically 1-4 * * * =
(16-/20-bit register)
RLAM . A) #n, Rdst Rotate left Rdst n bits arithmetically 1-4 * * * *
(16-/20-bit register)
RRCX(.B,.A) dst Rotate right dst through carry 1 o * * *
(8-/16-/20-bit data)
RRUX(.B,.A) dst Rotate right dst unsigned (8-/16-/20-bit) 1 o * * *
RRAX(.B,.A) dst Rotate right dst arithmetically 1 ook ok X
SWPBX(. A) dst Exchange low byte with high byte 1 - - - -
SXTX(. A) Rdst Bit7 — bit8 ... bit19 1 ook ¥
SXTX(. A) dst Bit7 — bit8 ... MSB 1 *ookoox

4-50

16-Bit MSP430X CPU

MSP430X Extended Instructions

The three possible addressing mode combinations for format-II instructions
are shown in Figure 4-31.

Figure 4-31. Extended Format-II Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 0
0 0 0 1 1 0 0 JzCc| # JAL| O 0 n-1/Rn
Op-code B/w] O 0 dst

0 0 0fl1 1 0 0 0 0 JAL| O 0 0 0 0 0

Op-code Bw| 1 X dst
0 0 0 1 1 0 0 0o ALl O 0 dst.19:16
Op-code B/W| X 1 dst
dst.15:0

Extended Format Il Instruction Format Exceptions

Exceptions for the Format Il instruction formats are shown below.

Figure 4-32. PUSHM/POPM Instruction Format

15 8 7 4 3 0

Op-code n-1 Rdst - n+1

Figure 4-33. RRCM, RRAM, RRUM and RLAM Instruction Format

15 12 11 10 9 4 3 0

C n-1 Op-code Rdst

16-Bit MSP430X CPU 4-51

MSP430X Extended Instructions

Figure 4-34. BRA Instruction Format

Figure 4-35. CALLA Instruction Format

4-52

15 12 11 8 7 3 0
Rsrc Op-code 0(PC)
#imm/abs19:16 Op-code 0(PC)
#imm15:0 / &abs15:0
Rsrc Op-code 0(PC)
index15:0
15 3 0
Op-code Rdst
Op-code Rdst
index15:0
Op-code #imm/ix/abs19:16

#imm15:0 / index15:0 / &abs15:0

16-Bit MSP430X CPU

Extended Emulated Instructions

MSP430X Extended Instructions

The extended instructions together with the constant generator form the
extended Emulated instructions. Table 4-15 lists the Emulated instructions.

Table 4-15.Extended Emulated Instructions

Instruction Explanation Emulation

ADCX(. B, . A) dst Add carry to dst ADDCX(. B, . A) #0, dst
BRA dst Branch indirect dst MOVA dst, PC

RETA Return from subroutine MOVA @P+, PC

CLRA Rdst Clear Rdst MOV #0, Rdst
CLRX(.B,.A) dst Clear dst MOVX(. B, . A) #0, dst

DADCX(. B, . A) dst
DECX(. B, . A) dst
DECDA Rdst
DECDX(. B, . A) dst
INCX(.B,.A) dst
| NCDA Rdst

I NCDX(. B, . A) dst
INVX(.B,.A) dst
RLAX(. B, .A) dst
RLCX(.B,.A) dst
SBCX(. B, . A) dst
TSTA Rdst
TSTX(.B,.A) dst
POPX dst

Add carry to dst decimally
Decrement dst by 1
Decrement dst by 2
Decrement dst by 2
Increment dst by 1
Increment Rdst by 2
Increment dst by 2

Invert dst

Shift left dst arithmetically
Shift left dst logically through carry
Subtract carry from dst
Test Rdst (compare with 0)
Test dst (compare with 0)
Pop to dst

DADDX(. B, . A) #0, dst
SUBX(.B,.A) #1,dst
SUBA #2, Rdst
SUBX(.B,.A) #2,dst
ADDX(. B, . A) #1, dst
ADDA #2, Rdst

ADDX(. B, . A) #2, dst
XORX(. B, . A) #-1,dst
ADDX(. B, . A) dst, dst
ADDCX(. B, . A) dst, dst
SUBCX(. B, . A) #0, dst
CWPA #0, Rdst

CWPX(. B, . A) #0, dst
MOVX(. B, .A) @P+, dst

16-Bit MSP430X CPU 4-53

MSP430X Extended Instructions

MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the register mode and the Immediate mode, except for the MOVA instruction
as listed in Table 4-16. Restricting the addressing modes removes the need
for the additional extension-word op-code improving code density and
execution time. Address instructions should be used any time an MSP430X
instruction is needed with the corresponding restricted addressing mode.

Table 4-16.Address Instructions, Operate on 20-bit Registers Data

Status Bits

Mnemonic Operands Operation V N z C

ADDA Rsr c, Rdst Add source to destination * ok x X
#i R0, Rdst register

MOVA Rsrc, Rdst Move source to destination -
#i M0, Rdst
z16(Rsrc), Rdst
EDE, Rdst
&abs?20, Rdst
@Rsr ¢, Rdst
@Rsr c+, Rdst
Rsrc, z16(Rdst)
Rsr c, &bs20

CMVPA Rsrc, Rdst Compare source to destina- * * * %
#i M0, Rdst tion register

SUBA Rsr c, Rdst Subtract source from des- * k%X
#i M2, Rdst tination register

4-54 16-Bit MSP430X CPU

MSP430X Extended Instructions

MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction
depends on the instruction format and the addressing modes used — not the
instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format-Il (Single-Operand) Instruction Cycles and Lengths
Table 4-17 lists the length and the CPU cycles for all addressing modes of the
MSP430X extended single-operand instructions.

Table 4-17.MSP430X Format Il Instruction Cycles and Length

Execution Cycles/Length of Instruction (Words)

Instruction Rn @Rn @Rn+ #N X(Rn) EDE &EDE
RRAM n/1 - - - - - -
RRCM n/1 - - - - - -
RRUM n/1 - - - - - -
RLAM n/1 - - - - - -
PUSHM 2+n/1 - - - - - -
PUSHM.A 2+2n/1 - - - - - -
POPM 2+n/1 - - - - - -
POPM.A 2+2n/1 - - - - - -
CALLA Yi 5/1 5/1 a2 6112 6/2 6/2
RRAX(.B) 1+n/2 412 a2 - 5/3 5/3 5/3
RRAX.A 1+n/2 6/2 6/2 - 713 713 713
RRCX(.B) 1+n/2 412 a2 - 5/3 5/3 5/3
RRCX.A 1+n/2 6/2 6/2 - 713 713 713
PUSHX(.B) a2 a2 a2 4/3 51/3 5/3 5/3
PUSHX.A 5/2 6/2 6/2 6/3 7113 713 713
POPX(.B) 312 - - - 5/3 5/3 5/3
POPX.A a2 - - - 713 713 713

T Add one cycle when Rn = SP.

MSP430X Format-l (Double-Operand) Instruction Cycles and Lengths

Table 4-18 lists the length and CPU cycles for all addressing modes of the
MSP430X extended format-I instructions.

16-Bit MSP430X CPU 4-55

MSP430X Extended Instructions

Table 4-18.MSP430X Format-I Instruction Cycles and Length

No. of Length of
Addressing Mode Cycles Instruction
Source Destination .B/W A .B/L.W/.A Examples
RN Rmt 2 2 2 BITX.B R5,R8
PC 3 3 2 ADDX R9,PC
X(Rm) 5+ 78 3 ANDX.A R5,4(R6)
EDE 5+ 78 3 XORX R8,EDE
&EDE 5+ 78 3 BITX.W R5,&EDE
@Rn Rm 3 4 2 BITX @R5,R8
PC 3 4 2 ADDX @R9,PC
X(Rm) 6+ 98 3 ANDX.A @R5,4(R6)
EDE 6+ 98 3 XORX @R8,EDE
&EDE 6+ 98 3 BITX.B @R5,&EDE
@Rn+ Rm 3 2 BITX @R5+,R8
PC 4 5 2 ADDX.A @R9+,PC
X(Rm) 6+ 98 3 ANDX @R5+,4(R6)
EDE 6t 98 3 XORX.B @R8+,EDE
&EDE 6+ 98 3 BITX @R5+,&EDE
#N Rm 3 3 3 BITX #20,R8
pct 4 4 3 ADDX.A #FE000h,PC
X(Rm) 6+ 88 4 ANDX #1234,4(R6)
EDE 6t 88 4 XORX #A5A5h,EDE
&EDE 6+ 88 4 BITX.B #12,&EDE
X(Rn) Rm 4 5 3 BITX 2(R5),R8
pcCT 5 6 3 SUBX.A 2(R6),PC
X(Rm) 7% 108 4 ANDX 4(R7),4(R6)
EDE 7% 108 4 XORX.B 2(R6),EDE
&EDE 7+ 108 4 BITX 8(SP),&EDE
EDE Rm 4 5 3 BITX.B EDE,R8
PCT 5 6 3 ADDX.A EDE,PC
X(Rm) 7+ 108 4 ANDX EDE,4(R6)
EDE 7+ 108 4 ANDX EDE,TONI
&TONI 7+ 108 4 BITX EDE,&TONI
&EDE Rm 4 5 3 BITX &EDE,R8
pct 5 6 3 ADDX.A &EDE,PC
X(Rm) 7+ 108 4 ANDX.B &EDE,4(R6)
TONI 7+ 108 4 XORX &EDE,TONI
&TONI 7+ 108 4 BITX &EDE,&TONI
T Repeat instructions require n+1 cycles where n is the number of times the instruction is

executed.
* Reduce the cycle count by one for MOV, BIT, and CMP instructions.
§ Reduce the cycle count by two for MOV, BIT, and CMP instructions.
' Reduce the cycle count by one for MOV, ADD, and SUB instructions.

4-56 16-Bit MSP430X CPU

MSP430X Address Instruction Cycles and Lengths

MSP430X Extended Instructions

Table 4-19 lists the length and the CPU cycles for all addressing modes of the

MSP430X address instructions.

Table 4-19.Address Instruction Cycles and Length

Execution Length of
Time MCLK Instruction
Addressing Mode (Words)
CMPA CMPA
MOVA ADDA ADDA
Source Destination BRA SUBA MOVA SUBA Example
Rn Rn 1 1 1 1 CMPA R5,R8
PC 2 2 1 1 SUBA R9,PC
x(Rm) 4 - 2 - MOVA R5,4(R6)
EDE 4 - 2 - MOVA R8,EDE
&EDE 4 - 2 - MOVA R5,&EDE
@Rn Rm 3 - 1 - MOVA @R5,R8
PC 3 - 1 - MOVA @R9,PC
@Rn+ Rm 3 - 1 - MOVA @R5+,R8
PC 3 - 1 - MOVA @R9+,PC
#N Rm 2 3 2 2 CMPA #20,R8
PC 3 3 2 2 SUBA #FE000h,PC
x(Rn) Rm 4 - 2 - MOVA 2(R5),R8
PC 4 - 2 - MOVA 2(R6),PC
EDE Rm 4 - 2 - MOVA EDE,R8
PC 4 - 2 - MOVA EDE,PC
&EDE Rm 4 - 2 - MOVA &EDE,R8
PC 4 - 2 - MOVA &EDE,PC

16-Bit MSP430X CPU 4-57

Instruction Set Description

4.6 Instruction Set Description
The instruction map of the MSP430X shows all available instructions:
000 040 080 O0OCO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO
OXXX MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM
10xx | rrc |rrc.B|swrs| | RrA [rRrRAB] sxT | [Push|pusH.H caLL| | ReTi [caLia] [
14xx PUSHM.A, POPM.A, PUSHM.W, POPM.W
18xx Extension Word For Format | and Format Il Instructions
1Cxx
20xx JNE/INZ
24XX JEQ/JZ
28xx JNC
2Cxx JC
30xx JN
34xx JGE
38xx JL
3Cxx JMP
AXXX MOV, MOV.B
5XXX ADD, ADD.B
BXXX ADDC, ADDC.B
TXXX SUBC, SUBC.B
8Xxx SUB, SUB.B
9XXX CMP, CMP.B
AXXX DADD, DADD.B
Bxxx BIT, BIT.B
Cxxx BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B
4-58 16-Bit MSP430X CPU

Instruction Set Description

4.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown below.

Instruction src or Instruction
Group data.19:16 Identifier dst
Instruction 15 12 11 8 7 4 3 0
MOVA 0(0|0|O src 0|0j|0]|O0 dst MOVA @Rsrc,Rdst
0(0|0|O src 0|0j0]|1 dst MOVA @Rsrc+,Rdst
0|0|0|0| &abs.19:16 |0 |0 |1 |0 dst MOVA &abs20,Rdst
&abs.15:0
0 ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 0 ‘ 1 ‘ 1 ‘ dst MOVA x(Rsrc),Rdst
x.15:0 +15-bit index x
0 ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 1 ‘ 1 ‘ 0 ‘ &abs.19:16 | MOVA Rsrc,&abs20
&abs.15:0
0 ‘ 0 ‘ 0 ‘ 0 ‘ src ‘ 0 ‘ 1 ‘ 1 ‘ 1 ‘ dst MOVA Rsrc,X(Rdst)
x.15:0 +15-bit index x
0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 0 ‘ 0 ‘ dst MOVA #imm20,Rdst
imm.15:0
CMPA 0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘ dst CMPA #imm20,Rdst
imm.15:0
ADDA 0 ‘ 0 ‘ 0 ‘ 0 ‘ imm.19:16 ‘ 1 ‘ 0 ‘ 1 ‘ 0 ‘ dst ADDA #imm20,Rdst
imm.15:0
SUBA 0 ‘ 0 ‘ 0 ‘ 0 ’ imm.19:16 ‘ 1 ‘ 0 ‘ 1 ‘ 1 ‘ dst SUBA #imm20,Rdst
imm.15:0
MOVA 0(0|0|O src 1{1(0]|0 dst MOVA Rsrc,Rdst
CMPA 0[0(0]|O src 111|001 dst CMPA Rsrc,Rdst
ADDA 0(0|0|O src 1|1(1]|0 dst ADDA Rsrc,Rdst
SUBA 0(0|0|O src 1(1(1|1 dst SUBA Rsrc,Rdst
Instruction Bit Inst. | Instruction
Group loc. ID Identifier dst
Instruction 15 12 11 10 9 8 7 4 3 0
RRCM.A 0|0|0|0|nn-1 |0|0|0|1|0]|O dst RRCM.A #n,Rdst
RRAM.A 0(0|0O|O| N1 |O0Of2|0|1(0]|O0 dst RRAM.A #n,Rdst
RLAM.A 0|0|0|O0O|nNn-1|1|0f|0|2|0|O0 dst RLAM.A #n,Rdst
RRUM.A 0|0|0|O0O|nNn-1|1|1({0|2|0|O0 dst RRUM.A #n,Rdst
RRCM.W 0(0|0|O0O| N1 |O0OfO|O|1(0|12 dst RRCM.W #n,Rdst
RRAM.W 0/0|0|O0|nNn-1 |0|1|0|21|0|1 dst RRAM.W #n,Rdst
RLAM.W 0(0|0|O0O| N1 |1(0|0|1(0|12 dst RLAM.W #n,Rdst
RRUM.W 0(0|0|{O0O| -1 |1f(2|0|1(0|12 dst RRUM.W #n,Rdst

16-Bit MSP430X CPU 4-59

Instruction Set Description

4-60

Instruction Identifier ‘ ‘ dst
Instruction 15 12 11 8 7 6 5 4 3 0
RETI o|0|0O|1|0fO0f1(1|0(0|0O|0O]|O ‘ 0 ‘ 0 ‘ 0
CALLA o|0o|jof1(0|0|1|1|0|1|0]|O dst CALLA Rdst
0|0|0|1|0f0f1|1(0|1|0]|1 dst CALLA x(Rdst)
x.15:0
o|ojof1(0(0|1|1f(0j1|1]|0 dst CALLA @Rdst
0|0|0|1|0f0f21|1(0|1|1]|1 dst CALLA @Rdst+
0[{0|0|1(0|0|21|1|1|0|0|0| &abs.19:16 |CALLA &abs20
&abs.15:0
0‘0‘0‘1 0 0‘1‘1‘1‘0‘0‘1‘ x.19:16 CALLA EDE
x.15:0 CALLA x(PC)
0‘0‘0‘1 0 0‘1‘1‘1‘0‘1‘1‘imm.19:16 CALLA #imm20
imm.15:0
Reserved 0(0f0O|2|0(O0Of2|2|2|0|2|0|x|x]|Xx]|X
Reserved 000|200 |1 |1 |2 |1 |x|X|X]|X]|[Xx]X
PUSHM.A o|j0|j0f1(0|1|0]|O0 n-1 dst PUSHM.A #n,Rdst
PUSHM.W o|j0|j0O|l1(0|1]|0|1 n-1 dst PUSHM.W #n,Rdst
POPM.A ojo|jof1j0|1|12|0 n-1 dst-n+1 POPM.A #n,Rdst
POPM.W 0O(0j0[2|0|2|1 |12 n-1 dst-n+1 POPM.W #n,Rdst

16-Bit MSP430X CPU

MSP430 Instructions

46.2 MSP430 Instructions

The MSP430 instructions are listed and described on the following pages.

16-Bit MSP430X CPU 4-61

MSP430 Instructions

* ADC[.W]
* ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.

ADD @R13,0(R12) ; Add LSDs

ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

4-62 16-Bit MSP430X CPU

ADDI[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Add source word to destination word
Add source byte to destination byte

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst — dst

The source operand is added to the destination operand. The previous content
of the destination is lost.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

<oNz

OSCOFF, CPUOFF, and GIE are not affected.

Ten is added to the 16-bit counter CNTR located in lower 64 K.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump
to label TONI is performed on a carry.

ADD.W @R5,R6 ; Add table word to R6. R6.19:16 =0
JC TONI ; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed if no carry occurs. The table pointer is auto-incremented by
1.R6.19:8=0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh
JNC TONI ; Jump if no carry
; Carry occurred

16-Bit MSP430X CPU 4-63

MSP430 Instructions

ADDC[.W]
ADDC.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Add source word and carry to destination word
Add source byte and carry to destination byte

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C — dst

The source operand and the carry bit C are added to the destination operand.
The previous content of the destination is lost.

Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Set if result is zero, reset otherwise

Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Constant value 15 and the carry of the previous instruction are added to the
16-bit counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

A table word pointed to by R5 (20-bit address) and the carry C are added to R6.
The jump to label TONI is performed on a carry. R6.19:16 = 0

ADDC.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1. R6.19:8 =0

ADDC.B @R5+,R6 ; Add table byte + Cto R6. R5 + 1
JNC TONI ; Jump if no carry
; Carry occurred

4-64 16-Bit MSP430X CPU

ANDI[.W]
AND.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Logical AND of source word with destination word
Logical AND of source byte with destination byte

AND src,dst or AND.W src,dst
AND.B src,dst

src .and. dst — dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM
located in the lower 64 K. If the result is zero, a branch is taken to label TONI.
R5.19:16 =0

MOV #AA55h,R5 ; Load 16-bit mask to R5
AND R5,&TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result O

; Result >0
or shorter:
AND #AA55h,&TOM ; TOM .and. AA55h -> TOM
JZ TONI ; Jump if result O

A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 =0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

16-Bit MSP430X CPU 4-65

MSP430 Instructions

BIC[.W]
BIC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Clear bits set in source word in destination word
Clear bits set in source byte in destination byte

BIC src,dst or BIC.W src,dst
BIC.B src,dst

(.not. src) .and. dst — dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 =0

BIC #0C000h,R5 ; Clear R5.19:14 bits

A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16 =0

BIC.W @R5,R7 ; Clear bits in R7 setin @R5

A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P10UT ; Clear 1/0O port P1 bits set in @R5

4-66 16-Bit MSP430X CPU

BIS[.W]
BIS.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Set bits set in source word in destination word
Set bits set in source byte in destination byte

BIS src,dst or BIS.W src,dst
BIS.B src,dst

src .or. dst — dst

The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

A table word pointed to by R5 (20-bit address) is used to set bits in R7.
R7.19:16 =0

BISW @R5,R7 ; Set bits in R7

A table byte pointed to by R5 (20-bit address) is used to set bits in Portl. R5 is
incremented by 1 afterwards.

BIS.B @R5+,&P10OUT ; Set I/O port P1 bits. R5 + 1

16-Bit MSP430X CPU 4-67

MSP430 Instructions

BIT[.W]
BIT.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Test bits set in source word in destination word
Test bits set in source byte in destination byte

BIT src,dst or BIT.W src,dst
BIT.B src,dst
src .and. dst

The source operand and the destination operand are logically ANDed. The
result affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.\W) resp. Rdst. 19:8 (.B) are not
cleared!

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

Test if one - or both - of bits 15 and 14 of R5 (16-bit data) is set. Jump to label
TONI if this is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits
JNZ TONI ; At least one bit is set in R5
; Both bits are reset

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to
label TONI if at least one bit is set. R7.19:16 are not affected.

BITW @R5,R7 ; Test bits in R7
JC TONI ; At least one bit is set
; Both are reset

A table byte pointed to by R5 (20-bit address) is used to test bits in output
Portl. Jump to label TONI if no bit is set. The next table byte is addressed.

BITB @R5+,&P10OUT ; Test /O port P1 bits. R5 + 1
JNC TONI ; No corresponding bit is set
; At least one bit is set

4-68 16-Bit MSP430X CPU

* BR, BRANCH
Syntax
Operation
Emulation

Description

Status Bits

Example

MSP430 Instructions

Branch to destination in lower 64K address space
BR dst

dst -> PC

MOV dst,PC

An unconditional branch is taken to an address anywhere in the lower 64K
address space. All source addressing modes can be used. The branch
instruction is a word instruction.

Status bits are not affected.
Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5
BR @R5 : Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; hext address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

16-Bit MSP430X CPU 4-69

MSP430 Instructions

CALL
Syntax

Operation

Description

Status Bits

Mode Bits

Examples

Call a Subroutine in lower 64 K

CALL dst

dst — tmp 16-bit dst is evaluated and stored
SP-2->5SP

PC - @SP updated PC with return address to TOS
tmp— PC saved 16-bit dst to PC

A subroutine call is made from an address in the lower 64 K to a subroutine
address in the lower 64 K. All seven source addressing modes can be used.
The call instruction is a word instruction. The return is made with the RET
instruction.

Not affected
PC.19:16: Cleared (address in lower 64 K)

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly
to address.

CALL #EXEC ; Start address EXEC
CALL #0AAO04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address
EXEC. EXEC is located at the address (PC + X) where X is within PC+32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute
address EXEC in the lower 64 K.

CALL &EXEC ; Start address at @EXEC

Register Mode: Call a subroutine at the 16-bit address contained in register
R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word
pointed to by register R5 (20-bit address).

CALL @R5 ; Start address at @R5

4-70 16-Bit MSP430X CPU

MSP430 Instructions

* CLR[.W] Clear destination
*CLR.B Clear destination
Syntax CLR dst or CLR.W dst
CLR.B dst
Operation 0 —>dst
Emulation MOV #0,dst
MOV.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.
CLR TONI ;0 —> TONI
Example Register R5 is cleared.
CLR R5
Example RAM byte TONI is cleared.
CLR.B TONI ;0 —>TONI

16-Bit MSP430X CPU 4-71

MSP430 Instructions

* CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Clear carry bit

CLRC

0->C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

4-72 16-Bit MSP430X CPU

* CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

MSP430 Instructions

Clear negative bit
CLRN

0—->N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto O

Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

16-Bit MSP430X CPU 4-73

MSP430 Instructions

*CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Clear zero bit
CLRZ

0-Z
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto 0
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.
CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address
contained in the word pointed to by register R5 (20-bit address) and increment
the 16-bit address in R5 afterwards by 2. The next time the software uses R5
as a pointer, it can alter the program execution due to access to the next word
address in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit
address pointed to by register (R5 + X), e.g. a table with addresses starting at
X. The address is within the lower 64 KB. X is within +£32 KB.

CALL X(R5) ; Start address at @(R5+X). z16(R5)

4-74 16-Bit MSP430X CPU

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Compare source word and destination word
Compare source byte and destination byte

CMP src,dst or CMP.W src,dst
CMP.B src,dst

(.not.src) + 1 +dst or dst - src

The source operand is subtracted from the destination operand. This is made
by adding the 1's complement of the source + 1 to the destination. The result
affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not
cleared.

N Set if result is negative (src > dst), reset if positive (src = dst)

z Set if result is zero (src = dst), reset otherwise (src # dst)

C: Set if there is a carry from the MSB, reset otherwise

Vi Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if
EDE equals the constant. The address of EDE is within PC +32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h
JEQ TONI ; EDE contains 1800h
; Not equal

A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if
R7 contains a lower, signed 16-bit number. R7.19:16 is not cleared. The
address of the source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers
JL TONI ; R7 < 10(R5)
; R7 >= 10(R5)

A table byte pointed to by R5 (20-bit address) is compared to the value in
output Portl. Jump to label TONI if values are equal. The next table byte is
addressed.

CMP.B @R5+,&P10UT ; Compare P1 bits with table. R5 + 1
JEQ TONI ; Equal contents
; Not equal

16-Bit MSP430X CPU 4-75

MSP430 Instructions

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: SetifMSBis 1

Z. Setif dstis 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

4-76 16-Bit MSP430X CPU

DADD[.W]
DADD.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Add source word and carry decimally to destination word
Add source byte and carry decimally to destination byte

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C — dst (decimally)

The source operand and the destination operand are treated as two (.B) or four
(.W) binary coded decimals (BCD) with positive signs. The source operand
and the carry bit C are added decimally to the destination operand. The source
operand is not affected. The previous content of the destination is lost. The
result is not defined for non-BCD numbers.

N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset
otherwise

V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.

Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

The eight-digit BCD number contained in 16-bit RAM addresses BCD and
BCD+2 is added decimally to an eight-digit BCD number contained in R4 and
R5 (BCD+2 and R5 contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry
DADD.W &BCD,R4 ; Add LSDs. R4.19:16 =0
DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0
JC OVERFLOW ; Res_ult >0999,9999: go to error
routine
; Result ok

The two-digit BCD number contained in word BCD (16-bit address) is added
decimally to a two-digit BCD number contained in R4. The carry C is added,
also. R4.19:8=0

CLRC ; Clear carry
DADD.B &BCD,R4 ; Add BCD to R4 decimally.
R4: 0,00ddh

16-Bit MSP430X CPU 4-77

MSP430 Instructions

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Decrement destination
Decrement destination

DEC dst or DECW dst
DEC.B dst
dst - 1 —> dst

SUB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwise

C: Reset if dst contained 0, set otherwise

V. Set if an arithmetic overflow occurs, otherwise reset.
Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

: to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255,R10

MOV.B @R6+, TONI-EDE-1(R6)
DEC R10

JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 4-36.

Figure 4-36. Decrement Overlap

EDE
4+—r
TONI
EDE+254
TONI+254

4-78 16-Bit MSP430X CPU

* DECD[.W]
* DECD.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

MSP430 Instructions

Double-decrement destination
Double-decrement destination

DECD dst or DECD.W dst
DECD.B dst

dst - 2 —> dst

SuB #2,dst
SUB.B #2,dst

The destination operand is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z. Set if dst contained 2, reset otherwise

C: Reset if dst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.
Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location

; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+OFEh

Example

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+ TONI-EDE-2(R6)
DECD R10
INZ L$1

Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)
Decrement status byte STATUS by two.

DECD.B STATUS

16-Bit MSP430X CPU 4-79

MSP430 Instructions

* DINT Disable (general) interrupts
Syntax DINT
Operation 0 - GIE

or

(OFFF7h .AND. SR - SR / .NOT.src .AND. dst —> dst)
Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status Bits Status bits are not affected.
Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.
Example The general interrupt enable (GIE) bit in the status register is cleared to allow

a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

4-80 16-Bit MSP430X CPU

*EINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

MSP430 Instructions

Enable (general) interrupts
EINT

1 - GIE
or
(0008h .OR. SR -> SR / .src .OR. dst —> dst)

BIS #8,SR

All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status bits are not affected.
GIE is set. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.

MaskOK

PUSH.B &P1IN

BIC.B @SP,&P1IFG ; Reset only accepted flags

EINT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask,@SP

JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

16-Bit MSP430X CPU 4-81

MSP430 Instructions

* INC[.W] Increment destination
*INC.B Increment destination
Syntax INC dst or INC.W dst
INC.B dst
Operation dst +1 —> dst
Emulation ADD #1,dst
Description The destination operand is incremented by one. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V. Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMPB #11,STATUS
JEQ OVFL

4-82 16-Bit MSP430X CPU

* INCD[.W]
* INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Double-increment destination
Double-increment destination

INCD dst or INCD.W dst
INCD.B dst
dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Setif dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

16-Bit MSP430X CPU 4-83

MSP430 Instructions

* INV[.W] Invert destination
* INV.B Invert destination
Syntax INV dst
INV.B dst
Operation .NOT.dst —> dst
Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst
Description The destination operand is inverted. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = OFF51h
INC R5 ; R5is now negated, = R5 = 0FF52h
Example Content of memory byte LEO is negated.
MOV.B #0AEh,LEO ; MEM(LEO) = OAEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

4-84 16-Bit MSP430X CPU

JC
JHS

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

MSP430 Instructions

Jump if carry
Jump if Higher or Same (unsigned)

JC label
JHS label

fC=1: PC + (2 x Offset) — PC
IfC=0: execute the following instruction

The carry bit C in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is reset, the
instruction after the jump is executed.

JC is used for the test of the carry bit C

JHS is used for the comparison of unsigned numbers
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit-> C
JC Labell ; Yes, proceed at Labell
; No, continue

If R5 > R6 (unsigned) the program continues at Label2

CMP RG6,R5 :Is R5 > R67? Info to C
JHS Label2 :Yes,C=1
: No, R5 < R6. Continue

If R5 > 12345h (unsigned operands) the program continues at Label2
CMPA #12345h,R5 ; Is R5>12345h7? Info to C

JHS Label2 :Yes, 12344h < R5 <= FFFFFh.C =1
: No, R5 < 12345h. Continue

16-Bit MSP430X CPU 4-85

MSP430 Instructions

JEQ,JZ

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if equal,Jump if zero
Jz label
JEQ label

Ifz=1: PC + (2 x Offset) —» PC
IfZ=0: execute following instruction

The Zero bit Z in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is reset, the
instruction after the jump is executed.

JZ is used for the test of the Zero bit Z

JEQ is used for the comparison of operands
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The state of the P2IN.O bit defines the program flow

BIT.B #1,&P2IN : Port 2, bit O reset?
Jz Labell ; Yes, proceed at Labell
: No, set, continue

If RS = 15000h (20-bit data) the program continues at Label2

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR
JEQ Label2 : Yes, R5 =15000h.Z2=1
: No, R5 # 15000h. Continue

R7 (20-bit counter) is incremented. If its content is zero, the program continues
at Label4.

ADDA #1,R7 ; Increment R7
JZ Label4 ; Zero reached: Go to Label4
; R7 # 0. Continue here.

4-86 16-Bit MSP430X CPU

JGE
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

MSP430 Instructions

Jump if Greater or Equal (signed)
JGE label

If (N .xor. V) =0: PC + (2 x Offset) » PC
If (N .xor. V) =1: execute following instruction

The negative bit N and the overflow bit V in the status register are tested. If both
bits are set or both are reset, the signed 10-bit word offset contained in the
instruction is multiplied by two, sign extended, and added to the 20-bit program
counter PC. This means a jump in the range -511 to +512 words relative to the
PC in full Memory range. If only one bit is set, the instruction after the jump is
executed.

JGE is used for the comparison of signed operands: also for incorrect results
due to overflow, the decision made by the JGE instruction is correct.

Note: JGE emulates the non-implemented JP (jump if positive) instruction if
used after the instructions AND, BIT, RRA, SXTX and TST. These instructions
clear the V-bit.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

If byte EDE (lower 64 K) contains positive data, go to Labell. Software can run
in the full memory range.

TST.B &EDE ; Is EDE positive? V <- 0
JGE Labell ; Yes, JGE emulates JP
: No, 80h <= EDE <= FFh
If the content of R6 is greater than or equal to the memory pointed to by R7, the

program continues a Label5. Signed data. Data and program in full memory
range.

CMP @R7,R6 ;IsR6 > @R7?
JGE Label5 ; Yes, go to Label5
: No, continue here.

If R5 > 12345h (signed operands) the program continues at Label2. Program
in full memory range.

CMPA #12345h,R5 ;Is R5 > 12345h?

JGE Label2 : Yes, 12344h < R5 <= 7FFFFh.
; No, 80000h <= R5 < 12345h.

16-Bit MSP430X CPU 4-87

MSP430 Instructions

JL
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if Less (signed)
JL label

If (N .xor.V)=1: PC + (2 x Offset) » PC
If (N .xor. V) =0: execute following instruction

The negative bit N and the overflow bit V in the status register are tested. If only
one is set, the signed 10-bit word offset contained in the instruction is multiplied
by two, sign extended, and added to the 20-bit program counter PC. This
means a jump in the range -511 to +512 words relative to the PC in full memory
range. If both bits N and V are set or both are reset, the instruction after the
jump is executed.

JL is used for the comparison of signed operands: also for incorrect results due
to overflow, the decision made by the JL instruction is correct.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

If byte EDE contains a smaller, signed operand than byte TONI, continue at
Labell. The address EDE is within PC + 32 K.

CMP.B &TONILEDE ;Is EDE < TONI
JL Labell ; Yes
; No, TONI <= EDE
If the signed content of R6 is less than the memory pointed to by R7 (20-bit

address) the program continues at Label Label5. Data and program in full
memory range.

CMP @R7,R6 s R6 < @R7?
JL Label5 ; Yes, go to Label5

: No, continue here.

If R5 < 12345h (signed operands) the program continues at Label2. Data and
program in full memory range.

CMPA #12345h,R5 1 I1s R5 < 12345h?
JL Label2 : Yes, 80000h =< R5 < 12345h.
: No, 12344h < R5 =< 7FFFFh.

4-88 16-Bit MSP430X CPU

JMP
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

MSP430 Instructions

Jump unconditionally
JMP label

PC + (2 x Offset) —» PC

The signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit program counter PC. This means an
unconditional jump in the range -511 to +512 words relative to the PC in the full
memory. The JMP instruction may be used as a BR or BRA instruction within its
limited range relative to the program counter.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data
in lower 64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10
JMP MAINLOOP ; Go to main loop
The interrupt vector TAIV of Timer_A3 is read and used for the program flow.

Program in full memory range, but interrupt handlers always starts in lower
64K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC
RETI ; No Timer_A interrupt pending

JMP IHCCR1 ; Timer block 1 caused interrupt
JMP IHCCR2 ; Timer block 2 caused interrupt
RETI ; No legal interrupt, return

16-Bit MSP430X CPU 4-89

MSP430 Instructions

JN
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if Negative
JN label

IfN=1: PC + (2 x Offset) - PC
If N=0: execute following instruction

The negative bit N in the status register is tested. If it is set, the signed 10-bit
word offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If N is reset, the
instruction after the jump is executed.

Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected

The byte COUNT is tested. If it is negative, program execution continues at
LabelO. Data in lower 64 K, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?
JN LabelO ; Yes, proceed at LabelO
; COUNT 20

R6 is subtracted from R5. If the result is negative, program continues at
Label2. Program in full memory range.

SUB R6,R5 i R5-R6 ->R5
JN Label2 ; R5 is negative: R6 > R5 (N = 1)
; R5 > 0. Continue here.

R7 (20-bit counter) is decremented. If its content is below zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
JN Label4 : R7 < 0: Go to Label4
; R7 > 0. Continue here.

4-90 16-Bit MSP430X CPU

JNC
JLO
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

MSP430 Instructions

Jump if No carry
Jump if lower (unsigned)

JNC label
JLO label

IfC=0: PC + (2 x Offset) - PC
IfC=1: execute following instruction

The carry bit C in the status register is tested. If it is reset, the signed 10-bit
word offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-hit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is set, the
instruction after the jump is executed.

JNC is used for the test of the carry bit C

JLO is used for the comparison of unsigned numbers .
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

If byte EDE < 15 the program continues at Label2. Unsigned data. Data in
lower 64 K, program in full memory range.

CMP.B #15,&EDE ;1s EDE < 15? Info to C
JLO Label2 :Yes, EDE<15.C=0
: No, EDE > 15. Continue

The word TONI is added to R5. If no carry occurs, continue at Label0. The
address of TONI is within PC £ 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C
JNC LabelO ; No carry
; Carry = 1: continue here

16-Bit MSP430X CPU 4-91

MSP430 Instructions

JNZ
JNE
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Example

Jump if Not Zero
Jump if Not Equal

INZ label
JNE label

Ifz=0: PC + (2 x Offset) —» PC
If z=1: execute following instruction

The zero bit Z in the status register is tested. If it is reset, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-hit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is set, the
instruction after the jump is executed.

JNZ is used for the test of the Zero bit Z

JNE is used for the comparison of operands
Status bits are not affected

OSCOFF, CPUOFF, and GIE are not affected

The byte STATUS is tested. If it is not zero, the program continues at Label3.
The address of STATUS is within PC £ 32 K.

TST.B STATUS : Is STATUS = 0?
JNZ Label3 ; No, proceed at Label3
; Yes, continue here

If word EDE # 1500 the program continues at Label2. Data in lower 64 K,
program in full memory range.

CMP #1500,&EDE : Is EDE = 15007 Info to SR
JNE Label2 : No, EDE # 1500.
: Yes, R5 = 1500. Continue

R7 (20-bit counter) is decremented. If its content is not zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7
INZ Label4 ; Zero not reached: Go to Label4
: Yes, R7 = 0. Continue here.

4-92 16-Bit MSP430X CPU

MOV[.W]
MOV.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Loop

Example

Loop

MSP430 Instructions

Move source word to destination word
Move source byte to destination byte

MOV src,dst or MOV.W src,dst
MOV.B src,dst

src — dst

The source operand is copied to the destination. The source operand is not
affected.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K).

MOV #01800h,&EDE ; Move 1800h to EDE

The contents of table EDE (word data, 16-bit addresses) are copied to table
TOM. The length of the tables is 030h words. Both tables reside in the lower
64K.

MOV #EDE,R10 ; Prepare pointer (16-bit address)

MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
R10+2

CMP #EDE+60h,R10 ; End of table reached?

JLO Loop ; Not yet

; Copy completed

The contents of table EDE (byte data, 16-bit addresses) are copied to table
TOM. The length of the tables is 020h bytes. Both tables may reside in full
memory range, but must be within R10 +32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)

MOV #20h,R9 ; Prepare counter

MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter

INZ Loop ; Not yet done

; Copy completed

16-Bit MSP430X CPU 4-93

MSP430 Instructions

* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of

instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

4-94 16-Bit MSP430X CPU

* POP[.W]
* POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

MSP430 Instructions

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP ->temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.
The contents of R7 is restored from the stack.

POPB R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 =20Ah
; Mem(R7) = low byte of system stack
POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

16-Bit MSP430X CPU 4-95

MSP430 Instructions

PUSH[.W]
PUSH.B
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Save a word on the stack
Save a byte on the stack

PUSH dst or PUSH.W dst
PUSH.B dst

SP-2 - SP
dst - @SP

The 20-bit stack pointer SP is decremented by two. The operand is then copied
to the RAM word addressed by the SP. A pushed byte is stored in the low byte,
the high byte is not affected.

Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the two 16-bit registers R9 and R10 on the stack.

PUSH R9 ; Save R9 and R10 XXXXh
PUSH R10 :YYYYh

Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI
are within PC + 32 K.

PUSH.B EDE : Save EDE xxXXh
PUSH.B TONI ; Save TONI xXYYh

4-96 16-Bit MSP430X CPU

RET
Syntax

Operation

Description

Status Bits

Mode Bits

Example

SUBR

MSP430 Instructions

Return from subroutine
RET

@SP — PC.15:0 Saved PCtoPC.15:0. PC.19:16 « 0
SP+2 — SP

The 16-bit return address (lower 64 K), pushed onto the stack by a CALL
instruction is restored to the PC. The program continues at the address
following the subroutine call. The four MSBs of the program counter PC.19:16
are cleared.

Not affected
PC.19:16: Cleared

OSCOFF, CPUOFF, and GIE are not affected.

Call a subroutine SUBR in the lower 64 K and return to the address in the lower
64K after the CALL

CALL #SUBR ; Call subroutine starting at SUBR
; Return by RET to here

PUSH R14 ; Save R14 (16 bit data)
; Subroutine code

POP R14 ; Restore R14

RET ; Return to lower 64 K

Figure 4-37. The Stack After a RET Instruction

Itemn SP— Itemn
SP—» IDCReturn

Stack before RET Stack after RET
instruction instruction

16-Bit MSP430X CPU 4-97

MSP430 Instructions

RETI
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Return from interrupt
RETI

@SP — SR.15.0 Restore saved status register SR with PC.19:16
SP+2 —» SP

@SP — PC.15.0 Restore saved program counter PC.15:0

SP +2 — SP House keeping

The status register is restored to the value at the beginning of the interrupt
service routine. This includes the four MSBs of the program counter PC.19:16.
The stack pointer is incremented by two afterwards.

The 20-bit PC is restored from PC.19:16 (from same stack location as the
status bits) and PC.15:0. The 20-bit program counter is restored to the value
at the beginning of the interrupt service routine. The program continues at the
address following the last executed instruction when the interrupt was granted.
The stack pointer is incremented by two afterwards.

N: restored from stack
Z: restored from stack
C: restored from stack
V. restored from stack

OSCOFF, CPUOFF, and GIE are restored from stack

Interrupt handler in the lower 64 K. A 20-bit return address is stored on the
stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)

; Interrupt handler code
POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)
RETI ; Return to 20-bit address in full memory range

4-98 16-Bit MSP430X CPU

MSP430 Instructions

* RLA[.W] Rotate left arithmetically

*RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C<-MSB <-MSB-1.... LSB+1<-LSB<-0

Emulation ADD dst,dst

ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-38.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst > 04000h and dst < 0C0O00h before operation is
performed: the result has changed sign.

Figure 4-38. Destination Operand—Arithmetic Shift Left

Word 15 0
__________________ e o
Byte 7 0

An overflow occurs if dst > 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Status Bits Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

<oNzZ

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R7 is multiplied by 2.

RLA R7 . Shift left R7 (x 2)
Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

'Note: RLA Substitution
The assembler does not recognize the instruction:
RLA @R5+, RLA.B @R5+, or RLA(.B) @R5
It must be substituted by:
ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) or ADD(.B) @R5

16-Bit MSP430X CPU 4-99

MSP430 Instructions

* RLC[.W] Rotate left through carry

*RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C<-MSB<-MSB-1... LSB+1<-LSB<-C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 4-39.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4-39. Destination Operand—Carry Left Shift

Word 15 0
——————————————————
Byte 7 0

Status Bits Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < OCOh; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted left one position.
RLC R5 ;(R5x2)+C->R5
Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information —> Carry
RLC R5 ; Carry=P0in.1 —> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C —> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5
It must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) or ADDC(.B) @R5

4-100 16-Bit MSP430X CPU

RRA[W]
RRA.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Rotate Right Arithmetically destination word
Rotate Right Arithmetically destination byte

RRA.B dst or RRA.W dst

MSB - MSB - MSB-1. —...LSB+1— LSB —>C

The destination operand is shifted right arithmetically by one bit position as
shown in Figure 4-40. The MSB retains its value (sign). RRA operates equal to
a signed division by 2. The MSB is retained and shifted into the MSB-1. The
LSB+1 is shifted into the LSB. The previous LSB is shifted into the carry bit C.

N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5

The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B EDE ; EDE/2 -> EDE

Figure 4-40. Rotate Right Arithmetically RRA.B and RRA.W

19 15 7 0

OOOOOOOOOOOOrMSB—'LSBW

 E—

19 15 0

0 0O 0 Oy MSB LSB
W

v

16-Bit MSP430X CPU 4-101

MSP430 Instructions

RRC[.W] Rotate Right through carry destination word
RRC.B Rotate Right through carry destination byte
Syntax RRC dst or RRC.Wdst
RRC.B dst
Operation C >MSB - MSB-1 - ...LSB+1 - LSB - C
Description The destination operand is shifted right by one bit position as shown in

Figure 4-41. The carry bit C is shifted into the MSB and the LSB is shifted into
the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC EDE : EDE = EDE » 1 + 8000h

Figure 4-41. Rotate Right through Carry RRC.B and RRC.W

19 15 7 0
0 0 0 0J0O 0O OO O OO OfMSB|—*]|LsB
‘ —‘
19 15 0

v

OOOOMSB LSB
‘ —‘

4-102 16-Bit MSP430X CPU

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z. Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

16-Bit MSP430X CPU 4-103

MSP430 Instructions
*SETC

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSUB

Set carry bit

SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C. Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

ADD #06666h,R5 ; Move content R5 from 0-9 to 6-0Fh
; R5 =03987h + 06666h = 09FEDh
INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry =1
DADD R5,R6 ; Emulate subtraction by addition of:

: (010000h - R5 - 1)
*R6=R6 +R5 + 1
- R6 = 0150h

4-104 16-Bit MSP430X CPU

MSP430 Instructions

*SETN Set negative bit

Syntax SETN

Operation 1->N

Emulation BIS #4,SR
Description The negative bit (N) is set.
Status Bits N: Set

Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

16-Bit MSP430X CPU 4-105

MSP430 Instructions

*SETZ
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Set zero bit
SETZ

1->Z7

BIS #2,SR

The zero bit (Z) is set.

N:
Z:
C:
V:

Not affected
Set

Not affected
Not affected

OSCOFF, CPUOFF, and GIE are not affected.

4-106 16-Bit MSP430X CPU

SUB[.W]
SUB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

MSP430 Instructions

Subtract source word from destination word
Subtract source byte from destination byte

SUB src,dst or SUB.W src,dst
SUB.B src,dst

(.not.src) + 1 +dst > dst or dst- src — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1's complement of the source + 1 to the destination. The source
operand is not affected, the result is written to the destination operand.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a hegative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

<SoNZ

OSCOFF, CPUOFF, and GIE are not affected.

A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7.
Afterwards, if R7 contains zero, jump to label TONI. R5 is then
auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2
JZ TONI ; R7 = @R5 (before subtraction)
; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from byte R12 points to. The address of CNT is within
PC £+ 32 K. The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

16-Bit MSP430X CPU 4-107

MSP430 Instructions

SUBC[.W]
SUBC.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Subtract source word with carry from destination word
Subtract source byte with carry from destination byte

SUBC src,dst or SUBC.W src,dst
SUBC.B src,dst

(.not.src) + C +dst > dst or dst-(src-1)+C — dst

The source operand is subtracted from the destination operand. This is done
by adding the 1's complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Used for 32, 48, and 64-bit operands.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB, reset otherwise

Y Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 16-bit constant 7654h is subtracted from R5 with the carry from the previous
instruction. R5.19:16 =0

SUBC.W #7654h,R5 ; Subtract 7654h + C from R5

A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 points to the next 48-bit number
afterwards. The address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

4-108 16-Bit MSP430X CPU

SWPB
Syntax

Operation

Description

Status Bits
Mode Bits

Example

MSP430 Instructions
Swap bytes
SWPB dst

dst.15:8 < dst.7:0

The high and the low byte of the operand are exchanged. PC.19:16 bits are
cleared in register mode.

Not affected
OSCOFF, CPUOFF, and GIE are not affected.

Exchange the bytes of RAM word EDE (lower 64 K).

MOV #1234h,&EDE ; 1234h -> EDE
SWPB &EDE ; 3412h -> EDE

Figure 4-42. Swap Bytes in Memory

Before SWPB

15 8 7 0
High Byte Low Byte
After SWPB
15 8 7 0
Low Byte High Byte

Figure 4-43. Swap Bytes in a Register

Before SWPB

19 16 15 8 7 0
X High Byte Low Byte
After SWPB
19 16 15 8 7 0
0 .. 0 Low Byte High Byte

16-Bit MSP430X CPU 4-109

MSP430 Instructions

SXT
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extend sign
SXT dst

dst.7 — dst.15:8, dst.7 — dst.19:8 (Register Mode)

Register Mode: the sign of the low byte of the operand is extended into the bits
Rdst.19:8

Rdst.7 = 0: Rdst.19:8 = 000h afterwards.
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards.

Other Modes: the sign of the low byte of the operand is extended into the high
byte.

dst.7 = 0: high byte = 00h afterwards.

dst.7 = 1: high byte = FFh afterwards.

N: Set if result is negative, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not.2)
V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the
16-bit signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADD R5,R7 ; Add signed 16-bit values

The signed 8-bit data in EDE (PC 32 K) is sign extended and added to the
20-bit data in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh
SXT R5 ; Sign extend low byte to R5.19:8
ADDA R5,R7 ; Add signed 20-bit values

4-110 16-Bit MSP430X CPU

*TST[.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

MSP430 Instructions

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C:. Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

JZ R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... : R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7TNEG,; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

JZ R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG .. ; Low byte of R7 is negative
R7ZERO ... ; Low byte of R7 is zero

16-Bit MSP430X CPU 4-111

MSP430 Instructions

XOR[.W]
XOR.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Exclusive OR source word with destination word
Exclusive OR source byte with destination byte

XOR dst or XOR.W dst
XOR.B dst

src .xor. dst — dst

The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
content of the destination is lost.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V. Set if both operands are negative before execution, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Toggle bits in word CNTR (16-bit data) with information (bit = 1) in
address-word TONI. Both operands are located in lower 64 K.

XOR &TONI,&CNTR ; Toggle bits in CNTR

A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.
R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE. R7.19:8 = 0. The address of EDE is within PC + 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.
INV.B R7 ; Invert low byte of R7, high byte is Oh

4-112 16-Bit MSP430X CPU

Extended Instructions
4.6.3 Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its
20-bit address space. Some MSP430X instructions require an additional word
of op-code called the extension word. All addresses, indexes, and immediate
numbers have 20-bit values, when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following
pages. For MSP430X instructions that do not require the extension word, it is
noted in the instruction description.

16-Bit MSP430X CPU 4-113

Extended Instructions

* ADCX.A
* ADCX.[W]
* ADCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Add carry to destination address-word
Add carry to destination word
Add carry to destination byte

ADCX.A dst
ADCX dst or ADCXW dst
ADCX.B dst

dst + C —> dst

ADDCX.A #0,dst
ADDCX #0,dst
ADDCX.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N Set if result is negative (MSB = 1), reset if positive (MSB = 0)

z Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

V Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A @R12
ADCX.A @R13

; Increment lower 20 bits
; Add carry to upper 20 bits

4-114 16-Bit MSP430X CPU

ADDX.A
ADDX[.W]
ADDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Add source address-word to destination address-word
Add source word to destination word
Add source byte to destination byte

ADDX.A src,dst
ADDX src,dst or ADDX.W src,dst
ADDX.B src,dst

src + dst — dst

The source operand is added to the destination operand. The previous
contents of the destination are lost. Both operands can be located in the full
address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

Vi Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs)
and CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump
to label TONI is performed on a carry.

ADDX.W @R5,R6
JC TONI

; Add table word to R6
; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDX.B @R5+,R6
JNC TONI

; Add table byte to R6. R5 + 1. R6: 000xxh

; Jump if no carry

; Carry occurred

Note: Use ADDA for the following two cases for better code density and
execution.

ADDX.A Rsrc,Rdst or
ADDX.A #imm20,Rdst

16-Bit MSP430X CPU 4-115

Extended Instructions

ADDCX.A
ADDCX[.W]
ADDCX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Add source address-word and carry to destination address-word
Add source word and carry to destination word
Add source byte and carry to destination byte

ADDCX.A src,dst
ADDCX src,dst or ADDCX.W src,dst
ADDCX.B src,dst

src + dst + C — dst

The source operand and the carry bit C are added to the destination operand.
The previous contents of the destination are lost. Both operands may be
located in the full address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

V Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

Constant 15 and the carry of the previous instruction are added to the 20-bit
counter CNTR located in two words.

ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR

A table word pointed to by R5 (20-bit address) and the carry C are added to R6.
The jump to label TONI is performed on a carry.

ADDCX.W @R5,R6
JC TONI

; Add table word + C to R6
; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1.

ADDCX.B @R5+,R6
JNC TONI

; Add table byte + Cto R6. R5 + 1
; Jump if no carry
; Carry occurred

4-116 16-Bit MSP430X CPU

ANDX.A
ANDX[.W]
ANDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Logical AND of source address-word with destination address-word
Logical AND of source word with destination word
Logical AND of source byte with destination byte

ANDX.A src,dst
ANDX src,dst or ANDX.W src,dst
ANDX.B src,dst

src .and. dst — dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the
address-word TOM located in two words. If the result is zero, a branch is taken
to label TONI.

MOVA #AAAB5h,R5 ; Load 20-bit mask to R5
ANDX.A R5,TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result O

; Result >0
or shorter:
ANDX.A #AAA55h, TOM ; TOM .and. AAA55h -> TOM
JZ TONI ; Jump if result O

A table byte pointed to by R5 (20-bit address) is logically ANDed with R6.
R6.19:8 = 0. The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

16-Bit MSP430X CPU 4-117

Extended Instructions

BICX.A
BICX[.W]
BICX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Clear bits set in source address-word in destination address-word
Clear bits set in source word in destination word
Clear bits set in source byte in destination byte

BICX.A src,dst
BICX src,dst or BICX.W src,dst
BICX.B src,dst

(.not. src) .and. dst — dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected. Both operands may be located in the full address space.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16 =0

BICX.W @R5,R7 ; Clear bits in R7

A table byte pointed to by R5 (20-bit address) is used to clear bits in output
Portl.

BICX.B @R5,&P10UT ; Clear 1/0O port P1 bits

4-118 16-Bit MSP430X CPU

BISX.A
BISX[.W]
BISX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Set bits set in source address-word in destination address-word
Set bits set in source word in destination word
Set hits set in source byte in destination byte

BISX.A src,dst

BISX

src,dst or

BISX.B src,dst

src .or. dst — dst

The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

N:
Z:
C:
V.

Not affected
Not affected
Not affected
Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A
A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W

#018000h,R5

@R5,R7

: Set R5.16:15 bits

; Set bits in R7

A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.

BISX.B

@R5,&P10UT

; Set I/O port P1 bits

16-Bit MSP430X CPU

4-119

Extended Instructions

BITX.A

BITX[.W]
BITX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

4-120

Test bits set in source address-word in destination address-word
Test bits set in source word in destination word
Test bits set in source byte in destination byte

BITX.A src,dst

BITX src,dst or BITX.W src,dst
BITX.B src,dst

src .and. dst

The source operand and the destination operand are logically ANDed. The
result affects only the status bits. Both operands may be located in the full
address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5
IJNZ TONI

: Test R5.16:15 bits
; At least one bit is set
; Both are reset

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to
label TONI if at least one bit is set.

BITX.W @R5,R7
JC TONI

; Test bits in R7: C = .not.Z
; At least one is set

; Both are reset

A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1.
Jump to label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN
JNC TONI

; Test input P1 bits. R5 + 1
; No corresponding input bit is set
; At least one bit is set

16-Bit MSP430X CPU

Extended Instructions

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte
Syntax CLRX.A dst
CLRX dst or CLRX.W dst
CLRX.B dst
Operation 0 —> dst
Emulation MOVX.A #0,dst
MOVX #0,dst
MOVX.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM address-word TONI is cleared.
CLRX.A TONI : 0 —> TONI

16-Bit MSP430X CPU 4-121

Extended Instructions

CMPX.A
CMPX[.W]
CMPX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

4-122

Compare source address-word and destination address-word
Compare source word and destination word
Compare source byte and destination byte

CMPX.A src,dst
CMPX src,dst or CMPX.W src,dst
CMPX.B src,dst

(.not. src) + 1 +dst or dst - src

The source operand is subtracted from the destination operand by adding the
1's complement of the source + 1 to the destination. The result affects only the
status bits. Both operands may be located in the full address space.

N: Set if result is negative (src > dst), reset if positive (src <= dst)

Z: Set if result is zero (src = dst), reset otherwise (src # dst)

C: Set if there is a carry from the MSB, reset otherwise

V: Set if the subtraction of a negative source operand from a positive

destination operand delivers a negative result, or if the subtraction of
a positive source operand from a negative destination operand delivers
a positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE
equals the constant.

CMPX.A #018000h,EDE
JEQ TONI

; Compare EDE with 18000h
; EDE contains 18000h
; Not equal

A table word pointed to by R5 (20-bit address) is compared with R7. Jump to
label TONI if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers
JL TONI :R7 < @R5
: R7 >= @R5

A table byte pointed to by R5 (20-bit address) is compared to the input in 1/O
Portl. Jump to label TONI if the values are equal. The next table byte is
addressed.

CMPX.B @R5+,&P1IN
JEQ TONI

; Compare P1 bits with table. R5 + 1

; Equal contents

; Not equal

Note: Use CMPA for the following two cases for better density and execution.

CMPA Rsrc,Rdst or
CMPA #imm?20,Rdst

16-Bit MSP430X CPU

* DADCX.A
* DADCX[.W]
* DADCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Add carry decimally to destination address-word
Add carry decimally to destination word
Add carry decimally to destination byte

DADCX.A dst
DADCX dst or DADCX.W src,dst
DADCX.B dst

dst + C —> dst (decimally)

DADDX.A #0,dst
DADDX #0,dst
DADDX.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise.

C: Set if the BCD result is too large (address-word > 99999h,
word > 9999h, byte > 99h), reset otherwise.

V. Undefined.

OSCOFF, CPUOFF, and GIE are not affected.
The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

16-Bit MSP430X CPU 4-123

Extended Instructions

DADDX.A
DADDX[.W]
DADDX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Add source address-word and carry decimally to destination address-word
Add source word and carry decimally to destination word
Add source byte and carry decimally to destination byte

DADDX.A src,dst
DADDX src,dst or DADDX.W src,dst
DADDX.B src,dst

src + dst + C — dst (decimally)

The source operand and the destination operand are treated as two (.B), four
(\W), or five (.A) binary coded decimals (BCD) with positive signs. The source
operand and the carry bit C are added decimally to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost. The result is not defined for non-BCD numbers. Both operands may
be located in the full address space.

N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z. Set if result is zero, reset otherwise.

C: Set if the BCD result is too large (address-word > 99999h,
word > 9999h, byte > 99h), reset otherwise.

V: Undefined.

OSCOFF, CPUOFF, and GIE are not affected.

Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two
words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5
(BCD+2 and R5 contain the MSDs).

CLRC ; Clear carry

DADDX.W BCD,R4 ; Add LSDs

DADDX.W BCD+2,R5 ; Add MSDs with carry

JC OVERFLOW ; Result >99999999: go to error routine
; Result ok

The two-digit BCD number contained in 20-bit address BCD is added
decimally to a two-digit BCD number contained in R4.

CLRC ; Clear carry
DADDX.B BCD,R4 ; Add BCD to R4 decimally.
; R4: 000ddh

4-124 16-Bit MSP430X CPU

Extended Instructions

* DECX.A Decrement destination address-word

* DECX[.W] Decrement destination word

* DECX.B Decrement destination byte

Syntax DECX dst
DECX dst or DECXW dst
DECX.B dst

Operation dst - 1 —>dst

Emulation SUBX.A #1,dst

SUBX #1,dst
SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.
Status Bits N: Set if result is negative, reset if positive

Z: Setif dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example RAM address-word TONI is decremented by 1
DECX.A TONI ; Decrement TONI

16-Bit MSP430X CPU 4-125

Extended Instructions

* DECDX.A
* DECDX[.W]
* DECDX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

4-126

Double-decrement destination address-word
Double-decrement destination word
Double-decrement destination byte

DECDX.A dst
DECDX dst
DECDX.B dst

dst - 2 —> dst

SUBX.A #2,dst
SUBX #2,dst
SUBX.B #2,dst

or DECDX.W dst

The destination operand is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise

C: Reset if dst contained 0 or 1, set otherwise

V. Set if an arithmetic overflow occurs, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.

RAM address-word TONI is decremented by 2.

DECDX.A TONI

16-Bit MSP430X CPU

; Decrement TONI by two

* INCX.A
* INCX[.W]
* INCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Increment destination address-word
Increment destination word
Increment destination byte

INCX.A dst
INCX dst
INCX.B dst
dst+ 1 —> dst

ADDX.A #1,dst
ADDX #1,dst
ADDX.B #1,dst

or INCX.W dst

The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Setif dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

RAM address-word TONI is incremented by 1.

INCX.A TONI

; Increment TONI (20-bits)

16-Bit MSP430X CPU

4-127

Extended Instructions

* INCDX.A
* INCDX[.W]
* INCDX.B

Syntax

Operation

Emulation

Example

Status Bits

Mode Bits

Example

Double-increment destination address-word
Double-increment destination word
Double-increment destination byte

INCDX.A dst
INCDX dst
INCDX.B dst

dst + 2 —> dst

ADDX.A #2,dst
ADDX #2,dst
ADDX.B #2,dst

or INCDX.W dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFEh, reset otherwise
Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Setif dst contained OFFFFEh or OFFFFFh, reset otherwise
Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

RAM byte LEO is incremented by two; PC points to upper memory

INCDX.B LEO

4-128 16-Bit MSP430X CPU

; Increment LEO by two

* INVX.A
* INVX[.W]
* INVX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Invert destination
Invert destination
Invert destination

INVX.A dst
INVX dst or INVX.W dst
INVX.B dst

.NOT.dst —> dst

XORX.A #OFFFFFh,dst
XORX #0FFFFh,dst
XORX.B #0OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFFh, reset otherwise
Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)
V: Setif initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

20-bit content of R5 is negated (twos complement).

INVX.A R5 ; Invert R5

INCX.A R5 ; R5 is now negated

Content of memory byte LEO is negated. PC is pointing to upper memory
INVX.B LEO ; Invert LEO

INCX.B LEO ; MEM(LEO) is negated

16-Bit MSP430X CPU 4-129

Extended Instructions

MOVX.A
MOVX[.W]
MOVX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Loop

Example

Loop

4-130

Move source address-word to destination address-word
Move source word to destination word
Move source byte to destination byte

MOVX.A src,dst

MOVX src,dst or MOVX.W src,dst
MOVX.B src,dst

src — dst

The source operand is copied to the destination. The source operand is not
affected. Both operands may be located in the full address space.

N: Not affected
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Move a 20-bit constant 18000h to absolute address-word EDE.

MOVX.A #018000h,&EDE ; Move 18000h to EDE

The contents of table EDE (word data, 20-bit addresses) are copied to table
TOM. The length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)
MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
R10+2
CMPA #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
; Copy completed

The contents of table EDE (byte data, 20-bit addresses) are copied to table
TOM. The length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)

MOV #20h,R9 ; Prepare counter

MOVX.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter

JNZ Loop ; Not yet done

; Copy completed

16-Bit MSP430X CPU

Extended Instructions

Ten of the 28 possible addressing combinations of the MOVX.A instruction can
use the MOVA instruction. This saves two bytes and code cycles. Examples
for the addressing combinations are:

MOVX.A
MOVX.A
MOVX.A
MOVX.A
MOVX.A
MOVX.A

Rsrc,Rdst
#imm20,Rdst
&abs20,Rdst
@Rsrc,Rdst
@Rsrc+,Rdst
Rsrc,&abs20

MOVA Rsrc,Rdst ; Reg/Reg

MOVA #imm20,Rdst ; Immediate/Reg
MOVA &abs20,Rdst ; Absolute/Reg
MOVA @Rsrc,Rdst ; Indirect/Reg
MOVA @Rsrc+,Rdst ; Indirect,Auto/Reg
MOVA Rsrc,&abs20 ; Reg/Absolute

The next four replacements are possible only if 16-bit indexes are sufficient for
the addressing.

MOVX.A
MOVX.A
MOVX.A
MOVX.A

z20(Rsrc),Rdst
Rsrc,z20(Rdst)
symb20,Rdst
Rsrc,symb20

MOVA z16(Rsrc),Rdst ; Indexed/Reg
MOVA Rsrc,z16(Rdst) ; Reg/Indexed
MOVA symbl6,Rdst ; Symbolic/Reg
MOVA Rsrc,symb16 ; Reg/Symbolic

16-Bit MSP430X CPU 4-131

Extended Instructions

POPM.A
POPM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Restore n CPU registers (20-bit data) from the stack
Restore n CPU registers (16-bit data) from the stack

POPM.A #n,Rdst 1<n<16
POPM.W #n,Rdst or POPM #n,Rdst 1<n<16

POPM.A: Restore the register values from stack to the specified CPU
registers. The stack pointer SP is incremented by four for each register
restored from stack. The 20-bit values from stack (2 words per register) are
restored to the registers.

POPM.W: Restore the 16-bit register values from stack to the specified CPU
registers. The stack pointer SP is incremented by two for each register
restored from stack. The 16-bit values from stack (one word per register) are
restored to the CPU registers.

Note : This does not use the extension word.

POPM.A: The CPU registers pushed on the stack are moved to the extended
CPU reqisters, starting with the CPU register (Rdst - n + 1). The stack pointer
is incremented by (n x 4) after the operation.

POPM.W: The 16-bit registers pushed on the stack are moved back to the
CPU registers, starting with CPU register (Rdst - n + 1). The stack pointer is
incremented by (n x 2) after the instruction. The MSBs (Rdst.19:16) of the
restored CPU registers are cleared

Not affected, except SR is included in the operation

OSCOFF, CPUOFF, and GIE are not affected, except SR is included in the op-
eration.

Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.A #5R13 ; Restore R9, R10, R11, R12, R13
Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

4-132 16-Bit MSP430X CPU

PUSHM.A
PUSHM[.W]
Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Extended Instructions

Save n CPU registers (20-bit data) on the stack
Save n CPU registers (16-bit words) on the stack

PUSHM.A #n,Rdst 1<n<16
PUSHM.W #n,Rdst or PUSHM #n,Rdst 1<n<16

PUSHM.A: Save the 20-bit CPU register values on the stack. The stack pointer
(SP) is decremented by four for each register stored on the stack. The MSBs
are stored first (higher address).

PUSHM.W: Save the 16-bit CPU register values on the stack. The stack
pointer is decremented by two for each register stored on the stack.

PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on
the stack. The stack pointer is decremented by (n x 4) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

PUSHM.W: The n registers, starting with Rdst backwards, are stored on the
stack. The stack pointer is decremented by (n x 2) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

Note : This instruction does not use the extension word.
Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9
Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

16-Bit MSP430X CPU 4-133

Extended Instructions

* POPX.A Restore single address-word from the stack
* POPX[.W] Restore single word from the stack
* POPX.B Restore single byte from the stack
Syntax POPX.A dst
POPX dst or POPX.W dst
POPX.B dst
Operation Restore the 8/16/20-bit value from the stack to the destination. 20-bit

addresses are possible. The stack pointer SP is incremented by two (byte and
word operands) and by four (address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The item on TOS is written to the destination operand. Register Mode, Indexed
Mode, Symbolic Mode, and Absolute Mode are possible. The stack pointer is
incremented by two or four.

Note: the stack pointer is incremented by two also for byte operations.

Status Bits Not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example Write the 16-bit value on TOS to the 20-bit address &EDE.
POPX.W &EDE ; Write word to address EDE
Example Write the 20-bit value on TOS to R9.
POPX.A R9 : Write address-word to R9

4-134 16-Bit MSP430X CPU

PUSHX.A
PUSHX[.W]
PUSHX.B

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Extended Instructions

Save a single address-word on the stack
Save a single word on the stack
Save a single byte on the stack

PUSHX.A Src
PUSHX src or PUSHX.W src
PUSHX.B src

Save the 8/16/20-bit value of the source operand on the TOS. 20-bit addresses
are possible. The stack pointer (SP) is decremented by two (byte and word
operands) or by four (address-word operand) before the write operation.

The stack pointer is decremented by two (byte and word operands) or by four
(address-word operand). Then the source operand is written to the TOS. All
seven addressing modes are possible for the source operand.

Note : This instruction does not use the extension word.
Not affected.
OSCOFF, CPUOFF, and GIE are not affected.

Save the byte at the 20-bit address &EDE on the stack.

PUSHX.B &EDE ; Save byte at address EDE

Save the 20-bit value in R9 on the stack.

PUSHX.A R9 ; Save address-word in R9

16-Bit MSP430X CPU 4-135

Extended Instructions

RLAM.A
RLAM[.W]

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Rotate Left Arithmetically the 20-bit CPU register content
Rotate Left Arithmetically the 16-bit CPU register content

RLAM.A #n,Rdst 1<n<4

RLAM.W #n,Rdst or RLAM #n,Rdst 1<n<4

C <« MSB « MSB-1....LSB+1 « LSB « 0

The destination operand is shifted arithmetically left one, two, three, or four
positions as shown in Figure 4-44. RLAM works as a multiplication (signed
and unsigned) with 2, 4, 8, or 16. The word instruction RLAM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19=0
.W: Rdst.15 =1, reset if Rdst.15=0

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3
(n=4)

V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit operand in R5 is shifted left by three positions. It operates equal to
an arithmetic multiplication by 8.

RLAM.A #3,R5 ;R5=R5x8

Figure 4-44. Rotate Left Arithmetically RLAM[.W] and RLAM.A

4-136

19 16 15 0

0000 MSB
|

19 0

LSB & O

v

v

LSB [« o

16-Bit MSP430X CPU

* RLAX.A
* RLAX[.W]
* RLAX.B

Syntax

Operation

Emulation

Description

Extended Instructions

Rotate left arithmetically address-word
Rotate left arithmetically word
Rotate left arithmetically byte

RLAX.B dst
RLAX dst or RLAX.W dst
RLAX.B dst

C <-MSB <-MSB-1... LSB+1<-LSB<-0

ADDX.A dst,dst
ADDX dst,dst
ADDX.B dst,dst

The destination operand is shifted left one position as shown in Figure 4-45.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX
instruction acts as a signed multiplication by 2.

Figure 4-45. Destination Operand—Arithmetic Shift Left

Status Bits

Mode Bits

Example

MSB 0

__________________ e—o

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 040000h < dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < OCOh; reset otherwise

<oNzZ

OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R7 is multiplied by 2.

RLAXA R7 ; Shift left R7 (20-bit)

16-Bit MSP430X CPU 4-137

Extended Instructions
* RLCX.A

* RLCX[.W]

* RLCX.B

Syntax

Operation

Emulation

Description

Rotate left through carry address-word
Rotate left through carry word
Rotate left through carry byte

RLCX.A dst
RLCX dst or RLCX.W dst
RLCX.B dst

C<-MSB<-MSB-1... LSB+1<-LSB<-C

ADDCX.A dst,dst
ADDCX dst,dst
ADDCX.B dst,dst

The destination operand is shifted left one position as shown in Figure 4-46.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4-46. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

MSB 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 040000h < dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit value in R5 is shifted left one position.

RLCX.A R5 :(R5x2)+C ->R5

The RAM byte LEO is shifted left one position. PC is pointing to upper memory

RLCX.B LEO - RAM(LEO) x 2 + C —> RAM(LEO)

4-138 16-Bit MSP430X CPU

RRAM.A
RRAM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Rotate Right Arithmetically the 20-bit CPU register content
Rotate Right Arithmetically the 16-bit CPU register content

RRAM.A #n,Rdst 1<n<4
RRAM.W #n,Rdst or RRAM #n,Rdst 1<n<4

MSB - MSB — MSB-1.... LSB+1 - LSB - C

The destination operand is shifted right arithmetically by one, two, three, or
four bit positions as shown in Figure 4-47. The MSB retains its value (sign).
RRAM operates equal to a signed division by 2/4/8/16. The MSB is retained
and shifted into MSB-1. The LSB+1 is shifted into the LSB, and the LSB is
shifted into the carry bit C. The word instruction RRAM.W clears the bits
Rdst.19:16.

Note : This instruction does not use the extension word.

N: Set if result is negative
A Rdst.19 = 1, reset if Rdst.19 =0
W: Rdst.15 =1, reset if Rdst.15=0

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3
(n=4)

V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5
The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) x R15

PUSHM.A #1,R15 ; Save extended R15 on stack
RRAM.A #1,R15 ; R15x 0.5 ->R15

ADDX.A @SP+,R15 ; R15x 0.5+ R15=1.5x%xR15 -> R15
RRAM.A #1,R15 ; (1.5 x R15) x 0.5 =0.75 x R15 -> R15

Figure 4-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

19 16 15 0
0000 [MSB >| LSB W

19 0

e g

v

16-Bit MSP430X CPU 4-139

Extended Instructions
RRAX.A

RRAX[.W]
RRAX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Rotate Right Arithmetically the 20-bit operand
Rotate Right Arithmetically the 16-bit operand
Rotate Right Arithmetically the 8-bit operand

RRAX.A Rdst
RRAX.W Rdst
RRAX Rdst
RRAX.B Rdst

RRAX.A dst
RRAX.W dst or RRAX dst
RRAX.B dst

MSB - MSB — MSB-1. ... LSB+1 - LSB - C

Register Mode for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4-48. The MSB retains its value (sign). The
word instruction RRAX.W clears the bits Rdst.19:16, the byte instruction
RRAX.B clears the bits Rdst.19:8. The MSB retains its value (sign), the LSB is
shifted into the carry bit. RRAX here operates equal to a signed division by 2.

All other modes for the destination: the destination operand is shifted right
arithmetically by one bit position as shown in Figure 4-49. The MSB retains
its value (sign), the LSB is shifted into the carry bit. RRAX here operates equal
to a signed division by 2. All addressing modes - with the exception of the
Immediate Mode - are possible in the full memory.

N: Set if result is negative
A dst.19=1,resetifdst.19=0
W: dst.15 =1, reset if dst.15=0
.B: dst.7=1, resetifdst.7=0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

4-140 16-Bit MSP430X CPU

Extended Instructions

Example The signed 20-bit number in R5 is shifted arithmetically right four positions.
RPT #4
RRAX.A RS ; R5/16 —> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.
RRAX.B &EDE ; EDE/2 -> EDE

Figure 4-48. Rotate Right Arithmetically RRAX(.B,.A). Register Mode
19 8 7 0

O L—_’W

19 16 15 0

* 0000 QISB » | LSB |~
19 0

*E MSB » | LSB |

Figure 4-49. Rotate Right Arithmetically RRAX(.B,.A). Non-Register Mode
7 0

|—'—MISB 1= _‘

15 0
r QISB » | LSB —‘
31 20
o | ----—-"——"—— 0
19 0
» | LSB |~

RS

16-Bit MSP430X CPU 4-141

Extended Instructions

RRCM.A
RRCM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Rotate Right through carry the 20-bit CPU register content
Rotate Right through carry the 16-bit CPU register content

RRCM.A #n,Rdst 1<n<4
RRCM.W #n,Rdst or RRCM #n,Rdst 1<n<4

C —>MSB - MSB-1 — ...LSB+1 - LSB - C

The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4-50. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. The word instruction RRCM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

N: Set if result is negative
A: Rdst.19 =1, reset if Rdst.19=0
W: Rdst.15 = 1, reset if Rdst.15=0

Z Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3
(n=4)

V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

The address-word in R5 is shifted right by three positions. The MSB-2 is
loaded with 1.

SETC ; Prepare carry for MSB-2
RRCM.A #3,R5 : R5 = R5 » 3 + 20000h

The word in R6 is shifted right by two positions. The MSB is loaded with the
LSB. The MSB-1 is loaded with the contents of the carry flag.

RRCM.W #2 R6 ; R6=R6 »2. R6.19:16 =0

Figure 4-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

19 16 15 0
0 MSB >| LsB
‘ —‘
19 0

v

B =}

4-142 16-Bit MSP430X CPU

Extended Instructions

RRCX.A Rotate Right through carry the 20-bit operand
RRCX[.W] Rotate Right through carry the 16-bit operand
RRCX.B Rotate Right through carry the 8-bit operand
Syntax RRCX.A Rdst

RRCX.W Rdst
RRCX Rdst
RRCX.B Rdst

RRCX.A dst
RRCX.W dst or RRCX dst
RRCX.B dst
Operation C —>MSB - MSB-1 — ... LSB+1 - LSB - C
Description Register Mode for the destination: the destination operand is shifted right by

one bit position as shown in Figure 4-51. The word instruction RRCX.W clears
the bits Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The
carry bit C is shifted into the MSB, the LSB is shifted into the carry bit.

All other modes for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4-52. The carry bit C is shifted into the
MSB, the LSB is shifted into the carry bit. All addressing modes - with the
exception of the Immediate Mode - are possible in the full memory.

Status Bits N: Set if result is negative
A dst.19 =1, resetifdst.19=0
W: dst.15 =1, reset if dst.15=0
.B: dst.7=1,resetifdst.7=0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

16-Bit MSP430X CPU 4-143

Extended Instructions

Example The 20-bit operand at address EDE is shifted right by one position. The MSB is
loaded with 1.
SETC ; Prepare carry for MSB
RRCX.A EDE : EDE = EDE » 1 + 80000h
Example The word in R6 is shifted right by twelve positions.
RPT #12
RRCX.W R6 ; R6=R6 »12. R6.19:16 =0

Figure 4-51. Rotate Right Through Carry RRCX(.B,.A). Register Mode

19 8 7 0
o 0 [MSB|——————*| LsB
T
19 16 15 0
—> 0000 MSB > LSB |+
T
19 0

v

F vss s 1

Figure 4-52. Rotate Right Through Carry RRCX(.B,.A). Non-Register Mode

7 0
FE) MSB |——*| LSB —‘
15 0
F| C I MSB » | LSB —‘
31 20
o | - -—-————— 0
19 0
F MSB >

LSB —‘

4-144 16-Bit MSP430X CPU

RRUM.A
RRUM[.W]
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Extended Instructions

Rotate Right Unsigned the 20-bit CPU register content
Rotate Right Unsigned the 16-bit CPU register content

RRUM.A #n,Rdst 1<n<4
RRUM.W #n,Rdst or RRUM #n,Rdst 1<n<4

0 —>MSB—->MSB-1.—-...LSB+1 —-LSB—C

The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4-53. Zero is shifted into the MSB, the LSB is shifted into
the carry bit. RRUM works like an unsigned division by 2, 4, 8, or 16. The word
instruction RRUM.W clears the bits Rdst.19:16.

Note : This instruction does not use the extension word.

N: Setif result is negative
A Rdst.19 =1, reset if Rdst.19 =0
W: Rdst.15 =1, reset if Rdst.15 =0

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3
(n=4)

V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 : R5 =R5 » 4. R5/16
The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 =R6/2. R6.19:15=0

Figure 4-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

19 16 15 0
0000 MSB | LSB |
0
19 0

LSB |

v

*o—> MSB

16-Bit MSP430X CPU 4-145

Extended Instructions

RRUX.A
RRUX[.W]
RRUX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Rotate Right unsigned the 20-bit operand
Rotate Right unsigned the 16-bit operand
Rotate Right unsigned the 8-hit operand

RRUX.A Rdst
RRUX.W Rdst
RRUX Rdst
RRUX.B Rdst

C=0 - MSB - MSB-1 - ... LSB+1 - LSB—> C

RRUX is valid for register Mode only: the destination operand is shifted right by
one bit position as shown in Figure 4-54. The word instruction RRUX.W clears
the bits Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8.
Zero is shifted into the MSB, the LSB is shifted into the carry bit.

N: Set if result is negative
A dst.19=1, resetif dst.19=0
W: dst.15=1, resetifdst.15=0
.B: dst.7 =1, resetifdst.7 =0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The word in R6 is shifted right by twelve positions.

RPT #12
RRUX.W R6 ;R6=R6 »12. R6.19:16 =0

Figure 4-54. Rotate Right Unsigned RRUX(.B,.A). Register Mode

19 8 7 0
O 0O |MSB|————*| LsSB
0 -‘
19 16 15 0
+ 0000 | MsSB > | LSB
0 “
19 0

MSB

v

°*

LSB —‘

4-146 16-Bit MSP430X CPU

* SBCX.A
* SBCX[.W]
* SBCX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Extended Instructions

Subtract source and borrow/.NOT. carry from destination address-word
Subtract source and borrow/.NOT. carry from destination word
Subtract source and borrow/.NOT. carry from destination byte

SBCX.A dst
SBCX dst or SBCX.W dst
SBCX.B dst

dst + OFFFFFh + C —> dst
dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBCX.A #0,dst
SUBCX #0,dst
SUBCX.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif resultis zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

16-Bit MSP430X CPU 4-147

Extended Instructions

SUBX.A
SUBX[.W]
SUBX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

4-148

Subtract source address-word from destination address-word
Subtract source word from destination word
Subtract source byte from destination byte

SUBX.A src,dst
SUBX src,dst or SUBX.W src,dst
SUBX.B src,dst

(.not. src) + 1 + dst > dst or dst- src — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1's complement of the source + 1 to the destination. The source
operand is not affected. The result is written to the destination operand. Both
operands may be located in the full address space.

N: Set if result is negative (src > dst), reset if positive (src <= dst)

Z: Set if result is zero (src = dst), reset otherwise (src # dst)

C: Set if there is a carry from the MSB, reset otherwise

Vv Set if the subtraction of a negative source operand from a positive des-

tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to
label TONI if R7 contains zero after the instruction. R5 is auto-incremented by
2.R7.19:16 =0

SUBX.W @R5+,R7
Jz TONI

; Subtract table number from R7. R5 + 2
; R7 = @R5 (before subtraction)
; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from the byte R12 points to in the full address space.
Address of CNT is within PC + 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.
SUBX.A Rsrc,Rdst or
SUBX.A #imm20,Rdst

16-Bit MSP430X CPU

SUBCX.A
SUBCX[.W]
SUBCX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Subtract source address-word with carry from destination address-word
Subtract source word with carry from destination word
Subtract source byte with carry from destination byte

SUBCX.A src,dst
SUBCX src,dst or SUBCX.W src,dst
SUBCX.B src,dst

(.not. src) + C+dst > dst or dst-(src-1)+C — dst

The source operand is subtracted from the destination operand. This is made
by adding the 1's complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Both operands may be located in the full address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB, reset otherwise

Vi Set if the subtraction of a hegative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit constant 87654h is subtracted from R5 with the carry from the
previous instruction.

SUBCX.A #87654h,R5 : Subtract 87654h + C from R5

A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 auto-increments to point to the
next 48-bit number.

SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2
SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2
SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

16-Bit MSP430X CPU 4-149

Extended Instructions

SWPBX.A
SWPBX[.W]

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Swap bytes of lower word
Swap bytes of word

SWPBX.A dst
SWPBX.W dst or SWPBX dst

dst.15:8 < dst.7:0

Register Mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is
used, Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are
cleared.

Other Modes: When the .A extension is used, bits 31:20 of the destination
address are cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped
with bits 7:0. When the .W extension is used, bits 15:8 are swapped with bits
7:0 of the addressed word.

Not affected
OSCOFF, CPUOFF, and GIE are not affected.

Exchange the bytes of RAM address-word EDE.

MOVX.A #23456h,&EDE ; 23456h -> EDE
SWPBX.A EDE ; 25634h -> EDE

Exchange the bytes of R5.

MOVA #23456h,R5 ; 23456h -> R5
SWPBX.W R5 ; 05634h -> R5

Figure 4-55. Swap Bytes SWPBX.A Register Mode

Before SWPBX.A

19 16 15 8 7 0
X High Byte Low Byte

After SWPBX.A

19 16 15 8 7 0
X Low Byte High Byte

4-150 16-Bit MSP430X CPU

Extended Instructions

Figure 4-56. Swap Bytes SWPBX.A In Memory

Before SWPBX.A
31 20 19 16 15 8 7 0

X X High Byte Low Byte

After SWPBX.A
31 20 19 16 15 8 7 0

0 X Low Byte High Byte

Figure 4-57. Swap Bytes SWPBX[.W] Register Mode

Before SWPBX

19 16 15 8 7 0
X High Byte Low Byte

After SWPBX

19 16 15 8 7 0
0 Low Byte High Byte

Figure 4-58. Swap Bytes SWPBX[.W] In Memory

Before SWPBX

15 8 7 0
High Byte Low Byte
After SWPBX
15 8 7 0
Low Byte High Byte

16-Bit MSP430X CPU 4-151

Extended Instructions

SXTX.A
SXTX[.W]

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Extend sign of lower byte to address-word
Extend sign of lower byte to word

SXTX.A dst
SXTX.W dst or SXTX dst

dst.7 — dst.15:8, Rdst.7 — Rdst.19:8 (Register Mode)

Register Mode:
The sign of the low byte of the operand (Rdst.7) is extended into the bits
Rdst.19:8.

Other Modes:
SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.

SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into
dst.15:8.

N: Set if result is negative, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits
31:20 located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE -> EDE+2/EDE

Figure 4-59. Sign Extend SXTX.A

SXTX.ARdst
19 1615 8 76 0
< S
SXTX.Adst
31 2019 1615 87 6 0
o . 0] ¢ S

4-152 16-Bit MSP430X CPU

Figure 4-60. Sign Extend SXTX[.W]

Extended Instructions

SXTX[.W] Rdst
19 16 15 7 6 0
< s
SXTX[.W] dst
15 7 6 0
< S
16-Bit MSP430X CPU 4-153

Extended Instructions

* TSTX.A
* TSTX[.W]
*TSTX.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Test destination address-word
Test destination word
Test destination byte

TSTX.A dst
TSTX dst or TST.W dst
TST.B dst

dst + OFFFFFh + 1
dst + OFFFFh + 1
dst + OFFh + 1

CMPX.A #0,dst
CMPX #0,dst
CMPX.B #0,dst

The destination operand is compared with zero. The status bits are set
according to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C:. Set

V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

RAM byte LEO is tested; PC is pointing to upper memory. If it is negative,
continue at LEONEG,; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO

JN LEONEG ; LEO is negative

Jz LEOZERO ;LEO s zero
LEOPOS ... ; LEO is positive but not zero
LEONEG ... ; LEO is negative
LEOZERO ; LEO is zero

4-154 16-Bit MSP430X CPU

XORX.A
XORX[.W]
XORX.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Extended Instructions

Exclusive OR source address-word with destination address-word
Exclusive OR source word with destination word
Exclusive OR source hyte with destination byte

XORX.A src,dst
XORX src,dst or XORX.W src,dst
XORX.B src,dst

src .xor. dst — dst

The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
contents of the destination are lost. Both operands may be located in the full
address space.

N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V. Set if both operands are negative (before execution), reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Toggle bits in address-word CNTR (20-bit data) with information in
address-word TONI (20-bit address).

XORX.A TONIL,&CNTR ; Toggle bits in CNTR

A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 =0

Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE (20-bit address).

XORX.B EDE,R7
INV.B R7

; Set different bits to 1 in R7
; Invert low byte of R7. R7.19:8 = 0.

16-Bit MSP430X CPU 4-155

Address Instructions

4.6.4 Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the Register mode and the Immediate mode, except for the MOVA
instruction. Restricting the addressing modes removes the need for the
additional extension-word op-code improving code density and execution
time. The MSP430X address instructions are listed and described in the
following pages.

4-156 16-Bit MSP430X CPU

ADDA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Address Instructions

Add 20-bit source to a 20-bit destination register

ADDA Rsrc,Rdst
ADDA #imm20,Rdst

src + Rdst — Rdst

The 20-bit source operand is added to the 20-bit destination CPU register. The
previous contents of the destination are lost. The source operand is not
affected.

Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)
Set if result is zero, reset otherwise

Set if there is a carry from the 20-bit result, reset otherwise

Set if the result of two positive operands is negative, or if the result of
two negative numbers is positive, reset otherwise.

<oNz

OSCOFF, CPUOFF, and GIE are not affected.

R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.
ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5

JC TONI ; Jump on carry

; No carry occurred

16-Bit MSP430X CPU 4-157

Address Instructions

* BRA
Syntax
Operation

Emulation

Description

Status Bits

Mode Bits

Examples

Branch to destination
BRA dst
dst - PC

MOVA dst,PC

An unconditional branch is taken to a 20-bit address anywhere in the full
address space. All seven source addressing modes can be used. The branch
instruction is an address-word instruction. If the destination address is
contained in a memory location X, it is contained in two ascending words: X
(LSBs) and (X + 2) (MSBs).

N: Not affected
Z: Not affected
C: Not affected
V. Not affected

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Branch to label EDE located anywhere in the 20-bit address
space or branch directly to address.

BRA #EDE ; MOVA #imm20,PC
BRA #01AA04h

Symbolic Mode: Branch to the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where
X is within £32 K. Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: if the 16-bit index is not sufficient, a 20-bit index may be used with the
following instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

Absolute Mode: Branch to the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBSs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register Mode: Branch to the 20-bit address contained in register R5. Indirect
R5.

BRA R5 ; MOVA R5,PC

4-158 16-Bit MSP430X CPU

Address Instructions

Indirect Mode: Branch to the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect
RS5.

BRA @R5 ; MOVA @R5,PC

Indirect, Auto-Increment Mode: Branch to the 20-bit address contained in the
words pointed to by register R5 and increment the address in R5 afterwards
by 4. The next time the S/W flow uses R5 as a pointer, it can alter the program
execution due to access to the next address in the table pointed to by R5.
Indirect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC.R5 + 4

Indexed Mode: Branch to the 20-bit address contained in the address pointed
to by register (R5 + X) (e.g. a table with addresses starting at X). (R5 + X)
points to the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within
R5 # 32 K. Indirect, indirect (R5 + X).

BRA X(R5) 'MOVA z16(R5),PC

Note: if the 16-bit index is not sufficient, a 20-bit index X may be used with the
following instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

16-Bit MSP430X CPU 4-159

Address Instructions

CALLA
Syntax

Operation

Description

Status Bits

Mode Bits

Examples

Call a Subroutine

CALLA dst

dst — tmp20-bit dst is evaluated and stored

SP -2 - SP

PC.19:16 — @SP updated PC with return address to TOS (MSBSs)
SP-2 — SP

PC.15:0 — @SP updated PCto TOS (LSBs)

tmp - PC saved 20-bit dst to PC

A subroutine call is made to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The call instruction is
an address-word instruction. If the destination address is contained in a
memory location X, it is contained in two ascending words: X (LSBs) and
(X + 2) (MSBs). Two words on the stack are needed for the return address.
The return is made with the instruction RETA.

N: Not affected
Z: Not affected
C: Not affected
V. Not affected

OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC ; Start address EXEC
CALLA #01AA04h ; Start address 01AA04h
Symbolic Mode: Call a subroutine at the 20-bit address contained in

addresses EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the
address (PC + X) where X is within £32 K. Indirect addressing.

CALLA EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 20-bit address contained in absolute
addresses EXEC (LSBs) and EXEC+2 (MSBSs). Indirect addressing.

CALLA &EXEC ; Start address at @EXEC

Register Mode: Call a subroutine at the 20-bit address contained in register
R5. Indirect R5.

CALLA R5 ; Start address at @R5

4-160 16-Bit MSP430X CPU

Address Instructions

Indirect Mode: Call a subroutine at the 20-bit address contained in the word
pointed to by register R5 (LSBs). The MSBs have the address (R5 + 2).
Indirect, indirect R5.

CALLA @R5 ; Start address at @R5

Indirect, Auto-Increment Mode: Call a subroutine at the 20-bit address
contained in the words pointed to by register R5 and increment the 20-bit
address in R5 afterwards by 4. The next time the S/W flow uses R5 as a
pointer, it can alter the program execution due to access to the next word
address in the table pointed to by R5. Indirect, indirect R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed Mode: Call a subroutine at the 20-bit address contained in the
address pointed to by register (R5 + X) e.g. a table with addresses starting at
X. (R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the word
address. X is within R5 £32 K. Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @(R5+X). z16(R5)

16-Bit MSP430X CPU 4-161

Address Instructions

* CLRA
Syntax
Operation
Emulation
Description
Status Bits

Example

Clear 20-bit destination register

CLRA Rdst
0 —> Rdst
MOVA #0,Rdst

The destination register is cleared.
Status bits are not affected.
The 20-bit value in R10 is cleared.

CLRA R10 ;0 —>R10

4-162 16-Bit MSP430X CPU

CMPA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Address Instructions

Compare the 20-bit source with a 20-bit destination register

CMPA Rsrc,Rdst
CMPA #imm20,Rdst

(.not.src) + 1 + Rdst or Rdst - src

The 20-bit source operand is subtracted from the 20-bit destination CPU
register. This is made by adding the 1's complement of the source + 1 to the
destination register. The result affects only the status bits.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive
destination operand delivers a negative result, or if the subtraction of
a positive source operand from a negative destination operand delivers
a positive result, reset otherwise (no overflow).

<oNz

OSCOFF, CPUOFF, and GIE are not affected.

A 20-bit immediate operand and R6 are compared. If they are equal the
program continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h
JEQ EQUAL ; R5 =12345h
; Not equal

The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or
equal to R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 - R6)
JGE GRE :R5>=R6
:R5 < R6

16-Bit MSP430X CPU 4-163

Address Instructions

* DECDA
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Double-decrement 20-bit destination register

DECDA Rdst

Rdst - 2 —> Rdst

SUBA #2,Rdst

The destination register is decremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if Rdst contained 2, reset otherwise

C: Reset if Rdst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is decremented by 2

DECDA R5 ; Decrement R5 by two

4-164 16-Bit MSP430X CPU

* INCDA
Syntax
Operation
Emulation
Example

Status Bits

Mode Bits

Example

Address Instructions

Double-increment 20-bit destination register

INCDA Rdst

dst + 2 —> dst

ADDA #2,Rdst

The destination register is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if Rdst contained OFFFFEh, reset otherwise
Set if Rdst contained OFFFEh, reset otherwise
Set if Rdst contained OFEh, reset otherwise

C:. Setif Rdst contained OFFFFEh or OFFFFFh, reset otherwise
Set if Rdst contained OFFFEh or OFFFFh, reset otherwise
Set if Rdst contained OFEh or OFFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is incremented by 2

INCDA R5 ; Increment R5 by two

16-Bit MSP430X CPU 4-165

Address Instructions

MOVA Move the 20-bit source to the 20-bit destination

Syntax MOVA Rsrc,Rdst
MOVA #imm?20,Rdst
MOVA z16(Rsrc),Rdst
MOVA EDE,Rdst
MOVA &abs20,Rdst
MOVA @Rsrc,Rdst
MOVA @Rsrc+,Rdst
MOVA Rsrc,z16(Rdst)
MOVA Rsrc,&abs20

Operation src — Rdst
Rsrc — dst

Description The 20-bit source operand is moved to the 20-bit destination. The source
operand is not affected. The previous content of the destination is lost.

Status Bits Not affected
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Examples Copy 20-bit value in R9 to R8.

MOVA R9,R8 :R9 ->R8

Write 20-bit immediate value 12345h to R12.

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in
addresses (R9 + 100h) LSBs and (R9 + 102h) MSBs

MOVA 100h(R9),R8 ; Index: £ 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2
(MSBs) to R12.

MOVA &EDE,R12 : &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12.
PC index £32 K.

MOVA EDE,R12 ; EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in
addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

4-166 16-Bit MSP430X CPU

Address Instructions

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by
four afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2)
MSBs.

MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination
operand in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and
EDE+2 (MSBs).

MOVA R13,&EDE ; R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBSs).
PC index £32 K.

MOVA R13,EDE : R13 -> EDE. 2 words transferred

16-Bit MSP430X CPU 4-167

Address Instructions

* RETA Return from subroutine
Syntax RETA
Operation @SP — PC.15.0 LSBs (15:0) of saved PC to PC.15:0
SP+2 —» SP
@SP — PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP+2 —» SP
Emulation MOVA @SP+,PC
Description The 20-bit return address information, pushed onto the stack by a CALLA

instruction, is restored to the program counter PC. The program continues at
the address following the subroutine call. The status register bits SR.11:0 are
not affected. This allows the transfer of information with these bits.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutine SUBR from anywhere in the 20-bit address space and return
to the address after the CALLA.

CALLA #SUBR ; Call subroutine starting at SUBR
; Return by RETA to here
SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)
; Subroutine code
POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)
RETA ; Return (to full address space)

4-168 16-Bit MSP430X CPU

Address Instructions

*TSTA Test 20-bit destination register
Syntax TSTA Rdst
Operation dst + OFFFFFh + 1

dst + OFFFFh + 1
dst + OFFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set
according to the result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The 20-bit value in R7 is tested. If it is negative, continue at R7TNEG,; if it is
positive but not zero, continue at R7POS.
TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
Jz R7ZERO : R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ; R7 is zero

16-Bit MSP430X CPU 4-169

Address Instructions

SUBA

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Subtract 20-bit source from 20-bit destination register

SUBA Rsrc,Rdst
SUBA #imm?20,Rdst

(.not.src) + 1 + Rdst — Rdst or Rdst - src — Rdst

The 20-bit source operand is subtracted from the 20-bit destination register.
This is made by adding the 1's complement of the source + 1 to the
destination. The result is written to the destination register, the source is not
affected.

Set if result is negative (src > dst), reset if positive (src <= dst)

Set if result is zero (src = dst), reset otherwise (src # dst)

Set if there is a carry from the MSB (Rdst.19), reset otherwise

Set if the subtraction of a negative source operand from a positive des-
tination operand delivers a negative result, or if the subtraction of a posi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

OSCOFF, CPUOFF, and GIE are not affected.

The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program
continues at label TONI.

SUBA R5,R6 ; R6 — R5 -> R6
JC TONI ; Carry occurred
; No carry

4-170 16-Bit MSP430X CPU

Chapter 5

FLL+ Clock Module

The FLL+ clock module provides the clocks for MSP430x4xx devices. This
chapter discusses the FLL+ clock module. The FLL+ clock module is
implemented in all MSP430x4xx devices.

Topic Page
5.1 FLL+ Clock Module Introduction oo... 5-2
5.2 FLL+ Clock Module Operationciiiiiiiiiiinnnn. 5-8
5.3 FLL+ Clock Module Registerscooiiiiiinieinnannn 5-15

5-1

5.1 FLL+ Clock Module Introduction

5-2

The frequency-locked loop (FLL+) clock module supports low system cost and
ultra low-power consumption. Using three internal clock signals, the user can
select the best balance of performance and low power consumption. The FLL+
features digital frequency-locked loop (FLL) hardware. The FLL operates
together with a digital modulator and stabilizes the internal digitally controlled
oscillator (DCO) frequency to a programmable multiple of the LFXT1 watch
crystal frequency. The FLL+ clock module can be configured to operate
without any external components, with one or two external crystals, or with
resonators, under full software control.

The FLL+ clock module includes two or three clock sources:

[0 LFXT1CLK: Low-frequency/high-frequency oscillator that can be used
either with low-frequency 32 768-Hz watch crystals or standard crystals or
resonators in the 450-kHz to 8-MHz range. See the device-specific data
sheet for details.

[XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 450-kHz to
8-MHz range. In MSP430F47x3/4 and MSP430F471xx devices the upper
limit is 16 MHz. See the device-specific data sheet for details.

[DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type
characteristics, stabilized by the FLL.

[VLOCLK: Internal very low power, low frequency oscillator with 12-kHz
typical frequency.

Four clock signals are available from the FLL+ module:

[ACLK: Auxiliary clock. The ACLK is software selectable as LFXT1CLK or
VLOCLK as clock source. ACLK is software selectable for individual
peripheral modules.

[0 ACLK/n:; Buffered output of the ACLK. The ACLK/n is ACLK divided by
1,2,4, or 8 and used externally only.

[MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available), or DCOCLK. MCLK can be divided by 1,
2, 4, or 8 within the FLL block. MCLK is used by the CPU and system.

[SMCLK: Sub-main clock. SMCLK is software selectable as XT2CLK (if
available) or DCOCLK. SMCLK is software selectable for individual
peripheral modules.

FLL+ Clock Module

The block diagrams of the FLL+ clock module are shown in Figure 5-1 to
Figure 5-4.

[J Figure 5-1 shows the block diagram for MSP430x43x, MSP430x44x,
MSP430FG47x, MSP430F47x, and MSP430x461x devices.

(1 Figure 5-2 shows the block diagram for MSP430x42x and MSP430x41x
devices.

(g Figure 5-3 shows the block diagram for MSP430x47x3/4 and
MSP430F471xx devices.

[Figure 5-4 shows the block diagram for MSP430x41x2 devices.

FLL+ Clock Module 5-3

Figure 5-1. MSP430x43x, MSP430x44x, MSP430FG47x, MSP430F47x, and

MSP430x461x Frequency-Locked Loop

-

XT20UT

5-4 FLL+ Clock Module

XT2 Oscillator

FLL_DIVx
Divider »
11121418 ACLK/n
f
Crystal
Y ° >
OSCOFF XTS_FLL ACLK
T [|
XIN oV _| }_T__’
T = SCGO0 PUC
— Ty
LFOff
L<XOUT|— Y _| Enable Reset
XT10ff + SELMx
10-bit
L L LFXT1 Oscillator Frequency CPUOFF
XCAPXPE Integrator
/(N+1) - C
10|,
SCG1 FNXx /] M
off
DC D(iO
Generator Modulator
FLLDx fococLk
T T . DCOPLUS
i DCO
PO Divider
11121418 SELS
1
focoiD . Py SMCLKOFF
XT20FF l/
XT2IN T

Figure 5-2. MSP430x42x and MSP430x41x Frequency-Locked Loop

FLL_DIVx
Divider >
111214/8 ACLK/N
fCrystaI >
OSCOFF XTS_FLL ACLK
T n
XIN oV _| }_?__’
F T SCGO PUC
LFOff
LG_ Enable Reset
ov
Xout —| XT10ff > +
L L LFXT1 Oscill 101
scillator
\ntegrator CPUOFF
XCAPxXPF g
I(N+1) -
10},
scel ENx g M MCLK to CPU
r L I
off
oc || oco . >
Generator Modulator MCLK to Peripherals
FLLDx £
T T DCOCLK
‘ DCOPLUS
Divider) DCO
11/2/4/8
‘ 1
DCO/D 0 1
SMCLK

FLL+ Clock Module 5-5

Figure 5-3. MSP430x47x3/4 and MSP430F471xx Frequency-Locked Loop

FLL_DIVx
Divider >
11121418 ACLK/n
f
Crystal
y ® »
OSCOFF XTS_FLL A
T | |
XIN oV _| }_T_—l
" - SCGO PUC
= Ty
LFOff
CXOUT| oV _| Enable Reset
10-hit
l l LFXT1 Oscillator Frequency CPUOFF
Y CAPXPF Integrator
/(N+1) - E
10|,
SCG1 FNx 1 ™
r L !
off
he i D(+30
Generator Modulator
FLLDx fococLk
T T ‘ DCOPLUS
i DCO
Divider <
l 11/2/4/8 SELS
1
fDCOﬂ) . Py SMCLKOFF

LV

XT20FF XT2Sx

XT2IN T T T

<7 [
XT20UT XT2 Oscillator
(supporting upto 16MHz)

5-6 FLL+ Clock Module

Figure 5-4. MSP430x41x2 Frequency-Locked Loop

FLL_DIVX
Internal | v/ ocLK T T
LP/LF
Oscillator Divider .
11121418 ACLK/n
10
LFXT1CLK c!seJ ACLK
L~
OSCOFF B | FXT1Sx
XTS_FLL "
n
XIN]
ov '—?—
ED"_ | SCGO0 PUC SELM
— v / 1 v
_ED— | Enable Reset
ov
XouT \ XT10ff L1 >+ — CPUOFF
10-bit
LFXT1 Oscillator Frequency L o
Y CAPXPE Integrator
J(N+1) >
SCG1 FNx
T % 4 10
off
oc 00
Generator Modulator
DCOPLUS
Divider foco
< SMCLKOFF
11/2/4/8
0
focom 1 SMCLK

FLL+ Clock Module 5-7

FLL+ Clock Module Operation

5.2 FLL+ Clock Module Operation

After a PUC, MCLK and SMCLK are sourced from DCOCLK at 32 times the
ACLK frequency. When a 32768-Hz crystal is used for ACLK, MCLK and
SMCLK stabilize to 1.048576 MHz.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure
the MSP430 operating modes and enable or disable components of the FLL+
clock module. See Chapter System Resets, Interrupts and Operating Modes.
The SCFQCTL, SCFIO, SCFI1, FLL_CTLO, and FLL_CTL1 registers configure
the FLL+ clock module. The FLL+ can be configured or reconfigured by
software at any time during program execution.

Example, MCLK = 64 x ACLK = 2097152

Bl C #d E, SR ; Disable interrupts

MOV. B #(64-1), &SCFQCTL ; MCLK = 64 * ACLK, DCOPLUS=0
MOV. B #FN_2, &SCFI 0 ; Sel ect DCO range

Bl S #d E, SR ; Enable interrupts

5.2.1 FLL+ Clock features for Low-Power Applications

5-8

Conflicting requirements typically exist in battery-powered MSP430x4xx
applications:

(O Low clock frequency for energy conservation and time keeping

(O High clock frequency for fast reaction to events and fast burst processing
capability

(1 Clock stability over operating temperature and supply voltage

The FLL+ clock module addresses the above conflicting requirements by
allowing the user to select from the three available clock signals: ACLK, MCLK,
and SMCLK. For optimal low-power performance, the ACLK can be
configured to oscillate with a low-power 32 786-Hz watch-crystal, providing a
stable time base for the system and low-power standby operation. The MCLK
can be configured to operate from the on-chip DCO, stabilized by the FLL, and
can activate when requested by interrupt events.

The digital frequency-locked loop provides decreased start-time and
stabilization delay over an analog phase-locked loop. A phase-locked loop
takes hundreds or thousands of clock cycles to start and stabilize. The FLL
starts immediately at its previous setting.

FLL+ Clock Module

522

FLL+ Clock Module Operation

Internal Very Low-Power, Low-Frequency Oscillator

The internal very low-power, low-frequency oscillator (VLO) provides a typical
frequency of 12kHz (see device-specific data sheet for parameters) without
requiring a crystal. VLOCLK source is selected by setting LFXT1Sx = 10 when
XTS_FLL = 0. The OSCOFF bit disables the VLO for LPM4. The LFXT1 crystal
oscillators are disabled when the VLO is selected reducing current
consumption. The VLO consumes no power when not being used.

5.2.3 LFXT1 Oscillator

The LFXT1 oscillator supports ultralow-current consumption using a
32,768-Hz watch crystal in LF mode (XTS_FLL = 0). A watch crystal connects
to XIN and XOUT without any external components.

The LFXT1 oscillator supports high-speed crystals or resonators when in HF
mode (XTS_FLL = 1). The high-speed crystal or resonator connects to XIN
and XOUT.

LFXT1 may be used with an external clock signal on the XIN pin when
XTS_FLL = 1. The input frequency range is ~1 Hz to 8 MHz. When the input
frequency is below 450 kHz, the XT1OF bit may be set to prevent the CPU from
being clocked from the external frequency.

The software-selectable XCAPXPF bits configure the internally provided load
capacitance for the LFXT1 crystal. The internal pin capacitance plus the
parasitic 2-pF pin capacitance combine serially to form the load capacitance.
The load capacitance can be selected as 1, 6, 8, or 10 pF. Additional external
capacitors can be added if necessary.

Software can disable LFXT1 by setting OSCOFF if this signal does not source
MCLK (SELM # 3 or CPUOFF =1).

Note: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up,
depending on the crystal.

Ultralow-power oscillators such as the LFXT1 in LF mode should be guarded
from noise coupling from other sources. The crystal should be placed as
close as possible to the MSP430 with the crystal housing grounded and the
crystal traces guarded with ground traces.

The default value of XCAPXPF is 0, providing a crystal load capacitance of
~1 pF. Reliable crystal operation may not be achieved unless the crystal is
provided with the proper load capacitance, either by selection of XCAPXPF
values or by external capacitors.

FLL+ Clock Module 5-9

FLL+ Clock Module Operation

5.2.4 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK
and its characteristics are identical to LFXT1 in HF mode, except XT2 does not
have internal load capacitors. The required load capacitance for the
high-frequency crystal or resonator must be provided externally.

The XT2OFF bit disables the XT2 oscillator if XT2CLK is unused for MCLK
(SELMx # 2 or CPUOFF = 1) and SMCLK (SELS = 0 or SMCLKOFF =1).

XT2 may be used with external clock signals on the XT2IN pin. When used with
an external signal, the external frequency must meet the data sheet
parameters for XT2.

If there is only one crystal in the system it should be connected to LFXT1. Using
only XT2 causes the LFOF fault flag to remain set, not allowing for the OFIFG
to ever be cleared.

XT2 Oscillator in MSP430x47x3/4 and MSP430F471xx Devices

5-10

The MSP430x47x3/4 and MSP430F471xx devices have a second crystal
oscillator (XT2) that supports crystals up to 16 MHz. XT2 sources XT2CLK.
The XT2Sx bits select the range of operation of XT2. The XT20FF bit disables
the XT2 oscillator, if XT2CLK is not used for MCLK or SMCLK as described
above.

XT2 may be used with external clock signals on the XT2IN pin when
XT2Sx = 11. When used with an external signal, the external frequency must
meet the data sheet parameters for XT2. When the input frequency is below
the specified lower limit, the XT20F bit may be set to prevent the CPU from
being clocked with XT2CLK.

If there is only one crystal with a frequency below 8 MHz in the system, it should
be connected to LFXT1. Using only XT2 causes the LFOF fault flag to remain
set, not allowing for the OFIFG to ever be cleared.

FLL+ Clock Module

FLL+ Clock Module Operation
5.2.5 Digitally Controlled Oscillator (DCO)

The DCO is an integrated ring oscillator with RC-type characteristics. The
DCO frequency is stabilized by the FLL to a multiple of ACLK as defined by
N, the lowest 7 bits of the SCFQCTL register.

The DCOPLUS bit sets the fpcocLk frequency to fpco or fpco/p- The FLLDx
bits configure the divider, D, to 1, 2, 4, or 8. By default, DCOPLUS = 0 and
D = 2, providing a clock frequency of fpco2 on fpcocLk-

The multiplier (N+1) and D set the frequency of DCOCLK.
DCOPLUS = 0: fpcocik = (N + 1) X facik
DCOPLUS = 1: fpcocik =D x (N + 1) X fac K

DCO Frequency Range

The frequency range of fpco is selected with the FNx bits as listed in
Table 5-1. The range control allows the DCO to operate near the center of the
available taps for a given DCOCLK frequency. The user must ensure that
MCLK does not exceed the maximum operating frequency. See the
device-specific data sheet for parameters.

Table 5-1. DCO Range Control Bits

FN8 FN.4 FN_3 FN_2 Typical fpco Range
0 0 0 0 0.6510 6.1
0 0 0 1 1.3t012.1
0 0 1 X 21017.9
0 1 X X 2.810 26.6
1 X X X 4210 46

5.2.6 Frequency Locked Loop (FLL)

The FLL continuously counts up or down a 10-bit frequency integrator. The
output of the frequency integrator that drives the DCO can be read in SCFI1
and SCFI0. The count is adjusted +1 or -1 with each ACLK crystal period.

Five of the integrator bits, SCFI1 bits 7-3, set the DCO frequency tap.
Twenty-nine taps are implemented for the DCO (28, 29, 30, and 31 are
equivalent), and each is approximately 10% higher than the previous. The
modulator mixes two adjacent DCO frequencies to produce fractional taps.
SCFI1 bits 2-0 and SCFIO bits 1-0 are used for the modulator.

The DCO starts at the lowest tap after a PUC or when SCFI0 and SCFI1 are
cleared. Time must be allowed for the DCO to settle on the proper tap for
normal operation. 32 ACLK cycles are required between taps requiring a worst
case of 28 x 32 ACLK cycles for the DCO to settle.

FLL+ Clock Module 5-11

FLL+ Clock Module Operation

5.2.7 DCO Modulator

The modulator mixes two adjacent DCO frequencies to produce an
intermediate effective frequency and spread the clock energy, reducing
electromagnetic interference (EMI) The modulator mixes the two adjacent
frequencies across 32 DCOCLK clock cycles.

The error of the effective frequency is zero every 32 DCOCLK cycles and does
not accumulate. The modulator settings and DCO control are automatically
controlled by the FLL hardware. Figure 5-5 illustrates the modulator
operation.

Figure 5-5. Modulator Patterns

Npcomod

L
e e I e Y s e e e e I
Hplipigipipipipipipipipipipipipinhl

31

24

16

15

Lower DCO Tap Frequency fpco - Upper DCO Tap Frequency fpco+1

v

fiococLk) Cycles, Shown for f(DCOCLK)=f(ACLK) x 32
One ACLK Cycle

A

v

5-12 FLL+ Clock Module

FLL Operation from Low-Power Modes

5.2.8 Disabling the FLL Hardware and Modulator

The FLL is disabled when the status register bit SCG0O = 1. When the FLL is
disabled, the DCO runs at the previously selected tap and DCOCLK is not
automatically stabilized.

The DCO modulator is disabled when SCFQ_M = 1. When the DCO modulator
is disabled, the DCOCLK is adjusted to the nearest of the available DCO taps.

5.2.9 FLL Operation from Low-Power Modes

An interrupt service request clears SCG1, CPUOFF, and OSCOFF if set but
does not clear SCGO. This means that FLL operation from within an interrupt
service routine entered from LPM1, 3, or 4, the FLL remains disabled and the
DCO operates at the previous setting as defined in SCFIO and SCFI1. SCGO
can be cleared by user software if FLL operation is required.

5.2.10 Buffered Clock Output

ACLK may be divided by 1, 2, 4, or 8 and buffered out of the device on P1.5.
The division rate is selected with the FLL_DIV bits.

The ACLK output is multiplexed with other pin functions. When multiplexed,

the pin must be configured for the ACLK output.

Bl S. B #BI T5, &P1SEL ; Select ACLK/ n signal as

; output for port PL.5

Bl S. B #BI T5, &1DI R ; Select port P1.5 to ACLK/n
; signal for output

FLL+ Clock Module 5-13

Buffered Clock Output

5.2.11 FLL+ Fail-Safe Operation

The FLL+ module incorporates an oscillator-fault fail-safe feature. This feature
detects an oscillator fault for LFXT1, DCO and XT2 as shown in Figure 5-6.
The available fault conditions are:

[Low-frequency oscillator fault (LFOF) for LFXT1 in LF mode
4 High-frequency oscillator fault (XT1OF) for LFXT1 in HF mode
(O High-frequency oscillator fault (XT20F) for XT2

(1 DCO fault flag (DCOF) for the DCO

The crystal oscillator fault bits LFOF, XT10OF and XT20F are set if the
corresponding crystal oscillator is turned on and not operating properly. The
fault bits remain set as long as the fault condition exists and are automatically
cleared if the enabled oscillators function normally. During a LFXT1crystal
failure, no ACLK signal is generated and the FLL+ continues to count down to
zero in an attempt to lock ACLK and MCLK/(Dx[N+1]). The DCO tap moves
to the lowest position (SCFI1.7 to SCFI1.3 are cleared) and the DCOF is set.
A DCOF is also generated if the N-multiplier value is set too high for the
selected DCO frequency range resulting the DCO tap to move to the highest
position (SCFI1.7 to SCFI1.3 are set). The DCOF is cleared automatically if
the DCO tap is not in the lowest or the highest positions.

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when an
oscillator fault (LFOF, XT10F, XT20F, or DCOF set) is detected. When OFIFG
is set, MCLK is sourced from the DCO, and if OFIE is set, the OFIFG requests
an NMI interrupt. When the interrupt is granted, the OFIE is reset
automatically. The OFIFG flag must be cleared by software. The source of the
fault can be identified by checking the individual fault bits.

When OFIFG is set and MCLK is automatically switched to the DCO, the
SELMx bit settings are not changed. This condition must be handled by user
software.

Note: DCO Active During Oscillator Fault

DCOCLK is active even at the lowest DCO tap. The clock signal is available
for the CPU to execute code and service an NMI during an oscillator fault.

Figure 5-6. Oscillator Fault Logic

- Oscillator Fault - ----------------------=~

I
DCO Fault DCOF :
I
LF_OscFault — LFOF :
T »
XT10F :
XT1_OscFault — '
XT20F :

XT2_OscFault

5-14 FLL+ Clock Module

5.3 FLL+ Clock Module Registers

The FLL+ registers are listed in Table 5-2.

Table 5-2. FLL+ Registers

FLL+ Clock Module Registers

Register Short Form Register Type Address Initial State
System clock control SCFQCTL Read/write 052h 01Fh with PUC
System clock frequency integrator 0 SCFI0 Read/write 050h 040h with PUC
System clock frequency integrator 1 SCFI1 Read/write 051h Reset with PUC
FLL+ control register O FLL_CTLO Read/write 053h 003h with PUC
FLL+ control register 1 FLL_CTL1 Read/write 054h Reset with PUC
FLL+ control register 2T FLL_CTL2 Read/write 055h Reset with PUC
SFR interrupt enable register 1 IE1 Read/write 000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 002h Reset with PUC

T MSP430F41x2, MSP430F47x3/4, and MSP430F471xx devices only.

FLL+ Clock Module 5-15

FLL+ Clock Module Registers

SCFQCTL, System Clock Control Register

7 6 5 4 3 2 1 0
SCFQ_M N
rw-0 rw-0 rw-0 rw-1 rw-1 rw-1 rw-1 rw-1

SCFQ_M Bit 7 Modulation. This enables or disables modulation.
0 Modulation enabled
1 Modulation disabled

N Bits Multiplier. These bits set the multiplier value for the DCO. N must be > 0 or
6-0 unpredictable operation results.
When DCOPLUS = 0: fpcoctk = (N + 1) - fcrystal
When DCOPLUS = 1: fDCOCLK =D X (N + 1) . fcrystal

SCFIQ, System Clock Frequency Integrator Register 0

7 6 5 4 3 2 1 0
FLLDx FN_x MODx (LSBs)
rw-0 rw-1 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
FLLDx Bits FLL+ loop divider. These bits divide fpcocLk in the FLL+ feedback loop.
7-6 This results in an additional multiplier for the multiplier bits. See also
multiplier bits.
00 1
01 /2
10 /4
11 /8
FN_x Bits DCO range control. These bits select the fpco operating range.
5-2 0000 0.65to0 6.1 MHz

0001 1.3to 12.1 MHz
001x 2to 17.9 MHz
01xx 2.81t0 26.6 MHz
Ixxx 4.2 to 46 MHz

MODx Bits Least significant modulator bits. Bit O is the modulator LSB. These bits
1-0 affect the modulator pattern. All MODx bits are modified automatically by
the FLL+.

5-16 FLL+ Clock Module

SCFI1, System Clock Frequency Integrator Register 1

FLL+ Clock Module Registers

7 6 5 4 3 2 1 0
DCOx MODx (MSBs)
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
DCOx Bits These bits select the DCO tap and are modified automatically by the FLL+.
7-3
MODx Bit 2 Most significant modulator bits. Bit 2 is the modulator MSB. These bits

affect the modulator pattern. All MODx bits are modified automatically by

the FLL+.

FLL+ Clock Module

5-17

FLL+ Clock Module Registers

FLL_CTLO, FLL+ Control Register 0

7 6 5 4 3 2 1 0
DCOPLUS XTS_FLL XCAPXPF XT20Ff XT10F LFOF DCOF
rw-0 rw-0 rw-0 rw-0 r-0 r-0 r—-(1) r-1

T Not present in MSP430x41x, MSP430x42x devices

DCOPLUS

XTS_FLL

XCAPXPF

XT20F

XT10F

LFOF

DCOF

Bit 7

Bit 6

Bits
5-4

Bit 3

Bit 2

Bit 1

Bit O

DCO output pre-divider. This bit selects if the DCO output is pre-divided
before sourcing MCLK or SMCLK. The division rate is selected with the
FLL_D bits

0 DCO output is divided

1 DCO output is not divided

LFTX1 mode select
0 Low frequency mode
1 High frequency mode

Oscillator capacitor selection. These bits select the effective capacitance
seen by the LFXTL1 crystal or resonator. Should be set to 00 if the
high-frequency mode is selected for LFXT1 with XTS_FLL = 1.

00 ~1pF
01 -~6pF
10 -~8pF
11 ~10pF

XT2 oscillator fault. Not present in MSP430x41x, and MSP430x42x
devices.

0 No fault condition present

1 Fault condition present

LFXT1 high-frequency oscillator fault
0 No fault condition present
1 Fault condition present

LFXT1 low-frequency oscillator fault
0 No fault condition present
1 Fault condition present

DCO oscillator fault
0 No fault condition present
1 Fault condition present

5-18 FLL+ Clock Module

FLL+ Clock Module Registers

FLL_CTL1, FLL+ Control Register 1

7 6 5 4 3 2 1 0
LFXTIDIGH | SMCLK XT20FFt SELMxT SELST FLL_DIVx
rw-0 rw-0 rw—(1) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

T Not present in MSP430x41x, MSP430x42x devices except MSP430F41x2.
* Only supported by MSP430xG46x, MSP430FGA47x, MSP430F47x, MSP430x47x3/4, and MSP430F471xx devices. Otherwise

unused.

LFXT1DIG

SMCLKOFF

XT20FF

SELMx

SELS

FLL_DIVx

Bit 7

Bit 6

Bit 5

Bits
4-3

Bit 2

Bits
1-0

Select digital external clock source. This bit enables the input of an
external digital clock signal on XIN in low-frequency mode (XTS_FLL = 0).
Only supported in MSP430xG46x, MSP430FG47x, MSP430F47x,
MSP430x47x3/4, and MSP430F471xx devices.

0 Crystal input selected

1 Digital clock input selected

SMCLK off. This bit turns off SMCLK. Not present in MSP430x41x and
MSPx42x devices.
0 SMCLK is on
1 SMCLK is off

XT2 off. This bit turns off the XT2 oscillator. Not present in MSP430x41x
and MSPx42x devices.

0 XT2is on

1 XT2is off if it is not used for MCLK or SMCLK

Select MCLK. These bits select the MCLK source. Not present in
MSP430x41x and MSP430x42x devices except MSP430F41x2.
00 DCOCLK

01 DCOCLK

10 XT2CLK

11 LFXT1iCLK

In the MSP430F41x2 devices:

00 DCOCLK

01 DCOCLK

10 LFXT1CLK or VLO

11 LFXT1iCLK or VLO

Select SMCLK. This bit selects the SMCLK source. Not present in
MSP430x41x and MSP430x42x devices.

0 DCOCLK
1 XT2CLK
ACLK divider
00 Nn

o1 /2

10 /4

11 /8

FLL+ Clock Module 5-19

FLL+ Clock Module Registers

FLL_CTL2, FLL+ Control Register 2
(MSP430x47x3/4, and MSP430F471xx devices only)

7 6 5 4 3 2 1 0
XT2Sx Reserved
rw-0 rw-0 r0 ro ro r0 ro ro
XT2Sx Bits XT2 range select. These bits select the frequency range for XT2.
7-6 00 0.4 to 1-MHz crystal or resonator
01 1 to 3-MHz crystal or resonator
10 3 to 16-MHz crystal or resonator
11 Digital external 0.4 to 16-MHz clock source
Reserved Bits Reserved.
5-0
FLL_CTLZ2, FLL+ Control Register 2
(MSP430F41x2 devices only)
7 6 5 4 3 2 1 0
Reserved LFXT1Sx Reserved
ro r0 rw-0 rw-0 ro r0 ro ro
Reserved Bits Reserved.
7-6
LFXT1Sx Bits Low-frequency clock select and LFXT1 range select. These bits select

5-4 between LFXT1 and VLO when XTS_FLL =0.

When XTS_FLL =0:

00 32768-Hz crystal on LFXT1

01 Reserved

10 VLOCLK

11 Digital external clock source

When XTS_FLL = 1:

00 Reserved

01 Reserved

10 Reserved
11 Reserved
Reserved Bits Reserved.

3-0

5-20 FLL+ Clock Module

FLL+ Clock Module Registers

IEL, Interrupt Enable Register 1

6 5 4 3 2 1 0
OFIE
rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-2
OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using Bl S. B or Bl C. B instructions, rather than MOV. B
or CLR. Binstructions.
0 Interrupt not enabled
1 Interrupt enabled
Bits 0 This bit may be used by other modules. See device-specific data sheet.

FLL+ Clock Module 5-21

FLL+ Clock Module Registers

IFG1, Interrupt Flag Register 1

6 5 4 3 2 1 0
OFIFG
rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-2
OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other
modules, it is recommended to set or clear this bit using Bl S. B or Bl C. B
instructions, rather than MOV. B or CLR. B instructions.
0 No interrupt pending
1 Interrupt pending
Bits 0 This bit may be used by other modules. See device-specific data sheet.
5-22 FLL+ Clock Module

Chapter 6

Flash Memory Controller

This chapter describes the operation of the MSP430 flash memory controller.

Topic Page
6.1 Flash Memory Introduction o iiiiiiiiininan. 6-2
6.2 Flash Memory Segmentation 6-4
6.3 Flash Memory Operation it 6-6
6.4 Flash Memory Registerst 6-21

6-1

Flash Memory Introduction

6.1 Flash Memory Introduction

The MSP430 flash memory is bit-, byte-, and word-addressable and
programmable. The flash memory module has an integrated controller that
controls programming and erase operations. The controller has three or four
registers (see the device-specific data sheet), a timing generator, and a
voltage generator to supply program and erase voltages.

MSP430 flash memory features include:

[Internal programming voltage generation
(1 Bit, byte, or word programmable

[Ultralow-power operation

[d Segment erase and mass erase

U

Marginal 0 and marginal 1 read mode (implemented in MSP430FG47x,
MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices only (see
the device-specific data sheet).

The block diagram of the flash memory and controller is shown in Figure 6-1.

Note: Minimum V¢ During Flash Write or Erase

The minimum V¢ voltage during a flash write or erase operation is between
2.2V and 2.7 V (see the device-specific data sheet). If V¢ falls below the
minimum V¢ during a write or erase, the result of the write or erase is
unpredictable.

6-2 Flash Memory Controller

Flash Memory Introduction

Figure 6-1. Flash Memory Module Block Diagram

i MAB — {T
L Jdc Iz 3

FCTL1 » Address Latch

i; i; B Data Latch
FCTL2 Enable
Address

l L i E Latch
FCTL3
Flash Flash
Timing Memory Memory
t T
Generator Enable Array 1 Array 2
Data Latch
v
Programming
Voltage
Generator

T MSP430FG461x devices only

Flash Memory Controller 6-3

Flash Memory Segmentation

6.2 Flash Memory Segmentation

MSP430FG461x devices have two flash memory arrays. Other MSP430x4xx
devices have one flash array. All flash memory is partitioned into segments.
Single bits, bytes, or words can be written to flash memory, but the segment
is the smallest size of flash memory that can be erased.

The flash memory is partitioned into main and information memory sections.
There is no difference in the operation of the main and information memory
sections. Code or data can be located in either section. The differences
between the two sections are the segment size and the physical addresses.

The information memory has four 64-byte segments on the MSP430FG47x,
MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices or two
128-byte segments on all other MSP430x4xx devices. The main memory has
two or more 512-byte segments. See the device-specific data sheet for the
complete memory map of a device.

The segments are further divided into blocks.

Figure 6-2 shows the flash segmentation using an example of 4-KB flash that
has eight main segments and two information segments.

Figure 6-2. Flash Memory Segments, 4-KB Example

FFFFh

FO0Ooh
10FFh

1000h

6-4

4 KB + 256 byte

xxFFh
FFFFh Segment0 Block
4-Kbyte FEOOh xxCOh
Flash FDFFh B Block
Main Memory ECO0h Segmentl xx80h
XX7Fh
Segment2 xx40h Block
256-byte xx3Fh Block
Flash Segment3 xx00h oc
Information Memory|
Segment4
Segment5
Segment6
FO0Oh Segment7
10FFh
SegmentA
1000h SegmentB

Flash Memory Controller

Flash Memory Segmentation

6.2.1 SegmentA on MSP430FG47x, MSP430F47x, MSP430F47x3/4, and
MSP430F471xx Devices

On MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx
devices, SegmentA of the information memory is locked separately from all
other segments with the LOCKA bit. When LOCKA = 1, SegmentA cannot be
written or erased and all information memory is protected from erasure during
a mass erase or production programming. When LOCKA = 0, SegmentA can
be erased and written as any other flash memory segment, and all information
memory is erased during a mass erase or production programming.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to
LOCKA has no effect. This allows existing flash programming routines to be
used unchanged.

; Unl ock Segnent A

BIT #LOCKA, &FCTL3 ; Test LOCKA

Jz SEGA_UNLCOCKED ; Al ready unl ocked?

MoV #FWKEY+LOCKA, &FCTL3 ; No, unlock Segnment A
SEGA_UNLOCKED ; Yes, continue

; Segment A i s unl ocked

; Lock Segnent A

BIT #LOCKA, &FCTL3 ; Test LOCKA

INZ SEGALCOCKED ; Already | ocked?

0. #FWKEY+LOCKA, &FCTL3 ; No, |ock SegnentA
SEGA LOCKED ;. Yes, continue

; SegnmentA is | ocked

Flash Memory Controller 6-5

Flash Memory Operation

6.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash
memory is not being erased or written, the flash timing generator and voltage
generator are off, and the memory operates identically to ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for
additional external voltage. The CPU can program its own flash memory. The
flash memory write/erase modes are selected with the BLKWRT, WRT,
GMERAS, MERAS, and ERASE bits and are:

[Byte/word write
Block write
Segment erase

Mass erase (all main memory segments)

U o o o

All erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is
prohibited. If CPU execution is required during the write or erase, the code to
be executed must be in RAM. Any flash update can be initiated from within
flash memory or RAM.

6.3.1 Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown
in Figure 6-3. The flash timing generator operating frequency, frrg, must be
in the range from ~ 257 kHz to ~ 476 kHz (see device-specific data sheet).

Figure 6-3. Flash Memory Timing Generator Block Diagram

6-6

ACLK
MCLK
SMCLK
SMCLK

FSSELXx
ENG weeeeeeees FNO PUC EMEX
00 T T T T
01 fere) Reset
10 Divider, 1-64
Flash Timing Generator
11

\

BUSY WAIT

The flash timing generator can be sourced from ACLK, SMCLK, or MCLK. The
selected clock source should be divided using the FNx bits to meet the
frequency requirements for ferg. If the ferg frequency deviates from the
specification during the write or erase operation, the result of the write or erase
may be unpredictable, or the flash memory may be stressed above the limits
of reliable operation.

Flash Memory Controller

Flash Memory Operation

6.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from
1 to 0 individually but to reprogram from 0 to 1 requires an erase cycle. The
smallest amount of flash that can be erased is a segment. Erase modes are
selected with the GMERAS (MSP430FG461x devices), MERAS, and ERASE
bits listed in Table 6-1, Table 6-2, and Table 6-3.

Table 6-1. MSP430FG461x Erase Modes

GMERAS MERAS ERASE Erase Mode
X 0 1 Segment erase
0 1 0 Mass erase (all main memory segments of

selected memory array)

0 1 1 Erase all flash memory (main and
information segments of selected memory
array)

1 1 0 Global mass erase (all main memory

segments of both memory arrays)

1 1 1 Erase main memory and information
segments of both memory arrays

Table 6-2. MSP430FG47x, MSP430F47x, MSP430F47x3/4, and F471xx Erase Modes

MERAS ERASE Erase Mode
0 1 Segment erase
1 0 Mass erase (all main memory segments)
1 1 LOCKA = 0: Erase main and information flash memory.

LOCKA = 1: Erase only main flash memory.

Table 6-3. Erase Modes

MERAS ERASE Erase Mode
0 1 Segment erase
1 0 Mass erase (all main memory segments)
1 1 Erase all flash memory (main and information segments)

Any erase is initiated by a dummy write into the address range to be erased.
The dummy write starts the flash timing generator and the erase operation.
Figure 6-4 shows the erase cycle timing. The BUSY bit is set immediately after
the dummy write and remains set throughout the erase cycle. BUSY, GMERAS
(when present), MERAS, and ERASE are automatically cleared when the
cycle completes. The erase cycle timing is not dependent on the amount of
flash memory present on a device. Erase cycle times are device-specific (see
the device-specific data sheet).

Flash Memory Controller 6-7

Flash Memory Operation

Figure 6-4. Erase Cycle Timing

I [I |
' Erase Operation Active

1
Generate Remove
Programming Voltage Programming \|/oltage
|

| Erase Time, V¢ Current Consumption is Increased

I
>
I
| |
BUSY . o
l tMass Erase, Iseg Erase, O tGlobal Mass Erase (S€€ device-specific data sheet) I

A dummy write to an address not in the range to be erased does not start the
erase cycle, does not affect the flash memory, and is not flagged in any way.
This errant dummy write is ignored.

6-8 Flash Memory Controller

Flash Memory Operation

Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated from within flash memory or from RAM. When
a flash segment erase operation is initiated from within flash memory, all timing
is controlled by the flash controller, and the CPU is held while the erase cycle
completes. After the erase cycle completes, the CPU resumes code execution
with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase
the code needed for execution after the erase. If this occurs, CPU execution
is unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 6-5.

Figure 6-5. Erase Cycle from Within Flash Memory

Disable watchdog

v

Setup flash controller and erase
mode

v

Dummy write

v

Set LOCK=1, re-enable watchdog

; Segnent Erase fromflash. 514 kHz < SMCLK < 952 kHz
;. Assunmes ACCVIE = NMIE = OFIE = 0.
MoV #WDTPWHWDTHOLD, &WDTCTL ; Disable WOT
MoV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/ 2
MoV #FWKEY, &FCTL3 ; Clear LOCK
MoV #FWKEY+ERASE, &FCTL1 ; Enabl e segnment erase
CLR &0FC10h ; Dummy wite, erase Sl
MOV #FWKEY+LOCK, &FCTL3 ; Done, set LOCK
; Re-enabl e WDT?

Flash Memory Controller 6-9

Flash Memory Operation

Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held
and can continue to execute code from RAM. The BUSY bit must be polled to
determine the end of the erase cycle before the CPU can access any flash
address again. If a flash access occurs while BUSY = 1, it is an access
violation, ACCVIFG is set, and the erase results are unpredictable.

The flow to initiate an erase from RAM is shown in Figure 6-6.

Figure 6-6. Erase Cycle from Within RAM

6-10

Disable watchdog

Setup flash controller and
erase mode

Dummy write

R

Set LOCK =1, re-enable
watchdog

; Segnent Erase from RAM 514 kHz < SMCLK < 952 kHz

; Assunmes ACCVIE = NMIE = OFIE = 0.

MoV #WDTPWWDTHOLD, &ADTCTL
L1 BIT #BUSY, &FCTL3
JINZ L1

MoV #FWKEY+FSSEL1+FNO, &FCTL2 ;

MoV #FVWKEY, &CTL3
MoV #FWKEY+ERASE, &FCTL1
CLR &0FC10h
L2 BIT #BUSY, &FCTL3
INZ L2
MoV #FVWKEY+LOCK, &FCTL3

Flash Memory Controller

Di sabl e VDT
Test BUSY

Loop whil e busy
SMCLK/ 2

d ear LOCK
Enabl e erase
Dumy wite, erase Sl
Test BUSY

Loop whil e busy
Done, set LOCK
Re- enabl e WDT?

Flash Memory Operation

6.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in
Table 6-4.

Table 6-4. Write Modes

BLKWRT WRT Write Mode
0 1 Byte/word write
1 1 Block write

Both write modes use a sequence of individual write instructions, but using the
block write mode is approximately twice as fast as byte/word mode, because
the voltage generator remains on for the complete block write. Any instruction
that modifies a destination can be used to modify a flash location in either
byte/word mode or block-write mode. A flash word (low + high byte) must not
be written more than twice between erasures. Otherwise, damage can occur.

The BUSY bit is set while a write operation is active and cleared when the
operation completes. If the write operation is initiated from RAM, the CPU must
not access flash while BUSY = 1. Otherwise, an access violation occurs,
ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from
RAM. When initiating from within flash memory, all timing is controlled by the
flash controller, and the CPU is held while the write completes. After the write
completes, the CPU resumes code execution with the instruction following the
write. The byte/word write timing is shown in Figure 6-7.

Figure 6-7. Byte/Word Write Timing
</ [/
] 3

Programming Operation Active

Generate Rem_ove
Programming Voltage Programming Voltage
|

| <
|‘

Programming Time, V¢ Current Consumption is Increased

I___V___

|
BUSY . o
_I tword (see device-specific data sheet)

When a byte/word write is executed from RAM, the CPU continues to execute
code from RAM. The BUSY bit must be zero before the CPU accesses flash
again, otherwise an access violation occurs, ACCVIFG is set, and the write
result is unpredictable.

Flash Memory Controller 6-11

Flash Memory Operation

In byte/word mode, the internally generated programming voltage is applied
to the complete 64-byte block each time a byte or word is written for tworp
minus threefgrg cycles. With each byte or word write, the amount of time the
block is subjected to the programming voltage accumulates. The cumulative
programming time, tcpt must not be exceeded for any block. If the cumulative
programming time is met, the block must be erased before performing any
further writes to any address within the block. See the device-specific data
sheet for specifications.

Initiating a Byte/Word Write from Within Flash Memory

The flow to initiate a byte/word write from flash is shown in Figure 6-8.

Figure 6-8. Initiating a Byte/Word Write from Flash

Disable watchdog

v

Setup flash controller
and set WRT=1

v

Write byte or word

v

Set WRT=0, LOCK=1,
re-enable watchdog

; Byte/word wite fromflash. 514 kHz < SMCLK < 952 kHz
; Assunes OFF1Eh is already erased
; Assumes ACCVIE = NMIE = OFIE = 0.

MoV #WDTPW-WDTHOLD, &NDTCTL ; Di sable WOT

MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/ 2

MOV #FWKEY, &FCTL3 ; O ear LOCK

MOV #FWKEY+WRT, &FCTL1 ; Enable wite

MOV #0123h, &0FF1Eh ; 0123h —> OFF1Eh
MOV #FVWKEY, &FCTL1 ; Done. dear WRT
MOV #FWKEY+LOCK, &FCTL3 ; Set LOCK

;. Re-enabl e WDT?

6-12 Flash Memory Controller

Initiating a Byte/Word Write from RAM

Flash Memory Operation

The flow to initiate a byte/word write from RAM is shown in Figure 6-9.

Figure 6-9. Initiating a Byte/Word Write from RAM

Disable watchdog

e

Setup flash controller
and set WRT=1

Write byte or word

o

Set WRT=0, LOCK =1
re-enable watchdog

)
1

L1

L2

Byte/word wite from RAM 514 kHz
Assunes OFF1Eh is already erased

Assunmes ACCVI E =

MOV
BIT

JNZ

#BUSY, &FCTL3
L1

NMIE = OFIE = 0.
#WOTPWHWDTHCOLD, &WDTCTL

)

#FWKEY+FSSEL1+FNO, &FCTL2

#FVWKEY, &FCTL3
#FVWKEY+WRT, &FCTL1
#0123h, &0FF1Eh
#BUSY, &FCTL3

L2

#FVWKEY, &FCTL1
#FWKEY+LOCK, &FCTL3

Flash Memory Controller

< SMCLK < 952 kHz

Di sabl e WOT
Test BUSY

Loop whil e busy
SMCLK/ 2

Cl ear LOCK
Enable wite
0123h —-> OFF1Eh
Test BUSY

Loop whil e busy
Cl ear WRT

Set LOCK

Re- enabl e WDT?

6-13

Flash Memory Operation

Block Write

The block write can be used to accelerate the flash write process when many
sequential bytes or words need to be programmed. The flash programming
voltage remains on for the duration of writing the 64-byte block. The
cumulative programming time tcpt must not be exceeded for any block during
a block write.

A block write cannot be initiated from within flash memory. The block write
must be initiated from RAM only. The BUSY bit remains set throughout the
duration of the block write. The WAIT bit must be checked between writing
each byte or word in the block. When WAIT is set the next byte or word of the
block can be written. When writing successive blocks, the BLKWRT bit must
be cleared after the current block is complete. BLKWRT can be set initiating
the next block write after the required flash recovery time given by tg,q. BUSY
is cleared following each block write completion indicating the next block can
be written. Figure 6-10 shows the block write timing; see device-specific data
sheet for specifications.

Figure 6-10. Block-Write Cycle Timing

BLKWRT bit

_

Write to Flash e.g., MOV #123h, &Fl ash

¢ v

Y Y)
- ~ = ~/ |

[T] I ;|< 14

Programming Operation Active , | Remove

i i i ! Programming Voltage
I

| I I

| |

I I
I I
Cumulative Programming Tirlne tcpT ~=< 10ms, Ve Clurre!:nt Consumption is Increa!sed
| |
T T
I I
I I
I I

< >
“Generate

Programming Voltage
|

|A

v_

L |,

BUSY - 57! T
all] |

| | |

| |

|
| |
tBlock, 0 A tBlock 1-63 " tBlock, 1-63 {Block, End

WAIT |« > < <

i
14e

77

6-14 Flash Memory Controller

Flash Memory Operation

Block Write Flow and Example

A block write flow is shown in Figure 6-11 and in the following example.

Figure 6-11. Block Write Flow

Disable watchdog

Setup flash controller

>

A 4

Set BLKWRT=WRT=1

>

A

Write byte or word

Block Border?

Set BLKWRT=0

Set WRT=0, LOCK=1
re-enable WDT

Flash Memory Controller 6-15

Flash Memory Operation

; Wite one block starting at OFO0Oh.

; Must be executed from RAM Assunmes Flash is already erased.
; 514 kHz < SMCLK < 952 kHz

: Assunes ACCVIE = NMIE = OFIE = 0.

MoV #32, R5 ; Use as wite counter
MoV #0F000h, R6 ; Wite pointer
MOV #WDTPWHWDTHOLD, &WDTCTL ; Disable WDT
L1 BIT #BUSY, &FCTL3 ; Test BUSY
JNz L1 ; Loop while busy
MoV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/ 2
MOV #FWKEY, &FCTL3 ; Clear LOCK
MOV #FWKEY+BLKWRT+WRT, &FCTL1 ; Enabl e block wite
L2 MV Wite_Val ue, O(R6) ;. Wite location
L3 BIT #WAI T, &FCTL3 ; Test WAIT
JZ L3 ; Loop while WAIT=0
INCD R6 ; Point to next word
DEC R5 : Decrenent wite counter
JINZ L2 ;. End of bl ock?
MOV #FWKEY, &FCTL1 ; O ear WRT, BLKWRT
L4 BIT #BUSY, &FCTL3 ; Test BUSY
INZ L4 ; Loop while busy
MOV #FWKEY+LOCK, &FCTL3 ; Set LOCK

: Re-enable WDOT if needed

6-16 Flash Memory Controller

Flash Memory Operation

6.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while
BUSY =1, the CPU may not read or write to or from any flash location.
Otherwise, an access violation occurs, ACCVIFG is set, and the result is
unpredictable. Also if a write to flash is attempted with WRT = 0, the ACCVIFG
interrupt flag is set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash
memory, the flash controller returns op-code 03FFFh to the CPU at the next
instruction fetch. Op-code 03FFFh is the JMP PCinstruction. This causes the
CPU to loop until the flash operation is finished. When the operation is finished
and BUSY = 0, the flash controller allows the CPU to fetch the proper op-code
and program execution resumes.

The flash access conditions while BUSY=1 are listed in Table 6-5.

Table 6-5.Flash Access While BUSY =1

Flash Flash WAIT Result
Operation Access
Read 0 ACCVIFG = 0. 03FFFh is the value read
Any erase or Write 0 ACCVIFG = 1. Write is ignored
byte/word write | i ction 0 ACCVIFG = 0. CPU fetches 03FFFh. This
fetch is the JIMP PC instruction.
Any 0 ACCVIFG=1,LOCK=1
Read 1 ACCVIFG = 0, 03FFFh is the value read
Block write Write 1 ACCVIFG = 0, Flash is written
Instruction 1 ACCVIFG=1,LOCK=1
fetch

Interrupts are automatically disabled during any flash operation on F47x3/4
and F471xx devices when EEI = 0 and EEIEX = 0 and on all other devices
where EEI and EEIEX are not present. After the flash operation has
completed, interrupts are automatically re-enabled. Any interrupt that
occurred during the operation will have its associated flag set and will generate
an interrupt request when re-enabled.

On F47x3/4 and F471xx devices when EEIEX =1 and GIE = 1, an interrupt
will immediately abort any flash operation and the FAIL flag will be set. When
EEl =1, GIE = 1, and EEIEX = 0, a segment erase will be interrupted by a
pending interrupt every 32 fgerg cycles. After servicing the interrupt, the
segment erase is continued for at least 32 ferg cycles or until it is complete.
During the servicing of the interrupt, the BUSY bit remains set, but the flash
memory can be accessed by the CPU without causing an access violation.
Nested interrupts are not supported, because the RETI instruction is decoded
to detect the return from interrupt.

The watchdog timer (in watchdog mode) should be disabled before a flash
erase cycle. A reset aborts the erase and the result is unpredictable. After the
erase cycle has completed, the watchdog may be re-enabled.

Flash Memory Controller 6-17

Flash Memory Operation

6.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by
setting the emergency exit bit EMEX. Setting the EMEX bit stops the active
operation immediately and stops the flash controller. All flash operations
cease, the flash returns to read mode, and all bits in the FCTL1 register are
reset. The result of the intended operation is unpredictable.

6.3.6 Marginal Read Mode

The marginal read mode can be used to verify the integrity of the flash memory
contents. This feature is implemented in MSP430FG47x, MSP430F47x,
MSP430F47x3/4, and MSP430F471xx devices; see the device-specific data
sheet for availability. During marginal read mode, the presence of an
insufficiently programmed flash memory bit location can be detected. Events
that could produce this situation include improper ferg settings, violation of
minimum V¢ during erase/program operations, and data retention
end-of-life. One method for identifying such memory locations would be to
periodically perform a checksum calculation over a section of flash memory
(for example, a flash segment) and then to repeat this procedure with the
marginal read mode enabled. If they do not match, it could indicate an
insufficiently programmed flash memory location. It is possible to refresh the
affected flash memory segment by disabling marginal read mode, copying to
RAM, erasing the flash segment, and copying back from RAM to flash.

The program checking the flash memory contents must be executed from
RAM. Executing code from flash automatically disables the marginal read
mode. The marginal read modes are controlled by the MRG0 and MRGL1 bits.
Setting MRG1 is used to detect insufficiently programmed flash cells
containing a “1“ (erased bits). Setting MRGO is used to detect insufficiently
programmed flash cells containing a “0" (programmed bits). Only one of these
bits should be set at a time. Therefore, a full marginal read check requires two
passes of checking the flash memory content’s integrity. During marginal read
mode, the flash access speed must be limited to 1 MHz (see device-specific
data sheet).

6.3.7 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit password-protected read/write registers. Any
read or write access must use word instructions and write accesses must
include the write password OA5h in the upper byte. Any write to any FCTLx
register with any value other than 0A5h in the upper byte is a security key
violation, sets the KEYV flag, and triggers a PUC system reset. Any read of any
FCTLx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access
violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode
when WAIT = 1, but writing to FCTLL1 in block write mode when WAIT =0 is
an access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY = 1 is an access violation.

Any FCTLXx register may be read when BUSY = 1. A read does not cause an
access violation.

6-18 Flash Memory Controller

Flash Memory Operation

6.3.8 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV and ACCVIFG.
ACCVIFG is set when an access violation occurs. When the ACCVIE bit is
re-enabled after a flash write or erase, a set ACCVIFG flag generates an
interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not
necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG
may also be checked by software to determine if an access violation occurred.
ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are
written with an incorrect password. When this occurs, a PUC is generated,
immediately resetting the device.

6.3.9 Programming Flash Memory Devices

Programming Flash

Programming Flash

There are three options for programming an MSP430 flash device. All options
support in-system programming:

(g Program via JTAG
(1 Program via the bootstrap loader

(1 Program via a custom solution

Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface
requires four signals, ground, and optionally Vcc and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables
the JTAG port and is not reversible. Further access to the device via JTAG is
not possible For more details see the application report Programming a
Flash-Based MSP430 Using the JTAG Interface (SLAA149) at
www.ti.com/msp430.

Memory via the Bootstrap Loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables
users to read or program the flash memory or RAM using a UART serial
interface. Access to the MSP430 flash memory via the BSL is protected by a
256-bit, user-defined password. For more details see the application report
Features of the MSP430 Bootstrap Loader (SLAA089) at
www.ti.com/msp430.

Flash Memory Controller 6-19

Flash Memory Operation

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for
in-system and external custom programming solutions as shown in
Figure 6-12. The user can choose to provide data to the MSP430 through any
means available (UART, SPI, etc.). User-developed software can receive the
data and program the flash memory. Because this type of solution is developed
by the user, it can be completely customized to fit the application needs for
programming, erasing, or updating the flash memory.

Figure 6-12. User-Developed Programming Solution

Flash Memory
Commands, data, etc.

UART,

Host 7~ MspPa30 | Pxx, — CPU executes |—P»
<4{ SPl. |4 user software j——

etc.

6-20

Read/write flash memory

Flash Memory Controller

6.4 Flash Memory Registers

The flash memory registers are listed in Table 6-6.

Table 6-6. Flash Memory Registers

Flash Memory Registers

Register Short Form Register Type Address Initial State

Flash memory control register 1 FCTL1 Read/write 0128h 09600h with PUC
Flash memory control register 2 FCTL2 Read/write 012Ah 09642h with PUC
Flash memory control register 3 FCTL3 Read/write 012Ch 09618h' with PUC
Flash memory control register 4+ FCTL4 Read/write 01BEh 0000h with PUC
Interrupt enable 1 IE1 Read/write 000h Reset with PUC

T 09658h in MSP430FGA47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices
+ MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices only

Flash Memory Controller 6-21

Flash Memory Registers

FCTL1, Flash Memory Control Register

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0
t
BLKWRT WRT Reserved EEIEX? GMEESf‘S MERAS ERASE Reserved
rw-0 rw-0 r0 ro rw-0 rw-0 rw-0 ro

T MSP430FG461x devices only. Reserved with r0 access on all other devices.
* F47x3/4 and F471xx devices only. Reserved with r0 access on all other devices.

FRKEY/ Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
FWKEY 15-8 is generated.

BLKWRT Bit 7 Block write mode. WRT must also be set for block write mode. BLKWRT is
automatically reset when EMEX is set.
0 Block-write mode is off
1 Block-write mode is on

WRT Bit 6 Write. This bit is used to select any write mode. WRT is automatically reset
when EMEX is set.
0 Write mode is off
1 Write mode is on

Reserved Bit 5 Reserved. Always read as 0.

EEIEX Bit 4 Enable emergency interrupt exit. Setting this bit enables an interrupt to cause
an emergency exit from a flash operation when GIE = 1. EEIEX is
automatically reset when EMEX is set.

0 Exit interrupt disabled
1 Exit on interrupt enabled

EEI Bits 3 Enable erase Interrupts. Setting this bit allows a segment erase to be
interrupted by an interrupt request. After the interrupt is serviced, the erase
cycle is resumed.

0 Interrupts during segment erase disabled
1 Interrupts during segment erase enabled

6-22 Flash Memory Controller

Flash Memory Registers

GMERAS Bit 3 Global mass erase, mass erase, and erase. These bits are used together to

MERAS Bit 2 select the erase mode. GMERAS, MERAS, and ERASE are automatically
ERASE Bit 1 reset when EMEX is set or the erase operation completes.
GMERAS MERAS ERASE Erase Cycle

0 0 0 No erase

X 0 1 Erase individual segment only

0 1 0 Erase main memory segment of selected

array
0 1 1 Erase main memory segments and infor-

mation segments of selected array

1 1 0 Erase main memory segments of all
memory arrays.

1 1 1 Erase all main memory and information
segments of all memory arrays

Reserved Bit 0 Reserved. Always read as 0.

Flash Memory Controller 6-23

Flash Memory Registers

FCTL2, Flash Memory Control Register

15 14 13 12 11 10 9 8

FWKEYX, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0
FSSELX FNx
rw-0 rw-1 rw-0 rw-0 rw-0 rw-0 rw-1 rw-0
FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h, or a PUC
15-8 is generated.
FSSELx Bits Flash controller clock source select
7-6 00 ACLK
01 MCLK
10 SMCLK
11 SMCLK
FNx Bits Flash controller clock divider. These six bits select the divider for the flash
5-0 controller clock. The divisor value is FNx + 1. For example, when FNx = 00h,

Othe divisor is 1. When FNx = 03Fh the divisor is 64.

6-24 Flash Memory Controller

Flash Memory Registers

FCTL3, Flash Memory Control Register FCTL3

15 14 13 12 11 10 9 8
FWKEYX, Read as 096h
Must be written as 0A5h
7 6 5 4 3 2 1 0
FAILT LOCKAT EMEX LOCK WAIT ACCVIFG KEYV BUSY
r(w)-0 r(w)-1 rw-0 rw-1 r-1 rw-0 rw-(0) r(w)-0

T MSP430FG47x, MSP430F47x, MSP430F47x3/4, and MSP430F471xx devices only.
Reserved with r0 access on all other devices.

FWKEYx

FAIL

LOCKA

EMEX

LOCK

WAIT

ACCVIFG

Bits
15-8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

FCTLx password. Always read as 096h. Must be written as 0A5h, or a PUC
is generated.

Operation failure. This bit is set if the fprg clock source fails or if a flash
operation is aborted from an interrupt when EEIEX = 1. FAIL must be reset
with software.

0 No failure

1 Failure

SegmentA and Info lock. Write a 1 to this bit to change its state. Writing 0 has

no effect.

0 Segment A unlocked and all information memory is erased during a
mass erase.

1 Segment A locked and all information memory is protected from erasure
during a mass erase.

Emergency exit
0 No emergency exit
1 Emergency exit

Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit
can be set anytime during a byte/word write or erase operation and the
operation completes normally. In the block write mode, if the LOCK bit is set
while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset, and the mode
ends normally.

0 Unlocked

1 Locked

Wait. Indicates the flash memory is being written.
0 The flash memory is not ready for the next byte/word write
1 The flash memory is ready for the next byte/word write

Access violation interrupt flag
0 No interrupt pending
1 Interrupt pending

Flash Memory Controller 6-25

Flash Memory Registers

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password
was written to any flash control register and generates a PUC when set. KEYV
must be reset with software.

0 FCTLx password was written correctly
1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.
0 Not busy
1 Busy

6-26 Flash Memory Controller

Flash Memory Registers

FCTL4, Flash Memory Control Register FCTL4
(FG47x, FATX, FA7x3/4, and F471xx devices only)

15 14 13 12 1 10 9 8
FWKEYXx, Read as 096h
Must be written as 0A5h
7 6 5 4 3 2 1 0
MRG1 MRGO
r-0 r-0 rw-0 rw-0 r-0 r-0 r-0 r-0
FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
15-8 will be generated.
Reserved Bits Reserved. Always read as 0.
7-6
MRG1 Bit 5 Marginal read 1 mode. This bit enables the marginal 1 read mode. The
marginal read 1 bit is cleared if the CPU starts execution from the flash
memory. If both MRG1 and MRGO are set MRGL1 is active and MRGO is
ignored.
0 Marginal 1 read mode is disabled.
1 Marginal 1 read mode is enabled.
MRGO Bit 4 Marginal read 0 mode. This bit enables the marginal O read mode. The
marginal mode 0 is cleared if the CPU starts execution from the flash memory.
If both MRG1 and MRGO are set MRGL1 is active and MRGO is ignored.
0 Marginal 0 read mode is disabled.
1 Marginal 0 read mode is enabled.
Reserved Bits Reserved. Always read as 0.
3-0

Flash Memory Controller 6-27

Flash Memory Registers

IEL, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
ACCVIE
rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-6,
4-0
ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the

ACCVIFG interrupt. Because other bits in IE1 may be used for other modules,
it is recommended to set or clear this bit using Bl S. B or Bl C. B instructions,
rather than MOV. B or CLR. B instructions.

0 Interrupt not enabled

1 Interrupt enabled

6-28 Flash Memory Controller

Chapter 7

Supply Voltage Supervisor

This chapter describes the operation of the SVS. The SVS is implemented in
all MSP430x4xx devices.

Topic Page
7.1 SVSINtroducCtiont e 7-2
7.2 SVS OPEerationt 7-4
7.3 SVS REQISIEIS .ttt e 7-7

7-1

SVS Introduction

7.1 SVS Introduction

The supply voltage supervisor (SVS) is used to monitor the AVec supply
voltage or an external voltage. The SVS can be configured to set a flag or
generate a POR reset when the supply voltage or external voltage drops below
a user-selected threshold.

The SVS features include:

AV monitoring

Selectable generation of POR

Output of SVS comparator accessible by software
Low-voltage condition latched and accessible by software

14 selectable threshold levels

U OJ od o odod

External channel to monitor external voltage

The SVS block diagram is shown in Figure 7-1.

Note: MSP430x412 and MSP430x413 Voltage Level Detect

The MSP430x412 and MSP430x413 devices implement only one voltage
level detect setting. When VLDx = 0, the SVS is off. Any value greater than
0 for VLDx selects a voltage level detect of 1.9V.

7-2 Supply Voltage Supervisor

Figure 7-1. SVS Block Diagram

VCC
AVCC |
Brownout
AVce D

G.ls Reset
— <7

SVSIN S~ 50us

—p 1111

A 4

SVS Introduction

SVS_POR

% >
tReset ~ 50us
® SVSOUT >
1101 :&
//
D
G,|s
Set SVSFG
L 4
! ! ! Reset
VLD PORON SVSON SVSOP SVSFG |[¢—
| | | SVSCTL Bits

Supply Voltage Supervisor

7-3

SVS Operation

7.2 SVS Operation

The SVS detects if the AV voltage drops below a selectable level. It can be
configured to provide a POR or set a flag when a low-voltage condition occurs.
The SVS is disabled after a brownout reset to conserve current consumption.

7.2.1 Configuring the SVS

The VLDx bits are used to enable/disable the SVS and select one of 14
threshold levels (V(sys_j7-)) for comparison with AVcc, The SVS is off when
VLDx = 0 and on when VLDx > 0. The SVSON bit does not turn on the SVS.
Instead, it reflects the on/off state of the SVS and can be used to determine
when the SVS is on.

When VLDx = 1111, the external SVSIN channel is selected. The voltage on
SVSIN is compared to an internal level of approximately 1.2 V.

7.2.2 SVS Comparator Operation

A low-voltage condition exists when AV¢c drops below the selected threshold
or when the external voltage drops below its 1.2-V threshold. Any low-voltage
condition sets the SVSFG bit.

The PORON bit enables or disables the device-reset function of the SVS. If
PORON = 1, a POR is generated when SVSFG is set. If PORON =0, a
low-voltage condition sets SVSFG, but does not generate a POR.

The SVSFG bit is latched. This allows user software to determine if a
low-voltage condition occurred previously. The SVSFG bit must be reset by
user software. If the low-voltage condition is still present when SVSFG is reset,
it is immediately set again by the SVS.

7-4 Supply Voltage Supervisor

SVS Operation

7.2.3 Changing the VLDx Bits

When the VLDx bits are changed from zero to any non-zero value, there is an
automatic settling delay, tysvson), implemented that allows the SVS circuitry
to settle. The tyisvson) delay is approximately 50 ps. During this delay, the SVS
does not flag a low-voltage condition or reset the device, and the SVSON bit
is cleared. Software can test the SVYSON bit to determine when the delay has
elapsed and the SVS is monitoring the voltage properly. Writing to SVSCTL
while SVSON = 0 aborts the SVS automatic settling delay, tysvson), and
switch the SVS to active mode immediately. In doing so, the SVS circuitry
might not be settled, resulting in unpredictable behavior.

When the VLDx bits are changed from any non-zero value to any other
non-zero value, the circuitry requires the time tgeqe 10 Settle. The settling time
tsettle IS @ Maximum of ~12 us (see the device-specific data sheet). There is
no automatic delay implemented that prevents SVSFG to be set or to prevent
a reset of the device. The recommended flow to switch between levels is
shown in the following code.

: Enable SVS for the first tine:
MOV. B #080h, &SVSCTL ; Level 2.8V, do not cause POR

; Change SVS | evel
MOV. B #000h, &SVSCTL ; Tenporarily disable SVS
MOV. B #018h, &SVSCTL ; Level 1.9V, cause POR

Supply Voltage Supervisor 7-5

SVS Operation

7.2.4 SVS Operating Range
Each SVS level has hysteresis to reduce sensitivity to small supply voltage
changes when AV is close to the threshold. The SVS operation and

SVS/Brownout interoperation are shown in Figure 7-2.

Figure 7-2. Operating Levels for SVS and Brownout/Reset Circuit

Software Sets VLD>0

Y s
whys(svs IT=)_ " NN _ A N "
Msvs_ IT-) | = :f :ya_(- :) 7 IS, Z-ZZZ-ZZ SSubn S -
V(svsstart) N R I A N S
V(B_IT—) $::: s __ _ . LIt ——g—zc—
\éC(start) ""
Brown >
Brownout
€= "Region ™ < Out »
Brownout Region
1 T |
o 5 S
| »—le N i
t t
Svsout d(BOR) <« SVSCircuitAcive —— 3 d(BOR)
1 1
o = td(svson) t4(SVSR) g
Set SVS_POR >
1 T N —
0 I >
undefined

7-6 Supply Voltage Supervisor

SVS Registers

7.3 SVS Registers
The SVS registers are listed in Table 7-1.

Table 7-1.SVS Registers

Register Short Form Register Type Address Initial State
SVS Control Register SVSCTL Read/write 056h Reset with BOR

SVSCTL, SVS Control Register

7 6 5 4 3 2 1 0
VLDx PORON SVSON SVSOP SVSFG
rw-0T rw-0T rw-0f rw-0T rw-0f rf rf rw-0f

T Reset by a brownout reset only, not by a POR or PUC.

VLDx Bits Voltage level detect. These bits turn on the SVS and select the nominal SVS
7-4 threshold voltage level. See the device-specific data sheet for parameters.
0000 SVSis off
0001 19V
0010 2.1V
0011 2.2V
0100 2.3V
0101 24V
0110 25V
0111 265V
1000 2.8V
1001 29V
1010 3.05
1011 3.2V
1100 3.35V
1101 35V
1110 3.7V
1111 Compares external input voltage SVSIN to 1.2 V.

PORON Bit 3 POR on. This bit enables the SVSFG flag to cause a POR device reset.
0 SVSFG does not cause a POR
1 SVSFG causes a POR

SVSON Bit 2 SVS on. This bit reflects the status of SVS operation. This bit DOES NOT turn
on the SVS. The SVS is turned on by setting VLDx > 0.
0 SVS is Off
1 SVSis On

SVSOP Bit 1 SVS output. This bit reflects the output value of the SVS comparator.

0 SVS comparator output is low
1 SVS comparator output is high

SVSFG Bit 0 SVS flag. This bit indicates a low voltage condition. SVSFG remains set after
a low voltage condition until reset by software.
0 No low voltage condition occurred
1 A low condition is present or has occurred

Supply Voltage Supervisor 7-7

7-8 Supply Voltage Supervisor

Chapter 8

16-Bit Hardware Multiplier

This chapter describes the 16-bit hardware multiplier. The hardware multiplier

is implemented in MSP430x44x, MSP430FE42x, MSP430FE42xA,
MSP430FE42x2, and MSP430F42x, MSP430F42xA devices.

Topic Page
8.1 Hardware Multiplier Introduction 8-2
8.2 Hardware Multiplier Operation iiiiiiiin... 8-3
8.3 Hardware Multiplier Registers ...t iiinan. 8-7

8-1

Hardware Multiplier Introduction

8.1 Hardware Multiplier Introduction

The hardware multiplier is a peripheral and is not part of the MSP430 CPU.
This means that its activities do not interfere with the CPU activities. The
multiplier registers are peripheral registers that are loaded and read with CPU

instructions.

The hardware multiplier supports:

a
-
4
J
-

Unsigned multiply

Signed multiply

Unsigned multiply accumulate

Signed multiply accumulate

16x16 bits, 16x8 bits, 8x16 bits, 8x8 bits

The hardware multiplier block diagram is shown in Figure 8-1.

Figure 8-1. Hardware Multiplier Block Diagram

8-2

15

'w

MPY 130h

MPYS 132h

15

r'w

MAC 134h

) OP1

OP2 138h

MACS 136h

~~

N~

Accessible
Register

MPY = 0000

16 x 16 Multipiler

MACS MPYS

MAC

\ Multiplexer /

iﬁ

N

32-bit Adder

/

MPY, MPYS

~~

32-bit Multiplexer

SUMEXT 13Eh

~~

<| |7MAC, MACS

15

r

S RESHI 13Ch

RESLO 13Ah

16-Bit Hardware Multiplier

w

rw

Hardware Multiplier Operation

8.2 Hardware Multiplier Operation

The hardware multiplier supports unsigned multiply, signed multiply, unsigned
multiply accumulate, and signed multiply accumulate operations. The type of
operation is selected by the address the first operand is written to.

The hardware multiplier has two 16-bit operand registers, OP1 and OP2, and
three result registers, RESLO, RESHI, and SUMEXT. RESLO stores the low
word of the result, RESHI stores the high word of the result, and SUMEXT
stores information about the result. The result is ready in three MCLK cycles
and can be read with the next instruction after writing to OP2, except when
using an indirect addressing mode to access the result. When using indirect
addressing for the result, a NOP is required before the result is ready.

8.2.1 Operand Registers

The operand one register OP1 has four addresses, shown in Table 8-1, used
to select the multiply mode. Writing the first operand to the desired address
selects the type of multiply operation but does not start any operation. Writing
the second operand to the operand two register OP2 initiates the multiply
operation. Writing OP2 starts the selected operation with the values stored in
OP1 and OP2. The result is written into the three result registers RESLO,
RESHI, and SUMEXT.

Repeated multiply operations may be performed without reloading OP1 if the
OP1 value is used for successive operations. It is not necessary to re-write the
OP1 value to perform the operations.

Table 8-1.0P1 addresses

OP1 Address Register Name Operation

0130h MPY Unsigned multiply

0132h MPYS Signed multiply

0134h MAC Unsigned multiply accumulate
0136h MACS Signed multiply accumulate

16-Bit Hardware Multiplier 8-3

Hardware Multiplier Operation

8.2.2 Result Registers

The result low register RESLO holds the lower 16-bits of the calculation result.
The result high register RESHI contents depend on the multiply operation and
are listed in Table 8-2.

Table 8-2. RESHI Contents

Mode

RESHI Contents

MPY

MPYS

MAC

MACS

Upper 16 bits of the result

The MSB is the sign of the result. The remaining bits are the
upper 15 bits of the result. Two’s complement notation is used
for the result.

Upper 16 bits of the result

Upper 16 bits of the result. Two’s complement notation is used
for the result.

The sum extension registers SUMEXT contents depend on the multiply
operation and are listed in Table 8-3.

Table 8-3. SUMEXT Contents

MACS Underflow and Overflow

8-4

Mode

SUMEXT

MPY
MPYS

MAC

MACS

SUMEXT is always 0000h

SUMEXT contains the extended sign of the result
00000h Result was positive or zero
OFFFFh Result was negative

SUMEXT contains the carry of the result
0000h No carry for result
0001h Result has a carry

SUMEXT contains the extended sign of the result
00000h Result was positive or zero
OFFFFh Result was negative

The multiplier does not automatically detect underflow or overflow in the
MACS mode. The accumulator range for positive numbers is 0 to 7FFF FFFFh
and for negative numbers is OFFFF FFFFh to 8000 0000h. An underflow
occurs when the sum of two negative numbers yields a result that is in the
range for a positive number. An overflow occurs when the sum of two positive
numbers yields a result that is in the range for a negative number. In both of
these cases, the SUMEXT register contains the sign of the result, OFFFFh for
overflow and 0000h for underflow. User software must detect and handle
these conditions appropriately.

16-Bit Hardware Multiplier

Hardware Multiplier Operation

8.2.3 Software Examples

Examples for all multiplier modes follow. All 8x8 modes use the absolute
address for the registers, because the assembler does not allow .B access to
word registers when using the labels from the standard definitions file.

16x16 Unsigned Multiply
MOV #01234h, &WPY ; Load first operand
MoV #05678h, &0OP2 ; Load second operand
; Process results

8x8 Unsigned Multiply. Absolute addressing.
MOV. B #012h, &0130h ; Load first operand
MOV. B #034h, &0138h ; Load 2nd oper and
; Process results

16x16 Signed Miultiply
MoV #01234h, &WPYS ; Load first operand
MoV #05678h, &OP2 ; Load 2nd oper and

; Process results

8x8 Signed Multiply. Absolute addressing.
MOV. B #012h, &0132h ; Load first operand

SXT &MVPYS ; Sign extend first operand
MOV. B #034h, &0138h ; Load 2nd operand
SXT &0OP2 ; Sign extend 2nd operand

; (triggers 2nd multiplication)
; Process results

16x16 Unsigned Multiply Accumul ate
MoV #01234h, &VAC; Load first operand
MoV #05678h, &OP2 ; Load 2nd oper and

; Process results

8x8 Unsigned Multiply Accunul ate. Absol ute addressing
MOV. B #012h, &0134h ; Load first operand
MOV. B #034h, &0138h ; Load 2nd operand
: Process results

16x16 Signed Multiply Accumnul ate
MOV #01234h, &VACS ; Load first operand
MoV #05678h, &OP2 ; Load 2nd oper and

; Process results

8x8 Signed Multiply Accunul ate. Absol ute addressing
MOV. B #012h, &0136h ; Load first operand

SXT &VACS ; Sign extend first operand

MOV. B #034h, R5 ; Tenp. location for 2nd operand
SXT R5 ; Sign extend 2nd operand

MoV R5, &0OP2 ; Load 2nd operand

: Process results

16-Bit Hardware Multiplier 8-5

Hardware Multiplier Operation

8.24

Indirect Addressing of RESLO

When using indirect or indirect autoincrement addressing mode to access the
result registers, At least one instruction is needed between loading the second
operand and accessing one of the result registers.

; Access multiplier results with indirect addressing
RESLO address in R5 for indirect

MOV #RESLO, R5 ;
MOV &OPER1, &WPY ;
MOV &OPER2, &0P2 ;
MOV @R5+, &XXX ;
MoV @r5, &xXxx ;

8.2.5 Using Interrupts

8-6

Load
Load
Need
Move
Move

1st operand
2nd oper and
one cycle
RESLO

RESHI

If an interrupt occurs after writing OP1 but before writing OP2, and the
multiplier is used in servicing that interrupt, the original multiplier mode
selection is lost and the results are unpredictable. To avoid this, disable
interrupts before using the hardware multiplier or do not use the multiplier in

interrupt service routines.

; Disable interrupts before using the hardware nultiplier
DI NT ; Disable interrupts
NOP ; Required for DINT
MoV #xxh, &WPY; Load 1st operand
MoV #xxh, &OP2 ; Load 2nd operand

El NT

; Interrupts may be enable before

; Process results

16-Bit Hardware Multiplier

8.3 Hardware Multiplier Registers

The hardware multiplier registers are listed in Table 8-4.

Table 8-4.Hardware Multiplier Registers

Hardware Multiplier Registers

Register Short Form Register Type Address Initial State
Operand one - multiply MPY Read/write 0130h Unchanged
Operand one - signed multiply MPYS Read/write 0132h Unchanged
Operand one - multiply accumulate MAC Read/write 0134h Unchanged
Operand one - signed multiply accumulate MACS Read/write 0136h Unchanged
Operand two OP2 Read/write 0138h Unchanged
Result low word RESLO Read/write 013Ah Undefined
Result high word RESHI Read/write 013Ch Undefined
Sum Extension register SUMEXT Read 013Eh Undefined

16-Bit Hardware Multiplier

8-8 16-Bit Hardware Multiplier

Chapter 9

32-Bit Hardware Multiplier

This chapter describes the 32-bit hardware multiplier (MPY32) of the
MSP430x4xx family. The 32-bit hardware multiplier is implemented in
MSP430F47x3/4 and MSP430F471xx devices.

Topic Page
9.1 32-Bit Hardware Multiplier Introduction 9-2
9.2 32-Bit Hardware Multiplier Operation 9-4
9.3 32-Bit Hardware Multiplier Registers, 9-21

9-1

32-Bit Hardware Multiplier Introduction

9.1 32-Bit Hardware Multiplier Introduction

The 32-bit hardware multiplier is a peripheral and is not part of the MSP430
CPU. This means its activities do not interfere with the CPU activities. The
multiplier registers are peripheral registers that are loaded and read with CPU
instructions.

The hardware multiplier supports:
Unsigned multiply

Signed multiply

Unsigned multiply accumulate

Signed multiply accumulate

8-bit, 16-bit, 24-bit and 32-bit operands
Saturation

Fractional numbers

8-bit and 16-bit operation compatible with 16-bit hardware multiplier

U U uJ o o dodod

8-bit and 24-bit multiplications without requiring a “sign extend” instruction

The 32-bit hardware multiplier block diagram is shown in Figure 9-1.

9-2 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Introduction

Figure 9-1. 32-Bit Hardware Multiplier Block Diagram

Accessible
Register

| mpyazn | | wpvsaL |

| mPyssen | | mpyssaL |

| macsan | | wacsaL | OP2

| macss2H | | macssaL | | opan | | oraL |
31 {} 16 15 {} 0 31 {} 16 15 {} 0
OP1 (high word) OP1 (low word) OP2 (high word) OP2 (low word)

~ N N N

16-bit Multiplexer / \ 16-bit Multiplexer

~

— 16 x 16 Multiplier
OP1_32 m—]
OP2 32 m—] ‘
MPYMx I724 Control }
MPYSAT m—| Logic \ 32-bit Adder /
MPYFRAC m—
MPYC m—] {}

32-bit De-Multiplexer

~ o ~ N

SUMEXT RES3 RES2 RES1/RESHI RESO/RESLO

N N N N

32-bit Multiplexer
\

32-Bit Hardware Multiplier 9-3

32-Bit Hardware Multiplier Operation

9.2 32-Bit Hardware Multiplier Operation

The hardware multiplier supports 8-bit, 16-bit, 24-bit, and 32-bit operands with
unsigned multiply, signed multiply, unsigned multiply-accumulate, and signed
multiply-accumulate operations. The size of the operands are defined by the
address the operand is written to and if it is written as word or byte. The type
of operation is selected by the address the first operand is written to.

The hardware multiplier has two 32-bit operand registers, operand one OP1
and operand two OP2, and a 64-bit result register accessible via registers
RESO to RES3. For compatibility with the 16x16 hardware multiplier the result
of a 8-bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT,
as well. RESLO stores the low word of the 16x16-bit result, RESHI stores the
high word of the result, and SUMEXT stores information about the result.

The result of a 8-hit or 16-bit operation is ready in three MCLK cycles and can
be read with the next instruction after writing to OP2, except when using an
indirect addressing mode to access the result. When using indirect addressing
for the result, a NOP is required before the result is ready.

The result of a 24-bit or 32-bit operation can be read with successive
instructions after writing OP2 or OP2H starting with RESO, except when using
an indirect addressing mode to access the result. When using indirect
addressing for the result, a NOP is required before the result is ready.

Table 9-1 summarizes when each word of the 64-bit result is available for the
various combinations of operand sizes. With a 32-bit wide second operand
OP2L and OP2H needs to be written. Depending on when the two 16-bit parts
are written the result availability may vary thus the table shows two entries, one
for OP2L written and one for OP2H written. The worst case defines the actual
result availability.

Table 9-1. Result Availability (MPYFRAC = 0; MPYSAT = 0)

Operation Result ready in MCLK cycles After
(OP1x OP2) RESO RES1 RES2 RES3 MPYC Bit
8/16 x8/16 3 3 4 4 3 OP2 written
24/32x8/16 3 5 6 7 7 OP2 written
8/16 x 24/32 3 5 6 7 7 OP2L written
N/A 3 4 4 4 OP2H written
24/32 x 24/32 3 8 10 11 11 OP2L written
N/A 3 5 6 6 OP2H written

9-4

32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

9.2.1 Operand Registers

Operand one OP1 has twelve registers, shown in Table 9-2, used to load data
into the multiplier and also select the multiply mode. Writing the low-word of
the first operand to a given address selects the type of multiply operation to
be performed but does not start any operation. When writing a second word
to a high-word register with suffix “32H" the multiplier assumes a 32-bit wide
OP1, otherwise 16-bits are assumed. The last address written prior to writing
OP2 defines the width of the first operand. For example, if MPY32L is written
first followed by MPY32H, all 32 bits are used and the data width of OP1 is set
to 32 bits. If MPY32H is written first followed by MPY32L, the multiplication will
ignore MPY32H and assume a 16-bit wide OP1 using the data written into
MPY32L.

Repeated multiply operations may be performed without reloading OP1 if the
OP1 value is used for successive operations. It is not necessary to rewrite the
OP1 value to perform the operations.

Table 9-2. OP1 registers

OP1 Register Name Operation

MPY Unsigned Multiply — operand bits 0 up to 15

MPYS Signed Multiply — operand bits 0 up to 15

MAC Unsigned Multiply Accumulate — operand bits O up to 15
MACS Signed Multiply Accumulate - operand bits 0 up to 15
MPY32L Unsigned Multiply - operand bits 0 up to 15

MPY32H Unsigned Multiply — operand bits 16 up to 31

MPYS32L Signed Multiply — operand bits 0 up to 15

MPYS32H Signed Multiply — operand bits 16 up to 31

MAC32L Unsigned Multiply Accumulate — operand bits 0 up to 15
MAC32H Unsigned Multiply Accumulate — operand bits 16 up to 31
MACS32L Signed Multiply Accumulate — operand bits O up to 15
MACS32H Signed Multiply Accumulate - operand bits 16 up to 31

Writing the second operand to the operand two register OP2 initiates the
multiply operation. Writing OP2 starts the selected operation with a 16-bit wide
second operand together with the values stored in OP1. Writing OP2L starts
the selected operation with a 32-bit wide second operand and the multiplier
expects a the high word to be written to OP2H. Writing to OP2H without a
preceding write to OP2L is ignored.

32-Bit Hardware Multiplier 9-5

32-Bit Hardware Multiplier Operation

Table 9-3.OP2 registers

9-6

OP2 Register Name Operation

OP2 Start multiplication with 16-bit wide operand two OP2
(operand bits 0 up to 15)

OP2L Start multiplication with 32-bit wide operand two OP2
(operand bits 0 up to 15)

OP2H Continue multiplication with 32-bit wide operand two OP2
(operand bits 16 up to 31)

For 8-bit or 24-bit operands the operand registers can be accessed with byte
instructions. Accessing the multiplier with a byte instruction during a signed
operation will automatically cause a sign extension of the byte within the
multiplier module. For 24-bit operands only the high word should be written as
byte. Whether or not the 24-bit operands are sign extended is defined by the
register that is used to write the low word, because this register defines if the
operation is unsigned or signed.

The high word of a 32-bit operand remains unchanged when changing the size
of the operand to 16 bit either by modifying the operand size bits or by writing
to the respective operand register. During the execution of the 16-bit operation
the content of the high word is ignored.

Note: Changing of First or Second Operand During Multiplication

Changing OP1 or OP2 while the selected multiply operation is being
calculated will render any results invalid that are not ready at the time the new
operand(s) are changed.

Writing OP2 or OP2L will abort any ongoing calculation and start a new
operation. Results that are not ready at that time are invalid also for following
MAC or MACS operations.

Refer to the tables “Result Availability” for the different modes on how many
CPU cycles are needed until a certain result register is ready and valid.

32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

9.2.2 Result Registers

The multiplication result is always 64-bits wide. It is accessible via registers
RESO to RES3. Used with a signed operation MPYS or MACS the results are
appropriately sign extended. If the result registers are loaded with initial values
before a MACS operation the user software must take care that the written
value is properly sign extended to 64 bits.

Note: Changing of Result Registers During Multiplication

The result registers must not be modified by the user software after writing
the second operand into OP2 or OP2L until the initiated operation is
completed.

In addition to RESO to RES3, for compatibility with the 16x16 hardware
multiplier the 32-bit result of a 8-bit or 16-bit operation is accessible via
RESLO, RESHI, and SUMEXT. In this case the result low register RESLO
holds the lower 16-bits of the calculation result and the result high register
RESHI holds the upper 16 bits. RESO and RES1 are identical to RESLO and
RESHI, respectively, in usage and access of calculated results.

The sum extension registers SUMEXT contents depend on the multiply
operation and are listed in Table 9-4. If all operands are 16 bits wide or less
the 32-bit result is used to determine sign and carry. If one of the operands is
larger than 16 bits the 64-bit result is used.

The MPYC bit reflects the multiplier’s carry as listed in Table 9-4 and thus can
be used as 33rd or 65th bit of the result if fractional or saturation mode is not
selected. With MAC or MACS operations the MPYC bit reflects the carry of the
32-bit or 64-bit accumulation and is not taken into account for successive MAC
and MACS operations as the 33rd or 65th bit.

Table 9-4. SUMEXT Contents and MPYC Contents

Mode SUMEXT MPYC

MPY SUMEXT is always 0000h MPYC is always 0

MPYS SUMEXT contains the extended sign of the result MPYC contains the sign of the result
00000h Result was positive or zero 0 Result was positive or zero
OFFFFh Result was negative 1 Result was negative

MAC SUMEXT contains the carry of the result MPYC contains the carry of the result
0000h No carry for result 0 No carry for result
0001h Result has a carry 1 Result has a carry

MACS SUMEXT contains the extended sign of the result MPYC contains the carry of the result

00000h Result was positive or zero
OFFFFh Result was negative

0 No carry for result,

1 Result has a carry

32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

MACS Underflow and Overflow

9-8

The multiplier does not automatically detect underflow or overflow in MACS
mode. For example working with 16-bit input data and 32-bit results, i.e. using
just RESLO and RESHI, the available range for positive numbers is 0 to
07FFF FFFFh and for negative numbers is OFFFF FFFFh to 08000 0000h. An
underflow occurs when the sum of two negative numbers yields a result that
is in the range for a positive number. An overflow occurs when the sum of two
positive numbers yields a result that is in the range for a negative number.

The SUMEXT register contains the sign of the result in both cases described
above, OFFFFh for a 32-bit overflow and 0000h for a 32-bit underflow. The
MPYC bit in MPY32CTLO can be used to detect the overflow condition. If the
carry is different than the sign reflected by the SUMEXT register an overflow
or underflow occurred. User software must handle these conditions
appropriately.

32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

9.2.3 Software Examples

Examples for all multiplier modes follow. All 8x8 modes use the absolute
address for the registers because the assembler will not allow .B access to
word registers when using the labels from the standard definitions file.

There is no sign extension necessary in software. Accessing the multiplier with
a byte instruction during a signed operation will automatically cause a sign
extension of the byte within the multiplier module.

; 32x32 Unsigned Multiply
MOV #01234h, &WPY32L ; Load low word of 1st operand
MoV #01234h, &VWPY32H ; Load high word of 1st operand
MOV #05678h, &OP2L ; Load low word of 2nd operand
MOV #05678h, &OP2H ; Load high word of 2nd operand
D ; Process results

; 16x16 Unsigned Miultiply
MoV #01234h, &WPY ; Load 1st operand
MoV #05678h, &0OP2 ; Load 2nd operand
P ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.
MOV. B #012h, &VPY_B ; Load 1st operand
MOV. B #034h, &0OP2_B ; Load 2nd operand

T ; Process results

; 32x32 Signed Multiply
MOV #01234h, &WPYS32L ; Load low word of 1st operand
MoV #01234h, &WPYS32H ; Load high word of 1st operand
MoV #05678h, &OP2L ; Load low word of 2nd operand
MoV #05678h, &OP2H ; Load high word of 2nd operand
P ; Process results

; 16x16 Signed Miultiply
MoV #01234h, &WPYS ; Load 1st operand
MOV #05678h, &0OP2 ; Load 2nd operand
D ; Process results

; 8x8 Signed Multiply. Absolute addressing.
MOV. B #012h, &MPYS B ; Load 1st operand
MOV. B #034h, &0OP2_B ; Load 2nd operand

P ; Process results

32-Bit Hardware Multiplier 9-9

32-Bit Hardware Multiplier Operation

9.2.4 Fractional Numbers

The 32-bit multiplier provides support for fixed-point signal processing. In
fixed—point signal processing, fractional number are represented by using a
fixed decimal point. To classify different ranges of decimal numbers, a
Q-format is used. Different Q-formats represent different locations of the
decimal point. Figure 9-2 shows the format of a signed Q15 number using 16
bits. Every bit after the decimal point has a resolution of 1/2, the most
significant bit is used as the sign bit. The most negative number is 08000h and
the maximum positive number is 07FFFh. This gives a range from -1.0 to
0.999969482 = 1.0 for the signed Q15 format with 16 bits.

Figure 9-2. Q15 Format Representation

g 15 bits Ll
1 1 1 1
S®2 4 |8 |16
J
A e
Decimal number equivalent
—— Decimal point
Sign bit

The range can be increased by shifting the decimal point to the right as shown
in Figure 9-3. The signed Q14 format with 16 bits gives a range from -2.0 to
1.999938965 = 2.0.

Figure 9-3. Q14 Format Representation

- 14 bits >

1
S x»z

The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with
multiplication is that the product of two number in the range from -1.0 to 1.0
is always in that same range.

9-10 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

Fractional Number Mode

Multiplying two fractional numbers using the default multiplication mode with
MPYFRAC = 0 and MPYSAT = 0 gives a result with 2 sign bits. For example
if two 16-bit Q15 numbers are multiplied a 32-bit result in Q30 format is
obtained. To convert the result into Q15 format manually, the first 15 trailing
bits and the extended sign bit must be removed. However, when the fractional
mode of the multiplier is used, the redundant sign bit is automatically removed
yielding a result in Q31 format for the multiplication of two 16-bit Q15 numbers.
Reading the result register RES1 gives the result as 16-bit Q15 number. The
32-bit Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by
reading registers RES2 and RES3.

The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTLO.
The actual content of the result register(s) is not modified when
MPYFRAC = 1. When the result is accessed using software, the value is
left—shifted 1 bit resulting in the final Q formatted result. This allows user
software to switch between reading both the shifted (fractional) and the
un-shifted result. The fractional mode should only be enabled when required
and disabled after use.

In fractional mode the SUMEXT register contains the sign extended bits 32
and 33 of the shifted result for 16x16-bit operations and bits 64 and 65 for
32x32-hit operations — not only bits 32 or 64, respectively.

The MPYC bit is not affected by the fractional mode. It always reads the carry
of the nonfractional result.

; Exanpl e using
; Fractional 16x16 multiplication

Bl S #MPYFRAC, &VPY32CTLO ; Turn on fractional node
MoV &FRACT1, &VPYS ; Load 1st operand as Q15
MoV &FRACT2, &0OP2 ; Load 2nd operand as Q15
MoV &RES1, &PROD ; Save result as Q15
Bl C #MPYFRAC, &VPY32CTLO : Back to normal npde

Table 9-5. Result Availability in Fractional Mode (MPYFRAC = 1; MPYSAT = 0)

Operation Result ready in MCLK cycles After
(OP1x OP2) RESO RES1 RES2 RES3 MPYC Bit
8/16 x8/16 3 3 4 4 3 OP2 written
24/32x 8/16 3 5 6 7 7 OP2 written
8/16 x 24/32 3 5 6 7 7 OP2L written
N/A 3 4 4 4 OP2H written
24/32 x 24/32 3 8 10 11 11 OP2L written
N/A 3 5 6 6 OP2H written

32-Bit Hardware Multiplier 9-11

32-Bit Hardware Multiplier Operation

Saturation Mode

The multiplier prevents overflow and underflow of signed operations in
saturation mode. The saturation mode is enabled with MPYSAT = 1 in register
MPY32CTLO. If an overflow occurs the result is set to the most positive value
available. If an underflow occurs the result is set to the most negative value
available. This is useful to reduce mathematical artifacts in control systems on
overflow and underflow conditions. The saturation mode should only be
enabled when required and disabled after use.

The actual content of the result register(s) is not modified when MPYSAT = 1.
When the result is accessed using software, the value is automatically
adjusted providing the most positive or most negative result when an overflow
or underflow has occurred. The adjusted result is also used for successive
multiply-and-accumulate operations. This allows user software to switch
between reading the saturated and the non-saturated result.

With 16x16 operations the saturation mode only applies to the least significant
32 bits, i.e. the result registers RESO and RES1. Using the saturation mode
in MAC or MACS operations that mix 16x16 operations with 32x32, 16x32 or
32x16 operations will lead to unpredictable results.

With 32x32, 16x32, and 32x16 operations the saturated result can only be
calculated when RES3 is ready. In non-5xx devices, reading RESO to RES2
prior to the complete result being ready will deliver the nonsaturated results,
independent of the MPYSAT bit setting.

Enabling the saturation mode does not affect the content of the SUMEXT
register nor the content of the MPYC bit.

; Exanpl e using

; Fractional 16x16 nultiply accunulate with Saturation
; Turn on fractional and saturation node:
BI S #MPYSAT+MPYFRAC, &MPY32CTLO

MoV &AL, &VPYS ; Load Al for 1st term
MoV &K1, &0OP2 ; Load K1 to get Al*Kl
MoV &A2, &VACS ; Load A2 for 2nd term
MoV &K2, &OP2 ; Load K2 to get A2*K2
MoV &RES1, &PROD ; Save ALl*K1+A2*K2 as result

BI C #MPYSAT+MPYFRAC, &VWPY32CTLO; turn back to nornal

Table 9-6. Result Availability in Saturation Mode (MPYSAT = 1)

Operation Result ready in MCLK cycles after
(OP1x OP2) RESO RES1 RES2 RES3 MPYC Bit
8/16 x 8/16 3 3 N/A N/A 3 OP2 written
24/32 x 8/16 7 7 7 7 7 OP2 written
8/16 x 24/32 7 7 7 7 7 OP2L written
4 4 4 4 4 OP2H written
24/32 x 24/32 11 11 11 11 11 OP2L written
6 6 6 6 6 OP2H written

9-12

32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

Figure 9-4 shows the flow for 32-bit saturation used for 16x16 bit
multiplications and the flow for 64-bit saturation used in all other cases.
Primarily, the saturated results depends on the carry bit MPYC and the most
significant bit of the result. Secondly, if the fractional mode is enabled it
depends also on the two most significant bits of the unshift result; i.e., the result
that is read with fractional mode disabled.

Figure 9-4. Saturation Flow Chart

32-bit Saturation

MPYC=0 and
unshifted RESL,
bit 15=1

Overflow:
RES3 unchanged
RES2 unchanged

RES1 = 07FFFh
RESO = OFFFFh

MPYC=1 and

Underflow:
RES3 unchanged

. RES2 unchanged —»
Sl R RES1 = 08000h
P RESO = 00000h
No
No
MPYFRAC =1 >
Yes
Overflow:
. RES3 unchanged
unbs;thgt;_doilizl, RES2 unchanged [—»
bit 1_4_1 RES1 = 07FFFh
P RESO = OFFFFh
No
Underflow:
. Yes | RES3 unchanged
unbsithftse:dliﬁgll ——p| RES2 unchanged |—»
bit 14=0 RES1 = 08000h
RESO = 00000h
No

A 4
32-bit Saturation
completed

64-bit Saturation

MPYC=0 and
unshifted RES3,
bit 15=1

Overflow:
RES3 = 07FFFh
RES2 = OFFFFh
RES1 = OFFFFh
RESO = OFFFFh

MPYC=1 and
unshifted RES3,
bit 15=0

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RESO = 00000h

No

No
MPYFRAC =1

Yes

\ 4

unshifted RES3,
bit 15=0 and
bit 14=1

Overflow:
RES3 = 07FFFh
RES2 = OFFFFh
RES1 = OFFFFh
RESO = OFFFFh

No

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RESO = 00000h

. Yes
unshifted RES3,
bit 15=1 and
bit 14=0
No

A 4
64-bit Saturation
completed

Note: Saturation in Fractional Mode

In case of multiplying —-1.0 x —1.0 in fractional mode, the result of +1.0 is out
of range, thus, the saturated result gives the most positive result.

32-Bit Hardware Multiplier

9-13

32-Bit Hardware Multiplier Operation

9-14

The following example illustrates a special case showing the saturation
function in fractional mode. It also uses the 8-bit functionality of the MPY32
module.

; Turn on fractional and saturation node,

; clear all other bits in MPY32CTLO:

MOV #MPYSAT+MPYFRAC, &MPY32CTLO

;Pre-load result registers to denonstrate overfl ow

MOV #0, &RES3 ;

MOV #0, &RES2

MOV #07FFFh, &RES1

MOV #0FA60h, &RESO

MOV. B #050h, &MACS B ; 8-bit signed MAC operation

MOV. B #012h, &OP2_B ; Start 16x16 bit operation

MoV &RESO, R6 ; R6 = OFFFFh

MoV &RES1, R7 ; R7 = O7FFFh

The result is saturated because already the result not converted into a
fractional number shows an overflow. The multiplication of the two positive
numbers 00050h and 00012h gives 005A0h. 005A0h added to 07FFF.FA60h
results in 8000.059F without MPYC being set. Since the MSB of the
unmodified result RES1 is 1 and MPYC = 0 the result is saturated according
to the saturation flow chart in Figure 9-4.

Note: Validity of Saturated Result

The saturated result is only valid if the registers RESO to RESS3, the size of
operands 1 and 2 and MPYC are not modified.

If the saturation mode is used with a preloaded result, user software must
ensure that MPYC in the MPY32CTLDO register is loaded with the sign bit of
the written result otherwise the saturation mode erroneously saturates the
result.

32-Bit Hardware Multiplier

9.2.5 Putting It All Together

32-Bit Hardware Multiplier Operation

Figure 9-5 shows the complete multiplication flow depending on the various
selectable modes for the MPY32 module.

Figure 9-5. Multiplication Flow Chart

Yes

New Multiplication
started

v

Clear Result
RES3 = 00000h
RES2 = 00000h
RES1 = 00000h
RESO = 00000h

:

Perform
MPY or MPYS
Operation

MPYFRAC=1
?

No

No
No Yes Yes
Yes Yes
v i— MPYSAT=1 MPYSAT=1
? ?
Clear Result v
RES1 = 00000h 32-hit Saturation No No 64-bit Saturation
RESO = 00000h
\ 4 A A 4
Perform Perform Perform
16x16 16x16 MAC or MACS
MPY or MPYS MAC or MACS .
. ; Operation
Operation Operation
Y
Yes Yes
MPYFRAC=1
? y !
No Shift 64-bit result. Shift 64-bit result.
Calculate SUMEXT based on Calculate SUMEXT based on
MPYC and bit 15 of MPYC and bit 15 of
unshifted RESL. unshifted RES3.
<
Y
Yes Yes
MPYSAT=1
? y !
No 32-bit Saturation 64-bit Saturation
) J

»

MPYSAT=1

No

Multiplication
completed

<

32-Bit Hardware Multiplier 9-15

32-Bit Hardware Multiplier Operation

Given the separation in processing of 16-bit operations (32-bit results) and
32-bit operations (64-bit results) by the module, it is important to understand
the implications when using MAC/MACS operations and mixing 16-bit
operands/results with 32-bit operands/results. User software must address
these points during usage when mixing these operations. The following code
illustrates the issue.

; Mxing 32x24 multiplication with 16x16 MACS operation
MoV #MPYSAT, &VWPY32CTLO; Saturati on node
MoV #052C5h, &WPY32L ; Load | ow word of 1st operand
MoV #06153h, &WPY32H ; Load high word of 1st operand

MoV #001ABh, &OP2L ; Load | ow word of 2nd operand
MOV. B #023h, &0OP2H B ; Load hi gh word of 2nd operand
;... 5 NOPs required
MOV &RESO, R6 ; R6 = 00E97h
MOV &RES1, R7 ; R7 = 0A6EAh
MOV &RES2, R8 ; R8 = 04F06h
MOV &RES3, R9 ; RO = 0000Dh
: Note that MPYC = 0!
MOV #0CCC3h, &VACS ; Signed MAC operation
MoV #0FFB6h, &0OP2 ; 16x16 bit operation
MoV &RESLO, R6 ; R6 = OFFFFh
MOV &RESHI , R7 ; R7 = O7FFFh

The second operation gives a saturated result because the 32-bit value used
for the 16x16 bit MACS operation was already saturated when the operation
was started: the carry bit MPYC was 0 from the previous operation but the most
significant bit in result register RES1 is set. As one can see in the flow chart
the content of the result registers are saturated for multiply-and-accumulate
operations after starting a new operation based on the previous results but
depending on the size of the result (32-bit or 64-bit) of the newly initiated
operation.

The saturation before the multiplication can cause issues if the MPYC bit is not
properly set as the following code example illustrates.
;Pre-load result registers to denpbnstrate overfl ow
MOV #0, &RES3 ;
MoV #0, &RES2 ;
MoV #0, &RES1 ;
MoV #0, &RESO ;
; Saturation node and set MPYC:
MoV #MPYSAT+MPYC, &VPY32CTLO
MOV. B #082h, &MACS B ; 8-bit signed MAC operation
MOV. B #04Fh, &OP2_B ; Start 16x16 bit operation
MoV &RESO, R6 ; R6 = 00000h
MoV &RES1, R7 ; R7 = 08000h

9-16 32-Bit Hardware Multiplier

32-Bit Hardware Multiplier Operation

Even though the result registers were loaded with all zeros the final result is
saturated. This is because the MPYC bit was set causing the result used for
the multiply-and-accumulate to be saturated to 08000 0000h. Adding a
negative number to it would again cause an underflow thus the final result is
also saturated to 08000 0000h.

9.2.6 Indirect Addressing of Result Registers

When using indirect or indirect autoincrement addressing mode to access the
result registers and the multiplier requires 3 cycles until result availability
according to Table 9-1, at least one instruction is needed between loading the
second operand and accessing the result registers:

; Access mnultiplier

MoV
MoV
MOV
NOP
MOV
MoV

#RESO, R5
&OPER1, &WPY
&OPER2, &0P2

@5+, &X XX
@r5, &xXxx

)
)
)
)
)

RESO
Load
Load
Need
Move
Move

16x16 results with indirect addressing

address in R5 for indirect
1st operand

2nd oper and

one cycle

RESO

RES1

In case of a 32x16 multiplication there is also one instruction required between
reading the first result register RESO and the second result register RES1:

; Access mnultiplier

MOV
MoV
MoV
MOV
NOP
MoV
NOP
MoV

MOV

#RESO, RS

&OPERIL, &WPY32L ;
&OPER1H, &VWPY32H ;

&OPER2, &0P2

@R5+, & XX

@r5, &xxx

@r5, &xXxx

’
)
’

)

RESO
Load
Load
Load
Need
Move
Need
Move

32x16 results with indirect addressing

address in R5 for indirect
| ow word of 1st operand

hi gh word of 1st operand
2nd operand (16 bits)
one cycle

RESO

one additional cycle
RES1

No additional cycles required!

Move

RES2

32-Bit Hardware Multiplier 9-17

32-Bit Hardware Multiplier Operation

9.2.7 Using Interrupts

9-18

If an interrupt occurs after writing OP1, but before writing OP2, and the
multiplier is used in servicing that interrupt, the original multiplier mode

selection is lost and the results are unpredictable. To avoid this, disable

interrupts before using the hardware multiplier, do not use the multiplier in

interrupt service routines, or use the save and restore functionality of the 32-bit

multiplier.

; Disable interrupts
DI NT ;
NOP ;
MOV #xxh, &VPY ;
MOV #xxh, &0OP2 ;
El NT ;

32-Bit Hardware Multiplier

before using the hardware multiplier
Di sable interrupts

Required for DI NT

Load 1st operand

Load 2nd operand

Interrupts may be enabl ed before
processing results if result
registers are stored and restored in
interrupt service routines

Save and Restore

32-Bit Hardware Multiplier Operation

If the multiplier is used in interrupt service routines its state can be saved and
restored using the MPY32CTLO register. The following code example shows
how the complete multiplier status can be saved and restored to allow
interruptible multiplications together with the usage of the multiplier in interrupt
service routines. Since the state of the MPYSAT and MPYFRAC bits are
unknown they should be cleared before the registers are saved as shown in
the code example.

; Interrupt service routine using rmultiplier
MPY_USI NG | SR
PUSH &MPY32CTLO ; Save multiplier node, etc.
BIC #MPYSAT+MPYFRAC, &VPY32CTLO
;. Clear MPYSAT+MPYFRAC

PUSH &RES3 : Save result 3
PUSH &RES2 : Save result 2
PUSH &RES1 ; Save result 1
PUSH &RESO ; Save result O
PUSH &WPY32H ; Save operand 1, high word
PUSH &WPY32L ; Save operand 1, |ow word
PUSH &OP2H ; Save operand 2, high word
PUSH &OP2L ; Save operand 2, |ow word

; Main part of ISR
; Using standard MPY routines

POP &OP2L ; Restore operand 2, |ow word
POP &OP2H ; Restore operand 2, high word
; Starts dunmy mul tiplication but
; result is overwitten by
; followi ng restore operations:

POP &VPY32L ; Restore operand 1, |ow word

POP &WPY32H ; Restore operand 1, high word
POP &RESO ;. Restore result O

POP &RES1 ; Restore result 1

POP &RES? ; Restore result 2

POP &RES3 ; Restore result 3

POP &WPY32CTLO ; Restore nultiplier node, etc.
reti ; End of interrupt service routine

32-Bit Hardware Multiplier 9-19

32-Bit Hardware Multiplier Operation

9.2.8 Using DMA

In devices with a DMA controller the multiplier can trigger a transfer when the
complete result is available. The DMA controller needs to start reading the
result with MPY32RESO successively up to MPY32RES3. Not all registers
need to be read. The trigger timing is such that the DMA controller starts
reading MPY32RESO when its ready and that the MPY32RES3 can be read
exactly in the clock cycle when it is available to allow fastest access via DMA.
The signal into the DMA controller is 'Multiplier ready’. Please refer to the DMA
user’s guide chapter for details.

9-20 32-Bit Hardware Multiplier

9.3 32-Bit Hardware Multiplier Registers

The 32-bit hardware multiplier registers are listed in Table 9-7.

Table 9-7.32-bit Hardware Multiplier Registers

32-Bit Hardware Multiplier Registers

Register Short Form Register Address Initial State
Type
16-bit operand one — multiply MPY Read/write 0130h Unchanged
8-bit operand one — multiply MPY_B Read/write 0132h Unchanged
16-bit operand one - signed multiply MPYS Read/write 0132h Unchanged
8-bit operand one - signed multiply MPYS_B Read/write 0132h Unchanged
16-bit operand one - multiply accumulate MAC Read/write 0134h Unchanged
8-bit operand one - multiply accumulate MAC_B Read/write 0134h Unchanged
16-bit operand one - signed multiply accumulate MACS Read/write 0136h Unchanged
8-bit operand one - signed multiply accumulate MACS_B Read/write 0136h Unchanged
16-bit operand two OP2 Read/write 0138h Unchanged
8-bit operand two OP2_B Read/write 0138h Unchanged
16x16-bit result low word RESLO Read/write 013Ah Undefined
16x16-bit result high word RESHI Read/write 013Ch Undefined
16x16-bit sum extension register SUMEXT Read 013Eh Undefined
32-bit operand 1 — multiply — low word MPY32L Read/write 0140h Unchanged
32-bit operand 1 — multiply - high word MPY32H Read/write 0142h Unchanged
24-bit operand 1 — multiply - high byte MPY32H_B Read/write 0142h Unchanged
32-hit operand 1 - signed multiply — low word MPYS32L Read/write 0144h Unchanged
32-bit operand 1 - signed multiply - high word MPYS32H Read/write 0146h Unchanged
24-bit operand 1 - signed multiply — high byte MPYS32H_B Read/write 0146h Unchanged
32-bit operand 1 - multiply accumulate - low word MAC32L Read/write 0148h Unchanged
32-bit operand 1 - multiply accumulate - high word MAC32H Read/write 014Ah Unchanged
24-bit operand 1 - multiply accumulate - high byte MAC32H_B Read/write 014Ah Unchanged
32-bit operand 1 - signed multiply accumulate - low MACS32L Read/write 014Ch Unchanged
word
32-bit operand 1 - signed multiply accumulate - high MACS32H Read/write 014Eh Unchanged
word
§4-bit operand 1 - signed multiply accumulate - high MACS32H_B Read/write 014Eh Unchanged
yte
32-bit operand 2 - low word OP2L Read/write 0150h Unchanged
32-bit operand 2 - high word OP2H Read/write 0152h Unchanged
24-bit operand 2 - high byte OP2H_B Read/write 0152h Unchanged
32x32-hit result 0 - least significant word RESO Read/write 0154h Undefined
32x32-bit result 1 RES1 Read/write 0156h Undefined
32x32-bit result 2 RES2 Read/write 0158h Undefined
32x32-hit result 3 - most significant word RES3 Read/write 015Ah Undefined
MPY32 Control Register 0 MPY32CTLO Read/write 015Ch Undefined

32-Bit Hardware Multiplier

9-21

32-Bit Hardware Multiplier Registers

The registers listed in Table 9-8 are treated equally.

Table 9-8. Alternative Registers

Register

Alternative 1

Alternative 2

16-bit operand one — multiply

8-bit operand one — multiply

16-bit operand one - signed multiply

8-bit operand one - signed multiply

16-bit operand one — multiply accumulate

8-bit operand one - multiply accumulate

16-hit operand one - signed multiply accumulate
8-bit operand one - signed multiply accumulate
16x16-bit result low word

16x16-hit result high word

MPY
MPY_B
MPYS
MPYS_B
MAC
MAC_B
MACS
MACS_B
RESLO
RESHI

MPY32L
MPYS32L_B
MPYS32L
MPYS32L_B
MAC32L
MAC32L_B
MACS32L
MACS32L_B
RESO

RES1

9-22 32-Bit Hardware Multiplier

MPY32CTLO, 32-bit Multiplier Control Register 0

32-Bit Hardware Multiplier Registers

15 14 13 12 11 10 9 8
Reserved
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
7 6 5 4 3 2 1 0
O'\PAE_EZ O'I;Af_\(gz MPYMx MPYSAT MPYFRAC Reserved MPYC
w w w w rw-0 rw-0 rw-0 rw
Reserved Bits Reserved
15-8
MPY Bit 7 Multiplier bit-width of operand 2
0OP2_32 0 16 bits
1 32 bits
MPY Bit 6 Multiplier bit-width of operand 1.
OP1_32 0 16 bits
1 32 bits
MPYMx Bits Multiplier mode
5-4 00 MPY - Multiply
01 MPYS - Signed multiply
10 MAC - Multiply accumulate
11 MACS - Signed multiply accumulate
MPYSAT Bit 3 Saturation mode
0 Saturation mode disabled
1 Saturation mode enabled
MPYFRAC Bit2 Fractional mode
0 Fractional mode disabled
1 Fractional mode enabled
Reserved Bit 1 Reserved
MPYC Bit0 Carry of the multiplier. It can be considered as 33rd or 65th bit of the result

if fractional or saturation mode is not selected because the MPYC bit does not
change when switching to saturation or fractional mode.
It is used to restore the SUMEXT content in MAC mode.

0 No carry for result
1 Result has a carry

32-Bit Hardware Multiplier 9-23

9-24 32-Bit Hardware Multiplier

Chapter 10

DMA Controller

The DMA controller module transfers data from one address to another
without CPU intervention. This chapter describes the operation of the DMA
controller. One DMA channel is implemented in MSP430FG43x and three
DMA channels are implemented in the MSP430FG461x and MSP430F471xx
devices.

Topic Page
10.1 DMA INtroducCtiont 10-2
10.2 DMA Operation . ..ottt 10-4
10.3 DMA ReEQISIOrS .ottt e 10-21

10-1

DMA Introduction

10.1 DMA Introduction

The direct memory access (DMA) controller transfers data from one address
to another, without CPU intervention, across the entire address range. For
example, the DMA controller can move data from the ADC12 conversion
memory to RAM.

Devices that contain a DMA controller may have one, two, or three DMA
channels available. Therefore, depending on the number of DMA channels
available, some features described in this chapter are not applicable to all
devices.

Using the DMA controller can increase the throughput of peripheral modules.
It can also reduce system power consumption by allowing the CPU to remain
in a low-power mode without having to awaken to move data to or from a
peripheral.

The DMA controller features include:

Up to three independent transfer channels
Configurable DMA channel priorities

Requires only two MCLK clock cycles per transfer
Byte or word and mixed byte/word transfer capability
Block sizes up to 65535 bytes or words
Configurable transfer trigger selections

Selectable edge or level-triggered transfer

Four addressing modes

U o0 uUduUdod

Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 10-1.

10-2 DMA Controller

Figure 10-1. DMA Controller Block Diagram

DMAOTSELXx
4
DMAREQ —] 0000
TACCR2_CCIFG — 0001
TBCCR2_CCIFG —] 0010
Serial data received —| 0011
Serial transmit ready —] 0100
DAC12_OIFG — 0101
ADC12IFGx —| 0110
TACCRO_CCIFG — 0111
TBCCRO_CCIFG —] 1000
USART1 data received —| 1001
USART1 transmit ready —| 1010
Multiplier ready — 1011
Serial data received —| 1100
Serial transmit ready — 1101
DMA2IFG — 1110

DMAEQ — ﬁ

DMA1TSELx
4
DMAREQ —] 0000
TACCR2_CCIFG — 0001
TBCCR2_CCIFG —] 0010
Serial data received —| 0011
Serial transmit ready —] 0100
DAC12_OIFG —] 0101
ADC12IFGx —{ 0110
TACCRO_CCIFG—] 0111
TBCCRO_CCIFG—] 1000
USART1 data received —| 1001
USART1 transmit ready —| 1010
Multiplier ready — 1011
Serial data received —| 1100
Serial transmit ready — 1101
DMAOIFG — 1110
DMAEO — 1111

DMA2TSELx
4
DMAREQ —] 0000
TACCR2_CCIFG — 0001
TBCCR2_CCIFG —] 0010
Serial data received —| 0011
Serial transmit ready —] 0100
DAC12_OIFG — 0101
ADC12IFGx — 0110
TACCRO_CCIFG — 0111
TBCCRO_CCIFG—{ 1000
USART1 data received —| 1001
USART1 transmit ready —] 1010
Multiplier ready — 1011
Serial data received —{ 1100
Serial transmit ready — 1101
DMALIFG — 1110

DMAEOQ — ﬁ

Halt

[onu0D puy Alond YING

—a ROUNDROBIN

DMA Introduction

JTAG Active

—<— NMI Interrupt Request
—& ENNMI

DMADSTINCRx DMADTX
2 DMADSTBYTE J.r 3

DMA Channel 0

DMAOSA

DMAODA

DMAOSZ

2 |—I DMASRSBYTE
DMASRCINCRx DMAEN

DMADSTINCRx DMADTX
2 |—- DMADSTBYTE J.r 3

I

DMA Channel 1 [~
DMA1SA
— ¢ Address
DMA1DA —P | _
Space
DMA1SZ » >
2 t L DMASRSBYTE l 7%
DMASRCINCRx DMAEN

DMADSTINCRx DMADTX
2 DMADSTBYTE J.r 3

DMA Channel 2

DMA2SA

DMA2DA

DMA2SZ

—& DMAONFETCH

2 |—I DMASRSBYTE
DMASRCINCRx DMAEN

I

L Halt CPU

DMA Controller 10-3

DMA Operation

10.2 DMA Operation

The DMA controller is configured with user software. The setup and operation
of the DMA is discussed in the following sections.

10.2.1 DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for
each DMA channel is independently configurable. For example, channel 0
may transfer between two fixed addresses, while channel 1 transfers between
two blocks of addresses. The addressing modes are shown in Figure 10-2.
The addressing modes are:

[Fixed address to fixed address
(] Fixed address to block of addresses
(] Block of addresses to fixed address

[Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and
DMADSTINCRXx control bits. The DMASRCINCRX bits select if the source
address is incremented, decremented, or unchanged after each transfer. The
DMADSTINCRx bits select if the destination address is incremented,
decremented, or unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte.
When transferring word-to-byte, only the lower byte of the source-word
transfers. When transferring byte-to-word, the upper byte of the
destination-word is cleared when the transfer occurs.

Figure 10-2. DMA Addressing Modes

10-4

ﬁ ﬁ
DMA DMA
Controller Address Space Controller Address Space
Fixed Address To Fixed Address Fixed Address To Block Of Addresses
ﬁ ﬁ
DMA DMA
Controller Address Space Controlier Address Space
Block Of Addresses To Fixed Address Block Of Addresses To Block Of Addresses

DMA Controller

10.2.2 DMA Transfer Modes

DMA Operation

The DMA controller has six transfer modes selected by the DMADTX bits as
listed in Table 10-1. Each channel is individually configurable for its transfer
mode. For example, channel 0 may be configured in single transfer mode,
while channel 1 is configured for burst-block transfer mode, and channel 2
operates in repeated block mode. The transfer mode is configured
independently from the addressing mode. Any addressing mode can be used
with any transfer mode.

Two types of data can be transferred selectable by the DMAXCTL DSTBYTE
and SRCBYTE fields. The source and/or destination location can be either
byte or word data. It is also possible to transfer byte to byte, word to word or
any combination.

Table 10-1. DMA Transfer Modes

DMADTx

Transfer
Mode

Description

000

001

010, 011

100

101

110, 111

Single transfer

Block transfer

Burst-block
transfer

Repeated
single transfer

Repeated
block transfer

Repeated
burst-block
transfer

Each transfer requires a trigger. DMAEN is

automatically cleared when DMAXSZ transfers have

been made.

A complete block is transferred with one trigger.
DMAEN is automatically cleared at the end of the
block transfer.

CPU activity is interleaved with a block transfer.
DMAEN is automatically cleared at the end of the
burst-block transfer.

Each transfer requires a trigger. DMAEN remains
enabled.

A complete block is transferred with one trigger.
DMAEN remains enabled.

CPU activity is interleaved with a block transfer.
DMAEN remains enabled.

DMA Controller

10-5

DMA Operation

Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger.
The single transfer state diagram is shown in Figure 10-3.

The DMAXSZ register is used to define the number of transfers to be made.
The DMADSTINCRx and DMASRCINCRXx bits select if the destination
address and the source address are incremented or decremented after each
transfer. If DMAxXSZ = 0, no transfers occur.

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXDA are incremented
or decremented after each transfer. The DMAXSZ register is decremented
after each transfer. When the DMAXSZ register decrements to zero it is
reloaded from its temporary register and the corresponding DMAIFG flag is
set. When DMADTx = 0, the DMAEN bit is cleared automatically when
DMAXSZ decrements to zero and must be set again for another transfer to
occur.

In repeated single transfer mode, the DMA controller remains enabled with
DMAEN = 1, and a transfer occurs every time a trigger occurs.

10-6 DMA Controller

Figure 10-3. DMA Single Transfer State Diagram

DMAEN =0
Reset
DMAEN =0 _ DMAEN =0
DMAREQ =0 DMAEN =1
T_Size —» DMAXSZ

[DMADTx = 0
AND DMAXSZ = 0]
OR DMAEN =0
DMAABORT = 1

[ENNMI =1
AND NMI event]
OR
[DMALEVEL =1
AND Trigger = 0]

DMAXSA — T_SourceAdd
DMAXDA — T_DestAdd

DMAXSZ — T_Size

DMA Operation

DMAREQ =0 |«

Hold CPU,
Transfer one word/byte

T_Size — DMAXSZ
DMAXSA — T_SourceAdd
DMAXDA — T_DestAdd

Decrement DMAXSZ
Modify T_SourceAdd

DMADTx = 4
AND DMAXSZ =0
AND DMAEN =1

Modify T_DestAdd

DMA Controller

DMAABORT=0 I
y
. _ DMAXSZ >0
Wait for Trigger AND DMAEN = 1
[+Trigger AND DMALEVEL =0]
OR
5 % MCLK [Trigger=1 AND DMALEVEL=1]

10-7

DMA Operation

Block Transfers

In block transfer mode, a transfer of a complete block of data occurs after one
trigger. When DMADTXx = 1, the DMAEN bit is cleared after the completion of
the block transfer and must be set again before another block transfer can be
triggered. After a block transfer has been triggered, further trigger signals
occurring during the block transfer are ignored. The block transfer state
diagram is shown in Figure 10-4.

The DMAXSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRX bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAXSZ = 0, no transfers occur.

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXDA are incremented
or decremented after each transfer in the block. The DMAXSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAXSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

During a block transfer, the CPU is halted until the complete block has been
transferred. The block transfer takes 2 x MCLK x DMAXSZ clock cycles to
complete. CPU execution resumes with its previous state after the block
transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion
of the block transfer. The next trigger after the completion of a repeated block
transfer triggers another block transfer.

10-8 DMA Controller

DMA Operation
Figure 10-4. DMA Block Transfer State Diagram

DMAEN =0
Reset
DMAEN =0 OMARN < 0
DMAREQ = 0 ~ =
T_Size — DMAXSZ DMAEN =1 |

_ DMAXSZ — T_Size
AN[B'\S/:ADATZE ! o DMAXSA — T_SourceAdd
" F;< =0] DMAXDA — T_DestAdd
DMAEN =0

DMAABORT =1

DMAREQ =0
. T_Size — DMAXSZ
DMAABORT=0 DMAXSA — T_SourceAdd [
A DMAXDA — T_DestAdd
Wait for Trigger
DMADTx =5
AND DMAXSZ =0
[+Trigger AND DMALEVEL =0] AND DMAEN = 1

OR
[Trigger=1 AND DMALEVEL=1]

2 x MCLK

Hold CPU,
Transfer one word/byte

[ENNMI =1
AND N(l;/lé event] DMAXSZ > 0

[DMALEVEL =1
AND Trigger = 0]

Decrement DMAXSZ)

Modify T_SourceAdd
Modify T_DestAdd

DMA Controller 10-9

DMA Operation

Burst-Block Transfers

In burst-block mode, transfers are block transfers with CPU activity
interleaved. The CPU executes 2 MCLK cycles after every four byte/word
transfers of the block resulting in 20% CPU execution capacity. After the
burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is
cleared. DMAEN must be set again before another burst-block transfer can
be triggered. After a burst-block transfer has been triggered, further trigger
signals occurring during the burst-block transfer are ignored. The burst-block
transfer state diagram is shown in Figure 10-5.

The DMAXSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRX bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAXSZ = 0, no transfers occur.

The DMAXSA, DMAXDA, and DMAXSZ registers are copied into temporary
registers. The temporary values of DMAXSA and DMAXDA are incremented
or decremented after each transfer in the block. The DMAXSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAXSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of
the burst-block transfer and no further trigger signals are required to initiate
another burst-block transfer. Another burst-block transfer begins immediately
after completion of a burst-block transfer. In this case, the transfers must be
stopped by clearing the DMAEN bit, or by an NMI interrupt when ENNMI is set.
In repeated burst-block mode the CPU executes at 20% capacity continuously
until the repeated burst-block transfer is stopped.

10-10 DMA Controller

Figure 10-5. DMA Burst-Block Transfer State Diagram

DMAEN =0
Reset
DMAEN =0
DMAREQ =0 ~ DMAEN =0
T_Size - DMAXSZ DMAEN =1 |

[DMADTX = {2, 3}
AND DMAXSZ = 0]
OR
DMAEN =0

2 X

[ENNMI =1
AND NMI event]
OR

[DMALEVEL =1
AND Trigger = 0]

2 x MCLK

DMAABORT =1

DMAXSZ — T_Size
DMAXSA — T_SourceAdd
DMAXDA — T_DestAdd

DMAABORT=0
4
Wait for Trigger
[+Trigger AND DMALEVEL =0]
OR
MCLK [Trigger=1 AND DMALEVEL=1]

y
Hold cpu,\4

DMA Operation

Transfer one word/byte

T_Size — DMAXSZ
DMAXSA — T_SourceAdd
DMAXDA — T_DestAdd

DMAXSZ >0

Decrement DMAXSZ
Modify T_SourceAdd

Modify T_DestAdd

DMAXSZ > 0 AND

a multiple of 4 words/bytes
were transferred

DMAXSZ >0

Burst State

[DMADTX = {6, 7}
AND DMAXSZ = 0]

(release CPU for 2xMCLK)

DMA Controller

10-11

DMA Operation

10.2.3 Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the
DMAXTSELX bits as described in Table 10-2.The DMAXTSELX bits should be
modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur.

When selecting the trigger, the trigger must not have already occurred, or the
transfer will not take place. For example, if the TACCR2 CCIFG bit is selected
as a trigger, and it is already set, no transfer will occur until the next time the
TACCR2 CCIFG bhit is set.

Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge
of the trigger signal initiates the transfer. In single-transfer mode, each transfer
requires its own trigger. When using block or burst-block modes, only one
trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers

When DMALEVEL = 1, level-sensitive triggers are used. For proper operation,
level-sensitive triggers can only be used when external trigger DMAEOQ is
selected as the trigger. DMA transfers are triggered as long as the trigger
signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to
complete. If the trigger signal goes low during a block or burst-block transfer,
the DMA controller is held in its current state until the trigger goes back high
or until the DMA registers are modified by software. If the DMA registers are
not modified by software, when the trigger signal goes high again, the transfer
resumes from where it was when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx ={0, 1, 2, 3}
are recommended because the DMAEN bit is automatically reset after the
configured transfer.

Halting Executing Instructions for DMA Transfers

The DMAONFETCH bit controls when the CPU is halted for a DMA transfer.
When DMAONFETCH = 0, the CPU is halted immediately and the transfer
begins when a trigger is received. When DMAONFETCH = 1, the CPU finishes
the currently executing instruction before the DMA controller halts the CPU
and the transfer begins.

Note: DMAONFETCH Must Be Used When The DMA Writes To Flash

If the DMA controller is used to write to flash memory, the DMAONFETCH
bit must be set. Otherwise, unpredictable operation can result.

10-12 DMA Controller

DMA Operation

Table 10-2. DMA Trigger Operation

DMAXTSELx Operation

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset
when the transfer starts

A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is
automatically reset when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2
CCIFG flag will not trigger a transfer.

A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is
automatically reset when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2
CCIFG flag will not trigger a transfer.

Devices with USARTO: A transfer is triggered when the URXIFGO flag is set. URXIFGO is
automatically reset when the transfer starts. If URXIEOQ is set, the URXIFGO flag will not trigger
a transfer.

Devices with USCI_AO: A transfer is triggered when the UCAORXIFG flag is set. UCAORXIFG
is automatically reset when the transfer starts. If UCAORXIE is set, the UCAORXIFG flag will
not trigger a transfer.

Devices with USARTO: A transfer is triggered when the UTXIFGO flag is set. UTXIFGO is
automatically reset when the transfer starts. If UTXIEO is set, the UTXIFGO flag will not trigger
a transfer.

Devices with USCI_AO: A transfer is triggered when the UCAOTXIFG flag is set. UCAOTXIFG
is automatically reset when the transfer starts. If UCAOTXIE is set, the UCAOTXIFG flag will
not trigger a transfer.

Devices with DAC12: A transfer is triggered when the DAC12_0CTL DAC12IFG flag is set.
The DAC12_0CTL DAC12IFG flag is automatically cleared when the transfer starts. If the
DAC12_0CTL DAC12IE bit is set, the DAC12_0CTL DAC12IFG flag will not trigger a transfer.

Devices with ADC12: A transfer is triggered by an ADC12IFGx flag. When single-channel
conversions are performed, the corresponding ADC12IFGx is the trigger. When sequences
are used, the ADC12IFGx for the last conversion in the sequence is the trigger. A transfer is
triggered when the conversion is completed and the ADC12IFGx is set. Setting the
ADC12IFGx with software will not trigger a transfer. All ADC12IFGx flags are automatically
reset when the associated ADC12MEMX register is accessed by the DMA controller.
Devices with SD16 or SD16_A: A transfer is triggered by the SD16IFG flag of the master
channel in grouped mode or of channel 0. Setting the SD16IFG with software will not trigger a
transfer. All SD16IFG flags are automatically reset when the associated SD16MEMx register
is accessed by the DMA controller. If the SD16IE of the master channel is set, the SD16IFG
will not trigger a transfer.

A transfer is triggered when the TACCRO CCIFG flag is set. The TACCRO CCIFG flag is
automatically reset when the transfer starts. If the TACCRO CCIE bit is set, the TACCRO
CCIFG flag will not trigger a transfer.

A transfer is triggered when the TBCCRO CCIFG flag is set. The TBCCRO CCIFG flag is
automatically reset when the transfer starts. If the TBCCRO CCIE bit is set, the TBCCRO
CCIFG flag will not trigger a transfer.

Devices with USART1: A transfer is triggered when the URXIFGL1 flag is set. URXIFGL1 is
automatically reset when the transfer starts. If URXIEL is set, the URXIFGL flag will not trigger a
transfer.

Devices with USCI_A1: A transfer is triggered when the UCAL1RXIFG flag is set. UCALIRXIFG
is automatically reset when the transfer starts. If UCALRXIE is set, the UCA1RXIFG flag will
not trigger a transfer.

DMA Controller 10-13

DMA Operation

Table 10-2.

DMA Trigger Operation (Continued)

DMAXTSELX
1010

1011
1100

1101

1110

1111

Operation

Devices with USART1: A transfer is triggered when the UTXIFG1 flag is set. UTXIFGL1 is
automatically reset when the transfer starts. If UTXIEL is set, the UTXIFGL flag will not trigger
a transfer.

Devices with USCI_AL: A transfer is triggered when the UCALTXIFG flag is set. UCALTXIFG
is automatically reset when the transfer starts. If UCALTXIE is set, the UCALTXIFG flag will
not trigger a transfer.

A transfer is triggered when the hardware multiplier is ready for a new operand.

A transfer is triggered when the UCBORXIFG flag is set. UCBORXIFG is automatically reset
when the transfer starts. If UCBORXIE is set, the UCBORXIFG flag will not trigger a transfer.

A transfer is triggered when the UCBOTXIFG flag is set. UCBOTXIFG is automatically reset
when the transfer starts. If UCBOTXIE is set, the UCBOTXIFG flag will not trigger a transfer.

A transfer is triggered when the DMAXIFG flag is set. DMAOIFG triggers channel 1, DMA1IFG
triggers channel 2, and DMAZ2IFG triggers channel 0. None of the DMAXIFG flags are
automatically reset when the transfer starts.

A transfer is triggered by the external trigger DMAEOQ.

10-14 DMA Controller

DMA Operation

10.2.4 Stopping DMA Transfers
There are two ways to stop DMA transfers in progress:

(1 A single, block, or burst-block transfer may be stopped with an NMI
interrupt, if the ENNMI bit is set in register DMACTL1.

(1 A burst-block transfer may be stopped by clearing the DMAEN bit.

10.2.5 DMA Channel Priorities

The default DMA channel priorities are DMAO-DMA1-DMAZ2. If two or three
triggers happen simultaneously or are pending, the channel with the highest
priority completes its transfer (single, block or burst-block transfer) first, then
the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher priority channel is triggered. The higher
priority channel waits until the transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit.
When the ROUNDROBIN bit is set, the channel that completes a transfer
becomes the lowest priority. The order of the priority of the channels always
stays the same, DMAO-DMA1-DMAZ2, for example:

DMA Priority Transfer Occurs New DMA Priority
DMAO - DMA1 - DMA2 DMA1l DMA2 - DMAO - DMA1
DMA2 - DMAO - DMA1 DMA2 DMAO - DMA1 - DMA2
DMAO - DMA1 - DMA2 DMAO DMA1 - DMA2 - DMAO

When the ROUNDROBIN bit is cleared the channel priority returns to the
default priority.

DMA channel priorities are not applicable to MSP430FG43x devices.

DMA Controller 10-15

DMA Operation

10.2.6 DMA Transfer Cycle Time

The DMA controller requires one or two MCLK clock cycles to synchronize
before each single transfer or complete block or burst-block transfer. Each
byte/word transfer requires two MCLK cycles after synchronization, and one
cycle of wait time after the transfer. Because the DMA controller uses MCLK,
the DMA cycle time is dependent on the MSP430 operating mode and clock
system setup.

If the MCLK source is active, but the CPU is off, the DMA controller will use
the MCLK source for each transfer, without re-enabling the CPU. If the MCLK
source is off, the DMA controller will temporarily restart MCLK, sourced with
DCOCLK, for the single transfer or complete block or burst-block transfer. The
CPU remains off, and after the transfer completes, MCLK is turned off. The
maximum DMA cycle time for all operating modes is shown in Table 10-3.

Table 10-3. Maximum Single-Transfer DMA Cycle Time

CPU Operating Mode Clock Source Maximum DMA Cycle Time
Active mode MCLK=DCOCLK 4 MCLK cycles

Active mode MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 5 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 5 MCLK cycles + 6 us’

Low-power mode LPM0/1 MCLK=LFXT1CLK 5 MCLK cycles
Low-power mode LPM3 MCLK=LFXT1CLK 5 MCLK cycles
Low-power mode LPM4 MCLK=LFXT1CLK 5 MCLK cycles + 6 pst

T The additional 6 is are needed to start the DCOCLK. It is the tLpmx) Parameter in the data sheet.

10-16 DMA Controller

DMA Operation

10.2.7 Using DMA with System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts
remain pending until the completion of the transfer. NMI interrupts can
interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an
interrupt service routine or other routine must execute with no interruptions,
the DMA controller should be disabled prior to executing the routine.

10.2.8 DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any
mode when the corresponding DMAXSZ register counts to zero. If the
corresponding DMAIE and GIE bits are set, an interrupt request is generated.

All DMAIFG flags source only one DMA controller interrupt vector and the
interrupt vector may be shared with the other modules. See the device-specific
datasheet for specific interrupt assignments. In this case, software must
check the DMAIFG and other flags to determine the source of the interrupt.
The DMAIFG flags are not reset automatically and must be reset by software.

10.2.9 DMAIV, DMA Interrupt Vector Generator

MSP430FG461x and MSP430F471xx devices implement the interrupt vector
register DMAIV. In this case, all DMAIFG flags are prioritized and combined
to source a single interrupt vector. The interrupt vector register DMAIV is used
to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the DMAIV
register (see register description). This number can be evaluated or added to
the program counter to automatically enter the appropriate software routine.
Disabled DMA interrupts do not affect the DMAIV value.

Any access, read or write, of the DMAIV register automatically resets the
highest pending interrupt flag. If another interrupt flag is set, another interrupt
is immediately generated after servicing the initial interrupt. For example, If the
DMAOIFG and DMAZ2IFG flags are set when the interrupt service routine
accesses the DMAIV register, DMAOIFG is reset automatically. After the RETI
instruction of the interrupt service routine is executed, the DMA2IFG will
generate another interrupt.

DMA Controller 10-17

DMA Operation

DMALIV Software Example

The following software example shows the recommended use of DMAIV and
the handling overhead. The DMAIV value is added to the PC to automatically
jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself.

;I nterrupt handler for DVMAOI FG DMALlI FG DWVA2I FG Cycl es

DVA_HND - ; Interrupt latency 6
ADD &DNMAI V, PC; Add offset to Junp table 3
RETI ; Vector 0: No interrupt
5
J\VP DMAO_HND ; Vector 2: DVA channel 0 2
JMVP DMAL_ HND ; Vector 4: DMA channel 1 2
JWP DMA2_HND ; Vector 6: DMA channel 2 2
RETI ; Vector 8: Reserved 5
RETI ; Vector 10: Reserved 5
RETI ; Vector 12: Reserved 5
RETI ; Vector 14: Reserved 5
DVA2_HND ; Vector 6: DMA channel 2
; Task starts here
RETI ; Back to mmin program 5
DvA1_HND : Vector 4: DMA channel 1
; Task starts here
RETI ; Back to mmin program 5
DVAO_HND ; Vector 2: DMA channel O
; Task starts here
RETI ; Back to mmin program 5

10-18 DMA Controller

DMA Operation

10.2.10 Using the USCI_B I2C Module with the DMA Controller

The USCI_B I2C module provides two trigger sources for the DMA controller.
The USCI_B I2C module can trigger a transfer when new 12C data is received
and when data is needed for transmit.

A transfer is triggered if UCBORXIFG is set. The UCBORXIFG is cleared
automatically when the DMA controller acknowledges the transfer. If
UCBORXIE is set, UCBORXIFG will not trigger a transfer.

A transfer is triggered if UCBOTXIFG is set. The UCBOTXIFG is cleared
automatically when the DMA controller acknowledges the transfer. If
UCBOTXIE is set, UCBOTXIFG will not trigger a transfer.

10.2.11 Using ADC12 with the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data from any ADC12MEMX register to another location. DMA transfers are
done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput of the ADC12 module, and
enhances low-power applications allowing the CPU to remain off while data
transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQx
={0,2} the ADC12IFGx flag for the ADC12MEMXx used for the conversion can
trigger a DMA transfer. When CONSEQx = {1,3}, the ADC12IFGx flag for the
last ADC12MEMx in the sequence can trigger a DMA transfer. Any
ADCI12IFGx flag is automatically cleared when the DMA controller accesses
the corresponding ADC12MEMX.

10.2.12 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data to the DAC12_xDAT register. DMA transfers are done without CPU
intervention and independently of any low-power modes. The DMA controller
increases throughput to the DAC12 module, and enhances low-power
applications allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using
the DMA controller with the DAC12. For example, an application that produces
a sinusoidal waveform may store the sinusoid values in a table. The DMA
controller can continuously and automatically transfer the values to the
DAC12 at specific intervals creating the sinusoid with zero CPU execution.
The DAC12_xCTL DAC12IFG flag is automatically cleared when the DMA
controller accesses the DAC12_xDAT register.

DMA Controller 10-19

DMA Operation

10.2.13 Using SD16 or SD16_A With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data from any SD16MEMXx register to another location. DMA transfers are
done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput of the SD16 or SD16_A module, and
enhances low-power applications allowing the CPU to remain off while data
transfers occur.

In Grouped mode DMA transfers can be triggered by the master channel that
controls the group (i.e. the channel with the lowest channel number and
SD16GRP = 0). Otherwise channel 0 can trigger DMA transfers. Any
SD16IFG is automatically cleared when the DMA controller accesses the
corresponding SD16MEMX register.

10.2.14 Writing to Flash With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data to the Flash memory. DMA transfers are done without CPU intervention
and independent of any low-power modes. The DMA controller performs the
move of the data word/byte to the Flash. The write timing control is done by
the Flash controller. Write transfers to the Flash memory succeed if the Flash
controller set-up is prior to the DMA transfer and if the Flash is not busy.

10-20 DMA Controller

10.3 DMA Registers

DMA Registers

The DMA registers for MSP430FG43x devices are listed in Table 10-4. The
DMA registers for MSP430FG461x and MSP430F471xx devices are listed in

Table 10-5.

Table 10-4. DMA Registers, MSP430FG43x devices

Register Short Form Register Type Address Initial State
DMA control 0 DMACTLO Read/write 0122h Reset with POR
DMA control 1 DMACTL1 Read/write 0124h Reset with POR
DMA channel O control DMAOCTL Read/write 01EOh Reset with POR
DMA channel 0 source address DMAOSA Read/write 01E2h Unchanged
DMA channel O destination address DMAODA Read/write 01E4h Unchanged
DMA channel 0 transfer size DMAO0SZ Read/write 01E6h Unchanged
DMA channel 1 control DMA1CTL Read/write 01E8h Reset with POR
DMA channel 1 source address DMA1SA Read/write 01EAh Unchanged
DMA channel 1 destination address DMA1DA Read/write 01ECh Unchanged
DMA channel 1 transfer size DMA1SZz Read/write O1EEh Unchanged
DMA channel 2 control DMA2CTL Read/write 01FOh Reset with POR
DMA channel 2 source address DMA2SA Read/write 01F2h Unchanged
DMA channel 2 destination address DMA2DA Read/write 01F4h Unchanged
DMA channel 2 transfer size DMA2SZ Read/write 01F6h Unchanged

Table 10-5. DMA Registers, MSP430FG461x, MSP430F471xx devices
Register Short Form Register Type Address Initial State
DMA control 0 DMACTLO Read/write 0122h Reset with POR
DMA control 1 DMACTL1 Read/write 0124h Reset with POR
DMA interrupt vector DMAIV Read only 0126h Reset with POR
DMA channel O control DMAOCTL Read/write 01D0h Reset with POR
DMA channel 0 source address DMAOSA Read/write 01D2h Unchanged
DMA channel O destination address DMAODA Read/write 01D6h Unchanged
DMA channel 0 transfer size DMAO0SZ Read/write 01DAh Unchanged
DMA channel 1 control DMA1CTL Read/write 01DCh Reset with POR
DMA channel 1 source address DMA1SA Read/write 01DEh Unchanged
DMA channel 1 destination address DMA1DA Read/write 01E2h Unchanged
DMA channel 1 transfer size DMA1SZ Read/write 01E6h Unchanged
DMA channel 2 control DMA2CTL Read/write 01E8h Reset with POR
DMA channel 2 source address DMA2SA Read/write 01EAhO Unchanged
DMA channel 2 destination address DMA2DA Read/write O1lEEh Unchanged
DMA-channel 2 transfer size DMA2SZ Read/write 01F2h Unchanged

DMA Controller

10-21

DMA Registers

DMACTLO, DMA Control Register O

15 14 13 12 1 10 9 8
Reserved DMA2TSELXx ‘
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
DMALTSELXx DMAOTSELXx ‘
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Reserved Bits Reserved
15-12

DMAZ2 Bits DMA trigger select. These bits select the DMA transfer trigger.

TSELX 11-8 The trigger selection is device-specific. For MSP430FG43x and
MSP430FG461x devices it is given below; for other devices, see the
device-specific data sheet.

0000 DMAREQ bit (software trigger)
0001 TACCR2 CCIFG hit
0010 TBCCR2 CCIFG bit
0011 URXIFGO (MSP430FG43x), UCAORXIFG (MPS430FG461x)
0100 UTXIFGO (MSP430FG43x), UCAOTXIFG (MSP430FG461x)
0101 DAC12_OCTL DACI12IFG bit
0110 ADC12 ADCI12IFGx bit
0111 TACCRO CCIFG hit
1000 TBCCRO CCIFG bit
1001 URXIFG1 bit
1010 UTXIFGL1 bit
1011 Multiplier ready
1100 No action (MSP430FG43x), UCBORXIFG (MSP430FG461x)
1101 No action (MSP430FG43x), UCBOTXIFG (MSP430FG461x)
1110 DMAOIFG bit triggers DMA channel 1
DMAL1IFG bit triggers DMA channel 2
DMAZ2IFG bit triggers DMA channel 0
1111 External trigger DMAEO

DMA1 Bits Same as DMA2TSELx

TSELX 7-4

DMAO Bits Same as DMA2TSELx

TSELx 3-0

10-22

DMA Controller

DMA Registers

DMACTL1, DMA Control Register 1

15 14 13 12 1 10 9 8
0 0 0 0 0 0 0 0 ‘
ro ro ro ro ro ro ro ro
7 6 5 4 3 2 1 0
DMA ROUND
0 0 0 0 0 ONFETCH ROBIN ENNMI ‘
r0 r0 r0 r0 r0 rw-(0) rw-(0) rw-(0)
Reserved Bits Reserved. Read only. Always read as 0.
15-3
DMA Bit 2 DMA on fetch
ONFETCH 0 The DMA transfer occurs immediately
1 The DMA transfer occurs on next instruction fetch after the trigger
ROUND Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.
ROBIN 0 DMA channel priority is DMAO - DMA1 - DMA2
1 DMA channel priority changes with each transfer
ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI

interrupt. When an NMI interrupts a DMA transfer, the current transfer is
completed normally, further transfers are stopped, and DMAABORT is set.
0 NMI interrupt does not interrupt DMA transfer

1 NMI interrupt interrupts a DMA transfer

DMA Controller 10-23

DMA Registers

DMAXCTL, DMA Channel x Control Register

15 14 13 12 1 10 9 8
Reserved DMADTX DMADSTINCRx DMASRCINCRx ‘
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
DMA DMA DMA
DSTBYTE | SRCBYTE | DMALEVEL | DMAEN DMAIFG DMAIE ABORT DMAREQ
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Reserved Bit15 Reserved
DMADTX Bits DMA Transfer mode.
14-12 000 Single transfer
001 Block transfer
010 Burst-block transfer
011 Burst-block transfer
100 Repeated single transfer
101 Repeated block transfer
110 Repeated burst-block transfer
111 Repeated burst-block transfer
DMA Bits DMA destination increment. This bit selects automatic incrementing or
DSTINCRx 11-10 decrementing of the destination address after each byte or word transfer.
When DMADSTBYTE=1, the destination address increments/decrements by
one. When DMADSTBYTE=0, the destination address
increments/decrements by two. The DMAXDA is copied into a temporary
register and the temporary register is incremented or decremented. DMAxXDA
is not incremented or decremented.
00 Destination address is unchanged
01 Destination address is unchanged
10 Destination address is decremented
11 Destination address is incremented
DMA Bits DMA source increment. This bit selects automatic incrementing or
SRCINCRx 9-8 decrementing of the source address for each byte or word transfer. When
DMASRCBYTE=1, the source address increments/decrements by one.
When DMASRCBYTE=0, the source address increments/decrements by
two. The DMAXSA is copied into a temporary register and the temporary
register is incremented or decremented. DMAXSA is not incremented or
decremented.
00 Source address is unchanged
01 Source address is unchanged
10 Source address is decremented
11 Source address is incremented
DMA Bit 7 DMA destination byte. This bit selects the destination as a byte or word.
DSTBYTE 0 Word

10-24

1 Byte

DMA Controller

DMA
SRCBYTE

DMA
LEVEL

DMAEN

DMAIFG

DMAIE

DMA

ABORT

DMAREQ

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit O

DMA Registers

DMA source byte. This bit selects the source as a byte or word.
0 Word
1 Byte

DMA level. This bit selects between edge-sensitive and level-sensitive
triggers.

0 Edge sensitive (rising edge)

1 Level sensitive (high level)

DMA enable
0 Disabled
1 Enabled

DMA interrupt flag
0 No interrupt pending
1 Interrupt pending

DMA interrupt enable
0 Disabled
1 Enabled

DMA Abort. This bit indicates if a DMA transfer was interrupt by an NMI.
0 DMA transfer not interrupted
1 DMA transfer was interrupted by NMI

DMA request. Software-controlled DMA start. DMAREQ is reset
automatically.

0 No DMA start

1 Start DMA

DMA Controller 10-25

DMA Registers

DMAXSA, DMA Source Address Register

31 30 29 28 27 26 25 824
Reserved ‘
ro ro ro ro ro ro ro ro
23 22 21 20 19 18 17 16
Reserved DMAXSAX ‘
ro ro ro ro rw rw rw rw
15 14 13 12 1 10 9 8
DMAXSAX ‘
rw rw rw rw rw rw rw rw
7 6 5 4 3 2 1 0
DMAXSAX ‘
rw rw rw rw rw rw rw rw
Reserved Bits Reserved
31-20
DMAXxSAx Bits DMA source address. The source address register points to the DMA source
19-0 address for single transfers or the first source address for block transfers. The

10-26

source address register remains unchanged during block and burst-block
transfers.

Devices that have addressable memory range 64-KB or below contain a
single word for the DMAXSA.

MSP430FG461x and MSP430F471xx devices implement two words for the
DMAXSA register as shown. Bits 31-20 are reserved and always read as
zero. Reading or writing bits 19-16 requires the use of extended instructions.
When writing to DMAXSA with word instructions, bits 19-16 are cleared.

DMA Controller

DMAXxDA, DMA Destination Address Register

DMA Registers

31 30 29 28 27 26 25 824
Reserved ‘
ro ro ro ro ro ro ro ro
23 22 21 20 19 18 17 16
Reserved DMAXDAX ‘
ro ro ro ro rw rw rw rw
15 14 13 12 1 10 9 8
DMAXDAX ‘
rw rw rw rw rw rw rw rw
7 6 5 4 3 2 1 0
DMAXDAX ‘
rw rw rw rw rw rw rw rw
Reserved Bits Reserved
31-20
DMAxDAXx Bits DMA destination address. The destination address register points to the
19-0 destination address for single transfers or the first address for block transfers.

The DMAXDA register remains unchanged during block and burst-block

transfers.

Devices that have addressable memory range 64-KB or below contain a
single word for the DMAXDA.
MSP430FG461x and MSP430F471xx devices implement two words for the
DMAXDA register as shown. Bits 31-20 are reserved and always read as
zero. Reading or writing bits 19-16 requires the use of extended instructions.
When writing to DMAXDA with word instructions, bits 19-16 are cleared.

DMA Controller

10-27

DMA Registers

DMAxSZ, DMA Size Address Register

15 14 13 12 11 10 9 8
DMAXSZx ‘

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0
DMAXSZx ‘

rw rw rw rw rw rw rw rw

DMAXxSZx Bits DMA size. The DMA size register defines the number of byte/word data per
15-0 block transfer. DMAXSZ register decrements with each word or byte transfer.
When DMAXSZ decrements to 0, it is immediately and automatically reloaded
with its previously initialized value.
00000h Transfer is disabled
00001h One byte or word to be transferred
00002h Two bytes or words have to be transferred

OFFFFh 65535 bytes or words have to be transferred

10-28 DMA Controller

DMALIV, DMA Interrupt Vector Register

DMA Registers

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0 ‘
r0 r0 r0 r0 r0 r0 r0 r0
7 6 5 4 3 2 1 0
0 0 0 0 DMAIVX 0 ‘
r0 r0 r0 r0 r-(0) r-(0) r-(0) r0
DMAIVX Bits DMA Interrupt Vector value
15-0
Interrupt
DMALIV Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending -
02h DMA channel O DMAOIFG Highest
04h DMA channel 1 DMALIFG
06h DMA channel 2 DMA2IFG
08h Reserved -
OAh Reserved -
0Ch Reserved -
OEh Reserved - Lowest
DMA Controller 10-29

10-30 DMA Controller

Chapter 11

Digital 1/0

This chapter describes the operation of the digital I/O ports.

Topic Page
11.1 Digital /O Introduction 11-2
11.2 Digital /O Operationot 11-3
11.3 Digital /O RegISterSt 11-7

11-1

Digital I/0O Introduction

11.1 Digital I/O Introduction

11-2

Digital /10

MSP430 devices have up to ten digital /O ports implemented, P1 to P10. Each
port has eight 1/0O pins. Every 1/O pin is individually configurable for input or
output direction, and each I/O line can be individually read from or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O
lines can be individually enabled and configured to provide an interrupt on a
rising edge or falling edge of an input signal. All P1 I/O lines source a single
interrupt vector, and all P2 1/O lines source a different, single interrupt vector.

The digital I/O features include:

(1 Independently programmable individual I/Os
(0 Any combination of input or output

[Individually configurable P1 and P2 interrupts
U

Independent input and output data registers

Digital /0O Operation

11.2 Digital I/O Operation

The digital /O is configured with user software. The setup and operation of the
digital 1/0 is described in the following sections. Each port register is an 8-bit
register and is accessed with byte instructions. Registers for P7/P8 and
P9/P10 are arranged such that the two ports can be addressed at once as a
16-bit port. The P7/P8 combination is referred to as PA and the P9/P10
combination is referred to as PB in the standard definitions file. For example,
to write to P7SEL and P8SEL simultaneously, a word write to PASEL would
be used. Some examples of accessing these ports follow:

Bl S. B #01h, &P70QUT ; Set LSB of P7QUT.
; P8QUT is unchanged
MOV. W #05555h, &PAQUT ; P7OUT and P8OUT witten
; simultaneously
CLR B &P9SEL ; Cear P9SEL, PlOSEL is unchanged
MOV. W &PBI N, &0200h ; P9I'N and P10l N read sinultaneously
; as 16-bit port.

11.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the
corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low
Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

11.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding
I/0O pin when the pin is configured as I/O function and output direction.

Bit = 0: The output is low
Bit = 1: The output is high

11.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding 1/O
pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that
are selected for other module functions must be set as required by the other
function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

Digital 1/0 11-3

Digital 1/0O Operation

11.2.4 Pullup/Pulldown Resistor Enable Registers PXREN
(MSP430F47x3/4 and MSP430F471xx only)

In MSP430F47x3/4 and MSP430F471xx devices all port pins have a
programmable pullup/pulldown resistor. Each bit in each PXREN register
enables or disables the pullup/pulldown resistor of the corresponding I/O pin.
The corresponding bit in the PXOUT register selects if the pin is pulled up or
pulled down.

Bit = 0: Pullup/pulldown resistor disabled

Bit = 1: Pullup/pulldown resistor enabled

11.2.5 Function Select Registers PxSEL

11-4

Digital /10

Port pins are often multiplexed with other peripheral module functions. See the
device-specific data sheet to determine pin functions. Each PxSEL bit is used
to select the pin function — I/O port or peripheral module function.

Bit = 0: 1/O function is selected for the pin

Bit = 1: Peripheral module function is selected for the pin

Setting PXSELx = 1 does not automatically set the pin direction. Other
peripheral module functions may require the PxDIRXx bits to be configured
according to the direction needed for the module function. See the pin
schematics in the device-specific data sheet.

; Qut put ACLK on P1.5 on MSP430F41x
Bl S. B #020h, &P1SEL ; Sel ect ACLK function for pin
Bl S. B #020h, &P1DIR; Set direction to output *Required*

Note: P1 and P2 Interrupts Are Disabled When PxSEL =1

When any P1SELx or P2SELXx bit is set, the corresponding pin’s interrupt
function is disabled. Therefore, signals on these pins do not generate P1 or
P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the
peripheral is a latched representation of the signal at the device pin. While
PxSELx = 1, the internal input signal follows the signal at the pin. However, if
the PXSELx = 0, the input to the peripheral maintains the value of the input
signal at the device pin before the PxSELXx bit was reset.

Digital /0O Operation

11.2.6 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PxIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set
when the selected input signal edge occurs at the pin. All PxIFGXx interrupt
flags request an interrupt when their corresponding PxIE bit and the GIE bit
are set. Each PxIFG flag must be reset with software. Software can also set
each PxIFG flag, providing a way to generate a software-initiated interrupt.

Bit = 0: No interrupt is pending
Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes
set during a Px interrupt service routine or is set after the RETI instruction of
a Px interrupt service routine is executed, the set PxIFGx flag generates
another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P10OUT, P1DIR, P20OUT, or P2DIR can result in setting the
corresponding P1IFG or P2IFG flags.

Note: Length of I/O Pin Interrupt Event

Any external interrupt event should be at least 1.5 times MCLK or longer, to
ensure that it is accepted and the corresponding interrupt flag is set.

Digital 1/0 11-5

Digital 1/0O Operation

Interrupt Edge Select Registers P1IES, P2IES
Each PxIES bit selects the interrupt edge for the corresponding I/O pin.
Bit = 0: The PxIFGx flag is set with a low-to-high transition
Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PXIESx
Writing to P1IES or P2IES can result in setting the corresponding interrupt

flags.

PxIESx PxINx PxIFGx
0-1 0 May be set
0->1 1 Unchanged
1-0 0 Unchanged
1-0 1 May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.
Bit = 0: The interrupt is disabled
Bit = 1: The interrupt is enabled

11.2.7 Configuring Unused Port Pins

Unused I/0O pins should be configured as 1/O function, output direction, and left
unconnected on the PC board, to reduce power consumption. The value of the
PxOUT bit is don't care, because the pin is unconnected. See chapter System
Resets, Interrupts, and Operating Modes for termination of unused pins.

11-6 Digital 1/0

11.3 Digital I/O Registers

Digital I/0O Registers

The digital I/O registers are listed in Table 11-1 and Table 11-2.

Table 11-1.Digital /O Registers, P1-P6

Port Register Short Form Address Register Type Initial State
P1 Input P1IN 020h Read only -
Output P10OUT 021h Read/write Unchanged
Direction P1DIR 022h Read/write Reset with PUC
Interrupt Flag P1lIFG 023h Read/write Reset with PUC
Interrupt Edge Select P1IES 024h Read/write Unchanged
Interrupt Enable PlIE 025h Read/write Reset with PUC
Port Select P1SEL 026h Read/write Reset with PUC
Resistor Enable P1REN 027h Read/write Reset with PUC
P2 Input P2IN 028h Read only -
Output P20OUT 029h Read/write Unchanged
Direction P2DIR 02Ah Read/write Reset with PUC
Interrupt Flag P2IFG 02Bh Read/write Reset with PUC
Interrupt Edge Select P2IES 02Ch Read/write Unchanged
Interrupt Enable P2IE 02Dh Read/write Reset with PUC
Port Select P2SEL 02Eh Read/write 0COh with PUC
Resistor Enable P2REN 02Fh Read/write Reset with PUC
P3 Input P3IN 018h Read only -
Output P30OUT 019h Read/write Unchanged
Direction P3DIR 01Ah Read/write Reset with PUC
Port Select P3SEL 01Bh Read/write Reset with PUC
Resistor Enable P3REN 010h Read/write Reset with PUC
P4 Input P4IN 01Ch Read only -
Output P40OUT 01Dh Read/write Unchanged
Direction P4DIR 01lEh Read/write Reset with PUC
Port Select PASEL 01Fh Read/write Reset with PUC
Resistor Enable PAREN 011h Read/write Reset with PUC
P5 Input P5IN 030h Read only -
Output P50UT 031h Read/write Unchanged
Direction P5DIR 032h Read/write Reset with PUC
Port Select P5SEL 033h Read/write Reset with PUC
Resistor Enable P5REN 012h Read/write Reset with PUC
P6 Input P6IN 034h Read only -
Output P60OUT 035h Read/write Unchanged
Direction P6DIR 036h Read/write Reset with PUC
Port Select P6SEL 037h Read/write Reset with PUC
Resistor Enable P6REN 013h Read/write Reset with PUC
Note: Resistor enable registers RXREN only available in MSP430F47x3/4 and MSP430F471xx devices.

Digital 1/0 11-7

Digital /0 Registers

Table 11-2.Digital I/O Registers, P7-P10

Port Register Short Form Address Register Type Initial State

P7 Input P7IN 038h Read only -

PA Output P70UT 03Ah Read/write Unchanged
Direction P7DIR 03Ch Read/write Reset with PUC
Port Select P7SEL 03Eh Read/write Reset with PUC
Resistor Enable P7REN 014h Read/write Reset with PUC

P8 Input P8IN 039h Read only -
Output P8OUT 03Bh Read/write Unchanged
Direction P8DIR 03Dh Read/write Reset with PUC
Port Select P8SEL 03Fh Read/write Reset with PUC
Resistor Enable P8REN 015h Read/write Reset with PUC

P9 Input POIN 008h Read only -

PB Output POOUT 00Ah Read/write Unchanged
Direction PIDIR 00Ch Read/write Reset with PUC
Port Select PI9SEL 00Eh Read/write Reset with PUC
Resistor Enable PO9REN 016h Read/write Reset with PUC

P10 Input P10IN 009h Read only -
Output P100OUT 00Bh Read/write Unchanged
Direction P10DIR 00Dh Read/write Reset with PUC
Port Select P10SEL 00Fh Read/write Reset with PUC
Resistor Enable P10REN 017h Read/write Reset with PUC

Note: Resistor enable registers RXREN only available in MSP430F47x3/4 and MSP430F471xx devices.

11-8

Digital /10

Chapter 12

Watchdog Timer, Watchdog Timer+

The watchdog timer is a 16-bit timer that can be used as a watchdog or as an
interval timer. This chapter describes the watchdog timer. The watchdog timer
is implemented in all MSP430x4xx devices, except those with the enhanced
watchdog timer, WDT+. The WDT+ is implemented in the MSP430F41x2,
MSP430F42x, MSP430F42xA, MSP430FE42x, MSP430FE42xA,
MSP430FG461x, MSP430F47x, MSP430FG47x, MSP430F47x3/4, and
MSP430F471xx devices.

Topic Page
12.1 Watchdog Timer Introductiono, 12-2
12.2 Watchdog Timer Operationoouuuiiiiiiinnennnnn.. 12-4
12.3 Watchdog Timer Registersooiiiiiiiiiinnennnnn.. 12-7

12-1

Watchdog Timer Introduction

12.1 Watchdog Timer Introduction

The primary function of the watchdog timer (WDT) module is to perform a
controlled system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can be configured as an interval timer
and can generate interrupts at selected time intervals.

Features of the watchdog timer module include:

Four software-selectable time intervals

Watchdog mode

Interval mode

Access to WDT control register is password protected
Control of RST/NMI pin function

Selectable clock source

Can be stopped to conserve power

U U U o d o o d

Clock fail-safe feature in WDT+

The WDT block diagram is shown in Figure 12-1.

Note: Watchdog Timer Powers Up Active

After a PUC, the WDT module is automatically configured in the watchdog
mode with an initial 32768 clock cycle reset interval using the DCOCLK. The
user must setup or halt the WDT prior to the expiration of the initial reset
interval.

12-2 Watchdog Timer, Watchdog Timer+

Figure 12-1. Watchdog Timer Block Diagram

Watchdog Timer Introduction

WDTCTL

- o6 | R MDB
00— <
it WDTQn 3 Q9
< i Y 1 —p <4—
Flag !T 5 Q13
0 —pr <4—
< T Q15
1 > <
| C 16-bit 1 Password
Pulse Counter > Compare ¢
Generator A 1
— B
0 —p <«
£ Clear 1 —Pp <4— 16-bit
PUC
| Write Enable
. EQU Low Byte —
Fail-Safe R/W
t
MCLK P Logict <—CC S A
SMCLK p| 1 — | WDTHOLD
ACLK p| 1 WDTNMIES
_ L WDTNMI
— 1A EN |—o@
—WDTTMSEL
WDTCNTCL
@ WDTSSEL
WDTIS1
WDTISO LSB
| V
Clock |———® MCLKActive
Request ——p SMCLK Active
Logict .
P ACLK Active

T MSP430x42x, MSP430FE42x, MSP430FG461x, and MSP430F47x devices only

Watchdog Timer, Watchdog Timer+

12-3

Watchdog Timer Operation

12.2 Watchdog Timer Operation

The WDT module can be configured as either a watchdog or interval timer with
the WDTCTL register. The WDTCTL register also contains control bits to
configure the RST/NMI pin. WDTCTL is a 16-bit password-protected
read/write register. Any read or write access must use word instructions and
write accesses must include the write password 05Ah in the upper byte. Any
write to WDTCTL with any value other than 05Ah in the upper byte is a security
key violation and triggers a PUC system reset regardless of timer mode. Any
read of WDTCTL reads 069h in the upper byte. The WDT+ counter clock
should be slower than or equal to the system (MCLK) frequency.

12.2.1 Watchdog Timer Counter

The watchdog timer counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled and time intervals
selected through the watchdog timer control register WDTCTL.

The WDTCNT can be sourced from ACLK or SMCLK. The clock source is
selected with the WDTSSEL bit.

12.2.2 Watchdog Mode

After a PUC condition, the WDT module is configured in the watchdog mode
with an initial 32768 cycle reset interval using the DCOCLK. The user must
setup, halt, or clear the WDT prior to the expiration of the initial reset interval,
or another PUC is generated. When the WDT is configured to operate in
watchdog mode, either writing to WDTCTL with an incorrect password or
expiration of the selected time interval triggers a PUC. A PUC resets the WDT
to its default condition and configures the RST/NMI pin to reset mode.

12.2.3 Interval Timer Mode

12-4

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can
be used to provide periodic interrupts. In interval timer mode, the WDTIFG flag
is set at the expiration of the selected time interval. A PUC is not generated
in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged.

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an
interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt
request is serviced, or may be reset by software. The interrupt vector address
in interval timer mode is different from that in watchdog mode.

Watchdog Timer, Watchdog Timer+

Watchdog Timer Operation

Note: Modifying the Watchdog Timer

The WDT interval should be changed together with WDTCNTCL = 1 in a
single instruction to avoid an unexpected immediate PUC or interrupt.

The WDT should be halted before changing the clock source to avoid a
possible incorrect interval.

12.2.4 Watchdog Timer Interrupts
The WDT uses two bits in the SFRs for interrupt control.
(1 The WDT interrupt flag, WDTIFG, located in IFG1.0
[The WDT interrupt enable, WDTIE, located in IE1.0

When using the WDT in the watchdog mode, the WDTIFG flag sources a reset
vector interrupt. The WDTIFG can be used by the reset interrupt service
routine to determine if the watchdog caused the device to reset. If the flag is
set, then the watchdog timer initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by
a different source.

When using the WDT in interval timer mode, the WDTIFG flag is set after the
selected time interval and requests a WDT interval timer interrupt if the WDTIE
and the GIE bits are set. The interval timer interrupt vector is different from the
reset vector used in watchdog mode. In interval timer mode, the WDTIFG flag
is reset automatically when the interrupt is serviced or can be reset with
software.

12.2.5 WDT+ Enhancements

The WDT+ module provides enhanced functionality over the WDT. The WDT+
provides a fail-safe clocking feature to ensure that the clock to the WDT+
cannot be disabled while in watchdog mode. This means the low-power
modes may be affected by the choice for the WDT+ clock. For example, if
ACLK is the WDT+ clock source, LPM4 is not available, because the WDT+
prevents ACLK from being disabled. Also, if ACLK or SMCLK fail while
sourcing the WDT+, the WDT+ clock source is automatically switched to
MCLK. In this case, if MCLK is sourced from a crystal and the crystal has failed,
the FLL+ fail-safe feature activates the DCO and uses it as the source for
MCLK.

When the WDT+ module is used in interval timer mode, there is no fail-safe
feature for the clock source.

Watchdog Timer, Watchdog Timer+ 12-5

Watchdog Timer Operation

12.2.6 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking used determine how the WDT should be
configured. For example, the WDT should not be configured in watchdog
mode with SMCLK as its clock source if the user wants to use LPM3, because
SMCLK is not active in LPM3 and the WDT would not function. If WDT+ is
sourced from SMCLK, SMCLK remains enabled during LPM3, which
increases the current consumption of LPM3. When the watchdog timer is not
required, the WDTHOLD bit can be used to hold the WDTCNT, reducing power
consumption.

12.2.7 Software Examples

12-6 Watchdog Tim

Any write operation to WDTCTL must be a word operation with 05Ah
(WDTPW) in the upper byte:

; Periodically clear an active watchdog
MOV #WDTPWWDTCNTCL, &ADTCTL

; Change wat chdog tinmer interval
MOV #WDTPWWDTCNTL+WDTSSEL, &WDTCTL

; Stop the watchdog
MOV #WDTPWHWDTHCOLD, &WDTCTL

; Change WDT to interval tiner node, clock/8192 interval
MOV #VDTPWHWDTCNTCL+WDTTMSEL+WDTI SO, &WDTCTL

er, Watchdog Timer+

Watchdog Timer Registers

12.3 Watchdog Timer Registers

The watchdog timer module registers are listed in Table 12-1.

Table 12-1.Watchdog Timer Registers

Register Short Form Register Type Address Initial State
Watchdog timer control register WDTCTL Read/write 0120h 06900h with PUC
SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUCT

T WDTIFG is reset with POR

Watchdog Timer, Watchdog Timer+ 12-7

Watchdog Timer Registers

WDTCTL, Watchdog Timer Control Register

15 14 13 12 1 10 9 8
WDTPW
Reads as 069h
Must be written as 05Ah
7 6 5 4 3 2 1 0
WDTHOLD | WDTNMIES | WDTNMI [WDTTMSEL [WDTCNTCL | WDTSSEL WDTISx
rw-0 rw-0 rw-0 rw-0 ro(w) rw-0 rw-0 rw-0
WDTPW Bits Watchdog timer password. Always read as 069h. Must be written as 05Ah, or
15-8 a PUC is generated.
WDTHOLD Bit7 Watchdog timer hold. This bit stops the watchdog timer. Setting
WDTHOLD = 1 when the WDT is not in use conserves powetr.
0 Watchdog timer is not stopped
1 Watchdog timer is stopped
WDTNMIES Bit 6 Watchdog timer NMI edge select. This bit selects the interrupt edge for the
NMI interrupt when WDTNMI = 1. Modifying this bit can trigger an NMI. Modify
this bit when WDTNMI = 0 to avoid triggering an accidental NMI.
0 NMI on rising edge
1 NMI on falling edge
WDTNMI Bit 5 Watchdog timer NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function
WDTTMSEL Bit4 Watchdog timer mode select
0 Watchdog mode
1 Interval timer mode
WDTCNTCL Bit3 Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value
to 0000h. WDTCNTCL is automatically reset.
0 No action
1 WDTCNT = 0000h
WDTSSEL Bit2 Watchdog timer clock source select
0 SMCLK
1 ACLK
WDTISx Bits Watchdog timer interval select. These bits select the watchdog timer interval
1-0 to set the WDTIFG flag and/or generate a PUC.

00 Watchdog clock source / 32768
01 Watchdog clock source / 8192
10 Watchdog clock source / 512
11 Watchdog clock source / 64

12-8 Watchdog Timer, Watchdog Timer+

Watchdog Timer Registers

IEL, Interrupt Enable Register 1

7 5 4 3 2 1 0
NMIIE WDTIE
rw-0 rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-5
NMIIE Bit 4 NMI interrupt enable. This bit enables the NMI interrupt. Because other bits
in IE1 may be used for other modules, it is recommended to set or clear this
bit using BI S. B or BI C. B instructions, rather than MOV. B or CLR B
instructions.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific data sheet.
3-1
WDTIE Bit 0 Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for

interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using Bl S. B or Bl C. B instructions, rather than MOV. B
or CLR. Binstructions.

0 Interrupt not enabled

1 Interrupt enabled

Watchdog Timer, Watchdog Timer+ 12-9

Watchdog Timer Registers

IFG1, Interrupt Flag Register 1

5 4 3 2 1 0

NMIIFG WDTIFG

NMIIFG

WDTIFG

12-10

Bits
7-5

Bit 4

Bits
3-1

Bit 0

rw-(0) rw-(0)

These bits may be used by other modules. See device-specific data sheet.

NMI interrupt flag. NMIIFG must be reset by software. Because other bits in
IFG1 may be used for other modules, it is recommended to clear NMIIFG by
using Bl S. Bor Bl C. B instructions, rather than MOV. B or CLR. B instructions.
0 No interrupt pending

1 Interrupt pending

These bits may be used by other modules. See device-specific data sheet.

Watchdog timer interrupt flag. In watchdog mode, WDTIFG remains set until
reset by software. In interval mode, WDTIFG is reset automatically by
servicing the interrupt, or it can be reset by software. Because other bits in
IFG1 may be used for other modules, it is recommended to clear WDTIFG by
using Bl S. B or Bl C. B instructions, rather than MOV. B or CLR. B instructions.
0 No interrupt pending

1 Interrupt pending

Watchdog Timer, Watchdog Timer+

Chapter 13

Basic Timer1

The Basic Timerl module is composed of two independent cascadable 8-bit
timers. This chapter describes the Basic Timerl. Basic Timerl is implemented
in all MSP430x4xx devices.

Topic Page
13.1 Basic Timerl Introduction i, 13-2
13.2 Basic Timerl Operationccouiiiiiiieiiniienannn. 13-4
13.3 Basic TImerLl RegiSterst 13-6

13-1

Basic Timerl Introduction

13.1 Basic Timerl Introduction

13-2

Basic Timerl

The Basic Timerl supplies LCD timing and low frequency time intervals. The
Basic Timerl is two independent 8-bit timers that can also be cascaded to form
one 16-bit timer function.

Some uses for the Basic Timerl include:

[Real-time clock (RTC) function

[Software time increments

Basic Timer1 features include:

[Selectable clock source

(1 Two independent, cascadable 8-bit timers
[Interrupt capability

[LCD control signal generation

The Basic Timerl block diagram is shown in Figure 13-1.

Note: Basic Timerl Initialization

The Basic Timerl module registers have no initial condition. These registers
must be configured by user software before use.

Basic Timerl Introduction

Figure 13-1. Basic Timerl Block Diagram

BTDIV m—@—) ﬁ
BTHOLD B——@—

ACLK —@ CLK1

BTCNT1 BTFRFQXx

Q4 Q5 Q6 Q7

l 11

10 ‘
01 LCD

BTSSEL 00

U

00
ACLK:256 @¢——] 01

SMCLK 10 -
11 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 LL

I— 111

110
101
100
011
010
001
000

EN2
> CLK2 BTCNT2 BTIPx

L Set BTIFG

Basic Timerl 13-3

Basic Timerl Introduction

13.2 Basic Timerl Operation

The Basic Timerl module can be configured as two 8-bit timers or one 16-bit
timer with the BTCTL register. The BTCTL register is an 8-bit read/write
register. Any read or write access must use byte instructions. The Basic
Timer1 controls the LCD frame frequency with BTCNT1.

13.2.1 Basic Timerl Counter One

The Basic Timerl counter one, BTCNTL1, is an 8-bit timer/counter directly
accessible by software. BTCNTL1 is incremented with ACLK and provides the
frame frequency for the LCD controller. BTCNT1 can be stopped by setting the
BTHOLD and BTDIV bits.

13.2.2 Basic Timerl Counter Two

The Basic Timerl counter two, BTCNTZ2, is an 8-bit timer/counter directly
accessible by software. BTCNT2 can be sourced from ACLK or SMCLK, or
from ACLK/256 when cascaded with BTCNT1. The BTCNT2 clock source is
selected with the BTSSEL and BTDIV bits. BTCNT2 can be stopped to reduce
power consumption by setting the HOLD bit.

BTCNT2 sources the Basic Timerl interrupt, BTIFG. The interrupt interval is
selected with the BTIPx bits

Note: Reading or Writing BTCNT1 and BTCNT2

When the CPU clock and counter clock are asynchronous, any read from
BTCNT1 or BTCNT2 may be unpredictable. Any write to BTCNT1 or
BTCNT?2 takes effect immediately.

13.2.3 16-Bit Counter Mode

13-4

Basic Timerl

The 16-bit timer/counter mode is selected when control the BTDIV bit is set.
In this mode, BTCNT1 is cascaded with BTCNT2. The clock source of
BTCNT1 is ACLK, and the clock source of BTCNTZ2 is ACLK/256.

Basic Timerl Introduction

13.2.4 Basic Timerl Operation: Signal f cp

The LCD controller (but not the LCD_A controller) uses the f ¢p signal from
the BTCNTL1 to generate the timing for common and segment lines. ACLK
sources BTCNTL1 and is assumed to be 32768 Hz for generating f, cp. The fLcp
frequency is selected with the BTFRFQx bits and can be ACLK/256,
ACLK/128, ACLK/64, or ACLK/32. The proper f_ cp frequency depends on the
LCD's frame frequency and the LCD multiplex rate and is calculated by:

fLep = 2 X mux X frrame

For example, to calculate f cp for a 3-mux LCD, with a frame frequency of
30 Hz to 100 Hz:

ferame (from LCD data sheet) = 30 Hz to 100 Hz

fLep = 2 X 3 X frrame

fLcp(min) = 180 Hz

flcbmax) = 600 Hz

select f cp = 32768/128 = 256 Hz or 32768/64 = 512 Hz
The LCD_A controller does not use the Basic Timerl for f cp generation. See
the LCD Controller and LCD_A Controller chapters for more details on the LCD
controllers.

13.2.5 Basic Timerl Interrupts

The Basic Timerl uses two bits in the SFRs for interrupt control.
(1 Basic Timerl interrupt flag, BTIFG, located in IFG2.7

[Basic Timerl interrupt enable, BTIE, located in IE2.7

The BTIFG flag is set after the selected time interval and requests a Basic
Timerl interrupt if the BTIE and the GIE bits are set. The BTIFG flag is reset
automatically when the interrupt is serviced, or it can be reset with software.

Basic Timerl 13-5

Basic Timerl Introduction

13.3 Basic Timerl Registers

The Basic Timerl module registers are listed in Table 13-1.

Table 13-1.Basic Timerl Registers

Register Short Form Register Type Address Initial State
Basic Timerl Control BTCTL Read/write 040h Unchanged
Basic Timerl Counter 1 BTCNT1 Read/write 046h Unchanged
Basic Timerl Counter 2 BTCNT2 Read/write 047h Unchanged
SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC
SFR interrupt flag register 2 IFG2 Read/write 003h Reset with PUC

Note:

13-6

The Basic Timerl registers should be configured at power-up. There is no initial state for BTCTL, BTCNTL, or BTCNT2.

Basic Timerl

Basic Timerl Introduction

BTCTL, Basic Timerl Control Register

7 6 5 4 3 2 1 0
BTSSEL BTHOLD BTDIV BTFRFQx BTIPx
rw rw rw rw rw rw rw w
BTSSEL Bit 7 BTCNT2 clock select. This bit, together with the BTDIV bit, selects the
clock source for BTCNT2. See the description for BTDIV.
BTHOLD Bit 6 Basic Timerl hold
0 BTCNT1 and BTCNT2 are operational
1 BTCNT1 is held if BTDIV=1
BTCNT2 is held
BTDIV Bit 5 Basic Timerl clock divide. This bit together with the BTSSEL bit, selects
the clock source for BTCNT2.
BTSSEL BTDIV BTCNT2 Clock Source
0 0 ACLK
0 1 ACLK/256
1 0 SMCLK
1 1 ACLK/256
BTFRFQx Bits fLco frequency. These bits control the LCD update frequency.
4-3 00 facLk/32
01 fACLK/64
10 fack/128
11 facLk/256
BTIPx Bits Basic Timer1 interrupt interval
2-0 000 fck2/2

001 foikol4
010 foiko/8
011 fCLK2/16
100 fo k2/32
110 fo ko/128
111 fo ko/256

Basic Timerl 13-7

Basic Timerl Introduction

BTCNT1, Basic Timerl Counter 1

BTCNT1x

w rw rw 'w w rw w

BTCNT1x Bits BTCNT1 register. The BTCNTL1 register is the count of BTCNT1.
7-0

BTCNT2, Basic Timerl Counter 2

BTCNT2x

'w rw rw 'w 'w w 'w

BTCNT2x Bits BTCNT2 register. The BTCNT2 register is the count of BTCNT2.
7-0

13-8 Basic Timerl

Basic Timerl Introduction

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
BTIE
rw-0
BTIE Bit 7 Basic Timer1 interrupt enable. This bit enables the BTIFG interrupt. Because

other bits in IE2 may be used for other modules, it is recommended to set or
clear this bit using Bl S. B or Bl C. B instructions, rather than MOV. Bor CLR. B

instructions.
0 Interrupt not enabled
1 Interrupt enabled

Bits These bits may be used by other modules. See device-specific data sheet.
6-1

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
BTIFG
rw-0

BTIFG Bit 7 Basic Timerl interrupt flag. Because other bits in IFG2 may be used for other

modules, it is recommended to clear BTIFG automatically by servicing the
interrupt, or by using Bl S. B or Bl C. B instructions, rather than MOV. B or
CLR. B instructions.

0 No interrupt pending

1 Interrupt pending

Bits These bits may be used by other modules. See device-specific data sheet.
6-1

Basic Timerl 13-9

13-10 Basic Timerl

Chapter 14

Real-Time Clock

The Real-Time Clock module is a 32-bit counter module with calendar
function. This chapter describes the Real-Time Clock (RTC) module of the
MSP430x4xx family. The RTC is implemented in MSP430F41x2,

MSP430FG461x, MSP430F47x, MSP430FG47x, MSP430F47x3/4, and
MSP430F471xx devices.

Topic Page
14.1 Real-Time Clock Introduction i, 14-2
14.2 Real-Time Clock Operationciiiiiiiiiiinnann.. 14-4
14.3 Real-Time Clock Registerscoiiiiiiiinnennnnn.. 14-7

14-1

RTC Introduction

14.1 RTC Introduction

The Real-Time Clock (RTC) module can be used as a general-purpose 32-bit
timer or as a RTC with calendar function.

RTC features include:
[J Calender and clock mode
[32-bit counter mode with selectable clock sources

[Automatic counting of seconds, minutes, hours, day of week, day of
month, month and year in calender mode.

[Interrupt capability
[Selectable BCD format

The RTC block diagram is shown in Figure 14-1.

Note: Real-Time Clock Initialization

Most RTC module registers have no initial condition. These registers must
be configured by user software before use.

14-2 Real Time Clock

RTC Introduction

Figure 14-1. Real-Time Clock

ACLK 00
Basic Timer BTCNT2.Q 01
SMCLK 10
11
RTCMODEXx
RTCBCD RTCHOLD
BCD Mode
31 .. 24 23 ... 16 15 .. 8 7 .. 0
RTCNT4/ RTCNT3/ RTCNT2/ RTCNT1/
RTCDOW 1 RTCHOUR <] RTCMIN | RTCSEC RTCTEVX
8-bit overflow / minute changed
16-bit overflow / hour changed Set_RTCFG
24-bit overflow / RTCHOUR = Midnight
32-bit overflow / RTCHOUR = Noon
1 Set_BTIFG
Set_BTIFG from
BCD — Basic Timer 0
EN
Calendar
RTCYEARH RTCYEARL RTCMON RTCDAY Midnight

Real Time Clock 14-3

Real-Time Clock Operation

14.2 Real-Time Clock Operation

The Real-Time Clock module can be configured as a real-time clock with
calendar function or as a 32-bit general-purpose counter with the RTCMODEXx
bits.

14.2.1 Counter Mode

Counter mode is selected when RTCMODEXx < 11. In this mode, a 32-bit
counter is provided that is directly accessible by software. Switching from
calendar to counter mode resets the count value.

The clock to increment the counter can be sourced from ACLK, SMCLK, or
from the BTCNT?2 input clock divided by 128 from the Basic Timerl module,
selected by the RTCMODEX bits. The counter can be stopped by setting the
RTCHOLD bit.

Four individual 8-bit counters are cascaded to provide the 32-bit counter. This
provides interrupt triggers at 8-bit, 16-bit, 24-bit, and 32-bit overflows. Each
counter RTCNT1 - RTCNT4 is individually accessible and may be read or
written to.

Note: Accessing the RTCNTX registers

When the counter clock is asynchronous to the CPU clock, any read from any
RTCNTX register should occur while the counter is not operating. Otherwise,
the results may be unpredictable. Alternatively, the counter may be read
multiple times while operating, and a majority vote taken in software to
determine the correct reading. Any write to any RTCNTX register takes effect
immediately.

14-4 Real Time Clock

Real-Time Clock Operation

14.2.2 Calendar Mode

Calendar mode is selected when RTCMODEX = 11. In calendar mode the RTC
provides seconds, minutes, hours, day of week, day of month, month, and year
in selectable BCD or hexadecimal format. Switching from counter to calendar
mode clears the seconds, minutes, hours, day-of-week, and year counts and
sets day-of-month and month counts to 1.

When RTCBCD = 1, BCD format is selected for the calendar registers. The
format must be selected before the time is set. Changing the state of RTCBCD
clears the seconds, minutes, hours, day-of-week, and year counts and sets
day-of-month and month counts to 1.

The calendar includes a leap year algorithm that considers all years evenly
divisible by 4 as leap years. This algorithm is accurate from the year 1901
through 2099.

Note: Accessing the Real-Time Clock registers

When the counter clock is asynchronous to the CPU clock, any read from any
counting register should occur while the counter is not operating. Otherwise,
the results may be unpredictable. Alternatively, the counter may be read
multiple times while operating, and a majority vote taken in software to
determine the correct reading.

Any write to any counting register takes effect immediately. However the
clock is stopped during the write. This could result in losing up to one second
during a write. Writing of data outside the legal ranges results in
unpredictable behavior.

The RTC does not provide an alarm function. It can easily be implemented in
software if required.

14.2.3 RTC and Basic Timerl Interaction

In calendar mode the Basic Timerl is automatically configured as a pre-divider
for the RTC module with the two 8-bit timers cascaded and ACLK selected as
the Basic Timerl clock source. The BTSSEL, BTHOLD and BTDIV bits are
ignored and RTCHOLD controls both the RTC and the Basic Timer1.

RTC and Basic Timerl interrupts interact as described in Section 14.2.4,
Real-Time Clock Interrupts.

Real Time Clock 14-5

Real-Time Clock Operation

14.2.4 Real-Time Clock Interrupts

The Real-Time Clock uses two bits for interrupt control.

(1 Basic Timerl interrupt flag, BTIFG, located in IFG2.7

(1 Real-Time Clock interrupt enable, RTCIE, located in the module

The Real-Time Clock module shares the Basic Timerl interrupt flag and
vector. When RTCIE = 0, the Basic Timerl controls interrupt generation with
the BTIPx bits. In this case, the RTCEVX bits select the interval for setting the
RTCFG flag, but the RTCFG flag does not generate an interrupt. The RTCFG

flag must be cleared with software when RTCIE = 0.

When RTCIE = 1, the RTC controls interrupt generation and the Basic Timerl
BTIPx bits are ignored. In this case, the RTCFG and BTIFG flags are set at the
interval selected with the RTCEVx bits, and an interrupt request is generated
if the GIE bit is set. Both the RTCFG and BTIFG flags are reset automatically

when the interrupt is serviced, or can be reset with software.

The interrupt intervals are listed in Table 14-1.

Table 14-1.RTC Interrupt Intervals

14-6

RTC Mode RTCTEVx Interrupt Interval
Counter Mode 00 8-bit overflow
01 16-bit overflow
10 24-bit overflow
11 32-bit overflow
Calendar Mode 00 Minute changed
01 Hour changed
10 Every day at midnight (00:00)
11 Every day at noon (12:00)

Real Time Clock

14.3 Real-Time Clock Registers

Real-Time Clock Registers

The Real-Time Clock registers are listed in Table 14-2 for byte access. They
may be accessed with word instructions as listed in Table 14-3.

Table 14-2.Real-Time Clock Registers

Register Short Form Register Type Address Initial State
Real-Time Clock control register RTCCTL Read/write 041h 040h with POR
Real-Timer Clock second RTCSEC/ Read/write 042h None, not reset
Real-Timer Counter register 1 RTCNT1

Real-Time Clock minute RTCMIN/ Read/write 043h None, not reset
Real-Time Counter register 2 RTCNT2

Real-Time Clock hour RTCHOUR/ Read/write 044h None, not reset
Real-Time Counter register 3 RTCNT3

Real-Time Clock day-of-Week RTCDOW/ Read/write 045h None, not reset
Real-Time Counter register 4 RTCNT4

Real-Time Clock day-of-month RTCDAY Read/write 04Ch None, not reset
Real-Time Clock month RTCMON Read/write 04Dh None, not reset
Real-Time Clock year (low byte) RTCYEARL Read/write 04Eh None, not reset
Real-Time Clock year (high byte) RTCYEARH Read/write 04Fh None, not reset
SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC
SFR interrupt flag register 2 IFG2 Read/write 003h Reset with PUC

Note:

Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits using Bl S. B or Bl C. B instructions, rather than
MOV. B or CLR. B instructions.

Table 14-3.Real-Time Clock Registers, Word Access

Word Register Short Form ngh-Byte Low_—Byte Address
Register Register

Real-Time control register RTCTL RTCCTL BTCTL 040h

Real-Time Clock time 0 RTCTIMO/ RTCMIN/ RTCSEC/ 042h

Real-Time Counter registers 1,2 RTCNT12 RTCNT2 RTCNT1

Real-Time Clock time 1 RTCTIM1/ RTCDOW/ RTCHOUR/ 044h

Real-Time Counter registers 3,4 RTCNT34 RTCNT4 RTCNT3

Real-Time Clock date RTCDATE RTCMON RTCDAY 04Ch

Real-Time Clock year RTCYEAR RTCYEARH RTCYEARL 04Eh

Real Time Clock 14-7

Real-Time Clock Registers

RTCCTL, Real-Time Clock Control Register

7 6 5 4 3 2 1 0
RTCBCD RTCHOLD RTCMODEX RTCTEVx RTCIE RTCFG
rw-(0) rw-(1) rw-(0) rw-(0) rw-(0) rw-(0) rw-0 rw-0

RTCBCD Bit 7 BCD format select. This bit selects BCD format for the calendar registers
when RTCMODEX = 11.
0 Hexadecimal format
1 BCD format

RTCHOLD Bit6 Real-Time Clock hold
0 Real-Time Clock is operational
1 RTCMODEX < 11: The RTC module is stopped
RTCMODEX = 11: The RTC and the Basic Timerl are stopped

RTCMODEXx Bits Real-Time Clock mode and clock source select
5-4
RTCMODEXx Counter Mode Clock Source
00 32-bit counter ACLK
01 32-bit counter BTCNT2.Q6
10 32-bit counter SMCLK
11 Calendar mode BTCNT2.Q6
RTCTEVx Bits Real-Time Clock interrupt event. These bits select the event for setting

3-2 RTCFG.

RTC Mode RTCTEVx Interrupt Interval
Counter Mode 00 8-bit overflow
01 16-bit overflow
10 24-bit overflow
11 32-bit overflow
Calendar Mode 00 Minute changed
01 Hour changed
10 Every day at midnight (00:00)
11 Every day at noon (12:00)
RTCIE Bit 1 Real-Time Clock interrupt enable
0 Interrupt not enabled
1 Interrupt enabled
RTCFG Bit 0 Real-Time Clock interrupt flag

0 No time event occurred
1 Time event occurred

14-8 Real Time Clock

Real-Time Clock Registers

RTCNT1, RTC Counter 1, Counter Mode

7 6 5 4 3 2 1 0
RTCNT1x
rw 'w w rw 'w w rw 'w
RTCNT1x Bits RTCNT1 register. The RTCNT1 register is the count of RTCNTL1.
7-0
RTCNT2, RTC Counter 2, Counter Mode
7 6 5 4 3 2 1 0
RTCNT2x
rw w rw rw 'w rw rw 'w
RTCNT2x Bits RTCNT2 register. The RTCNT2 register is the count of RTCNT2.
7-0
RTCNT3, RTC Counter 3, Counter Mode
7 6 5 4 3 2 1 0
RTCNT3x
rw 'w w rw w w w 'w
RTCNT3x Bits RTCNTS3 register. The RTCNT3 register is the count of RTCNT3.
7-0
RTCNT4, RTC Counter 4, Counter Mode
- 7 6 5 4 3 2 1 0
RTCNT4x
rw 'w 'w rw 'w 'w w 'w

RTCNT4x Bits RTCNT4 register. The RTCNT4 register is the count of RTCNT4.
7-0

Real Time Clock

14-9

Real-Time Clock Registers

RTCSEC, RTC Seconds Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1
0 0 Seconds (0...59)
r-0 r-0 rw w w rw rw

RTCSEC, RTC Seconds Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1
0 Seconds - high digit (0...5) Seconds - low digit (0...9)
r-0 w rw w w rw rw

RTCMIN, RTC Minutes Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1
0 0 Minutes (0...59)
r-0 r-0 rw rw rw rw rw

RTCMIN, RTC Minutes Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1
0 Minutes - high digit (0...5) Minutes - low digit (0...9)
r-0 w rw rw rw rw rw

14-10 Real Time Clock

Real-Time Clock Registers

RTCHOUR, RTC Hours Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0
0 0 0 Hours (0...24)
r-0 r-0 r-0 w rw w w rw

RTCHOUR, RTC Hours Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0
0 0 Hours high digit (0...2) Hours low digit (0...9)
r-0 r-0 w w rw w w rw

RTCDOW, RTC Day-of-Week Register, Calendar Mode

7 6 5 4 3 2 1 0
0 0 0 0 0 Day-of-Week (0...6)
r-0 r-0 r-0 r-0 r-0 w w rw

Real Time Clock

14-11

Real-Time Clock Registers

RTCDAY, RTC Day-of-Month Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0
0 0 0 Day-of-Month (1...28,29,30,31)
r-0 r-0 r-0 w w rw rw w

RTCDAY, RTC Day-of-Month Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0

0 0 Day'Of'M?&_tg)h'gh digit Day-of-Month low digit (0...9)

r-0 r-0 rw w w rw rw w

RTCMON, RTC Month Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0
0 0 0 0 Month (1..12)
r-0 r-0 r-0 r-0 w rw w w

RTCMON, RTC Month Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0
Month high i

0 0 0 digit (0...%) Month low digit (0...9)

r-0 r-0 r-0 w w rw w w

14-12 Real Time Clock

Real-Time Clock Registers

RTCYEARL, RTC Year Low-Byte Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0

Year Low Byte of 0...4095

rw 'w 'w rw rw w w rw

RTCYEARL, RTC Year Low-Byte Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0
Decade (0...9) Year lowest digit (0...9)
rw rw rw rw rw rw rw rw

RTCYEARH, RTC Year High-Byte Register, Calendar Mode with Hexadecimal Format

7 6 5 4 3 2 1 0
0 0 0 0 Year High Byte of 0...4095
r-0 r-0 r-0 r-0 rw w w rw

RTCYEARH, RTC Year High-Byte Register, Calendar Mode with BCD Format

7 6 5 4 3 2 1 0
0 Century high digit (0...4) Century low digit (0...9)
r-0 rw rw w w rw w w

Real Time Clock 14-13

Real-Time Clock Registers

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
BTIE
rw-0
BTIE Bit 7 Basic Timer1 interrupt enable. This bit enables the BTIFG interrupt. Because

other bits in IE2 may be used for other modules, it is recommended to set or
clear this bit using Bl S. B or Bl C. B instructions, rather than MOV. B or CLR. B
instructions.

0 Interrupt not enabled

1 Interrupt enabled

Bits These bits may be used by other modules. See device-specific data sheet.
6-1

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
BTIFG
rw-0

BTIFG Bit 7 Basic Timerl interrupt flag. Because other bits in IFG2 may be used for other

modules, it is recommended to clear BTIFG automatically by servicing the
interrupt, or by using Bl S. B or Bl C. B instructions, rather than MOV. B or
CLR. B instructions.

0 No interrupt pending

1 Interrupt pending

Bits These bits may be used by other modules. See device-specific data sheet.
6-1

14-14 Real Time Clock

Chapter 15

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes Timer_A. This chapter describes the operation of the
Timer_A of the MSP430x4xx device family.

Topic Page
15.1 Timer A Introduction it e 15-2
15.2 Timer_A Operationuiuiii it 15-4
15.3 Timer_A RegiSterst 15-19

15-1

Timer_A Introduction

15.1 Timer_A Introduction

15-2

Timer_A

Timer_A is a 16-bit timer/counter with three or five capture/compare registers.
Timer_A can support multiple capture/compares, PWM outputs, and interval
timing. Timer_A also has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

[Asynchronous 16-bit timer/counter with four operating modes

(1 Selectable and configurable clock source

[d Three or five configurable capture/compare registers

[Configurable outputs with PWM capability

(1 Asynchronous input and output latching

[J Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 15-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action does not take place.

Note: Second Timer_A On Select Devices

MSP430x415, MSP430x417, and MSP430xW42x devices implement a
second Timer_A with five capture/compare registers. On these devices, both
Timer_A modules are identical in function, except for the additional
capture/compare registers.

Timer_A Introduction

Figure 15-1. Timer_A Block Diagram

! Timer Block
TASSELX IDx Timer Clock .
. o 11
TACLK 00 ivi 16-bit Timer
ACLK 01 ?;Z}ifsr TAR —P %A%l:jr: €« EQUO
Clear RC<_
SMCLK 10
> \—VSetTAlFG
TACLR
CCRO
CCR1
CCR2
CCR3
CCR4
CCISx CMx
CClaA Capture
CCl4B Mode o
TACCR4
GND Timer Clock
VCC
—> Compararator 4
EQU4| cap
sccim—y A
- 0 Set TAICCR4
CCIFG

ouT)
Output ._T

p| Unita D Set Q l-e—Pp OUT4 Signal
EQUO Timer Clock —
Reset
DKDJ
OUTMODx

Timer_A 15-3

Timer_A Operation

15.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and
operation of Timer_A is discussed in the following sections.

15.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TAR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TACLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TAR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TAR takes effect immediately.

Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TACLK
or INCLK. The clock source is selected with the TASSELX bits. The selected
clock source may be passed directly to the timer or divided by 2, 4, or 8 using
the IDx bits. The clock divider is reset when TACLR is set.

15-4 Timer_A

Timer_A Operation

15.2.2 Starting the Timer
The timer may be started or restarted in the following ways:
[The timer counts when MCx > 0 and the clock source is active.

[When the timer mode is either up or up/down, the timer may be stopped
by writing 0 to TACCRO. The timer may then be restarted by writing a
nonzero value to TACCRO. In this scenario, the timer starts incrementing
in the up direction from zero.

15.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 15-1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 15-1.Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of
TACCRO.

10 Continuous The timer repeatedly counts from zero to OFFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of
TACCRO and back down to zero.

Timer_A 15-5

Timer_A Operation

Up Mode

The up mode is used if the timer period must be different from OFFFFh counts.
The timer repeatedly counts up to the value of compare register TACCRO,
which defines the period, as shown in Figure 15-2. The number of timer
counts in the period is TACCRO+1. When the timer value equals TACCRO the
timer restarts counting from zero. If up mode is selected when the timer value
is greater than TACCRO, the timer immediately restarts counting from zero.

Figure 15-2. Up Mode

OFFFFh
TACCROF——————— - —— — — — — — —— — — — — — — o

Oh

The TACCRO CCIFG interrupt flag is set when the timer counts to the TACCRO
value. The TAIFG interrupt flag is set when the timer counts from TACCRO to
zero. Figure 15-3 shows the flag set cycle.

Figure 15-3. Up Mode Flag Setting

mercesc T\ T\ UM
i (
Timer X CCRO-1 CCROX oh X 1h)d(’ X CCRo-1X CCRO oh

Set TAIEG l

Set TACCRO CCIFG

Changing the Period Register TACCRO

When changing TACCRO while the timer is running, if the new period is greater
than or equal to the old period or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count
value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

15-6 Timer_A

Timer_A Operation

Continuous Mode

In the continuous mode, the timer repeatedly counts up to OFFFFh and restarts
from zero as shown in Figure 15-4. The capture/compare register TACCRO
works the same way as the other capture/compare registers.

Figure 15-4. Continuous Mode

OFFFFh - — — — — — — — —fp — — — —_—

Oh

The TAIFG interrupt flag is set when the timer counts from OFFFFh to zero.
Figure 15-5 shows the flag set cycle.

Figure 15-5. Continuous Mode Flag Setting

<

Timer X FFFEh X FFFFh X oh X 1h Xj(’ X FFFEh X FFFFh X oh

)

I I

))

Set TAIFG I

Timer_A 15-7

Timer_A Operation

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TACCRX register in the
interrupt service routine. Figure 15-6 shows two separate time intervals ty and
t; being added to the capture/compare registers. In this usage, the time
interval is controlled by hardware, not software, without impact from interrupt
latency. Up to three (Timer_A3) or five (Timer_A5) independent time intervals
or output frequencies can be generated using capture/compare registers.

Figure 15-6. Continuous Mode Time Intervals

15-8

Timer_A

OFFFF

TACCROa / /

TACCR1b TACCR1c

TACCROb TACCROc TACCROd

TACCR1a ¢ TACCR1d

to to to

t ‘ t t

Time intervals can be produced with other modes as well, where TACCRO is
used as the period register. Their handling is more complex since the sum of
the old TACCRXx data and the new period can be higher than the TACCRO
value. When the previous TACCRXx value plus ty is greater than the TACCRO
data, the TACCRO value must be subtracted to obtain the correct time interval.

Up/Down Mode

Timer_A Operation

The up/down mode is used if the timer period must be different from OFFFFh
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare register TACCRO and back down to zero,
as shown in Figure 15-7. The period is twice the value in TACCRO.

Figure 15-7. Up/Down Mode

OFFFFh
TACCRO

Oh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TACLR bit must be set to clear the direction. The TACLR bit
also clears the TAR value and the clock divider.

In up/down mode, the TACCRO CCIFG interrupt flag and the TAIFG interrupt
flag are set only once during a period, separated by 1/2 the timer period. The
TACCRO CCIFG interrupt flag is set when the timer counts from TACCRO - 1
to TACCRO, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 15-8 shows the flag set cycle.

Figure 15-8. Up/Down Mode Flag Setting

Timer Clock
Timer
Up/Down
Set TAIFG

Set TACCRO CCIFG

I N an N an N AN an N an W et

(
><CCRO—1 CCRO XCCRO—lX CCRO—ZX:’(’ X 1h oh

)

({4
)

({¢
R4

Timer_A 15-9

Timer_A Operation

Changing the Period Register TACCRO

Use of the Up/Down

When changing TACCRO while the timer is running and counting in the down
direction, the timer continues its descent until it reaches zero. The value in
TACCRO is latched into TACLO immediately; however, the new period takes
effect after the counter counts down to zero.

When the timer is counting in the up direction and the new period is greater
than or equal to the old period or greater than the current count value, the timer
counts up to the new period before counting down. When the timer is counting
in the up direction, and the new period is less than the current count value, the
timer begins counting down. However, one additional count may occur before
the counter begins counting down.

Mode

The up/down mode supports applications that require dead times between
output signals (See section Timer_A Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 15-9 the tyeaq is:

tgead = timer X (TACCR1 - TACCR?2)

With: tgead Time during which both outputs need to be inactive
timer Cycle time of the timer clock
TACCRx Content of capture/compare register x

The TACCRX registers are not buffered. They update immediately when
written to. Therefore, any required dead time is not maintained automatically.

Figure 15-9. Output Unit in Up/Down Mode

15-10

OFFFFh
TACCRO
TACCR1
TACCR2 /-
Oh
» |4 | »| [« DeadTime
Output Mode 6: Toggle/Set
Output Mode 2: Toggle/Reset
EQU1 EQU1 EQU1 EQU1 Interrupt Events
TAIFG EQUO TAIFG EQUO p
EQU2 EQU2 EQU2 EQU2
Timer_A

Timer_A Operation

15.2.4 Capture/Compare Blocks

Capture Mode

Three or five identical capture/compare blocks, TACCRX, are present in
Timer_A. Any of the blocks may be used to capture the timer data or to
generate time intervals.

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture occurs:

(1 The timer value is copied into the TACCRX register
[The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x4xx
family devices may have different signals connected to CCIxXA and CCIxB. See
the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit synchronizes the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 15-10.

Figure 15-10. Capture Signal (SCS=1)

Timer Clock

Timer

CCl

Capture

Set TACCRx CCIFG

X n2 X1 X n Y et Y 2 Y s Y nea)
[/

"\

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 15-11. COV must
be reset with software.

Timer_A 15-11

Timer_A Operation

Figure 15-11.Capture Cycle

Idle

Capture Capture Read

No
Capture
Taken

Read
Taken
Capture

Capture
Taken

Capture Read and No Capture

Capture
Clear Bit COV
in Register TACCTLXx

Second
Capture
Taken
cov=1

Idle

Capture

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets CCIS1 = 1 and toggles bit CCISO0 to switch the
capture signal between V¢ and GND, initiating a capture each time CCISO
changes state:

MoV #CAP+SCS+CCl S1+CM_3, &TACCTLx ; Setup TACCTLx
XOR #CCl SO, &TACCTLx ;. TACCTLx = TAR

Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TAR counts to the value in a TACCRX:

[Interrupt flag CCIFG is set

4 Internal signal EQUx =1

(1 EQUx affects the output according to the output mode
U

The input signal CCl is latched into SCCI

15-12 Timer_A

Timer_A Operation

15.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQUO and EQUX signals.

Output Modes

The output modes are defined by the OUTMODX bits and are described in
Table 15-2. The OUTXx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0, because EQUx = EQUO.

Table 15-2.Output Modes

OUTMODx Mode Description

000 Output The output signal OUTx is defined by the
OUTXx bit. The OUTx signal updates
immediately when OUTx is updated.

001 Set The output is set when the timer counts to the
TACCRX value. It remains set until a reset of
the timer, or until another output mode is
selected and affects the output.

010 Toggle/Reset The output is toggled when the timer counts
to the TACCRX value. It is reset when the
timer counts to the TACCRO value.

011 Set/Reset The output is set when the timer counts to the
TACCRXx value. It is reset when the timer
counts to the TACCRO value.

100 Toggle The output is toggled when the timer counts
to the TACCRXx value. The output period is
double the timer period.

101 Reset The output is reset when the timer counts to
the TACCRXx value. It remains reset until
another output mode is selected and affects
the output.

110 Toggle/Set The output is toggled when the timer counts
to the TACCRXx value. It is set when the timer
counts to the TACCRO value.

111 Reset/Set The output is reset when the timer counts to
the TACCRXx value. It is set when the timer
counts to the TACCRO value.

Timer_A 15-13

Timer_A Operation

Output Example—Timer in Up Mode

The OUTX signal is changed when the timer counts up to the TACCRXx value,
and rolls from TACCRO to zero, depending on the output mode. An example
is shown in Figure 15-12 using TACCRO and TACCRL1.

Figure 15-12. Output Example—Timer in Up Mode

OFFFFh
TACCRO
TACCR1
Oh &= —— ——+———
| | | Output Mode 1: Set
| I |
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
I | I
| Output Mode 4: Toggle
I i
I I I I
! | | output Mode 5: Reset
T T T
| | | |
Output Mode 6: Toggle/Set
| | | ‘|
Output Mode 7: Reset/Set
EQUO EQUL EQUO EQU1 EQUO
TAIFG TAIFG TAIFG Interrupt Events

15-14 Timer_A

Timer_A Operation

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and
TACCRO values, depending on the output mode. An example is shown in
Figure 15-13 using TACCRO and TACCRL.

Figure 15-13. Output Example—Timer in Continuous Mode

OFFFFh
TACCRO

TACCR1

Oh

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

I
I
I
|
I
I
|

| | J

| | | Output Mode 4: Toggle

I [I

I I I I

| | | | Output Mode 5: Reset

I I I I
|
| Output Mode 6: Toggle/Set
I
|
| Output Mode 7: Reset/Set
I

TAIFG EQUl EQUO TAIFG EQUl1l EQUO Interrupt Events

Timer_A 15-15

Timer_A Operation

Output Example—Timer in Up/Down Mode

The OUTX signal changes when the timer equals TACCRX in either count
direction and when the timer equals TACCRO, depending on the output mode.
An example is shown in Figure 15-14 using TACCRO and TACCR2.

Figure 15-14. Output Example—Timer in Up/Down Mode

OFFFFh
TACCRO

TACCR2

Oh

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

[

I

I

[

I

I

[

I

I

!— | Output Mode 4: Toggle
| —
I

I

I

I

I

i

I

I

i

I
[
----I---- ----1----
Loy Lo
| ! ! | ! Output Mode 5: Reset
I T T I T
I I I I
Output Mode 6: Toggle/Set
I [
I I I I
! ! Output Mode 7: Reset/Set
T T
EQU2 | EQU2 EQU2 | EQU2
TAIFG EQUO TAIFG EQUO Interrupt Events

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODX bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

Bl S #OUTMOD_7, &TACCTLX ; Set output nopde=7
BI C #OUTMODX, &TACCTLXx ; Clear unwanted bits

15-16 Timer_A

Timer_A Operation

15.2.6 Timer_A Interrupts

TACCRO Interrupt

Two interrupt vectors are associated with the 16-bit Timer_A module:
[TACCRO interrupt vector for TACCRO CCIFG
[TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the
associated TACCRXx register. In compare mode, any CCIFG flag is set if TAR
counts to the associated TACCRx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

The TACCRO CCIFG flag has the highest Timer_A interrupt priority and has
a dedicated interrupt vector as shown in Figure 15-15. The TACCRO CCIFG
flag is automatically reset when the TACCRO interrupt request is serviced.

Figure 15-15. Capture/Compare TACCRO Interrupt Flag

Capture

EQUO
CAP

3 b Set Q CCIE.—D—} IRQ, Interrupt Service Requested

Timer Clock —

Reset

IRACC, Interrupt Request Accepted
POR

TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and
combined to source a single interrupt vector. The interrupt vector register TAIV
is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register
(see register description). This number can be evaluated or added to the
program counter to automatically enter the appropriate software routine.
Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TACCR2
CCIFG flag generates another interrupt.

Timer_A 15-17

Timer_A Operation

TAIV Software Example

15-18

Timer_A

The following software example shows the recommended use of TAIV and the
handling overhead. The TAIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

(] Capture/compare block TACCRO

[Capture/compare blocks TACCR1, TACCR2

[Timer overflow TAIFG

; Interrupt handler for TACCRO CCl FG

CCl FG_0_HN\D

RETI

; Start of handler Interrupt

11 cycles
16 cycles
14 cycles
Cycl es
latency 6
5

; Interrupt handler for TAIFG TACCRL and TACCR2 CCl FG

TA_HN\D
ADD
RETI
IMP
IMP
RETI
RETI

TAI FG_HND
RETI

CCl FG_2_HN\D
RETI

CCl FG_1_HN\D

RETI

&TAlV, PC

CCl FG_1_HND
CCl FG_2_HND

Interrupt |atency

Add offset to Junp table
Vector 0: No interrupt
Vector 2: TACCR1

Vector 4: TACCR2

Vector 6: Reserved
Vector 8: Reserved
Vector 10: TAI FG Fl ag

Task starts here

Vect or

4:

TACCR2

Task starts here
Back to nmi n program

Vect or

2.

TACCR1

Task starts here
Back to main program

g o NN O w o

Timer_A Registers

15.3 Timer_A Registers

The Timer_A registers are listed in Table 15-3 and Table 15-4.

Table 15-3.Timer_A3 Registers

Register Short Form Register Type Address Initial State
Timer_A control TACTL/ Read/write 0160h Reset with POR
Timer0_A3 Control TAOCTL

Timer_A counter TAR/ Read/write 0170h Reset with POR
Timer0_A3 counter TAOR

Timer_A capture/compare control O TACCTLO/ Read/write 0162h Reset with POR
Timer0_A3 capture/compare control 0 TAOCCTL

Timer_A capture/compare 0 TACCRO/ Read/write 0172h Reset with POR
TimerQ_A3 capture/compare 0 TAOCCRO

Timer_A capture/compare control 1 TACCTL1/ Read/write 0164h Reset with POR
TimerQ_A3 capture/compare control 1 TAOCCTL1

Timer_A capture/compare 1 TACCR1/ Read/write 0174h Reset with POR
TimerQ_A3 capture/compare 1 TAOCCR1

Timer_A capture/compare control 2 TACCTL2/ Read/write 0166h Reset with POR
TimerQ_A3 capture/compare control 2 TAOCCTL2

Timer_A capture/compare 2 TACCR2/ Read/write 0176h Reset with POR
TimerQ_A3 capture/compare 2 TAOCCR2

Timer_A interrupt vector TAIV/ Read only 012Eh Reset with POR
TimerQ_A3 interrupt vector TAOIV

Table 15-4.Timerl_ A5 Registers

Register Short Form Register Type Address Initial State

Timerl_A5 control TAL1CTL Read/write 0180h Reset with POR
Timerl_A5 counter TALIR Read/write 0190h Reset with POR
Timerl_A5 capture/compare control 0 TA1CCTLO Read/write 0182h Reset with POR
Timerl_A5 capture/compare 0 TA1CCRO Read/write 0192h Reset with POR
Timerl_A5 capture/compare control 1 TAL1CCTL1 Read/write 0184h Reset with POR
Timerl_A5 capture/compare 1 TAL1CCR1 Read/write 0194h Reset with POR
Timerl_A5 capture/compare control 2 TA1CCTL2 Read/write 0186h Reset with POR
Timerl_A5 capture/compare 2 TA1CCR2 Read/write 0196h Reset with POR
Timerl_A5 capture/compare control 3 TA1CCTL3 Read/write 0188h Reset with POR
Timerl_A5 capture/compare 3 TA1CCR3 Read/write 0198h Reset with POR
Timerl_A5 capture/compare control 4 TA1CCTL4 Read/write 018Ah Reset with POR
Timerl_A5 capture/compare 4 TAL1CCR4 Read/write 019Ah Reset with POR
Timerl_AS5 interrupt Vector TALIV Read only 011Eh Reset with POR

Timer_A 15-19

Timer_A Registers

TACTL, Timer_A Control Register

15 14 13 12 1 10 9 8
Unused TASSELX
rw—(0) rw-(0) rw-(0) rw-(0) rw-(0) rw—-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TACLR TAIE TAIFG
rw—(0) rw-(0) rw-(0) rw—(0) rw—(0) w-(0) rw—-(0) rw-(0)
Unused Bits Unused
15-10
TASSELX Bits Timer_A clock source select
9-8 00 TACLK
01 ACLK
10 SMCLK
11 Inverted TACLK
IDx Bits Input divider. These bits select the divider for the input clock.
7-6 00 /1
01 /2
10 /4
11 /8
MCx Bits Mode control. Setting MCx = 00h when Timer_A is not in use conserves
5-4 power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TACCRO
10 Continuous mode: the timer counts up to OFFFFh
11 Up/down mode: the timer counts up to TACCRO then down to 0000h
Unused Bit 3 Unused
TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count
direction. The TACLR bit is automatically reset and is always read as zero.
TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled
TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending
15-20 Timer_A

Timer_A Registers

TAR, Timer_A Register

15 14 13 12 11 10 9 8
TARX
rw-(0) rw—-(0) rw—(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
TARX
rw—(0) rw—(0) rw—(0) rw-(0) rw-(0) rw—(0) rw-(0) rw-(0)
TARX Bits Timer_A register. The TAR register is the count of Timer_A.
15-0

TACCRX, Timer_A Capture/Compare Register x

15 14 13 12 11 10 9 8
TACCRXx ‘
rw-(0) rw—-(0) rw—(0) rw-(0) rw-(0) rw—(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
TACCRXx ‘
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
TACCRXx Bits Timer_A capture/compare register.

15-0 Compare mode: TACCRXx holds the data for the comparison to the timer value
in the Timer_A Register, TAR.
Capture mode: The Timer_A Register, TAR, is copied into the TACCRx
register when a capture is performed.

Timer_A 15-21

Timer_A Registers

TACCTLX, Capture/Compare Control Register

15

14

13 12 11 10 9 8

CMx

CCISx SCS SCCI Unused CAP

rw—(0)

rw-(0)

6

rw—(0) rw—(0) rw—(0) r ro rw—(0)

OUTMODx CCIE CCl ouT cov CCIFG

rw—(0)

CMx

CCISx

SCS

SCCI

Unused

CAP

OUTMODx

15-22

rw-(0)

Bit
15-14

Bit
13-12

Bit 11

Bit 10

Bit 9
Bit 8

Bits
7-5

Timer_A

rw-(0) rw—(0) r rw-(0) rw—-(0) rw-(0)

Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

Capture/compare input select. These bits select the TACCRX input signal.
See the device-specific data sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 Vcc

Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

Synchronized capture/compare input. The selected CCI input signal is
latched with the EQUx signal and can be read via this bit.

Unused. Read only. Always read as 0.

Capture mode
0 Compare mode
1 Capture mode

Output mode. Modes 2, 3, 6, and 7 are not useful for TACCRO because
EQUx = EQUO.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE Bit 4
CCl Bit 3
ouT Bit 2
cov Bit 1
CCIFG Bit 0

Timer_A Registers

Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

Capture/compare input. The selected input signal can be read by this bit.

Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0 ‘
ro ro ro ro r0 ro ro r0
7 6 5 4 3 2 1 0
0 0 0 0 TAIVX 0 ‘
r0 r0 r0 r0 r-(0) r-(0) r-(0) ro
TAIVX Bits Timer_A interrupt vector value
15-0
Interrupt
TAIV Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending -
02h Capture/compare 1 TACCRL1 CCIFG Highest
04h Capture/compare 2 TACCR2 CCIFG
06h Capture/compare 37 TACCRS3 CCIFG
08h Capture/compare 47 TACCR4 CCIFG
0Ah Timer overflow TAIFG
0Ch Reserved -
OEh Reserved - Lowest

T TimerI_A5 only

Timer_A 15-23

15-24 Timer_A

Chapter 16

Timer B

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes the operation of the Timer_B of the MSP430x4xx device
family.

Topic Page
16.1 Timer_B Introduction i 16-2
16.2 Timer_B Operationouiiiie i 16-4
16.3 Timer_B RegiStersoiiuiii i 16-20

16-1

Timer_B Introduction

16.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare
registers. Timer_B can support multiple capture/compares, PWM outputs, and
interval timing. Timer_B also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of
the capture/compare registers.

Timer_B features include :

a

I N Ay Iy

Asynchronous 16-bit timer/counter with four operating modes and four
selectable lengths

Selectable and configurable clock source

Three or seven configurable capture/compare registers
Configurable outputs with PWM capability

Double-buffered compare latches with synchronized loading

Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 16-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action does not take place.

16.1.1 Similarities and Differences From Timer_A

16-2

Timer_B

Timer_B is identical to Timer_A with the following exceptions:

J
4

The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.

Timer_B TBCCRX registers are double-buffered and can be grouped.

[All Timer_B outputs can be put into a high-impedance state.

i

The SCCI bit function is not implemented in Timer_B.

Figure 16-1. Timer_B Block Diagram

Timer_B Introduction

) Timer Block
TBSSELx Dx Timer Clock MCx
It = 2 i
TBCLK ——— 00 Divider 16—$|é;|mer . »| count €« EoUD
1/2/4/8 Mode
ACLK 01 Clear 8 10 12 16 [€]
SMCLK 10 CNTLXx
—Do— 1
TBCLR
TBCLGRPx 00
01
T T Set TBIFG
10
Group
Load Logic >
CCRO
CCR1
CCR2
CCR3
CCR4
CCR5
CcClsx CMx CCR6
CCI6A 00 Capture J L
CCleB 01 Mode 0
TBCCR6
GND 10 Timer Clock
vee — 11 {}
CLLDx Load
CCl Group »| Compare Latch TBCL6
Load Logic
VCC {}
TBR=0 :> Compararator 6
EQUO —
UP/DO?NN — 5 CCR4 — EQUE | caP
f CCR1
Set TBCCR6
1 CCIFG
ouT ._T)
Output
EQUO >I Unit6 D Set Q|l-e— OUT6 Signal
Timer Clock —
Reset
POR
OUTMODx
Timer_B 16-3

Timer_B Operation

16.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and
operation of Timer_B is discussed in the following sections.

16.2.1 16-Bit Timer Counter

TBR Length

The 16-bit timer/counter register, TBR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TBR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TBR
should occur while the timer is not operating, or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TBR takes effect immediately.

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the
CNTLXx bits. The maximum count value, TBRmax), for the selectable lengths
is OFFh, 03FFh, OFFFh, and OFFFFh, respectively. Data written to the TBR
register in 8-, 10-, and 12-bit modes is right-justified with leading zeros.

Clock Source Select and Divider

16-4

Timer_B

The timer clock can be sourced from ACLK, SMCLK, or externally via TBCLK
or INCLK. The clock source is selected with the TBSSELX bits. The selected
clock source may be passed directly to the timer or divided by 2,4, or 8 using
the IDx bits. The clock divider is reset when TBCLR is set.

Timer_B Operation

16.2.2 Starting the Timer
The timer may be started or restarted in the following ways:
[The timer counts when MCx > 0 and the clock source is active.

[When the timer mode is either up or up/down, the timer may be stopped
by loading 0 to TBCLO. The timer may then be restarted by loading a
nonzero value to TBCLO. In this scenario, the timer starts incrementing in
the up direction from zero.

16.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 16-1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 16-1.Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of

compare register TBCLO.

10 Continuous The timer repeatedly counts from zero to the value
selected by the CNTLXx bits.

11 Up/down The timer repeatedly counts from zero up to the value of
TBCLO and then back down to zero.

Timer_B 16-5

Timer_B Operation

Up Mode

The up mode is used if the timer period must be different from TBRmax) counts.
The timer repeatedly counts up to the value of compare latch TBCLO, which
defines the period, as shown in Figure 16-2. The number of timer counts in
the period is TBCLO+1. When the timer value equals TBCLO the timer restarts
counting from zero. If up mode is selected when the timer value is greater than
TBCLO, the timer immediately restarts counting from zero.

Figure 16-2. Up Mode

TBR(max)
TBCLO

Oh

The TBCCRO CCIFG interrupt flag is set when the timer counts to the TBCLO
value. The TBIFG interrupt flag is set when the timer counts from TBCLO to
zero. Figure 15-3 shows the flag set cycle.

Figure 16-3. Up Mode Flag Setting

mmerciosk /" __ [\ \/ /T \
C
Ti TBCLO-1X TBCLO Oh 1h ' TBCLO-1f TBCLO Oh
mer Y Y)Q() Y

Set TBIFG

Set TBCCRO CCIFG

Changing the Period Register TBCLO

16-6

Timer_B

When changing TBCLO while the timer is running and when the TBCLO load
event is immediate, CLLDO = 00, if the new period is greater than or equal to
the old period, or greater than the current count value, the timer counts up to
the new period. If the new period is less than the current count value, the timer
rolls to zero. However, one additional count may occur before the counter rolls
to zero.

Timer_B Operation

Continuous Mode

In continuous mode the timer repeatedly counts up to TBR(max) and restarts
from zero as shown in Figure 16-4. The compare latch TBCLO works the same
way as the other capture/compare registers.

Figure 16-4. Continuous Mode

TBR(maX)

Oh

The TBIFG interrupt flag is set when the timer counts from TBR(max) to zero.
Figure 16-5 shows the flag set cycle.

Figure 16-5. Continuous Mode Flag Setting

Timer Clock _/__/__/WW
Timer xTBR (mﬂfx TBR (max)x Oh X 1h X—(” XTBR (mﬂﬂx TBR (mﬂﬁ(Oh
LC I

)

Set TBIFG |

Timer_B 16-7

Timer_B Operation

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TBCLx latch in the interrupt
service routine. Figure 16-6 shows two separate time intervals tg and t; being
added to the capture/compare registers. The time interval is controlled by
hardware, not software, without impact from interrupt latency. Up to three
(Timer_B3) or 7 (Timer_B7) independent time intervals or output frequencies
can be generated using capture/compare registers.

Figure 16-6. Continuous Mode Time Intervals

16-8

TBCL1b TBCL1c
TBCLOb TBCLOC TBCLOd
TBR(max) o — — — — — — — Yy —————— e — g ————— — — —
TBCL1a / TBCL1d
TBCLOa
R 2 S R | 7 (N — 1
EQUO Interrupt I
| to to to
EQUL1 Interrupt
1 ty ty

Timer_B

Time intervals can be produced with other modes as well, where TBCLO is
used as the period register. Their handling is more complex since the sum of
the old TBCLx data and the new period can be higher than the TBCLO value.
When the sum of the previous TBCLx value plus ty is greater than the TBCLO
data, TBCLO + 1 must be subtracted to obtain the correct time interval.

Up/Down Mode

Timer_B Operation

The up/down mode is used if the timer period must be different from TBR(max)
counts, and if a symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare latch TBCLO, and back down to zero, as
shown in Figure 16-7. The period is twice the value in TBCLO.

Note: TBCLO > TBR(max)

If TBCLO > TBR(max), the counter operates as if it were configured for
continuous mode. It does not count down from TBR(may) to zero.

Figure 16-7. Up/Down Mode

TBCLO

Oh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TBCLR bit must be used to clear the direction. The TBCLR bit
also clears the TBR value and the clock divider.

In up/down mode, the TBCCRO CCIFG interrupt flag and the TBIFG interrupt
flag are set only once during the period, separated by 1/2 the timer period. The
TBCCRO CCIFG interrupt flag is set when the timer counts from TBCLO-1 to
TBCLO, and TBIFG is set when the timer completes counting down from 0001h
to 0000h. Figure 16-8 shows the flag set cycle.

Figure 16-8. Up/Down Mode Flag Setting

Timer Clock

Timer

Up/Down

Set TBIFG

Set TBCCRO CCIFG

(4
XTBCLO-% TBCLO XTBCLO—lXTBCLO—ZXj() X 1h x oh x 1h
J
\ ((

)

(¢
))

<
)

Timer_B 16-9

Timer_B Operation

Changing the Value of Period Register TBCLO

Use of the Up/Down

When changing TBCLO while the timer is running and counting in the down
direction, and when the TBCLO load event is immediate, the timer continues
its descent until it reaches zero. The value in TBCCRO is latched into TBCLO
immediately; however, the new period takes effect after the counter counts
down to zero.

If the timer is counting in the up direction when the new period is latched into
TBCLO, and the new period is greater than or equal to the old period, or greater
than the current count value, the timer counts up to the new period before
counting down. When the timer is counting in the up direction, and the new
period is less than the current count value when TBCLO is loaded, the timer
begins counting down. However, one additional count may occur before the
counter begins counting down.

Mode

The up/down mode supports applications that require dead times between
output signals (see section Timer_B Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 16-9 the tyeaq is:

tgead = timer X (TBCL1 — TBCL3)

With: tgeag Time during which both outputs need to be inactive
timer Cycle time of the timer clock
TBCLx Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead
times.

Figure 16-9. Output Unit in Up/Down Mode

16-10

TBR(max)
TBCLO
TBCL1
TBCL3 /
Oh
» (&4 | P [« DeadTime
Output Mode 6: Toggle/Set
Output Mode 2: Toggle/Reset
EQUl | EQU1 EQUL | EQU1 Interrupt Events
TBIFG EQUO TBIFG EQUO p
EQU3 EQU3 EQUS3 EQU3
Timer_B

Timer_B Operation

16.2.4 Capture/Compare Blocks

Capture Mode

Three or seven identical capture/compare blocks, TBCCRX, are present in
Timer_B. Any of the blocks may be used to capture the timer data or to
generate time intervals.

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture is performed:

(1 The timer value is copied into the TBCCRX register
[The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x4xx
family devices may have different signals connected to CCIXA and CCIxB.
Refer to the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit synchronizes the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 16-10.

Figure 16-10. Capture Signal (SCS =1)

Timer:X n2 X n1 X n X nt1 X ne2 X n+3 X nea X

CCl

Capture

Set TBCCRx CCIFG

[/

[\

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was

read. Bit COV is set when this occurs as shown in Figure 16-11. COV must
be reset with software.

Timer_B 16-11

Timer_B Operation

Figure 16-11.Capture Cycle

Idle

Capture Capture Read

No
Capture
Taken

Read
Taken
Capture

Capture
Taken

Capture Read and No Capture

Capture
Clear Bit COV

in Register TBCCTLXx
Second
Capture
Taken
cov=1

Idle

Capture

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets bit CCIS1 = 1 and toggles bit CCISO0 to switch
the capture signal between Ve and GND, initiating a capture each time
CCISO0 changes state:

MoV #CAP+SCS+CCl S1+CM 3, &TBCCTLx ; Setup TBCCTLx
XOR #CCl SO, &TBCCTLx ; TBCCTLx = TBR

Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TBR counts to the value in a TBCLx:

O Interrupt flag CCIFG is set
[J Internal signal EQUx =1

[0 EQUx affects the output according to the output mode

16-12 Timer_B

Timer_B Operation

Compare Latch TBCLx

The TBCCRx compare latch, TBCLx, holds the data for the comparison to the
timer value in compare mode. TBCLx is buffered by TBCCRx. The buffered
compare latch gives the user control over when a compare period updates.
The user cannot directly access TBCLx. Compare data is written to each
TBCCRXx and automatically transferred to TBCLx. The timing of the transfer
from TBCCRx to TBCLx is user-selectable with the CLLDx bits as described
in Table 16-2.

Table 16-2.TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when
TBCCRX is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

10 New data is transferred from TBCCRx to TBCLx when TBR counts to 0
for up and continuous modes. New data is transferred to from TBCCRx
to TBCLx when TBR counts to the old TBCLO value or to 0 for up/down
mode

11 New data is transferred from TBCCRx to TBCLx when TBR counts to
the old TBCLx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates
with the TBCLGRPXx bits. When using groups, the CLLDx bits of the lowest
numbered TBCCRXx in the group determine the load event for each compare
latch of the group, except when TBCLGRP = 3, as shown in Table 16-3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the
CLLDx bits of the controlling TBCCRx are set to zero, all compare latches
update immediately when their corresponding TBCCRX is written; no compare
latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped.
First, all TBCCRXx registers of the group must be updated, even when new
TBCCRXx data equals old TBCCRXx data. Second, the load event must occur.

Table 16-3.Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

01 TBCL1+TBCL2 TBCCR1
TBCL3+TBCL4 TBCCR3

TBCL5+TBCL6 TBCCR5

10 TBCL1+TBCL2+TBCL3 TBCCR1
TBCL4+TBCL5+TBCL6 TBCCR4

11 TBCLO+TBCL1+TBCL2+ TBCCR1

TBCL3+TBCL4+TBCL5+TBCL6

Timer_B 16-13

Timer_B Operation

16.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQUO and EQUXx signals.
The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin,
and when the pin is pulled high, all Timer_B outputs are in a high-impedance

state.

Output Modes

The output modes are defined by the OUTMODX bits and are described in
Table 16-4. The OUTXx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0, because EQUx = EQUO.

Table 16-4.Output Modes

OUTMODx

Mode

Description

000

001

010

011

100

101

110

111

Output

Set

Toggle/Reset

Set/Reset

Toggle

Reset

Toggle/Set

Reset/Set

The output signal OUTx is defined by the
OUTX bit. The OUTXx signal updates
immediately when OUTXx is updated.

The output is set when the timer counts to the
TBCLx value. It remains set until a reset of
the timer, or until another output mode is
selected and affects the output.

The output is toggled when the timer counts
to the TBCLx value. It is reset when the timer
counts to the TBCLO value.

The output is set when the timer counts to the
TBCLx value. It is reset when the timer
counts to the TBCLO value.

The output is toggled when the timer counts
to the TBCLx value. The output period is
double the timer period.

The output is reset when the timer counts to
the TBCLXx value. It remains reset until
another output mode is selected and affects
the output.

The output is toggled when the timer counts
to the TBCLx value. It is set when the timer
counts to the TBCLO value.

The output is reset when the timer counts to
the TBCLx value. It is set when the timer
counts to the TBCLO value.

16-14 Timer_B

Output Example—Timer in Up Mode

Timer_B Operation

The OUTX signal is changed when the timer counts up to the TBCLx value, and
rolls from TBCLO to zero, depending on the output mode. An example is shown

in Figure 16-12 using TBCLO and TBCL1.

Figure 16-12. Output Example—Timer in Up Mode

TBR(max)
TBCLO

TBCL1

Oh

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

EQUO
TBIFG

EQU1

EQUO
TBIFG

EQU1

EQUO
TBIFG

‘ Output Mode 6: Toggle/Set

| Output Mode 7: Reset/Set

Interrupt Events

Timer_B 16-15

Timer_B Operation

Output Example—Timer in Continuous Mode

The OUTXx signal is changed when the timer reaches the TBCLx and TBCLO
values, depending on the output mode, An example is shown in Figure 16-13
using TBCLO and TBCL1.

Figure 16-13. Output Example—Timer in Continuous Mode

TBR(max)
TBCLO
TBCL1
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
TBIFG EQU1 EQUO TBIFG EQU1l EQUO Interrupt Events

16-16 Timer_B

Timer_B Operation

Output Example - Timer in Up/Down Mode

The OUTXx signal changes when the timer equals TBCLx in either count
direction and when the timer equals TBCLO, depending on the output mode.
An example is shown in Figure 16-14 using TBCLO and TBCL3.

Figure 16-14. Output Example—Timer in Up/Down Mode

TBR(max)
TBCLO
TBCL3
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
EQU3 EQUS3 EQUS3 EQU3
TBIFG EQUO TBIFG EQUO Interrupt Events

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODXx bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

Bl S #OUTMOD_7, &TBCCTLX ; Set out put node=7
BI C #OUTMODX, &TBCCTLXx ; O ear unwanted bits

Timer_B 16-17

Timer_B Operation

16.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:
(1 TBCCRO interrupt vector for TBCCRO CCIFG
(O TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the
associated TBCCRX register. In compare mode, any CCIFG flag is set when
TBR counts to the associated TBCLx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TBCCRO Interrupt Vector

The TBCCRO CCIFG flag has the highest Timer_B interrupt priority and has
a dedicated interrupt vector as shown in Figure 16-15. The TBCCRO CCIFG
flag is automatically reset when the TBCCRO interrupt request is serviced.

Figure 16-15. Capture/Compare TBCCRO Interrupt Flag

Capture

EQUO
CAP

3 b Set 0 CCIE.—D—} IRQ, Interrupt Service Requested

Timer Clock —

Reset

IRACC, Interrupt Request Accepted
POR

TBIV, Interrupt Vector Generator

16-18

Timer_B

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCRO CCIFG) are
prioritized and combined to source a single interrupt vector. The interrupt
vector register TBIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt (excluding TBCCRO CCIFG) generates
a number in the TBIV register (see register description). This number can be
evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled Timer_B interrupts do not affect the
TBIV value.

Any access, read or write, of the TBIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the
RET! instruction of the interrupt service routine is executed, the TBCCR2
CCIFG flag generates another interrupt.

Timer_B Operation

TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the
handling overhead. The TBIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for
each instruction. The software overhead for different interrupt sources
includes interrupt latency and return-from-interrupt cycles, but not the task
handling itself. The latencies are:

(1 Capture/compare block CCRO 11 cycles
[Capture/compare blocks CCR1 to CCR6 16 cycles
d Timer overflow TBIFG 14 cycles
The following software example shows the recommended use of TBIV for
Timer_B3.
; Interrupt handler for TBCCRO CCl FG Cycl es
CCl FG_0_HND
c ; Start of handler Interrupt latency 6
RETI 5
; Interrupt handler for TBIFG TBCCRL and TBCCR2 CCl FG
TB_HND C ; Interrupt |atency 6
ADD &TBI V, PC ; Add offset to Junp table 3
RETI ; Vector 0: No interrupt 5
JWP COFG 1_HND ; Vector 2: Mdule 1 2
JwP CCFG 2 HND ; Vector 4: Mdule 2 2
RETI ;. Vector 6
RETI ;. Vector 8
RETI ;. Vector 10
RETI : Vector 12
TBI FG_HND ; Vector 14: TI MO Fl ag
; Task starts here
RETI 5
CCl FG_2_HND ; Vector 4: Mdule 2
; Task starts here
RETI ; Back to main program 5
; The Module 1 handl er shows a way to |look if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
CCl FG_1_HND ; Vector 6: Mdule 3
: Task starts here
JwP TB_HND ; Look for pending ints 2

Timer_B 16-19

Timer_B Registers

16.3 Timer_B Registers

The Timer_B registers are listed in Table 16-5.

Table 16-5.Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 0180h Reset with POR
Timer_B counter TBR Read/write 0190h Reset with POR
Timer_B capture/compare control 0 TBCCTLO Read/write 0182h Reset with POR
Timer_B capture/compare 0 TBCCRO Read/write 0192h Reset with POR
Timer_B capture/compare control 1 TBCCTL1 Read/write 0184h Reset with POR
Timer_B capture/compare 1 TBCCR1 Read/write 0194h Reset with POR
Timer_B capture/compare control 2 TBCCTL2 Read/write 0186h Reset with POR
Timer_B capture/compare 2 TBCCR2 Read/write 0196h Reset with POR
Timer_B capture/compare control 3 TBCCTL3 Read/write 0188h Reset with POR
Timer_B capture/compare 3 TBCCR3 Read/write 0198h Reset with POR
Timer_B capture/compare control 4 TBCCTL4 Read/write 018Ah Reset with POR
Timer_B capture/compare 4 TBCCR4 Read/write 019Ah Reset with POR
Timer_B capture/compare control 5 TBCCTL5 Read/write 018Ch Reset with POR
Timer_B capture/compare 5 TBCCR5 Read/write 019Ch Reset with POR
Timer_B capture/compare control 6 TBCCTL6 Read/write 018Eh Reset with POR
Timer_B capture/compare 6 TBCCR6 Read/write 019Eh Reset with POR
Timer_B Interrupt Vector TBIV Read only 011Eh Reset with POR

16-20 Timer_B

Timer_B Registers

Timer_B Control Register TBCTL

15 14 13 12 1 10 9 8
Unused TBCLGRPx CNTLx Unused TBSSELx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TBCLR TBIE TBIFG
rw—(0) rw—(0) rw—(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)
Unused Bit15 Unused
TBCLGRP Bit TBCLx group
14-13 00 Each TBCLx latch loads independently
01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)
TBCL3+TBCL4 (TBCCR3 CLLDx bhits control the update)
TBCL5+TBCL6 (TBCCRS5 CLLDx bits control the update)
TBCLO independent
10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCLO independent
11 TBCLO+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6
(TBCCR1 CLLDx bits control the update)
CNTLx Bits Counter length
12-11 00 16-bit, TBR(max) = OFFFFh
01 12-bit, TBR(max) = OFFFh
10 10-bit, TBR(max) = 03FFh
11 8-bit, TBR(max) = OFFh
Unused Bit 10 Unused
TBSSELX Bits Timer_B clock source select
9-8 00 TBCLK
01 ACLK
10 SMCLK
11 Inverted TBCLK
IDx Bits Input divider. These bits select the divider for the input clock.
7-6 00 1N
o1 /2
10 /4
11 /8
MCx Bits Mode control. Setting MCx = 00h when Timer_B is not in use conserves
5-4 power.

00 Stop mode: the timer is halted

01 Up mode: the timer counts up to TBCLO

10 Continuous mode: the timer counts up to the value set by TBCNTLx
11 Up/down mode: the timer counts up to TBCLO and down to 0000h

Timer_B 16-21

Timer_B Registers

Unused Bit 3
TBCLR Bit 2
TBIE Bit 1
TBIFG Bit 0

Unused

Timer_B clear. Setting this bit resets TBR, the clock divider, and the count
direction. The TBCLR bit is automatically reset and is always read as zero.

Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

Timer_B interrupt flag.
0 No interrupt pending
1 Interrupt pending

TBR, Timer_B Register

15 14 13 12 1 10 9 8
TBRx ‘
rw-(0) rw—(0) rw—(0) rw-(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
TBRx ‘
rw—(0) rw-(0) rw-(0) rw—(0) rw—(0) rw-(0) rw-(0) rw—(0)
TBRXx Bits Timer_B register. The TBR register is the count of Timer_B.
15-0

16-22 Timer_B

Timer_B Registers

TBCCRX, Timer_B Capture/Compare Register x

15 14 13 12 1 10 9 8
TBCCRx
rw-(0) rw—-(0) rw—(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
TBCCRx
rw—(0) rw—(0) rw—(0) rw-(0) rw-(0) rw—(0) rw-(0) rw-(0)
TBCCRX Bits Timer_B capture/compare register

15-0 Compare mode: Compare data is written to each TBCCRx and automatically
transferred to TBCLx. TBCLx holds the data for the comparison to the timer
value in the Timer_B Register, TBR.

Capture mode: The Timer_B Register, TBR, is copied into the TBCCRXx
register when a capture is performed.

Timer_B 16-23

Timer_B Registers

TBCCTLXx, Capture/Compare Control Register

15

14

13 12 11 10 9 8

CMx

CCISsx SCS CLLDx CAP

rw—(0)

rw-(0)

6

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

OUTMODx CCIE CCl ouT cov CCIFG

rw—(0)

CMx

CCISx

SCS

CLLDx

CAP

OUTMODx

16-24

rw-(0)

Bit
15-14

Bit
13-12

Bit 11

Bit
10-9

Bit 8

Bits
7-5

Timer_B

rw-(0) rw—(0) r rw-(0) rw—-(0) rw-(0)

Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

Capture/compare input select. These bits select the TBCCRX input signal.
See the device-specific data sheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 Vcc

Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

Compare latch load. These bits select the compare latch load event.

00 TBCLx loads on write to TBCCRXx

01 TBCLx loads when TBR counts to O

10 TBCLx loads when TBR counts to O (up or continuous mode)
TBCLx loads when TBR counts to TBCLO or to 0 (up/down mode)

11 TBCLx loads when TBR counts to TBCLx

Capture mode
0 Compare mode
1 Capture mode

Output mode. Modes 2, 3, 6, and 7 are not useful for TBCLO, because
EQUx = EQUO.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE

CCl

ouT

cov

CCIFG

Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

Timer_B Registers

Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

Capture/compare input. The selected input signal can be read by this bit.

Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

Timer_B 16-25

Timer_B Registers

TBIV, Timer_B Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
ro r0 r0 ro ro r0 ro ro
7 6 5 4 3 2 1 0
0 0 0 0 TBIVX 0
r0 r0 r0 r0 r-(0) r-(0) r-(0) r0
TBIVX Bits Timer_B interrupt vector value
15-0
Interrupt
TBIV Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending -
02h Capture/compare 1 TBCCR1 CCIFG Highest
04h Capture/compare 2 TBCCR2 CCIFG
06h Capture/compare 37 TBCCR3 CCIFG
08h Capture/compare 41 TBCCR4 CCIFG
0Ah Capture/compare 57 TBCCR5 CCIFG
0Ch Capture/compare 67 TBCCR6 CCIFG
OEh Timer overflow TBIFG Lowest

T"MSP430x4xx devices only

16-26 Timer_B

Chapter 17

USART Peripheral Interface, UART Mode

The universal synchronous/asynchronous receive/transmit (USART)
peripheral interface supports two serial modes with one hardware module.
This chapter discusses the operation of the asynchronous UART mode.
USARTO is implemented on the MSP430x42x and MSP430x43x devices. In
addition to USARTO, the MSP430x44x devices implement a second identical

USART module, USART1. USART1 is also implemented in MSP430FG461x
devices.

Topic Page
17.1 USART Introduction: UART Mode 17-2
17.2 USART Operation: UARTModecoiiiiiiiiiiiiennnnn. 17-4
17.3 USART Registers: UARTMode ..., 17-21

17-1

USART Introduction: UART Mode

17.1 USART Introduction: UART Mode

17-2

In asynchronous mode, the USART connects the MSP430 to an external
system via two external pins, URXD and UTXD. UART mode is selected when
the SYNC bit is cleared.

UART mode features include:

a

U U U U

I I T A I

7- or 8-bit data with odd parity, even parity, or non-parity
Independent transmit and receive shift registers
Separate transmit and receive buffer registers

LSB-first data transmit and receive

Built-in idle-line and address-bit communication protocols for
multiprocessor systems

Receiver start-edge detection for auto-wake up from LPMx modes
Programmable baud rate with modulation for fractional baud rate support
Status flags for error detection and suppression and address detection

Independent interrupt capability for receive and transmit

Figure 17-1 shows the USART when configured for UART mode.

USART Peripheral Interface, UART Mode

USART Introduction: UART Mode

Figure 17-1. USART Block Diagram: UART Mode

SWRST URXEx* URXEIE URXWIE
T T T T SYNC=0
URXIFGx*
FE PE OE BRK Receive Control —
Receive Status Receiver Buffer UXRXBUF LISTEN MM SYNC
[[x Y|
. . . 1
RXERR RXWAKE Receiver Shift Register < f ‘ Somi
O—e—+O0 }
1 0
I o
SSEL1 SSELO SPB CHAR PEV PENA } 1 URXD
\
UCLKI 00 Baud-Rate Generator | 0
I STE
ACLK —+01 }
P ler/Divi BR
smerk - 10 rescaler/Divider UXBRx }
\
SMCLK —— 11 Modulator UXMCTL |
‘ UTXD
s | >
SPB CHAR PEV PENA |
\
r 19 1T |
\
1
WUT | Transmit Shift Register > Q1 1 SIMO
% Lo i
L 0 |
TXWAKE Transmit Buffer UXTXBUF | 0
\
\
UTXIFGX* l
— Transmit Control }
\
L L L SYNC CKPH CKPL |
\
SWRST UTXEx* TXEPT STC T } UCLK
U%Kl Clock Phase and Polarity «—=<_>
* Refer to the device-specific datasheet for SFR locations
USART Peripheral Interface, UART Mode 17-3

USART Operation: UART Mode

17.2 USART Operation: UART Mode

In UART mode, the USART transmits and receives characters at a bit rate
asynchronous to another device. Timing for each character is based on the
selected baud rate of the USART. The transmit and receive functions use the
same baud rate frequency.

17.2.1 USART Initialization and Reset

The USART is reset by a PUC or by setting the SWRST bit. After a PUC, the
SWRST bit is automatically set, keeping the USART in a reset condition. When
set, the SWRST bit resets the URXIEXx, UTXIEx, URXIFGX, RXWAKE,
TXWAKE, RXERR, BRK, PE, OE, and FE bits and sets the UTXIFGx and
TXEPT bits. The receive and transmit enable flags, URXEx and UTXEX, are
not altered by SWRST. Clearing SWRST releases the USART for operation.
See also chapter USART Module, I12C mode for USARTO when reconfiguring
from 12C mode to UART mode.

Note: Initializing or Reconfiguring the USART Module

The required USART initialization/reconfiguration process is:

1) Set SWRST (Bl S. B #SWRST, &UxCTL)

2) Initialize all USART registers with SWRST = 1 (including UXCTL)

3) Enable USART module via the MEx SFRs (URXEx and/or UTXEX)

4) Clear SWRST via software (BI C. B #SWRST, &UxCTL)

5) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEX)

Failure to follow this process may result in unpredictable USART behavior.

17.2.2 Character Format

The UART character format, shown in Figure 17-2, consists of a start bit,
seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit
mode), and one or two stop bits. The bit period is defined by the selected clock
source and setup of the baud rate registers.

Figure 17-2. Character Format

17-4

— — Mark

_|ST| DO eoe D6 ‘ D7 ‘AD ‘PA |SP : SP_L___ Space

l— [2nd Stop Bit, SPB = 1]
[Parity Bit, PENA = 1]

[Address Bit, MM = 1]
[Optional Bit, Condition] [8th Data Bit, CHAR = 1]

USART Peripheral Interface, UART Mode

USART Operation: UART Mode

17.2.3 Asynchronous Communication Formats

When two devices communicate asynchronously, the idle-line format is used
for the protocol. When three or more devices communicate, the USART
supports the idle-line and address-bit multiprocessor communication formats.

Idle-Line Multiprocessor Format

When MM = 0, the idle-line multiprocessor format is selected. Blocks of data
are separated by an idle time on the transmit or receive lines as shown in
Figure 17-3. An idle receive line is detected when 10 or more continuous ones
(marks) are received after the first stop bit of a character. When two stop bits
are used for the idle line the second stop bit is counted as the first mark bit of
the idle period.

The first character received after an idle period is an address character. The
RXWAKE bit is used as an address tag for each block of characters. In the
idle-line multiprocessor format, this bit is set when a received character is an
address and is transferred to UXRXBUF.

Figure 17-3. Idle-Line Format
Blocks of
/ Characters \
\
UTXDx/URXDx | I | I
% T | ” l l/A
| Idle Periods of 10 Bits or More

UTXDx/URXDx Expanded

\
\
\
\
\
\
\
\
UTXDX/URXDx
—i ST| Address | SP| ST| Data SP | ST| Data sp

First Character Within Block Character Within Block Character Within Block
Is Address. It Follows Idle
Period of 10 Bits or More Idle Period Less Than 10 Bits

USART Peripheral Interface, UART Mode 17-5

USART Operation: UART Mode

17-6

The URXWIE bit is used to control data reception in the idle-line
multiprocessor format. When the URXWIE bit is set, all non-address
characters are assembled but not transferred into the UxRXBUF, and
interrupts are not generated. When an address character is received, the
receiver is temporarily activated to transfer the character to UXRXBUF and
sets the URXIFGXx interrupt flag. Any applicable error flag is also set. The user
can then validate the received address.

If an address is received, user software can validate the address and must
reset URXWIE to continue receiving data. If URXWIE remains set, only
address characters are received. The URXWIE bit is not modified by the
USART hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle
period can be generated by the USART to generate address character
identifiers on UTXDx. The wake-up temporary (WUT) flag is an internal flag
double-buffered with the user-accessible TXWAKE bit. When the transmitter
is loaded from UXTXBUF, WUT is also loaded from TXWAKE resetting the
TXWAKE bit.

The following procedure sends out an idle frame to indicate an address
character follows:

1) Set TXWAKE, then write any character to UXTXBUF. UXTXBUF must be
ready for new data (UTXIFGx = 1).

The TXWAKE value is shifted to WUT and the contents of UXTXBUF are
shifted to the transmit shift register when the shift register is ready for new
data. This sets WUT, which suppresses the start, data, and parity bits of a
normal transmission, then transmits an idle period of exactly 11 bits. When
two stop bits are used for the idle line, the second stop bit is counted as the
first mark bit of the idle period. TXWAKE is reset automatically.

2) Write desired address character to UXTXBUF. UXTXBUF must be ready
for new data (UTXIFGx = 1).

The new character representing the specified address is shifted out
following the address-identifying idle period on UTXDx. Writing the first
“don’t care” character to UXTXBUF is necessary in order to shift the
TXWAKE bit to WUT and generate an idle-line condition. This data is
discarded and does not appear on UTXDx.

USART Peripheral Interface, UART Mode

USART Operation: UART Mode

Address-Bit Multiprocessor Format

When MM = 1, the address-bit multiprocessor format is selected. Each
processed character contains an extra bit used as an address indicator shown
in Figure 17-4. The first character in a block of characters carries a set
address bit which indicates that the character is an address. The USART
RXWAKE bit is set when a received character is a valid address character and
is transferred to UXRXBUF.

The URXWIE bit is used to control data reception in the address-bit
multiprocessor format. If URXWIE is set, data characters (address bit = 0) are
assembled by the receiver but are not transferred to UxRXBUF and no
interrupts are generated. When a character containing a set address bit is
received, the receiver is temporarily activated to transfer the character to
UxRXBUF and set URXIFGx. All applicable error status flags are also set.

If an address is received, user software must reset URXWIE to continue
receiving data. If URXWIE remains set, only address characters (address
bit = 1) are received. The URXWIE bit is not modified by the USART hardware
automatically.

Figure 17-4. Address-Bit Multiprocessor Format

Blocks of
/ Characters \’
\
LI T 1 LI | s

Idle Periods of No Significance

UTXDx/URXDx

\

\

| UTXDx/URXDx

| Expanded

\

\

\

\

\

UTXDx/URXDx

sT| Address |1 [sP|sT]| Data [o| sp |sT] paa [of sp
First Character Within Block AD Bit Is 0 for
Is an Address. AD BitIs 1 Data Within Block.

Idle Time Is of No Significance

For address transmission in address-bit multiprocessor mode, the address bit
of a character can be controlled by writing to the TXWAKE bit. The value of the
TXWAKE bit is loaded into the address bit of the character transferred from
UxXTXBUF to the transmit shift register, automatically clearing the TXWAKE bit.
TXWAKE must not be cleared by software. It is cleared by USART hardware
after it is transferred to WUT or by setting SWRST.

USART Peripheral Interface, UART Mode 17-7

USART Operation: UART Mode

Automatic Error Detection

Glitch suppression prevents the USART from being accidentally started. Any
low-level on URXDx shorter than the deglitch time t; (approximately 300 ns)
is ignored. See the device-specific data sheet for parameters.

When a low period on URXDx exceeds t; a majority vote is taken for the start
bit. If the majority vote fails to detect a valid start bit the USART halts character
reception and waits for the next low period on URXDx. The majority vote is also
used for each bit in a character to prevent bit errors.

The USART module automatically detects framing errors, parity errors,
overrun errors, and break conditions when receiving characters. The bits FE,
PE, OE, and BRK are set when their respective condition is detected. When
any of these error flags are set, RXERR is also set. The error conditions are
described in Table 17-1.

Table 17-1.Receive Error Conditions

17-8

Error Condition Description

A framing error occurs when a low stop bit is detected.
When two stop bits are used, only the first stop bit is
checked for framing error. When a framing error is
detected, the FE bit is set.

A parity error is a mismatch between the number of 1s in
a character and the value of the parity bit. When an

Parity error address bit is included in the character, it is included in
the parity calculation. When a parity error is detected, the
PE bit is set.

An overrun error occurs when a character is loaded into
Receive overrun error UXRXBUF before the prior character has been read.
When an overrun occurs, the OE bit is set.

Framing error

A break condition is a period of 10 or more low bits
received on URXDx after a missing stop bit. When a

Break condition break condition is detected, the BRK bit is set. A break
condition can also set the interrupt flag URXIFGx when
URXEIE = 0.

When URXEIE = 0 and a framing error, parity error, or break condition is
detected, no character is received into UXRXBUF. When URXEIE = 1,
characters are received into UXRXBUF and any applicable error bit is set.

When any of the FE, PE, OE, BRK, or RXERR bits are set, the bit remains set
until user software resets it or UXRXBUF is read.

USART Peripheral Interface, UART Mode

USART Operation: UART Mode
17.2.4 USART Receive Enable

The receive enable bit, URXEX, enables or disables data reception on URXDx
as shown in Figure 17-5. Disabling the USART receiver stops the receive
operation following completion of any character currently being received or
immediately if no receive operation is active. The receive-data buffer,

UxRXBUF, contains the character moved from the RX shift register after the
character is received.

Figure 17-5. State Diagram of Receiver Enable

No Valid Start Bit

Not Completed

URXEx =1
Valid Start Bit

Idle State
(Receiver
Enabled)

Receive
Disable

Receiver
Collects
Character

Handle Interrupt
Conditions

URXEx =0

Character
Received

URXEx =0

Note: Re-Enabling the Receiver (Setting URXEx): UART Mode

When the receiver is disabled (URXEx = 0), re-enabling the receiver

(URXEx = 1) is asynchronous to any data stream that may be present on
URXDx at the time. Synchronization can be performed by testing for an idle
line condition before receiving a valid character (see URXWIE).

USART Peripheral Interface, UART Mode 17-9

USART Operation: UART Mode

17.2.5 USART Transmit Enable

When UTXEX is set, the UART transmitter is enabled. Transmission is initiated
by writing data to UXTXBUF. The data is then moved to the transmit shift
register on the next BITCLK after the TX shift register is empty, and
transmission begins. This process is shown in Figure 17-6.

When the UTXEX bit is reset the transmitter is stopped. Any data moved to
UxTXBUF and any active transmission of data currently in the transmit shift
register prior to clearing UTXEx continue until all data transmission is
completed.

Figure 17-6. State Diagram of Transmitter Enable

17-10

No Data Written
to Transmit Buffer

Not Completed

UTXEx =1
Data Written to
Transmit Buffer

Idle State
Transmitter
Enabled)

Handle Interrupt
Conditions

Transmission
Active

Transmit
Disable

Character
Transmitted

UTXEx = 0 And Last Buffer Entry Is Transmitted

When the transmitter is enabled (UTXEx = 1), data should not be written to
UXTXBUF unless it is ready for new data indicated by UTXIFGx = 1. Violation
can result in an erroneous transmission if data in UXTXBUF is modified as it
is being moved into the TX shift register.

It is recommended that the transmitter be disabled (UTXEx = 0) only after any
active transmission is complete. This is indicated by a set transmitter empty
bit (TXEPT = 1). Any data written to UXTXBUF while the transmitter is disabled
are held in the buffer but are not moved to the transmit shift register or
transmitted. Once UTXEX is set, the data in the transmit buffer is immediately
loaded into the transmit shift register and character transmission resumes.

USART Peripheral Interface, UART Mode

17.2.6 USART Baud Rate Generation

USART Operation: UART Mode

The USART baud rate generator is capable of producing standard baud rates
from non-standard source frequencies. The baud rate generator uses one
prescaler/divider and a modulator as shown in Figure 17-7. This combination

Figure 17-7. MSP430 Baud Rate Generator

UCLKI
ACLK
SMCLK
SMCLK

...

16-Bit Counter R

¥ Q15

+0 or 1 Compare (0 or 1)

>

Modulation Data Shift Register R
(LSB first)

Toggle

FF
R

]

mX

m7 8

UXMCTL

Figure 17-8. BITCLK Baud Rate Timing

Bit Start
SS—I

£ (
))

Majority Vote: (M= 0)m

vV v 1

— |

Bit Start

supports fractional divisors for baud rate generation. The maximum USART
baud rate is one-third the UART source clock frequency BRCLK.

BITCLK

Timing for each bit is shown in Figure 17-8. For each bit received, a majority
vote is taken to determine the bit value. These samples occur at the N/2-1,

N/2, and N/2+1 BRCLK periods, where N is the number of BRCLKs per
BITCLK.

BRCLK S‘;—m

Counter

5
5

BITCLK

Epipipipiy

N/2 . N/2-1 N/2-2 N/2 N/2-1
N/2 N/2-1 N/2-2
0 N/2 N/2-1 0 N/2
[
))
()() ()S
‘4—— INT(N2)+m(= 0) —P NEVEN: INTN2) —P»
< INT(N/2) + m(=1) —> Nopp : INT(N/2) + R(= 1) —P»
< Bit Period gl o
m: corresponding modulation bit
R: Remainder from N/2 division
USART Peripheral Interface, UART Mode 17-11

USART Operation: UART Mode

Baud Rate Bit Timing

The first stage of the baud rate generator is the 16-bit counter and comparator.
At the beginning of each bit transmitted or received, the counter is loaded with
INT(N/2) where N is the value stored in the combination of UXBRO and UxBR1.
The counter reloads INT(N/2) for each bit period half-cycle, giving a total bit
period of N BRCLKSs. For a given BRCLK clock source, the baud rate used
determines the required division factor N:

_ _BRCLK
baud rate

The division factor N is often a non-integer value of which the integer portion
can be realized by the prescaler/divider. The second stage of the baud rate
generator, the modulator, is used to meet the fractional part as closely as
possible. The factor N is then defined as:

1n—1
N = UXBR + = 2 m,
Ni=o

Where:

N: Target division factor
UxBR: 16-bit representation of registers UXxBRO and UXBR1
i Bit position in the character

n: Total number of bits in the character
m;: Data of each corresponding modulation bit (1 or 0)
Baud rate = BRISLK _ BRCLK

UXBR + 15 m,
i=0

The BITCLK can be adjusted from bit to bit with the modulator to meet timing
requirements when a non-integer divisor is needed. Timing of each bit is
expanded by one BRCLK clock cycle if the modulator bit m; is set. Each time
a bit is received or transmitted, the next bit in the modulation control register
determines the timing for that bit. A set modulation bit increases the division
factor by one while a cleared modulation bit maintains the division factor given
by UxBR.

The timing for the start bit is determined by UxBR plus mO, the next bit is
determined by UxBR plus m1, and so on. The modulation sequence begins
with the LSB. When the character is greater than 8 bits, the modulation
sequence restarts with m0 and continues until all bits are processed.

Determining the Modulation Value

17-12

Determining the modulation value is an interactive process. Using the timing
error formula provided, beginning with the start bit , the individual bit errors are
calculated with the corresponding modulator bit set and cleared. The
modulation bit setting with the lower error is selected and the next bit error is
calculated. This process is continued until all bit errors are minimized. When
a character contains more than 8 bits, the modulation bits repeat. For example,
the ninth bit of a character uses modulation bit 0.

USART Peripheral Interface, UART Mode

USART Operation: UART Mode

Transmit Bit Timing
The timing for each character is the sum of the individual bit timings. By
modulating each bit, the cumulative bit error is reduced. The individual bit error
can be calculated by:

j
Error [%] = {% x [(j + 1) x UxBR + gomi] —(+ 1)} x 100%

With:
baud rate: Desired baud rate
BRCLK: Input frequency — UCLKI, ACLK, or SMCLK
J: Bit position - O for the start bit, 1 for data bit DO, and so on
UxBR: Division factor in registers UxBR1 and UxBRO

For example, the transmit errors for the following conditions are calculated:

Baud rate = 2400

BRCLK = 32,768 Hz (ACLK)

UxBR = 13, since the ideal division factor is 13.65
UXMCTL = 6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0,

ml=1, and mO=1. The LSB of UXMCTL is used first.

Start bit Error [%] = (% x ((0 + 1) x UXBR + 1)— 1) x 100% = 2.54%

Data bit DO Error [%] = (% x (1 + 1) x UXBR + 2)-2) x 100% = 5.08%

baudrate . (5 | 1) x UxBR + 2)-3) x 100% = 0.29%

Data bit D1 Error [%] = “BRCLK

baud rate . (34 1) x UXBR + 3)-4| x 100% = 2.83%

0,
Data bit D2 Error [%] = “BRCLK

% = —)
BRCLK X 100% 1.95%

0,
Data bit D4 Error [%] = “BRCLK

baud rate o — 0
BRCLK X ((6 + 1) X UXBR + 5)-7 | x 100% = 3.13%

baud rate o — 0
“BRCLK X ((7 + 1) X UXBR + 5)-8| x 100% 1.66%

Data bit D3 Error [%] = (baud rate o ((4 + 1) x UXBR + 3)-5
Data bit D5 Error [%] (

baud rate . ((5 + 1) x UXBR + 4)— 6) x 100% = 0.59%
Data bit D6 Error [%] =)

Data bit D7 Error [%] = (*’S‘FJ{"TT_"’EE x ((8 + 1) x UXBR + 6)-9) x 100% = 0.88%

Parity bit Error [%] = (%cﬁe x ((9 + 1) x UXBR + 7)- 10) x 100% = 3.42%

Stop bit 1 Error [%] = (%Cﬁ(te x ((10 + 1) X UXBR + 7)— 11) x 100% = —1.37%

The results show the maximum per-bit error to be 5.08% of a BITCLK period.

USART Peripheral Interface, UART Mode 17-13

USART Operation: UART Mode

Receive Bit Timing

Receive timing is subject to two error sources. The first is the bit-to-bit timing
error. The second is the error between a start edge occurring and the start
edge being accepted by the USART. Figure 17-9 shows the asynchronous
timing errors between data on the URXDx pin and the internal baud-rate clock.

Figure 17-9. Receive Error

i | 0 | 1 | 2
tideal | to | t |
|1]2|3]4]5]6]|7]8]9l0l11|12/1314| 1| 2| 3] 4] 5]6 |7 |8] 9]10l11|1213]14 1] 2| 3] 4] 5|67

BRCLK
| ! |
URXDx _l

|
| .
-‘—l I
URXDS | | ST | DO D1
| T

| '_ to t to

—» & Synchronization Error + 0.5x BRCLK

|

| | |
sample |]]

I

|

tactual

1
URXDS l Int(UxBR/2)+m0 = / i \ UxBR +m1 =13+1 =14 I UxBR +m2 = 13+0 = 13 I
lint@32)+1=6+1L7) [/1
| Majority Vote Taken Majority Vote Taken Majority Vote Taken
The ideal start bit timing tigeal(0) iS half the baud-rate timing tyaydrate, PeCause
the bit is tested in the middle of its period. The ideal baud-rate timing tigeai(j
for the remaining character bits is the baud rate timing tyayugrate- The individual
bit errors can be calculated by:
baud rate - (UxBR :) :
%] = | =<~ X X —_ X - -1- X 0
Error [%] BRCLK {2 [mo + mt(5)] + (I UxBR + Elm,)} 1—j 100%
Where:

17-14

baud rate is the required baud rate

BRCLK is the input frequency—selected for UCLK, ACLK, or SMCLK
j = 0 for the start bit, 1 for data bit DO, and so on

UxBR is the division factor in registers UxBR1 and UxBRO

USART Peripheral Interface, UART Mode

USART Operation: UART Mode

For example, the receive errors for the following conditions are calculated:

Baud rate = 2400

BRCLK = 32,768 Hz (ACLK)

UxBR = 13, since the ideal division factor is 13.65

UXMCTL= 6B:m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1=1 and
mO0=1 The LSB of UXMCTL is used first.

Start bit Error [%] = (bg‘;{dTr&te x [2x(1 + 6) + (0 X UXBR + 0)] — 1 — o) x 100% = 2.54%

Data bit DO Error [%] = (M x [2x(1 + 6) + (1 x UXBR + 1)] — 1 — 1) x 100% = 5.08%

BRCLK

baudrate . 15,1 4) + (2 x UXBR + 1)] — 1 — 2| x 100% = 0.29%

Data bit D1 Error [%] = BRCLK

baudrate , 15,1 + 6) + (3 x UXBR + 2)] — 1 — 3

Data bit D2 Error [%] = BRCLK

X 100% = 2.83%

BRCLK

baudrate , 15,1 4+ 6) + (5 x UXBR + 3)] — 1 — 5

Data bit D4 Error [%] = BRCLK

X 100% = 0.59%

baudrate 15,1 + 6) + (6 x UXBR + 4)] — 1 — 6

Data bit D5 Error [%] = BRCLK

X 100% = 3.13%

baud rate . 1o(1 4) + (7 x UXBR + 4)] — 1 — 7

Data bit D6 Error [%] = BRCLK

Data bit D3 Error [%] = (M X [2x(1 + 6) + (4 X UXBR + 2)] — 1 — 4) x 100% = —-1.95%
() x 100% = —1.66%

Data bit D7 Error [%] = (% x [2x(1 + 6) + (8 X UXBR + 5)] — 1 — 8) x 100% = 0.88%

Parity bit Error [%] = (% x [2x(1 + 6) + (9 X UXBR + 6)] — 1 — 9) x 100% = 3.42%

Stop bit 1 Error [%] = (bg;dTﬁie x [2x(1 + 6) + (10 X UXBR + 6)] — 1 — 10) x 100% = -1.37%

The results show the maximum per-bit error to be 5.08% of a BITCLK period.

USART Peripheral Interface, UART Mode 17-15

USART Operation: UART Mode

Typical Baud Rates and Errors

Table 17-2.Commonly Used Baud Rates, Baud Rate Data, and Errors

Standard baud rate frequency data for UxBRx and UXxMCTL are listed in
Table 17-2 for a 32,768-Hz watch crystal (ACLK) and a typical 1,048,576-Hz

SMCLK.

The receive error is the accumulated time versus the ideal scanning time in the
middle of each bit. The transmit error is the accumulated timing error versus
the ideal time of the bit period.

Divide by A: BRCLK = 32,768 Hz B: BRCLK = 1,048,576 Hz
Max. Max. Synchr. Max. Max.
Baud T RX RX T RX
Rate A B: UxBR1 |[UxBRO |UxMCTL | Error % [Error % [Error % | UxBR1 | UxBRO |UxMCTL | Error % | Error %
1200 | 27.31 | 873.81 0 1B 03 -4/3 -4/3| =2 03 69 FF 0/0.3 | =+2
2400 | 13.65 | 436.91 0 oD 6B -6/3 -6/3 +4 01 B4 FF 0/0.3 +2
4800 | 6.83 | 218.45 0 06 6F -9/11| -9/11| =7 0 DA 55 0/0.4 | +2
9600 | 3.41 | 109.23 0 03 4A -21/12 | -21/12| +15 0 6D 03 -0.4/1| +2
19,200 54.61 0 36 6B -0.212 | %2
38,400 27.31 0 1B 03 -4/3| +2
76,800 13.65 0 0D 6B -6/3| =4
115,20 9.1 0 09 08 -5/7| +7
0
17-16 USART Peripheral Interface, UART Mode

USART Operation: UART Mode
17.2.7 USART Interrupts
The USART has one interrupt vector for transmission and one interrupt vector
for reception.
USART Transmit Interrupt Operation

The UTXIFGXx interrupt flag is set by the transmitter to indicate that UXTXBUF
is ready to accept another character. An interrupt request is generated if
UTXIEx and GIE are also set. UTXIFGx is automatically reset if the interrupt
request is serviced or if a character is written to UXTXBUF.

UTXIFGXx is set after a PUC or when SWRST = 1. UTXIEX is reset after a PUC
or when SWRST = 1. The operation is shown is Figure 17-10.

Figure 17-10. Transmit Interrupt Operation

UTXIEX

Clear

PUC or SWRST %
Interrupt Service Requested

Set |UuTxIFGx] \ >
| J

Vee D Q

Character Moved From = r
Buffer to Shift Register Clear SWRST

Data written to UXTXBUF
IRQA

USART Peripheral Interface, UART Mode 17-17

USART Operation: UART Mode

USART Receive Interrupt Operation

The URXIFGx interrupt flag is set each time a character is received and loaded
into UXRXBUF. An interrupt request is generated if URXIEx and GIE are also
set. URXIFGx and URXIEXx are reset by a system reset PUC signal or when
SWRST = 1. URXIFGx is automatically reset if the pending interrupt is served
(when URXSE = 0) or when UXRXBUF is read. The operation is shown in
Figure 17-11.

Figure 17-11.Receive Interrupt Operation

SYNC

Valid Start Bit %_}_ S URXS
Receiver Collects Character
URXSE I——O—,_
From URXD —| T I >
______________ Clear
r a
| Erroneous Character Rejection |
| PE | URXIEX Interrupt Service
| FE | Requested
BRK
!_ URXEIE L S D—V
'_____________::::::: URXIFGxX
| il _
| uRxWIE | Clear
lRxwAKE m— | ' &—m SWRST
I L I Character Received PUC
| Non-Address Character Rejection | or UXRXBUF Read

Le————— - Break Detected (E URXSE
] IRQA

17-18

URXEIE is used to enable or disable erroneous characters from setting
URXIFGx. When using multiprocessor addressing modes, URXWIE is used
to auto-detect valid address characters and reject unwanted data characters.

Two types of characters do not set URXIFGx:

[Erroneous characters when URXEIE =0
[Non-address characters when URXWIE = 1

When URXEIE = 1 a break condition sets the BRK bit and the URXIFGx flag.

USART Peripheral Interface, UART Mode

USART Operation: UART Mode

Receive-Start Edge Detect Operation

The URXSE bit enables the receive start-edge detection feature. The
recommended usage of the receive-start edge feature is when BRCLK is
sourced by the DCO and when the DCO is off because of low-power mode
operation. The ultra-fast turn-on of the DCO allows character reception after
the start edge detection.

When URXSE, URXIEx and GIE are set and a start edge occurs on URXDX,
the internal signal URXS is set. When URXS is set, a receive interrupt request
is generated but URXIFGx is not set. User software in the receive interrupt
service routine can test URXIFGx to determine the source of the interrupt.
When URXIFGx = 0 a start edge was detected, and when URXIFGx = 1 a valid
character (or break) was received.

When the ISR determines the interrupt request was from a start edge, user
software toggles URXSE, and must enable the BRCLK source by returning
from the ISR to active mode or to a low-power mode where the source is active.
If the ISR returns to a low-power mode where the BRCLK source is inactive,
the character is not received. Toggling URXSE clears the URXS signal and
re-enables the start edge detect feature for future characters. See chapter
System Resets, Interrupts, and Operating Modes for information on entering
and exiting low-power modes.

The now active BRCLK allows the USART to receive the balance of the
character. After the full character is received and moved to UxRXBUF,
URXIFGx is set and an interrupt service is again requested. Upon ISR entry,
URXIFGx = 1 indicating a character was received. The URXIFGx flag is
cleared when user software reads UxRXBUF.

; Interrupt handler for start condition and
; Character receive. BRCLK = DCO

WRX Int BIT.B #URXI FQ0, & FGL ; Test URXIFGx to determ ne

JZ ST_COND ;. If start or character
MOV. B &UxRXBUF, dst : Read buffer
RETI ;

ST_COND BIC B #URXSE, &UOTCTL ; Cear URXS signal
Bl S. B #URXSE, &U0TCTL ; Re-enabl e edge detect
BIC #SCE0+SCGL, O(SP) ; Enable BRCLK = DCO
RETI ;

Note: Break Detect With Halted UART Clock

When using the receive start-edge detect feature, a break condition cannot
be detected when the BRCLK source is off.

USART Peripheral Interface, UART Mode 17-19

USART Operation: UART Mode

Receive-Start Edge Detect Conditions

When URXSE = 1, glitch suppression prevents the USART from being
accidentally started. Any low-level on URXDx shorter than the deglitch time t;
(approximately 300 ns) is ignored by the USART and no interrupt request is
generated (see Figure 17-12). See the device-specific data sheet for
parameters.

Figure 17-12. Glitch Suppression, USART Receive Not Started

URXDx

URXS

L

When a glitch is longer than t; or a valid start bit occurs on URXDx, the USART
receive operation is started and a majority vote is taken as shown in
Figure 17-13. If the majority vote fails to detect a start bit, the USART halts
character reception.

If character reception is halted, an active BRCLK is not necessary. A time-out
period longer than the character receive duration can be used by software to
indicate that a character was not received in the expected time, and the
software can disable BRCLK.

Figure 17-13. Glitch Suppression, USART Activated

Majority Vote Taken

17-20 USART Peripheral Interface, UART Mode

USART Registers: UART Mode

17.3 USART Registers: UART Mode

Table 17-3 lists the registers for all devices implementing a USART module.
Table 17-4 applies only to devices with a second USART module, USART1.

Table 17-3.USARTO Control and Status Registers

Register Short Form Register Type Address Initial State
USART control register UOCTL Read/write 070h 001h with PUC
Transmit control register UOTCTL Read/write 071h 001h with PUC
Receive control register UORCTL Read/write 072h 000h with PUC
Modulation control register UOMCTL Read/write 073h Unchanged
Baud rate control register 0 UOBRO Read/write 074h Unchanged
Baud rate control register 1 UOBR1 Read/write 075h Unchanged
Receive buffer register UORXBUF Read 076h Unchanged
Transmit buffer register UOTXBUF Read/write 077h Unchanged
SFR module enable register 1 ME1 Read/write 004h 000h with PUC
SFR interrupt enable register 1 IE1 Read/write 000h 000h with PUC
SFR interrupt flag register 1 IFG1 Read/write 002h 082h with PUC

Table 17-4.USART1 Control and Status Registers

Register Short Form Register Type Address Initial State
USART control register U1CTL Read/write 078h 001h with PUC
Transmit control register ULTCTL Read/write 07%h 001h with PUC
Receive control register U1RCTL Read/write 07Ah 000h with PUC
Modulation control register UIMCTL Read/write 07Bh Unchanged
Baud rate control register 0 U1BRO Read/write 07Ch Unchanged
Baud rate control register 1 U1BR1 Read/write 07Dh Unchanged
Receive buffer register U1RXBUF Read 07Eh Unchanged
Transmit buffer register U1TXBUF Read/write 07Fh Unchanged
SFR module enable register 2 ME2 Read/write 005h 000h with PUC
SFR interrupt enable register 2 IE2 Read/write 001h 000h with PUC
SFR interrupt flag register 2 IFG2 Read/write 003h 020h with PUC

Note: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits using Bl S. B or Bl C. B instructions, rather than
MOV. B or CLR. B instructions.

USART Peripheral Interface, UART Mode 17-21

USART Registers: UART Mode

UxCTL, USART Control Register

7 6 5 4 3 2 1 0
PENA PEV SPB CHAR LISTEN SYNC MM SWRST
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
PENA Bit 7 Parity enable
0 Parity disabled
1 Parity enabled. Parity bit is generated (UTXDx) and expected
(URXDXx). In address-bit multiprocessor mode, the address bit is
included in the parity calculation.
PEV Bit 6 Parity select. PEV is not used when parity is disabled.
0 Odd parity
1 Even parity
SPB Bit 5 Stop bit select. Number of stop bits transmitted. The receiver always
checks for one stop bit.
0 One stop bit
1 Two stop bits
CHAR Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 7-bit data
1 8-bit data
LISTEN Bit 3 Listen enable. The LISTEN bit selects loopback mode.
0 Disabled
1 Enabled. UTXDx is internally fed back to the receiver.
SYNC Bit 2 Synchronous mode enable
0 UART mode
1 SPI Mode
MM Bit 1 Multiprocessor mode select
0 Idle-line multiprocessor protocol
1 Address-bit multiprocessor protocol
SWRST Bit 0 Software reset enable
0 Disabled. USART reset released for operation
1 Enabled. USART logic held in reset state
17-22 USART Peripheral Interface, UART Mode

USART Registers: UART Mode

UXTCTL, USART Transmit Control Register

7 6 5 4 3 2 1 0
Unused CKPL SSELX URXSE TXWAKE Unused TXEPT
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
Unused Bit 7 Unused
CKPL Bit 6 Clock polarity select

0 UCLKI = UCLK
1 UCLKI = inverted UCLK

SSELX Bits Source select. These bits select the BRCLK source clock.
5-4 00 UCLKI
01 ACLK
10 SMCLK
11 SMCLK
URXSE Bit 3 UART receive start-edge. The bit enables the UART receive start-edge
feature.
0 Disabled
1 Enabled

TXWAKE Bit 2 Transmitter wake
0 Next frame transmitted is data
1 Next frame transmitted is an address

Unused Bit 1 Unused

TXEPT Bit 0 Transmitter empty flag
0 UART is transmitting data and/or data is waiting in UXTXBUF
1 Transmitter shift register and UXTXBUF are empty or SWRST =1

USART Peripheral Interface, UART Mode 17-23

USART Registers: UART Mode

UxXRCTL, USART Receive Control Register

7 6 5 4 3 2 1 0
FE PE OE BRK URXEIE URXWIE RXWAKE RXERR
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
FE Bit 7 Framing error flag

0 No error
1 Character received with low stop bit

PE Bit 6 Parity error flag. When PENA = 0, PE is read as 0.
0 No error
1 Character received with parity error

OE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UxXRXBUF before the previous character was read.
0 No error
1 Overrun error occurred

BRK Bit 4 Break detect flag
0 No break condition
1 Break condition occurred

URXEIE Bit 3 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and URXIFGX is not set
1 Erroneous characters received set URXIFGx

URXWIE Bit 2 Receive wake-up interrupt-enable. This bit enables URXIFGx to be set
when an address character is received. When URXEIE = 0, an address
character does not set URXIFGx if it is received with errors.

0 All received characters set URXIFGx
1 Only received address characters set URXIFGx

RXWAKE Bit 1 Receive wake-up flag
0 Received character is data
1 Received character is an address

RXERR Bit 0 Receive error flag. This bit indicates a character was received with error(s).
When RXERR =1, on or more error flags (FE,PE,OE, BRK) is also set.
RXERR is cleared when UXRXBUF is read.
0 No receive errors detected
1 Receive error detected

17-24 USART Peripheral Interface, UART Mode

USART Registers

: UART Mode

UxBRO, USART Baud Rate Control Register 0
7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
rw rw rw rw rw rw rw w
UxBR1, USART Baud Rate Control Register 1
7 6 5 4 3 2 1 0
215 214 213 212 ol1 210 29 28
rw w r'w rw 'w 'w rw w
UxBRXx The valid baud-rate control range is 3 < UxBR < OFFFFh, where

UxBR = {UxBR1+UxBRO0}. Unpredictable receive and transmit timing
occurs if UXBR < 3.

UxMCTL, USART Modulation Control Register

7 6 5 4 3 2 1 0
m7 m6 m5 m4 m3 m2 ml mO
w w w w rw w w rw

UXMCTLX Bits
7-0

Modulation bits. These bits select the modulation for BRCLK.

USART Peripheral Interface, UART Mode 17-25

USART Registers: UART Mode

UxRXBUF, USART Receive Buffer Register

27 26 25 24 23 22 21 20

UXRXBUFx Bits The receive-data buffer is user accessible and contains the last received
7-0 character from the receive shift register. Reading UxRXBUF resets the
receive-error bits, the RXWAKE bit, and URXIFGx. In 7-bit data mode,
UxXRXBUF is LSB justified and the MSB is always reset.

UxTXBUF, USART Transmit Buffer Register

7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
rw w rw rw rw 'w rw rw

UXTXBUFx Bits The transmit data buffer is user accessible and holds the data waiting to be
7-0 moved into the transmit shift register and transmitted on UTXDx. Writing to
the transmit data buffer clears UTXIFGx. The MSB of UXTXBUF is not
used for 7-bit data and is reset.

17-26 USART Peripheral Interface, UART Mode

USART Registers: UART Mode

ME1, Module Enable Register 1

7 6 5 4 3 2 1 0
UTXEO URXEO
rw-0 rw-0
UTXEO Bit7 USARTO transmit enable. This bit enables the transmitter for USARTO.

0 Module not enabled
1 Module enabled

URXEO Bit 6 USARTO receive enable. This bit enables the receiver for USARTO.
0 Module not enabled
1 Module enabled

Bits These bits may be used by other modules. See device-specific data sheet.
5-0

ME2, Module Enable Register 2

7 6 5 4 3 2 1 0
UTXE1 URXE1
rw-0 rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-6
UTXE1 Bit 5 USART1 transmit enable. This bit enables the transmitter for USART1.

0 Module not enabled
1 Module enabled

URXE1 Bit 4 USART1 receive enable. This bit enables the receiver for USART1.
0 Module not enabled
1 Module enabled

Bits These bits may be used by other modules. See device-specific data sheet.
3-0

USART Peripheral Interface, UART Mode 17-27

USART Registers: UART Mode

IEL, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
UTXIEO URXIEO
rw-0 rw-0
UTXIEO Bit 7 USARTO transmit interrupt enable. This bit enables the UTXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIEO Bit 6 USARTO receive interrupt enable. This bit enables the URXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific data sheet.
5-0

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
UTXIE1 URXIEL
rw-0 rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-6
UTXIE1 Bit 5 USART1 transmit interrupt enable. This bit enables the UTXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIE1 Bit 4 USART1 receive interrupt enable. This bit enables the URXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific data sheet.
3-0

17-28 USART Peripheral Interface, UART Mode

USART Registers: UART Mode

IFGL1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
UTXIFGO URXIFGO
rw-1 rw-0
UTXIFGO Bit 7 USARTO transmit interrupt flag. UTXIFGO is set when UOTXBUF is empty.
0 No interrupt pending
1 Interrupt pending
URXIFGO Bit 6 USARTO receive interrupt flag. URXIFGO is set when UORXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific data sheet.
5-0

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
UTXIFG1 URXIFG1
rw-1 rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-6
UTXIFG1 Bit 5 USARTL1 transmit interrupt flag. UTXIFGL1 is set when U1TXBUF empty.
0 No interrupt pending
1 Interrupt pending
URXIFG1 Bit 4 USARTL1 receive interrupt flag. URXIFG1 is set when ULRXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific data sheet.
3-0

USART Peripheral Interface, UART Mode 17-29

17-30 USART Peripheral Interface, UART Mode

Chapter 18

USART Peripheral Interface, SPI Mode

The universal synchronous/asynchronous receive/transmit (USART)
peripheral interface supports two serial modes with one hardware module.
This chapter discusses the operation of the synchronous peripheral interface
or SPI mode. USARTO is implemented on the MSP430x42x and MSP430x43x
devices. In addition to USARTO, the MSP430x44x devices implement a
second identical USART module, USART1. USART1 is also implemented in
MSP430FG461x devices.

Topic Page
18.1 USART Introduction: SPIMode, 18-2
18.2 USART Operation: SPIMode ...t 18-4

18.3 USART Registers: SPI Mode

18-1

USART Introduction: SPI Mode

18.1 USART Introduction: SPI Mode

In synchronous mode, the USART connects the MSP430 to an external
system via three or four pins: SIMO, SOMI, UCLK, and STE. SPI mode is
selected when the SYNC bit is set and the 12C bit is cleared.

SPI mode features include:
7-bit or 8-bit data length
3-pin and 4-pin SPI operation

Master or slave modes

4

4

U

[Independent transmit and receive shift registers
(1 Separate transmit and receive buffer registers
[0 Selectable UCLK polarity and phase control

[Programmable UCLK frequency in master mode
U

Independent interrupt capability for receive and transmit

Figure 18-1 shows the USART when configured for SPI mode.

18-2 USART Peripheral Interface, SPI Mode

Figure 18-1. USART Block Diagram: SPI Mode

SWRST USPIEx*

I

I

URXEIE URXWIE

FE PE OE BRK

Receive Control

URXIFGx*
—m

171

Receive Status

Receiver Buffer UXRXBUF

*

LISTEN

RXERR RXWAKE L

Receiver Shift Register

SSEL1 SSELO spB

I

CHAR PEV

Baud-Rate Generator

Prescaler/Divider UxBRx

Modulator UXMCTL

SPB

CHAR

!

PEV

Transmit Shift Register

USART Introduction: SPI Mode

SYNC=1

*

Transmit Buffer UXTXBUF

Transmit Control

UCLKI 00
ACLK —o01
SMCLK — 10
SMCLK — 11

wuT |

TXWAKE
UTXIFGx*
—

SWRST USPIEXx*

.

TXEPT

UCLKI
<

* See the device-specific data sheet for SFR locations.

< i?z !
|
|
|
PENA 1 uRxD
|
UCLKS | 5
4 \
I STE
| ' <:
|
|
|
|
| UTXD
|
PENA |
|
|
|
1
Q| ! siMo
_O |
0
.0
|
|
|
|
|
|
|
|
L SYNC CKPH CKPL |
|
|
dc | L3 0T T
P _
Clock Phase and Polarity «—»< >

USART Peripheral Interface, SPI Mode

18-3

USART Operation: SPI Mode

18.2 USART Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using
a shared clock provided by the master. An additional pin, STE, is provided as
to enable a device to receive and transmit data and is controlled by the master.

Three or four signals are used for SPI data exchange:

[SIMO Slave in, master out
Master mode: SIMO is the data output line.
Slave mode: SIMO is the data input line.

[SOMI Slave out, master in
Master mode: SOMI is the data input line.
Slave mode: SOMI is the data output line.

[0 UCLK USART SPI clock
Master mode: UCLK is an output.
Slave mode: UCLK is an input.

g STE Slave transmit enable. Used in 4-pin mode to allow multiple
masters on a single bus. Not used in 3-pin mode.
4-Pin master mode:
When STE is high, SIMO and UCLK operate normally.
When STE is low, SIMO and UCLK are set to the input direction.
4-pin slave mode:
When STE is high, RX/TX operation of the slave is disabled and
SOMI is forced to the input direction.
When STE is low, RX/TX operation of the slave is enabled and
SOMI operates normally.

18.2.1 USART Initialization and Reset

18-4

The USART is reset by a PUC or by the SWRST bit. After a PUC, the SWRST
bit is automatically set, keeping the USART in a reset condition. When set, the
SWRST bit resets the URXIEXx, UTXIEX, URXIFGx, OE, and FE bits and sets
the UTXIFGx flag. The USPIEX bit is not altered by SWRST. Clearing SWRST
releases the USART for operation. See also chapter 17.

Note: Initializing or Reconfiguring the USART Module

The required USART initialization/reconfiguration process is:

1) Set SWRST (Bl S. B #SWRST, &UxCTL)

2) Initialize all USART registers with SWRST=1 (including UxCTL)

3) Enable USART module via the MEx SFRs (USPIEX)

4) Clear SWRST via software (Bl C. B #SWRST, &UxCTL)

5) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEX)

Failure to follow this process may result in unpredictable USART behavior.

USART Peripheral Interface, SPI Mode

18.2.2 Master Mode

USART Operation: SPI Mode

Figure 18-2. USART Master and External Slave

MASTER SIMO R SIMO SLAVE
Receive Buffer UXRXBUF Transmit Buffer UXTXBUF SPI Receive Buffer
Px.x > STE
STE —|— SS
Port.x
. .) o) SOMI SOMI .]
Receive Shift Register L1 Transmit Shift Register < Data Shift Register (DSR) H
MSB LSB W MSB LSB MSB LSB
UCLK > SCLK
MSP430 USART COMMON SPI

Four-Pin SPI Master

Figure 18-2 shows the USART as a master in both 3-pin and 4-pin
configurations. The USART initiates a data transfer when data is moved to the
transmit data buffer UXTXBUF. The UXTXBUF data is moved to the TX shift
register when the TX shift register is empty, initiating data transfer on SIMO
starting with the most significant bit. Data on SOMI is shifted into the receive
shift register on the opposite clock edge, starting with the most significant bit.
When the character is received, the receive data is moved from the RX shift
register to the received data buffer UXRXBUF and the receive interrupt flag,
URXIFGY, is set, indicating the RX/TX operation is complete.

A set transmit interrupt flag, UTXIFGX, indicates that data has moved from
UxTXBUF to the TX shift register and UXTXBUF is ready for new data. It does
not indicate RX/TX completion. In master mode, the completion of an active
transmission is indicated by a set transmitter empty bit TXEPT = 1.

To receive data into the USART in master mode, data must be written to
UxTXBUF because receive and transmit operations operate concurrently.
Mode

In 4-pin master mode, STE is used to prevent conflicts with another master.
The master operates normally when STE is high. When STE is low:

(1 SIMO and UCLK are set to inputs and no longer drive the bus

[The error bit FE is set indicating a communication integrity violation to be
handled by the user

A low STE signal does not reset the USART module. The STE input signal is
not used in 3-pin master mode.

USART Peripheral Interface, SPI Mode 18-5

USART Operation: SPI Mode

18.2.3 Slave Mode
Figure 18-3. USART Slave and External Master

MASTER SIMO - SIMO SLAVE
SPI Receive Buffer Transmit Buffer UXTXBUF Receive Buffer UXRXBUF
Px.x > STE
STE < SS
Port.x
)) SOMI SOMI
‘1 Data Shift Register DSR < Transmit Shift Register Receive Shift Register |-
MSB LSB MSB LSB MSB LSB
SCLK » UCLK
COMMON SPI MSP430 USART

Figure 18-3 shows the USART as a slave in both 3-pin and 4-pin
configurations. UCLK is used as the input for the SPI clock and must be
supplied by the external master. The data transfer rate is determined by this
clock and not by the internal baud rate generator. Data written to UXTXBUF
and moved to the TX shift register before the start of UCLK is transmitted on
SOMI. Data on SIMO is shifted into the receive shift register on the opposite
edge of UCLK and moved to UxRXBUF when the set number of bits are
received. When data is moved from the RX shift register to UXRXBUF, the
URXIFGx interrupt flag is set, indicating that data has been received. The
overrun error bit, OE, is set when the previously received data is not read from
UxRXBUF before new data is moved to UXRXBUF.

Four-Pin SPI Slave Mode

18-6

In 4-pin slave mode, STE is used by the slave to enable the transmit and
receive operations and is provided by the SPI master. When STE is low, the
slave operates normally. When STE is high:

[0 Any receive operation in progress on SIMO is halted
[SOMI is set to the input direction

A high STE signal does not reset the USART module. The STE input signal
is not used in 3-pin slave mode.

USART Peripheral Interface, SPI Mode

USART Operation: SPI Mode

18.2.4 SPI Enable

The SPI transmit/receive enable bit USPIEx enables or disables the USART
in SPI mode. When USPIEx = 0, the USART stops operation after the current
transfer completes, or immediately if no operation is active. A PUC or set
SWRST bit disables the USART immediately and any active transfer is

terminated.

Transmit Enable

When USPIEx = 0, any further write to UXTXBUF does not transmit. Data
written to UXTXBUF begin to transmit when USPIEx = 1 and the BRCLK
source is active. Figure 18-4 and Figure 18-5 show the transmit enable state

diagrams.

Figure 18-4. Master Mode Transmit Enable

No Data Written

to Transfer Buffer Not Completed

USPIEx =0

USPIEX =1,
Data Written to

USPIEx =1

- Idle State Transmit Buffer
Transmit _ (Transmitter Transmission Hangle Interrupt
i i Conditions
Disable Enabled) Active

USPIEx =0

Character
Transmitted

PUC

USPIEx =0

USPIEX = 0 And Last Buffer
Entry Is Transmitted

Figure 18-5. Slave Transmit Enable State Diagram

No Clock at UCLK

Not Completed

USPIEx =0

USPIEx =1

. Idle State USPIEx =1
Transmit ; Transmission Handle Interrupt
Disabl (Transmitter i Conditions
Isable Enabled) / External Clock Active

USPIEx=0 Present

Character
Transmitted

USPIEx =1
PUC

USPIEx =0

USART Peripheral Interface, SPI Mode 18-7

USART Operation: SPI Mode

Receive Enable

The SPI receive enable state diagrams are shown in Figure 18-6 and

Figure 18-7. When USPIEx = 0, UCLK is disabled from shifting data into the
RX shift register.

Figure 18-6. SPI Master Receive-Enable State Diagram

USPIEx=0

No Data Written
to UXTXBUF

Not Completed

USPIEx =1

- Receiver
Receive Idie State USPIEX =1 Handle Interrupt
Disabl (Receiver Collects Conditions
Isable Enabled) Data Written Character
USPIEX =0

to UXTXBUF

Character
Received
PUC USPIEx =1
USPIEx=0
Figure 18-7. SPI Slave Receive-Enable State Diagram
— No Clock at UCLK
USPIEx=0 o Hlocka Not Completed

USPIEx =1

. Idle State USPIEx =1 Receiver

R(_acewe (Receive Collects gangl_s Interrupt

Disable Enabled) External Clock Character onditions
USPIEXx =0

Present

Character

USPIEX = 1 Received
PUC

USPIEx=0

18-8 USART Peripheral Interface, SPI Mode

USART Operation: SPI Mode

18.2.5 Serial Clock Control

UCLK is provided by the master on the SPI bus. When MM = 1, BITCLK is
provided by the USART baud rate generator on the UCLK pin as shown in
Figure 18-8. When MM = 0, the USART clock is provided on the UCLK pin by
the master and, the baud rate generator is not used and the SSELX bits are
“don’t care”. The SPI receiver and transmitter operate in parallel and use the
same clock source for data transfer.

Figure 18-8. SPI Baud Rate Generator

UCLKI
ACLK
SMCLK
SMCLK

28 27 20,
UxBR1 UxXxBRO
18 1.8
16-Bit Counter R
Yon - ¥ o0
Compare (0 or 1) > Toggle —— BITCLK
R

Modulation Data Shift Register R
(LSB first)

mX m7 8 mo
UXMCTL Bit Start

The 16-bit value of UXBRO+UxBRL1 is the division factor of the USART clock
source, BRCLK. The maximum baud rate that can be generated in master
mode is BRCLK/2. The maximum baud rate that can be generated in slave
mode is BRCLK The modulator in the USART baud rate generator is not used
for SPI mode and is recommended to be set to 000h. The UCLK frequency is
given by:

BRCLK

Baud rate = UxBR

with UXBR= [UXBR1, UXBRO]

USART Peripheral Interface, SPI Mode 18-9

USART Operation: SPI Mode

Serial Clock Polarity and Phase

The polarity and phase of UCLK are independently configured via the CKPL
and CKPH control bits of the USART. Timing for each case is shown in
Figure 18-9.

Figure 18-9. USART SPI Timing

oo v SN /NN
o 1w \ SN/ /ST
oo uww N/ VW VW W W UL
o1 oouwek -\ /L S\ S\
STE \ /[
o x See T X wse) X) Y X LsB
=)) d— =

Move to UxTXBUF |

TX Data Shifted Out J

RX Sample Points I I I I I I I I

18-10 USART Peripheral Interface, SPI Mode

USART Operation: SPI Mode

18.2.6 SPI Interrupts

The USART has one interrupt vector for transmission and one interrupt vector
for reception.

SPI Transmit Interrupt Operation

The UTXIFGXx interrupt flag is set by the transmitter to indicate that UXTXBUF
is ready to accept another character. An interrupt request is generated if
UTXIEx and GIE are also set. UTXIFGx is automatically reset if the interrupt
request is serviced or if a character is written to UXTXBUF.

UTXIFGXx is set after a PUC or when SWRST = 1. UTXIEX is reset after a PUC
or when SWRST = 1. The operation is shown is Figure 18-10.

Figure 18-10. Transmit Interrupt Operation

UTXIEX —_————
Q r 1

SYNC=1
L4

Clear

PUC or SWRST %
set |UTxIFGK Interrupt Service Requested
Vee D Q

Character Moved From
—
Buffer to Shift Register Clear SWRST

Data moved to UXTXBUF
—— IRQA

Note: Writing to UXTXBUF in SPI Mode

Data written to UXTXBUF when UTXIFGx = 0 and USPIEx = 1 may result in
erroneous data transmission.

USART Peripheral Interface, SPI Mode 18-11

USART Operation: SPI Mode

SPI Receive Interrupt Operation

The URXIFGx interrupt flag is set each time a character is received and loaded
into UXRXBUF as shown in Figure 18-11 and Figure 18-12. An interrupt
request is generated if URXIEx and GIE are also set. URXIFGx and URXIEx
are reset by a system reset PUC signal or when SWRST = 1. URXIFGX is
automatically reset if the pending interrupt is served or when UXRXBUF is
read.

Figure 18-11.Receive Interrupt Operation

SYNCR—» T oo~
| SYNC=1
Valid Start Bit URXS SyNe=t
Receiver Collects Character
URXSE ® .
From URXD
URXIEX Interrupt Service
EE: Requested
> B
URXEIER (S)
URXIFGx
URXWIER @ >
Clear
RXWAKE & T
@ B SWRST
Character Received puC
UXRXBUF Read

([e
‘ IRQA

Figure 18-12. Receive Interrupt State Diagram

SWRST =1

URXIFGx =0
URXIEx =0

Wait For Next
Start

SWRST =1

Receive
Character

USPIEXx =0 USPIEx =0

Interrupt
Service Started,

Receive
Character

USPIEx =1 USPIEx =1 and

URXIFGx =1

Completed URXIEx = 1 and GIE=0
GIE=1and URXIFGx =0
Priority Valid

GIE=0

18-12 USART Peripheral Interface, SPI Mode

18.3 USART Registers: SPI Mode

USART Registers: SPI Mode

Table 18-1 lists the registers for all devices implementing a USART module.
Table 18-2 applies only to devices with a second USART module, USART1.

Table 18-1.USARTO Control and Status Registers

Register Short Form Register Type Address Initial State
USART control register UOCTL Read/write 070h 001h with PUC
Transmit control register UOTCTL Read/write 071h 001h with PUC
Receive control register UORCTL Read/write 072h 000h with PUC
Modulation control register UOMCTL Read/write 073h Unchanged
Baud rate control register 0 UOBRO Read/write 074h Unchanged
Baud rate control register 1 UOBR1 Read/write 075h Unchanged
Receive buffer register UORXBUF Read 076h Unchanged
Transmit buffer register UOTXBUF Read/write 077h Unchanged
SFR module enable register 1 ME1 Read/write 004h 000h with PUC
SFR interrupt enable register 1 IE1 Read/write 000h 000h with PUC
SFR interrupt flag register 1 IFG1 Read/write 002h 082h with PUC

Table 18-2.USART1 Control and Status Registers

Register Short Form Register Type Address Initial State
USART control register U1CTL Read/write 078h 001h with PUC
Transmit control register ULTCTL Read/write 079 001h with PUC
Receive control register U1RCTL Read/write 07Ah 000h with PUC
Modulation control register UIMCTL Read/write 07Bh Unchanged
Baud rate control register 0 U1BRO Read/write 07Ch Unchanged
Baud rate control register 1 U1BR1 Read/write 07Dh Unchanged
Receive buffer register U1RXBUF Read 07Eh Unchanged
Transmit buffer register U1TXBUF Read/write 07Fh Unchanged
SFR module enable register 2 ME2 Read/write 005h 000h with PUC
SFR interrupt enable register 2 IE2 Read/write 001h 000h with PUC
SFR interrupt flag register 2 IFG2 Read/write 003h 020h with PUC

Note:

Modifying the SFR bits

To avoid modifying control bits for other modules, it is recommended to set
or clear the IEx and IFGx bits using Bl S. B or Bl C. B instructions, rather than
MOV. B or CLR. B instructions.

USART Peripheral Interface, SPI Mode 18-13

USART Registers: SPI Mode

UxCTL, USART Control Register

7 6 5 4 3 2 1 0
Unused Unused l2ct CHAR LISTEN SYNC MM SWRST
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
Unused Bits Unused
7-6
[2Ct Bit 5 I2C mode enable. This bit selects 12C or SPI operation when SYNC = 1.
0 SPI mode
1 I2C mode
CHAR Bit 4 Character length
0 7-bit data
1 8-bit data
LISTEN Bit 3 Listen enable. The LISTEN bit selects the loopback mode
0 Disabled
1 Enabled. The transmit signal is internally fed back to the receiver
SYNC Bit 2 Synchronous mode enable
0 UART mode
1 SPI mode
MM Bit 1 Master mode
0 USART is slave
1 USART is master
SWRST Bit 0 Software reset enable

0 Disabled. USART reset released for operation
1 Enabled. USART logic held in reset state

T Not implemented in 4xx devices.

18-14

USART Peripheral Interface, SPI Mode

USART Registers: SPI Mode

UXTCTL, USART Transmit Control Register

7 6 5 4 3 2 1 0
CKPH CKPL SSELX Unused Unused STC TXEPT
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
CKPH Bit 7 Clock phase select.

0 Data is changed on the first UCLK edge and captured on the
following edge.

1 Data is captured on the first UCLK edge and changed on the
following edge.

CKPL Bit 6 Clock polarity select
0 The inactive state is low.
1 The inactive state is high.

SSELX Bits Source select. These bits select the BRCLK source clock.
5-4 00 External UCLK (valid for slave mode only)
01 ACLK (valid for master mode only)
10 SMCLK (valid for master mode only)
11 SMCLK (valid for master mode only)

Unused Bit 3 Unused
Unused Bit 2 Unused
STC Bit 1 Slave transmit control.

0 4-pin SPI mode: STE enabled.
1 3-pin SPI mode: STE disabled.

TXEPT Bit0 Transmitter empty flag. The TXEPT flag is not used in slave mode.
0 Transmission active and/or data waiting in UXTXBUF
1 UxTXBUF and TX shift register are empty

USART Peripheral Interface, SPI Mode 18-15

USART Registers: SPI Mode

UxXRCTL, USART Receive Control Register

7 6 5 4 3 2 1 0
FE Unused OE Unused Unused Unused Unused Unused
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

FE Bit 7 Framing error flag. This bit indicates a bus conflict when MM = 1 and
STC = 0. FE is unused in slave mode.
0 No conflict detected
1 A negative edge occurred on STE, indicating bus conflict

Undefined Bit 6 Unused

OE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UxXRXBUF before the previous character was read. OE is automatically
reset when UXRXBUF is read, when SWRST = 1, or can be reset by
software.
0 No error
1 Overrun error occurred

Unused Bit 4 Unused

Unused Bit 3 Unused

Unused Bit 2 Unused

Unused Bit 1 Unused

Unused Bit 0 Unused

18-16 USART Peripheral Interface, SPI Mode

USART Registers:

SPI Mode

UxBRO, USART Baud Rate Control Register 0
7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
rw rw rw rw rw rw rw w
UxBR1, USART Baud Rate Control Register 1
7 6 5 4 3 2 1 0
215 214 213 212 211 210 29 28
rw rw rw rw rw rw rw rw
UxBRx The baud-rate generator uses the content of {UxBR1+UxBRO0} to set the
baud rate. Unpredictable SPI operation occurs if UXBR < 2.
UXMCTL, USART Modulation Control Register
7 6 5 4 3 2 1 0
m7 m6 m5 m4 m3 m2 ml mO
rw rw rw rw w rw rw rw
UXMCTLx

USART Peripheral Interface, SPI Mode

The modulation control register is not used for SPI mode and should be set
to 000h.

18-17

USART Registers: SPI Mode

UxRXBUF, USART Receive Buffer Register

7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
r r r r r r r r
UXRXBUFx Bits The receive-data buffer is user accessible and contains the last received
7-0 character from the receive shift register. Reading UXRXBUF resets the OE

bit and URXIFGx flag. In 7-bit data mode, UXRXBUF is LSB justified and
the MSB is always reset.

UxTXBUF, USART Transmit Buffer Register

5 4 3 2 1 0
27 26 25 24 23 22 21 20
rw rw rw rw rw rw rw rw
UxXTXBUFx Bits The transmit data buffer is user accessible and contains current data to be
7-0 transmitted. When seven-bit character-length is used, the data should be

18-18

MSB justified before being moved into UXTXBUF. Data is transmitted MSB
first. Writing to UXTXBUF clears UTXIFGx.

USART Peripheral Interface, SPI Mode

USART Registers: SPI Mode

ME1, Module Enable Register 1

7 6 5 4 3 2 1 0
USPIEO
rw-0
Bit 7 This bit may be used by other modules. See device-specific data sheet.
USPIEO Bit 6 USARTO SPI enable. This bit enables the SPI mode for USARTO.

0 Module not enabled
1 Module enabled

Bits These bits may be used by other modules. See device-specific data sheet.
5-0

ME2, Module Enable Register 2

7 6 5 4 3 2 1 0
USPIE1
rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-5
USPIEL Bit 4 USARTL1 SPI enable. This bit enables the SPI mode for USARTL1.

0 Module not enabled
1 Module enabled

Bits These bits may be used by other modules. See device-specific data sheet.
3-0

USART Peripheral Interface, SPI Mode 18-19

USART Registers: SPI Mode

IEL, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
UTXIEO URXIEO
rw-0 rw-0
UTXIEO Bit 7 USARTO transmit interrupt enable. This bit enables the UTXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIEO Bit 6 USARTO receive interrupt enable. This bit enables the URXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific data sheet.
5-0

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
UTXIEL URXIE1
rw-0 rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-6
UTXIEL Bit 5 USART1 transmit interrupt enable. This bit enables the UTXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIE1 Bit 4 USART1 receive interrupt enable. This bit enables the URXIFGL1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific data sheet.
3-0

18-20 USART Peripheral Interface, SPI Mode

USART Registers: SPI Mode

IFGL1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
UTXIFGO URXIFGO
rw-1 rw-0
UTXIFGO Bit 7 USARTO transmit interrupt flag. UTXIFGO is set when UOTXBUF is empty.
0 No interrupt pending
1 Interrupt pending
URXIFGO Bit 6 USARTO receive interrupt flag. URXIFGO is set when UORXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific data sheet.
5-0

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
UTXIFG1 URXIFG1
rw-1 rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-6
UTXIFG1 Bit 5 USART1 transmit interrupt flag. UTXIFGL1 is set when ULTXBUF is empty.
0 No interrupt pending
1 Interrupt pending
URXIFG1 Bit 4 USART1 receive interrupt flag. URXIFGL1 is set when ULRXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific data sheet.
3-0

USART Peripheral Interface, SPI Mode 18-21

18-22 USART Peripheral Interface, SPI Mode

Chapter 19

Universal Serial Communication Interface,
UART Mode

The universal serial communication interface (USCI) supports multiple serial
communication modes with one hardware module. This chapter discusses the
operation of the asynchronous UART mode.

Topic Page
19.1 USCIOVEIVIEW . .o i ettt e e e e e e e e e e e 19-2
19.2 USCI Introduction: UARTModecoviiiiiiiiiiinnnnn. 19-3
19.3 USCI Operation: UARTModet 19-5
19.4 USCI Registers: UARTMode, 19-27

19-1

USCI Overview

19.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different from USCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_AO and USCI_A1. See the device-specific data sheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

0 UART mode

[Pulse shaping for IrDA communications

[0 Automatic baud rate detection for LIN communications
[0 SPI mode

The USCI_Bx modules support:

[0 12C mode
[SPI mode

19-2 Universal Serial Communication Interface, UART Mode

USCI Introduction: UART Mode

19.2 USCI Introduction: UART Mode

In asynchronous mode, the USCI_Ax modules connect the MSP430 to an
external system via two external pins, UCAXRXD and UCAXTXD. UART mode
is selected when the UCSYNC bit is cleared.

UART mode features include:

a

(I I T

I N N Ay I

7- or 8-bit data with odd, even, or non-parity
Independent transmit and receive shift registers
Separate transmit and receive buffer registers
LSB-first or MSB-first data transmit and receive

Built-in idle-line and address-bit communication protocols for
multiprocessor systems

Receiver start-edge detection for auto-wake up from LPMx modes
Programmable baud rate with modulation for fractional baud rate support
Status flags for error detection and suppression

Status flags for address detection

Independent interrupt capability for receive and transmit

Figure 19-1 shows the USCI_Ax when configured for UART mode.

Universal Serial Communication Interface, UART Mode 19-3

USCI Introduction: UART Mode

Figure 19-1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)

UCMODEx UCSPB UCDORM

. T 7T

Receive State Machine

UCRXEIE®—{ /o Flags | MUCRXERR
UCRXBRKIE m—| [—WUCPE
| muUcFE
P| Set Flags BUCOE

p| setRXIFG |- set UCORXIFG

Receive Buffer UCORXBUF

+

Receive Shift Register

‘7

UCPEN UCPAR UCMSB UCT7BIT

[Set UCBRK
> Set UCADDR/UCIDLE

UCIRRXFE
UCIREN n }6

UCIRRXPL
UCIRRXFLx

UCLISTEN

IrDA Decoder

UCABEN
UCSSELXx

Receive Baudrate Generator
UCOBRXx

ucocLk —] 00 }16

ACLK 01 .

Prescaler/Divider Receive Clock
SMCLK 10 | BRCLK
SMCLK 1 Modulator Transmit Clock
“oB

UCBRFx UCBRSx UCOS16

19-4

UCPEN UCPAR UCMSB UCT7BIT UCIREN
"
o— Transmit Shift Register 0
% UCOTX
IrDA Encoder
Transmit Buffer UCOTXBUF ie
UCIRTXPLx
Transmit State Machine | B Set UCOTXIFG
| —mUCTXBRK
— | mUCTXADDR
iz
UCMODEx UCSPB

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

19.3 USCI Operation: UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate
asynchronous to another device. Timing for each character is based on the
selected baud rate of the USCI. The transmit and receive functions use the
same baud rate frequency.

19.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition.
When set, the UCSWRST bit resets the UCAXRXIE, UCAXTXIE, UCAXRXIFG,
UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE and UCBTOE bits and
sets the UCAXTXIFG bit. Clearing UCSWRST releases the USCI for
operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1) Set UCSWRST (BI S. B #UCSWRST, &UCAXCTL1)

2) Initialize all USCI registers with UCSWRST = 1 (including UCAXCTL1)
3) Configure ports.

4) Clear UCSWRST via software (BI C. B #UCSWRST, &UCAXCTL1)

5) Enable interrupts (optional) via UCAXRXIE and/or UCAXTXIE

19.3.2 Character Format

The UART character format, shown in Figure 19-2, consists of a start bit,
seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit
mode), and one or two stop bits. The UCMSB bit controls the direction of the
transfer and selects LSB or MSB first. LSB-first is typically required for UART
communication.

Figure 19-2. Character Format

—— Mark

_|ST| DO PYYS D6 \ D7 ‘AD ‘PA |SP : SP_L___ Space

l— [2nd Stop Bit, UCSPB = 1]
[Parity Bit, UCPEN = 1]

[Address Bit, UCMODEXx = 10]
[Optional Bit, Condition] [8th Data Bit, UC7BIT = 0]

Universal Serial Communication Interface, UART Mode 19-5

USCI Operation: UART Mode

19.3.3 Asynchronous Communication Formats

When two devices communicate asynchronously, no multiprocessor format is
required for the protocol. When three or more devices communicate, the USCI
supports the idle-line and address-bit multiprocessor communication formats.

Idle-Line Multiprocessor Format

When UCMODEX = 01, the idle-line multiprocessor format is selected. Blocks
of data are separated by an idle time on the transmit or receive lines as shown
in Figure 19-3. An idle receive line is detected when 10 or more continuous
ones (marks) are received after the one or two stop bits of a character. The
baud rate generator is switched off after reception of an idle line until the next
start edge is detected. When an idle line is detected the UCIDLE bit is set. The
UCIDLE bit is reset by software or by reading the UCAXRXBUF.

The first character received after an idle period is an address character. The
UCIDLE bit is used as an address tag for each block of characters. In idle-line
multiprocessor format, this bit is set when a received character is an address.

Figure 19-3. Idle-Line Format

Blocks of
/ Characters
\

UCAXTXD/RXD M | | T | [| |»A
} Idle Periods of 10 Bits or More
| UCAXTXD/RXD Expanded
\
\
\
\
\
\
UCAxTXD/RXD—‘ sT| Address [sp|sT| Data sP [sT]| Data SP
First Character Within Block Character Within Block Character Within Block
Is Address. It Follows Idle
Period of 10 Bits or More Idle Period Less Than 10 Bits

19-6 Universal Serial Communication Interface, UART Mode

Transmitting an Idle

USCI Operation: UART Mode

The UCDORM bit is used to control data reception in the idle-line
multiprocessor format. When UCDORM = 1, all non-address characters are
assembled but not transferred into the UCAXRXBUF, and interrupts are not
generated. When an address character is received, the character is
transferred into UCAXRXBUF, UCAXRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1. When UCRXEIE = 0 and an address character
is received but has a framing error or parity error, the character is not
transferred into UCAXRXBUF and UCAXRXIFG is not set.

If an address is received, user software can validate the address and must
reset UCDORM to continue receiving data. If UCDORM remains set, only
address characters will be received. When UCDORM is cleared during the
reception of a character the receive interrupt flag will be set after the reception
completed. The UCDORM bit is not modified by the USCI hardware
automatically.

For address transmission in idle-line multiprocessor format, a precise idle
period can be generated by the USCI to generate address character identifiers
on UCAXTXD. The double-buffered UCTXADDR flag indicates if the next
character loaded into UCAXTXBUF is preceded by an idle line of 11 bits.
UCTXADDR is automatically cleared when the start bit is generated.

Frame

The following procedure sends out an idle frame to indicate an address
character followed by associated data:

1) Set UCTXADDR, then write the address character to UCAXTXBUF.
UCAXTXBUF must be ready for new data (UCAXTXIFG = 1).

This generates an idle period of exactly 11 bits followed by the address
character. UCTXADDR is reset automatically when the address character
is transferred from UCAXTXBUF into the shift register.

2) Write desired data characters to UCAXTXBUF. UCAXTXBUF must be
ready for new data (UCAXTXIFG = 1).

The data written to UCAXTXBUF is transferred to the shift register and
transmitted as soon as the shift register is ready for new data.

The idle-line time must not be exceeded between address and data
transmission or between data transmissions. Otherwise, the transmitted
data will be misinterpreted as an address.

Universal Serial Communication Interface, UART Mode 19-7

USCI Operation: UART Mode

Address-Bit Multiprocessor Format

19-8

When UCMODEXx = 10, the address-bit multiprocessor format is selected.
Each processed character contains an extra bit used as an address indicator
shown in Figure 19-4. The first character in a block of characters carries a set
address bit which indicates that the character is an address. The USCI
UCADDR bit is set when a received character has its address bit set and is
transferred to UCAXRXBUF. The UCADDR bit is reset by software or by
reading the UCAXRXBUF.

The UCDORM bit is used to control data reception in the address-bit
multiprocessor format. When UCDORM is set, data characters with address
bit = 0 are assembled by the receiver but are not transferred to UCAXRXBUF
and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAXRXBUF, UCAXRXIFG is
set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE
= 0 and a character containing a set address bit is received, but has a framing
error or parity error, the character is not transferred into UCAXRXBUF and
UCAXRXIFG is not set.

If an address is received, user software can validate the address and must
reset UCDORM to continue receiving data. If UCDORM remains set, only
address characters with address bit = 1 will be received. The UCDORM bit is
not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag
UCAXRXIFG. If UCDORM is cleared during the reception of a character the
receive interrupt flag will be set after the reception is completed.

For address transmission in address-bit multiprocessor mode, the address bit
of a character is controlled by the UCTXADDR bit. The value of the
UCTXADDR bhit is loaded into the address bit of the character transferred from
UCAXTXBUF to the transmit shift register. UCTXADDR is automatically
cleared when the start bit is generated.

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

Figure 19-4. Address-Bit Multiprocessor Format

Blocks of
,/ Chairacters \‘

UCAXTXD/UCAXRXD / \

[L L]
Idle Periods of No Significance

|

|

| UCAXTXD/UCAXRXD

| Expanded

|

|

|

|

|

UCAXTXD/UCAXRXD —i sT| address [1]sp|sT] Data [o| s |s7] paa [of sp

First Character Within Block AD Bit Is 0 for T
Is an Address. AD Bit Is 1 Data Within Block. Idle Time Is of No Significance

Break Reception and Generation

When UCMODEX = 00, 01, or 10 the receiver detects a break when all data,
parity, and stop bits are low, regardless of the parity, address mode, or other
character settings. When a break is detected, the UCBRK bit is set. If the break
interrupt enable bit, UCBRKIE, is set, the receive interrupt flag UCAXRXIFG
will also be set. In this case, the value in UCAXRXBUF is Oh since all data bits
were zero.

To transmit a break set the UCTXBRK bit, then write Oh to UCAXTXBUF.
UCAXTXBUF must be ready for new data (UCAXTXIFG = 1). This generates
a break with all bits low. UCTXBRK is automatically cleared when the start bit
is generated.

Universal Serial Communication Interface, UART Mode 19-9

USCI Operation: UART Mode

19.3.4 Automatic Baud Rate Detection

When UCMODEx = 11 UART mode with automatic baud rate detection is
selected. For automatic baud rate detection, a data frame is preceded by a
synchronization sequence that consists of a break and a synch field. A break
is detected when 11 or more continuous zeros (spaces) are received. If the
length of the break exceeds 21 bit times the break timeout error flag UCBTOE
is set. The synch field follows the break as shown in Figure 19-5.

Figure 19-5. Auto Baud Rate Detection — Break/Synch Sequence

Break Delimiter Synch
[>«

For LIN conformance the character format should be set to 8 data bits, LSB
first, no parity and one stop bit. No address bit is available.

The synch field consists of the data 055h inside a byte field as shown in
Figure 19-6. The synchronization is based on the time measurement between
the first falling edge and the last falling edge of the pattern. The transmit baud
rate generator is used for the measurement if automatic baud rate detection
is enabled by setting UCABDEN. Otherwise, the pattern is received but not
measured. The result of the measurement is transferred into the baud rate
control registers UCAXBRO, UCAxBR1, and UCAXMCTL. If the length of the
synch field exceeds the measurable time the synch timeout error flag
UCSTOE is set.

Figure 19-6. Auto Baud Rate Detection - Synch Field

19-10

- Synch
8 Bit Times
g |
L LT
Sé?t" 0 1 2 3 4 5 6 7 Sé?tp

The UCDORM bit is used to control data reception in this mode. When
UCDORM is set, all characters are received but not transferred into the
UCAXRXBUF, and interrupts are not generated. When a break/synch field is
detected the UCBRK flag is set. The character following the break/synch field
is transferred into UCAXRXBUF and the UCAXRXIFG interrupt flag is set. Any
applicable error flag is also set. If the UCBRKIE bit is set, reception of the
break/synch sets the UCAXRXIFG. The UCBRK bit is reset by user software
or by reading the receive buffer UCAXRXBUF.

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

When a break/synch field is received, user software must reset UCDORM to
continue receiving data. If UCDORM remains set, only the character after the
next reception of a break/synch field will be received. The UCDORM bit is not
modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag
UCAXRXIFG. If UCDORM is cleared during the reception of a character the
receive interrupt flag will be set after the reception is complete.

The counter used to detect the baud rate is limited to 07FFFh (32767) counts.
This means the minimum baud rate detectable is 488 Baud in oversampling
mode and 30 Baud in low-frequency mode.

The automatic baud rate detection mode can be used in a full-duplex
communication system with some restrictions. The USCI can not transmit data
while receiving the break/sync field and if a Oh byte with framing error is
received any data transmitted during this time gets corrupted. The latter case
can be discovered by checking the received data and the UCFE bit.

Transmitting a Break/Synch Field
The following procedure transmits a break/synch field:
1) Set UCTXBRK with UMODEx = 11.

2) Write 055h to UCAXTXBUF. UCAXTXBUF must be ready for new data
(UCAXTXIFG = 1).

This generates a break field of 13 bits followed by a break delimiter and the
synch character. The length of the break delimiter is controlled with the
UCDELIMx bits. UCTXBRK is reset automatically when the synch
character is transferred from UCAXTXBUF into the shift register.

3) Write desired data characters to UCAXTXBUF. UCAXTXBUF must be
ready for new data (UCAXTXIFG = 1).

The data written to UCAXTXBUF is transferred to the shift register and
transmitted as soon as the shift register is ready for new data.

Universal Serial Communication Interface, UART Mode 19-11

USCI Operation: UART Mode

19.3.5 IrDA Encoding and Decoding

IrDA Encoding

When UCIREN is set the IrDA encoder and decoder are enabled and provide
hardware bit shaping for IrDA communication.

The encoder sends a pulse for every zero bit in the transmit bit stream coming
from the UART as shown in Figure 19-7. The pulse duration is defined by
UCIRTXPLx bits specifying the number of half clock periods of the clock
selected by UCIRTXCLK.

Figure 19-7. UART vs. IrDA Data Format

IrDA Decoding

Start Stop
Bit Data Bits Bit
- L B

I e I
))

To set the pulse time of 3/16 bit period required by the IrDA standard the
BITCLK16 clock is selected with UCIRTXCLK = 1 and the pulse length is set
to 6 half clock cycles with UCIRTXPLx =6 - 1 =5.

When UCIRTXCLK = 0, the pulse length tpy sg is based on BRCLK and is
calculated as follows:

UCIRTXPLX = tpyse X 2 X fapax — 1

When the pulse length is based on BRCLK the prescaler UCBRx must to be
set to a value greater or equal to 5.

The decoder detects high pulses when UCIRRXPL = 0. Otherwise it detects
low pulses. In addition to the analog deglitch filter an additional programmable
digital filter stage can be enabled by setting UCIRRXFE. When UCIRRXFE is
set, only pulses longer than the programmed filter length are passed. Shorter
pulses are discarded. The equation to program the filter length UCIRRXFLx
is:

UCIRRXFLX = (tpyise — twaxe) X 2 X forek — 4

where:
tpuLsE: Minimum receive pulse width
twakE: Wake time from any low power mode. Zero when

MSP430 is in active mode.

19-12 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

19.3.6 Automatic Error Detection

Glitch suppression prevents the USCI from being accidentally started. Any
pulse on UCAXRXD shorter than the deglitch time t; (approximately 150 ns)
will be ignored. See the device-specific data sheet for parameters.

When a low period on UCAXRXD exceeds t; a majority vote is taken for the
start bit. If the majority vote fails to detect a valid start bit the USCI halts
character reception and waits for the next low period on UCAXRXD. The
majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun
errors, and break conditions when receiving characters. The bits UCFE,
UCPE, UCOE, and UCBRK are set when their respective condition is
detected. When the error flags UCFE, UCPE or UCOE are set, UCRXERR is
also set. The error conditions are described in Table 19-1.

Table 19-1.Receive Error Conditions

Error Condition Error Description
Flag

A framing error occurs when a low stop bit is
detected. When two stop bits are used, both
stop bits are checked for framing error. When a
framing error is detected, the UCFE bit is set.

A parity error is a mismatch between the
number of 1s in a character and the value of
the parity bit. When an address bit is included
in the character, it is included in the parity
calculation. When a parity error is detected, the
UCPE bit is set.

An overrun error occurs when a character is
loaded into UCAXRXBUF before the prior
character has been read. When an overrun
occurs, the UCOE bit is set.

When not using automatic baud rate detection,
a break is detected when all data, parity, and
stop bits are low. When a break condition is

Break conditon UCBRK detected, the UCBRK bit is set. A break
condition can also set the interrupt flag
UCAXRXIFG if the break interrupt enable
UCBRKIE bit is set.

Framing error UCFE

Parity error UCPE

Receive overrun UCOE

When UCRXEIE = 0 and a framing error, or parity error is detected, no
character is received into UCAXRXBUF. When UCRXEIE = 1, characters are
received into UCAXRXBUF and any applicable error bit is set.

When UCFE, UCPE, UCOE, UCBRK, or UCRXERR is set, the bit remains set
until user software resets it or UCAXRXBUF is read. UCOE must be reset by
reading UCAXRXBUF. Otherwise it will not function properly. To detect
overflows reliably the following flow is recommended. After a character was
received and UCAXRXIFG is set, first read UCAXSTAT to check the error flags
including the overflow flag UCOE. Read UCAXRXBUF next. This will clear all

Universal Serial Communication Interface, UART Mode 19-13

USCI Operation: UART Mode

error flags except UCOE if UCAXRXBUF was overwritten between the read
access to UCAXSTAT and to UCAXRXBUF. So the UCOE flag should be
checked after reading UCAXRXBUF to detect this condition. Note, in this case
the UCRXERR flag is not set.

19.3.7 USCI Receive Enable

The USCI module is enabled by clearing the UCSWRST bit and the receiver
is ready and in an idle state. The receive baud rate generator is in a ready state
but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART
state machine checks for a valid start bit. If no valid start bit is detected the
UART state machine returns to its idle state and the baud rate generator is
turned off again. If a valid start bit is detected a character will be received.

When the idle-line multiprocessor mode is selected with UCMODEXx = 01 the
UART state machine checks for an idle line after receiving a character. If a start
bit is detected another character is received. Otherwise the UCIDLE flag is set
after 10 ones are received and the UART state machine returns to its idle state
and the baud rate generator is turned off.

19.3.8 Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any
glitch on UCAXRXD shorter than the deglitch time t; (approximately 150 ns)
will be ignored by the USCI and further action will be initiated as shown in
Figure 19-8. See the device-specific data sheet for parameters.

Figure 19-8. Glitch Suppression, USCI Receive Not Started

19-14

URXDx

URXS

L

‘ﬂ—ﬁ‘x—t‘r

When a glitch is longer than t; or a valid start bit occurs on UCAXRXD, the
USCI receive operation is started and a majority vote is taken as shown in
Figure 19-9. If the majority vote fails to detect a start bit the USCI halts
character reception.

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

Figure 19-9. Glitch Suppression, USCI Activated

Majority Vote Taken

19.3.9 USCI Transmit Enable

The USCI module is enabled by clearing the UCSWRST bit and the transmitter
is ready and in an idle state. The transmit baud rate generator is ready but is
not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAXTXBUF. When this occurs,
the baud rate generator is enabled and the data in UCAXTXBUF is moved to
the transmit shift register on the next BITCLK after the transmit shift register
is empty. UCAXTXIFG is set when new data can be written into UCAXTXBUF.

Transmission continues as long as new data is available in UCAXTXBUF at the
end of the previous byte transmission. If new data is not in UCAXTXBUF when
the previous byte has transmitted, the transmitter returns to its idle state and
the baud rate generator is turned off.

19.3.10 UART Baud Rate Generation

The USCI baud rate generator is capable of producing standard baud rates
from non-standard source frequencies. It provides two modes of operation
selected by the UCOS16 bit.

Low-Frequency Baud Rate Generation

The low-frequency mode is selected when UCOS16 = 0. This mode allows
generation of baud rates from low frequency clock sources (e.g. 9600 baud
from a 32768Hz crystal). By using a lower input frequency the power
consumption of the module is reduced. Using this mode with higher
frequencies and higher prescaler settings will cause the majority votes to be
taken in an increasingly smaller window and thus decrease the benefit of the
majority vote.

In low-frequency mode the baud rate generator uses one prescaler and one
modulator to generate bit clock timing. This combination supports fractional
divisors for baud rate generation. In this mode, the maximum USCI baud rate
is one-third the UART source clock frequency BRCLK.

Timing for each bit is shown in Figure 19-10. For each bit received, a majority
vote is taken to determine the bit value. These samples occur at the N/2 - 1/2,
N/2, and N/2 + 1/2 BRCLK periods, where N is the number of BRCLKs per
BITCLK.

Universal Serial Communication Interface, UART Mode 19-15

USCI Operation: UART Mode

Figure 19-10. BITCLK Baud Rate Timing with UCOS16 =0

Majority Vote: (M= 0)m

Bit Start S(I Q4 m (((S
))))))
BRCLK
SS—|U|—||—||-SSJ|—|U|—||—||%SJ|—|I—’|—||—|I—SS
1 N/2 ; N/2-1 N/2-2 1 N/2 N/2-1
Counter N/2 N/2-1 N/2-2
0 N2 N/2-1 1 0 N/2
S ()()
BITCLK ((0
‘—— INT(N/2) + m(= 0) —P» NEVEN: INT(N/2) —P»
<+ INT(N/2) + m(= 1) —> Nopp : INT(N/2) + R(= 1) —p»
< Bit Period | g 2

m: corresponding modulation bit
R: Remainder from N/2 division

Modulation is based on the UCBRSXx setting as shown in Table 19-2. A 1 in
the table indicates that m = 1 and the corresponding BITCLK period is one
BRCLK period longer than a BITCLK period with m = 0. The modulation wraps
around after 8 bits but restarts with each new start bit.

Table 19-2.BITCLK Modulation Pattern

UCBRSX (Stzlrtt (I)3it) Bitl Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 0 0 0 1 0 0
3 0 1 0 1 0 1 0 0
4 0 1 0 1 0 1 0 1
5 0 1 1 1 0 1 0 1
6 0 1 1 1 0 1 1 1
7 0 1 1 1 1 1 1 1

Oversampling Baud Rate Generation

19-16

The oversampling mode is selected when UCOS16 = 1. This mode supports
sampling a UART bit stream with higher input clock frequencies. This results
in majority votes that are always 1/16 of a bit clock period apart. This mode also
easily supports IrDA pulses with a 3/16 bit-time when the IrDA encoder and
decoder are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16
clock that is 16 times faster than the BITCLK. An additional divider and
modulator stage generates BITCLK from BITCLK16. This combination
supports fractional divisions of both BITCLK16 and BITCLK for baud rate

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

generation. In this mode, the maximum USCI baud rate is 1/16 the UART
source clock frequency BRCLK. When UCBRXx is set to 0 or 1 the first prescaler
and modulator stage is bypassed and BRCLK is equal to BITCLK16.

Modulation for BITCLK16 is based on the UCBRFx setting as shown in
Table 19-3. A 1 in the table indicates that the corresponding BITCLK16 period
is one BRCLK period longer than the periods m=0. The modulation restarts
with each new bit timing.

Modulation for BITCLK is based on the UCBRSx setting as shown in
Table 19-2 as previously described.

Table 19-3.BITCLK16 Modulation Pattern

Number of BITCLK16 Clocks After Last Falling BITCLK Edge

UCBRFx

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1
05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1
O0Ah 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1
OEh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
OFh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Universal Serial Communication Interface, UART Mode 19-17

USCI Operation: UART Mode

19.3.11 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required
division factor N:

— fBRCLK
Baudrate

The division factor N is often a non-integer value thus at least one divider and
one modulator stage is used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode
can be chosen by setting UCOS16.

Low-Frequency Baud Rate Mode Setting

In the low-frequency mode, the integer portion of the divisor is realized by the
prescaler:

UCBRx = INT(N)
and the fractional portion is realized by the modulator with the following
nominal formula:

UCBRSx =round((N - INT(N)) x 8)
Incrementing or decrementing the UCBRSx setting by one count may give a
lower maximum bit error for any given bit. To determine if this is the case, a

detailed error calculation must be performed for each bit for each UCBRSx
setting.

Oversampling Baud Rate Mode Setting

19-18

In the oversampling mode the prescaler is set to:

UCBRX = INT(N/16).

and the first stage modulator is set to:

UCBRFx = round(((N/16) - INT(N/16)) x 16)

When greater accuracy is required, the UCBRSx modulator can also be
implemented with values from 0 — 7. To find the setting that gives the lowest
maximum bit error rate for any given bit, a detailed error calculation must be
performed for all settings of UCBRSx from 0 — 7 with the initial UCBRFx setting
and with the UCBRFx setting incremented and decremented by one.

Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

19.3.12 Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. Using the
modulation features of the baud rate generator reduces the cumulative bit
error. The individual bit error can be calculated using the following steps.

Low-Frequency Baud Rate Mode Bit Timing

In low-frequency mode, calculate the length of bit i Ty tx[i] based on the
UCBRx and UCBRSKx settings:

Tuondil = 72— (UCBRX + Mcoes il
BRCLK
where:
Mycersxli]: Modulation of bit i from Table 19-2

Oversampling Baud Rate Mode Bit Timing

In oversampling baud rate mode calculate the length of bit i Ty;; Tx[i] based on
the baud rate generator UCBRx, UCBRFx and UCBRSx settings:

15

Toirxlll = f 1 ((16 + Mycersdil) - UCBRx + Z mUCBRFx[j])
BRCLK =

where:

15
Z Mycerelil: Sum of ones from the corresponding row in Table 19-3
i=0

Mycarsli]: Modulation of bit i from Table 19-2

This results in an end-of-bit time ty;; Tx[i] equal to the sum of all previous and
the current bit times:

tbit,TX[i] = EI:Tbit,TX[j]
j=0

To calculate bit error, this time is compared to the ideal bit time ty; jgea Tx[I]:

. 1 _
toisieatx[l] = m(l + 1)

This results in an error normalized to one ideal bit time (1/baudrate):

Errorpi] = (tbit,TX[i] - tbit,ideaI,TX[i]) - Baudrate - 100%

Universal Serial Communication Interface, UART Mode 19-19

USCI Operation: UART Mode

19.3.13 Receive Bit Timing

Receive timing error consists of two error sources. The first is the bit-to-bit
timing error similar to the transmit bit timing error. The second is the error
between a start edge occurring and the start edge being accepted by the USCI
module. Figure 19-11 shows the asynchronous timing errors between data on
the UCAXRXD pin and the internal baud-rate clock. This results in an additional
synchronization error. The synchronization error tgync iS between
-0.5BRCLKs and +0.5 BRCLKs, independent of the selected baud rate
generation mode.

Figure 19-11.Receive Error

i | 0 | 1 | 2

tideal | fo | ty |
|1]2|3]|4|5]6]|7]8]9l0l11|12/1314| 1| 2] 3] 4] 5]6 |7 |8]| 9]10l11|1213]14 1] 2| 3] 4] 5|67

UCAXRXD _| U | DO D1
i : . i

RXD synch. _:_l | ST | DO D1
[| T T
tacwrd | T v T T Ty T T T T T T T T T Ty

—» |&— Synchronization Error + 0.5x BRCLK

I
il |
/T /
/1 /1A /
Majority Vote Taken Majority Vote Taken Majority Vote Taken

Sample
RXD synch.

N

The ideal sampling time t; ;.. rx[i] IS in the middle of a bit period:

: 1 _
toijgearxl] = m(' +0.5)

The real sampling time t; r[i] is equal to the sum of all previous bits according
to the formulas shown in the transmit timing section, plus one half BITCLK for
the current bit i, plus the synchronization error tgync.

This results in the following ty; z«[i] for the low-frequency baud rate mode

i—1
tbit,RX[i] = tstc + ZTbit,RXU] + L(INT(%UCBRX) + mUCBRSx[i])
j=0

i fBRCLK
where:
Toirxlll = f 1 (UCBRX + Mycgrsyil)
BRCLK
Mycarsxlil: Modulation of bit i from Table 19-2

19-20 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

For the oversampling baud rate mode the sampling time t,; zx[i] Of bit i is
calculated by:

i—1
tbit,RX[i] = tsyne T szit.RX[j]

j=0

7+mycersxd]

+ 1 (8 + Mycers;lil) - UCBRx + Z Mycarex]

f
BRCLK ico

where:

Tbit,RX[i] -1 ((16 + mUCBRSx[i]) - UCBRX + i mUCBRFx[j])

farcLx i=o
7+mycersxl]
Mycarelil: Sum of ones from columns 0 = 7 4+ M cgrsylil
- from the corresponding row in Table 19-3
Mycersylil]: Modulation of bit i from Table 19-2

This results in an error normalized to one ideal bit time (1/baudrate) according
to the following formula:

Errorgy[i] = (tbit,RX[i] - tbit.ideaI,RX[i]) - Baudrate - 100%

19.3.14 Typical Baud Rates and Errors

Standard baud rate data for UCBRx, UCBRSx and UCBRFx are listed in
Table 19-4 and Table 19-5 for a 32,768 Hz crystal sourcing ACLK and typical
SMCLK frequencies. Please ensure that the selected BRCLK frequency does
not exceed the device specific maximum USCI input frequency. Please refer
to the device-specific data sheet.

The receive error is the accumulated time versus the ideal scanning time in the
middle of each bit. The worst case error is given for the reception of an 8-bit
character with parity and one stop bit including synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the
bit period. The worst case error is given for the transmission of an 8-bit
character with parity and stop bit.

Universal Serial Communication Interface, UART Mode 19-21

USCI Operation: UART Mode

Table 19-4.Commonly Used Baud Rates, Settings, and Errors, UCOS16 =0

BRCLK Baud

Frequency Rate UCBRx UCBRSx UCBRFx Max TX Error [%] Max RX Error [%]
[Hz] [Baud]

32,768 1200 27 2 0 -2.8 14 -5.9 2.0

32,768 2400 13 6 0 -4.8 6.0 -9.7 8.3

32,768 4800 6 7 0 -12.1 5.7 -13.4 19.0

32,768 9600 3 3 0 -21.1 15.2 -44.3 21.3
1,000,000 9600 104 1 0 -0.5 0.6 -0.9 1.2
1,000,000 19200 52 0 0 -1.8 0 -2.6 0.9
1,000,000 38400 26 0 0 -1.8 0 -3.6 1.8
1,000,000 57600 17 3 0 -2.1 4.8 -6.8 5.8
1,000,000 115200 8 6 0 -7.8 6.4 -9.7 16.1
1,048,576 9600 109 2 0 -0.2 0.7 -1.0 0.8
1,048,576 19200 54 5 0 -1.1 1.0 -15 25
1,048,576 38400 27 2 0 -2.8 14 -5.9 2.0
1,048,576 57600 18 1 0 -4.6 3.3 -6.8 6.6
1,048,576 115200 9 1 0 -1.1 10.7 -11.5 11.3
4,000,000 9600 416 6 0 -0.2 0.2 -0.2 0.4
4,000,000 19200 208 3 0 -0.2 0.5 -0.3 0.8
4,000,000 38400 104 1 0 -0.5 0.6 -0.9 1.2
4,000,000 57600 69 4 0 -0.6 0.8 -18 11
4,000,000 115200 34 6 0 -2.1 0.6 -2.5 3.1
4,000,000 230400 17 3 0 -2.1 4.8 -6.8 5.8
8,000,000 9600 833 2 0 -0.1 0 -0.2 0.1
8,000,000 19200 416 6 0 -0.2 0.2 -0.2 0.4
8,000,000 38400 208 3 0 -0.2 0.5 -0.3 0.8
8,000,000 57600 138 7 0 -0.7 0 -0.8 0.6
8,000,000 115200 69 4 0 -0.6 0.8 -1.8 11
8,000,000 230400 34 6 0 -2.1 0.6 -25 31
8,000,000 460800 17 3 0 -2.1 4.8 -6.8 5.8
12,000,000 9600 1250 0 0 0 0 -0.05 0.05
12,000,000 19200 625 0 0 0 0 -0.2 0
12,000,000 38400 312 4 0 -0.2 0 -0.2 0.2
12,000,000 57600 208 2 0 -0.5 0.2 -0.6 0.5
12,000,000 115200 104 1 0 -0.5 0.6 -0.9 1.2
12,000,000 230400 52 0 0 -18 0 -2.6 0.9
12,000,000 460800 26 0 0 -1.8 0 -3.6 1.8

19-22 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

Table 19-4.Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (Continued)

BRCLK
Frequency
[HZ]
16,000,000
16,000,000
16,000,000
16,000,000
16,000,000
16,000,000
16,000,000

Baud
Rate
[Baud]

9600
19200
38400
57600
115200
230400
460800

UCBRXx

1666
833
416
277
138

69
34

UCBRSX

O A NN O DNO

UCBRFx

O O O O o o o

Max TX Error [%]

-0.05 0.05
-0.1 0.05
-0.2 0.2
-0.3 0.3
-0.7 0

-0.6 0.8
-2.1 0.6

Max RX Error [%]

-0.05 0.1
-0.2 0.1
-0.2 0.4
-0.5 0.4
-0.8 0.6
-1.8 11
-2.5 3.1

Universal Serial Communication Interface, UART Mode

19-23

USCI Operation: UART Mode

Table 19-5.Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1

BRCLK Baud
frequency Rate UCBRx UCBRSx UCBRFx Max. TX Error [%] Max. RX Error [%]
[Hz] [Baud]
1,000,000 9600 6 0 8 -1.8 0 -2.2 0.4
1,000,000 19200 3 0 4 -1.8 0 -2.6 0.9
1,048,576 9600 6 0 13 -2.3 0 -2.2 0.8
1,048,576 19200 3 1 6 -4.6 3.2 -5.0 4.7
4,000,000 9600 26 0 1 0 0.9 0 11
4,000,000 19200 13 0 0 -1.8 0 -1.9 0.2
4,000,000 38400 6 0 8 -1.8 0 -2.2 0.4
4,000,000 57600 4 5 3 -35 3.2 -1.8 6.4
4,000,000 115200 2 3 2 -2.1 4.8 -2.5 7.3
8,000,000 9600 52 0 1 -0.4 0 -0.4 0.1
8,000,000 19200 26 0 1 0 0.9 0 11
8,000,000 38400 13 0 0 -1.8 0 -1.9 0.2
8,000,000 57600 8 0 11 0 0.88 0 1.6
8,000,000 115200 5 3 -35 3.2 -1.8 6.4
8,000,000 230400 2 3 2 -2.1 48 -2.5 7.3
12,000,000 9600 78 0 2 0 0 -0.05 0.05
12,000,000 19200 39 0 1 0 0 0 0.2
12,000,000 38400 19 0 8 -1.8 0 -1.8 0.1
12,000,000 57600 13 0 0 -1.8 0 -1.9 0.2
12,000,000 115200 6 0 8 -1.8 0 -2.2 0.4
12,000,000 230400 3 0 4 -1.8 0 -2.6 0.9
16,000,000 9600 104 0 3 0 0.2 0 0.3
16,000,000 19200 52 0 1 -0.4 0 -0.4 0.1
16,000,000 38400 26 0 1 0 0.9 0 11
16,000,000 57600 17 0 6 0 0.9 -0.1 1.0
16,000,000 115200 8 0 11 0 0.9 0 1.6
16,000,000 230400 4 5 3 -35 3.2 -1.8 6.4
16,000,000 460800 2 3 2 -2.1 4.8 -2.5 7.3

19-24 Universal Serial Communication Interface, UART Mode

USCI Operation: UART Mode

19.3.15 Using the USCI Module in UART Mode with Low-Power Modes

The USCI module provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clock source reverts to the settings of its control bits. Automatic clock activation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

19.3.16 USCI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector
for reception.

USCI Transmit Interrupt Operation

The UCAXTXIFG interrupt flag is set by the transmitter to indicate that
UCAXTXBUF is ready to accept another character. An interrupt request is
generated if UCAXTXIE and GIE are also set. UCAXTXIFG is automatically
reset if a character is written to UCAXTXBUF.

UCAXTXIFG is set after a PUC or when UCSWRST = 1. UCAXTXIE is reset
after a PUC or when UCSWRST = 1.

USCI Receive Interrupt Operation

The UCAXRXIFG interrupt flag is set each time a character is received and
loaded into UCAXRXBUF. An interrupt request is generated if UCAXRXIE and
GIE are also set. UCAXRXIFG and UCAXRXIE are reset by a system reset
PUC signal or when UCSWRST = 1. UCAXRXIFG is automatically reset when
UCAXRXBUF is read.

Additional interrupt control features include:
[When UCAXRXEIE = 0 erroneous characters will not set UCAXRXIFG.

1 When UCDORM = 1, non-address characters will not set UCAXRXIFG in
multiprocessor modes. In plain UART mode no characters will set
UCAXRXIFG.

1 When UCBRKIE = 1 a break condition will set the UCBRK bit and the
UCAXRXIFG flag.

Universal Serial Communication Interface, UART Mode 19-25

USCI Operation: UART Mode

USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive
interrupt flags UCAXRXIFG and UCBXRXIFG are routed to one interrupt
vector, the transmit interrupt flags UCAXTXIFG and UCBXTXIFG share
another interrupt vector.

Shared Interrupt Vectors Software Example

19-26

The following software example shows an extract of an interrupt service
routine to handle data receive interrupts from USCI_AQ in either UART or SPI
mode and USCI_BO in SPI mode.

USCI A0_RX_USCI BO_RX_| SR
BI T. B #UCAORXI FG & F&
JNZ USCI A0_RX_I SR
USCI BO_RX | SR?
; Read UCBORXBUF (clears UCBORXI FG

; USCI _A0 Receive Interrupt?

RETI
USCl AO_RX_I SR
; Read UCAORXBUF (cl ears UCAORXI FG

RETI

The following software example shows an extract of an interrupt service
routine to handle data transmit interrupts from USCI_AO in either UART or SPI
mode and USCI_BO in SPI mode.

USCI AO_TX_USCI BO_TX_I SR
BIT.B #UCAOTXIFG & F& ; USCI_AO0 Transmt Interrupt?
INZ USCl AO_TX_I SR
USCI BO_TX_ | SR
; Wite UCBOTXBUF (clears UCBOTXI FG
RETI
USCl A0_TX_ | SR
; Wite UCAOTXBUF (clears UCAOTXI FG

RETI

Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

19.4 USCI Registers: UART Mode

The USCI registers applicable in UART mode are listed in Table 19-6 and
Table 19-7.

Table 19-6.USCI_AO Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_AO control register 0 UCAOCTLO Read/write 060h Reset with PUC
USCI_AO control register 1 UCAOCTL1 Read/write 061h 001h with PUC
USCI_AO Baud rate control register 0 UCAOBRO Read/write 062h Reset with PUC
USCI_AO Baud rate control register 1 UCAOBR1 Read/write 063h Reset with PUC
USCI_AO modulation control register UCAOMCTL Read/write 064h Reset with PUC
USCI_AO status register UCAOSTAT Read/write 065h Reset with PUC
USCI_AO Receive buffer register UCAORXBUF Read 066h Reset with PUC
USCI_AO Transmit buffer register UCAOTXBUF Read/write 067h Reset with PUC
USCI_AO Auto Baud control register UCAOABCTL Read/write 05Dh Reset with PUC
USCI_AO IrDA Transmit control register UCAOIRTCTL Read/write 05Eh Reset with PUC
USCI_AO IrDA Receive control register UCAOIRRCTL Read/write 05Fh Reset with PUC
SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC
SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits using Bl S. B or Bl C. B instructions, rather than
MOV. B or CLR. B instructions.

Table 19-7.USCI_A1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCAILCTLO Read/write 0DOh Reset with PUC
USCI_A1 control register 1 UCALCTL1 Read/write 0D1h 001h with PUC
USCI_AL Baud rate control register O UCA1BRO Read/write 0D2h Reset with PUC
USCI_A1 Baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC
USCI_A1 modulation control register UCALIMCTL Read/write 0D4h Reset with PUC
USCI_AL1 status register UCALSTAT Read/write 0D5h Reset with PUC
USCI_A1 Receive buffer register UCALIRXBUF Read 0D6h Reset with PUC
USCI_AL1 Transmit buffer register UCALITXBUF Read/write 0D7h Reset with PUC
USCI_A1 Auto Baud control register UCA1ABCTL Read/write 0CDh Reset with PUC
USCI_AL1 IrDA Transmit control register UCALIRTCTL Read/write 0CEh Reset with PUC
USCI_AL1 IrDA Receive control register UCALIRRCTL Read/write OCFh Reset with PUC
USCI_AL1/B1 interrupt enable register UCLIE Read/write 006h Reset with PUC
USCI_A1/B1 interrupt flag register UCLIFG Read/write 007h 00Ah with PUC

Universal Serial Communication Interface, UART Mode 19-27

USCI Registers: UART Mode

UCAXCTLO, USCI_Ax Control Register 0

7 6 5 4 3 2 1 0
UCPEN UCPAR UCMSB UCT7BIT UCSPB UCMODEX UCSYNC=0
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCPEN Bit 7 Parity enable
0 Parity disabled.
1 Parity enabled. Parity bit is generated (UCAXTXD) and expected
(UCAXRXD). In address-bit multiprocessor mode, the address bit is
included in the parity calculation.
UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.
0 Odd parity
1 Even parity
UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift
register.
0 LSB first
1 MSB first
UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data
UCSPB Bit 3 Stop bit select. Number of stop bits.
0 One stop bit
1 Two stop bits
UCMODEXx Bits USCI mode. The UCMODEX bits select the asynchronous mode when
2-1 UCSYNC = 0.
00 UART Mode.
01 Idle-Line Multiprocessor Mode.
10 Address-Bit Multiprocessor Mode.
11 UART Mode with automatic baud rate detection.
UCSYNC Bit 0 Synchronous mode enable

19-28

0 Asynchronous mode
1 Synchronous Mode

Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

UCAXCTL1, USCI_Ax Control Register 1

7 6 5 4 3 2 1 0
UCSSELXx UCRXEIE UCBRKIE UCDORM | UCTXADDR | UCTXBRK | UCSWRST
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1
UCSSELX Bits USCI clock source select. These bits select the BRCLK source clock.
7-6 00 UCLK

01 ACLK

10 SMCLK

11 SMCLK

UCRXEIE Bit 5 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and UCAXRXIFG is not set
1 Erroneous characters received will set UCAXRXIFG
UCBRKIE Bit 4 Receive break character interrupt-enable
0 Received break characters do not set UCAXRXIFG.
1 Received break characters set UCAXRXIFG.
UCDORM Bit 3 Dormant. Puts USCI into sleep mode.

0 Not dormant. All received characters will set UCAXRXIFG.

1 Dormant. Only characters that are preceded by an idle-line or with
address bit set will set UCAXRXIFG. In UART mode with automatic baud
rate detection only the combination of a break and synch field will set
UCAXRXIFG.

UCTXADDR Bit 2 Transmit address. Next frame to be transmitted will be marked as address
depending on the selected multiprocessor mode.

0 Next frame transmitted is data

1 Next frame transmitted is an address

UCTXBRK Bit 1 Transmit break. Transmits a break with the next write to the transmit buffer.

In UART mode with automatic baud rate detection 055h must be written

into UCAXTXBUF to generate the required break/synch fields. Otherwise

Oh must be written into the transmit buffer.

0 Next frame transmitted is not a break

1 Next frame transmitted is a break or a break/synch

UCSWRST Bit0 Software reset enable

0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

Universal Serial Communication Interface, UART Mode 19-29

USCI Registers: UART Mode

UCAXBRO, USCI_Ax Baud Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx - low byte

w rw rw 'w w rw w w

UCAxBR1, USCI_Ax Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRX - high byte

'w rw rw 'w w rw 'w w

UCBRX Clock prescaler setting of the Baud rate generator. The 16-bit value of
(UCAXBRO + UCAXBR1 x 256) forms the prescaler value UCBRX.

UCAXMCTL, USCI_Ax Modulation Control Register

7 6 5 4 3 2 1 0
UCBRFx UCBRSX UCOS16
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCBRFx Bits First modulation stage select. These bits determine the modulation pattern

7-4 for BITCLK16 when UCOS16 = 1. Ignored with UCOS16 = 0. Table 19-3
shows the modulation pattern.

UCBRSx Bits Second modulation stage select. These bits determine the modulation
3-1 pattern for BITCLK. Table 19-2 shows the modulation pattern.

UCOS16 Bit 0 Oversampling mode enabled
0 Disabled
1 Enabled

19-30 Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

UCAXSTAT, USCI_Ax Status Register

7 6 5 4 3 2 1 0
UCLISTEN UCFE UCOE UCPE UCBRK | UCRXERR | UADPR | ucsusy
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 r-0
UCLISTEN Bit7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. UCAXTXD is internally fed back to the receiver.
UCFE Bit 6 Framing error flag
0 No error
1 Character received with low stop bit
UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UCAXRXBUF before the previous character was read. UCOE is cleared
automatically when UCXRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred
UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.
0 No error
1 Character received with parity error
UCBRK Bit 3 Break detect flag
0 No break condition
1 Break condition occurred
UCRXERR Bit2 Receive error flag. This bit indicates a character was received with error(s).
When UCRXERR = 1, on or more error flags (UCFE, UCPE, UCOE) is also
set. UCRXERR is cleared when UCAXRXBUF is read.
0 No receive errors detected
1 Receive error detected
UCADDR Bit 1 Address received in address-bit multiprocessor mode.
0 Received character is data
1 Received character is an address
UCIDLE Idle line detected in idle-line multiprocessor mode.
0 No idle line detected
1 Idle line detected
ucBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in

progress.
0 USCI inactive
1 USCI transmitting or receiving

Universal Serial Communication Interface, UART Mode 19-31

USCI Registers: UART Mode

UCAXRXBUF, USCI_Ax Receive Buffer Register

UCRXBUFx

UCRXBUFx Bits The receive-data buffer is user accessible and contains the last received
7-0 character from the receive shift register. Reading UCAXRXBUF resets the
receive-error bits, the UCADDR or UCIDLE bit, and UCAXRXIFG. In 7-bit
data mode, UCAXRXBUF is LSB justified and the MSB is always reset.

UCAXTXBUF, USCI_Ax Transmit Buffer Register

7 6 5 4 3 2 1 0
UCTXBUFx
w rw w w w 'w w w
UCTXBUFx Bits The transmit data buffer is user accessible and holds the data waiting to
7-0 be moved into the transmit shift register and transmitted on UCAXTXD.

Writing to the transmit data buffer clears UCAXTXIFG. The MSB of
UCAXTXBUF is not used for 7-bit data and is reset.

19-32 Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

UCAXIRTCTL, USCI_AXx IrDA Transmit Control Register

7 6 5 4 3 2 1 0
UCIRTXPLx R UCIREN
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCIRTXPLx Bits Transmit pulse length
7-2 Pulse Length tPULSE = (UC|RTXPLX + 1) / (2 X fIRTXCLK)
UCIRTXCLK Bit1l IrDA transmit pulse clock select
0 BRCLK
1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK
UCIREN Bit O IrDA encoder/decoder enable.
0 IrDA encoder/decoder disabled
1 IrDA encoder/decoder enabled

UCAXIRRCTL, USCI_AXx IrDA Receive Control Register

7 6 5 4 3 2 1 0
UCIRRXFLX UCIRRXPL | UCIRRXFE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
UCIRRXFLx Bits Receive filter length. The minimum pulse length for receive is given by:

7-2 tMIN = (UC|RRXFLX + 4) / (2 X fBRCLK)

UCIRRXPL Bit 1 IrDA receive input UCAXRXD polarity
0 IrDA transceiver delivers a high pulse when a light pulse is seen
1 IrDA transceiver delivers a low pulse when a light pulse is seen

UCIRRXFE Bit O IrDA receive filter enabled
0 Receive filter disabled
1 Receive filter enabled

Universal Serial Communication Interface, UART Mode 19-33

USCI Registers: UART Mode

UCAXABCTL, USCI_Ax Auto Baud Rate Control Register

7 6 5 4 3 2 1 0
Reserved UCDELIMx UCSTOE UCBTOE Reserved | UCABDEN
r-0 r-0 rw-0 rw-0 rw-0 rw-0 r-0 rw-0
Reserved Bits Reserved
7-6
UCDELIMx Bits Break/synch delimiter length
5-4 00 1 bittime
01 2 bittimes
10 3 bittimes
11 4 bit times
UCSTOE Bit 3 Synch field time out error
0 No error
1 Length of synch field exceeded measurable time.
UCBTOE Bit 2 Break time out error
0 No error
1 Length of break field exceeded 22 bit times.
Reserved Bit 1 Reserved
UCABDEN Bit0 Automatic baud rate detect enable

19-34

0 Baud rate detection disabled. Length of break and synch field is not

measured.

1 Baud rate detection enabled. Length of break and synch field is

measured and baud rate settings are changed accordingly.

Universal Serial Communication Interface, UART Mode

USCI Registers: UART Mode

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
UCAOTXIE | UCAORXIE
rw-0 rw-0
Bits These bits may be used by other modules. See device-specific data sheet.
7-2
UCAOTXIE Bitl USCI_AQ transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCAORXIE Bit0 USCI_AO receive interrupt enable

0 Interrupt disabled
1 Interrupt enabled

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
UCAO UCAO
TXIFG RXIFG
rw-1 rw-0
Bits These bits may be used by other modules (see the device-specific data
7-2 sheet).
UCAO Bit 1 USCI_AO transmit interrupt flag. UCAOTXIFG is set when UCAOTXBUF is
TXIFG empty.
0 No interrupt pending
1 Interrupt pending
UCAO Bit 0 USCI_AO receive interrupt flag. UCAORXIFG is set when UCAORXBUF has
RXIFG

received a complete character.
0 No interrupt pending
1 Interrupt pending

Universal Serial Communication Interface, UART Mode 19-35

USCI Registers: UART Mode

UCL1IE, USCI_A1 Interrupt Enable Register

7 6 5 4 3 2 1 0
Unused Unused Unused Unused UCALTXIE | UCALRXIE
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
Unused Bits Unused
7-4
Bits These bits may be used by other USCI modules (see the device-specific data
3-2 sheet).
UCALITXIE Bitl USCI_A1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled
UCAIRXIE Bit0 USCI_A1 receive interrupt enable

0 Interrupt disabled
1 Interrupt enabled

UC1IFG, USCI_A1 Interrupt Flag Register

7 6 5 4 3 2 1 0
Unused Unused Unused Unused -}Jﬁéé I%((:Ié(ls
rw-0 rw-0 rw-0 rw-0 rw-1 rw-0

Unused Bits Unused
7-4
Bits These bits may be used by other USCI modules (see the device-specific data
3-2 sheet).
UCA1 Bit 1 USCI_A1 transmit interrupt flag. UCALTXIFG is set when UCA1TXBUF is
TXIFG empty.
0 No interrupt pending
1 Interrupt pending
UCA1 Bit 0 USCI_A1 receive interrupt flag. UCALRXIFG is set when UCA1RXBUF has
RXIFG

19-36

received a complete character.
0 No interrupt pending
1 Interrupt pending

Universal Serial Communication Interface, UART Mode

Chapter 20

Universal Serial Communication Interface,
SP| Mode

The universal serial communication interface (USCI) supports multiple serial
communication modes with one hardware module. This chapter discusses the
operation of the synchronous peripheral interface or SPI mode.

Topic Page
20.1 USCI OVEIVIEW . ottt et e e et e e e e e e e 20-2
20.2 USCI Introduction: SPIModettt 20-3
20.3 USCI Operation: SPIModet 20-5
20.4 USCI Registers: SPIMode, 20-14

20-1

USCI Overview

20.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different from USCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_A modules,
they are named USCI_AO and USCI_A1. See the device-specific data sheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

0 UART mode

[Pulse shaping for IrDA communications

[0 Automatic baud rate detection for LIN communications
(1 SPI mode

The USCI_Bx modules support:

[0 12C mode
[SPI mode

20-2 Universal Serial Communication Interface, SPI Mode

USCI Introduction: SPI Mode

20.2 USCI Introduction: SPI Mode

In synchronous mode, the USCI connects the MSP430 to an external system
via three or four pins: UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI
mode is selected when the UCSYNC bit is set and SPI mode (3-pin or 4-pin)
is selected with the UCMODEX bits.

SPI mode features include:

7- or 8-bit data length

LSB-first or MSB-first data transmit and receive
3-pin and 4-pin SPI operation

Master or slave modes

Independent transmit and receive shift registers
Separate transmit and receive buffer registers
Continuous transmit and receive operation
Selectable clock polarity and phase control
Programmable clock frequency in master mode

Independent interrupt capability for receive and transmit

[Ny 1y A A N A N N A

Slave operation in LPM4

Figure 20-1 shows the USCI when configured for SPI mode.

Universal Serial Communication Interface, SPI Mode 20-3

USCI Introduction: SPI Mode

Figure 20-1. USCI Block Diagram: SPI Mode

Receive State Machine P Set UCOE
P Set UCXRXIFG

UCLISTEN UCMST
Receive Buffer UCXRXBUF

UCXxSOMI
* 0
[Receive Shift Register I{
UCMSB UCT7BIT O
UCSSELXx
Bit Clock Generator
UCCKPH UCCKPL
UCXxBRX T T ‘ ®
N/A —| 00 }16
UCxCLK
ACLK 01 - Clock Direction,
SMCLK 10 [BROLK Prescaler/Divider | Phase and Polarity —@ < >
SMCLK 11
UCMSB UC7BIT

2 z UCxSIMO

o Transmit Shift Register

+ UCMODEX
T it Buffer UCXTXBUF }2 VexSTE
ransmit Buffer UCx
Transmit Enable O
Control N }—} Set UCFE
Transmit State Machine

P Set UCXTXIFG

20-4 Universal Serial Communication Interface, SPI Mode

20.3 USCI Operation: SPI Mode

USCI Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using
a shared clock provided by the master. An additional pin, UCXSTE, is provided
to enable a device to receive and transmit data and is controlled by the master.

Three or four signals are used for SPI data exchange:

0 UCxSIMO

O UCxSOMI

[UCXCLK

0 UCXSTE

Table 20-1.UCXSTE Operation

Slave in, master out
Master mode: UCxSIMO is the data output line.
Slave mode: UCxSIMO is the data input line.

Slave out, master in
Master mode: UCxSOMI is the data input line.
Slave mode: UCxSOMI is the data output line.

USCI SPI clock
Master mode: UCXCLK is an output.
Slave mode: UCXCLK is an input.

Slave transmit enable. Used in 4-pin mode to allow multiple
masters on a single bus. Not used in 3-pin mode. Table 20-1
describes the UCXSTE operation.

UCMODEXx UCXSTE Active State UCXSTE Slave Master
) 0 inactive active
01 high 1 active inactive
0 active inactive
10 low . . .
1 inactive active

Universal Serial Communication Interface, SPI Mode 20-5

USCI Operation: SPI Mode

20.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition.
When set, the UCSWRST bit resets the UCXRXIE, UCXTXIE, UCXRXIFG,
UCOE, and UCFE bits and sets the UCXTXIFG flag. Clearing UCSWRST
releases the USCI for operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

1) Set UCSWRST (Bl S. B #UCSWRST, &UCxCTL1)

2) Initialize all USCI registers with UCSWRST=1 (including UCXCTL1)
3) Configure ports.

4) Clear UCSWRST via software (BI C. B #UCSWRST, &UCxCTL1)
5) Enable interrupts (optional) via UCXRXIE and/or UCXTXIE

20.3.2 Character Format

The USCI module in SPI mode supports 7- and 8-bit character lengths
selected by the UC7BIT bit. In 7-bit data mode, UCXRXBUF is LSB justified
and the MSB is always reset. The UCMSB bit controls the direction of the
transfer and selects LSB or MSB first.

Note: Default Character Format
The default SPI character transmission is LSB first. For communication with
other SPI interfaces it MSB-first mode may be required.

Note: Character Format for Figures
Figures throughout this chapter use MSB first format.

20-6 Universal Serial Communication Interface, SPI Mode

20.3.3 Master Mode

USCI Operation: SPI Mode

Figure 20-2. USCI Master and External Slave

MASTER UCXSIMO sIMo SLAVE
>
Receive Buffer Transmit Buffer .
UCXRXBUF UCXTXBUF SPI Receive Buffer
Px.x > STE
UCXSTE ——4—— >°
Port.x
UCx
_ . _ N . SOMI SOMI , _
Receive Shift Register —‘ L1 Transmit Shift Register < Data Shift Register (DSR)
UCXCLK » SCLK
MSP430 USCI COMMON SPI

Figure 20-2 shows the USCI as a master in both 3-pin and 4-pin
configurations. The USCI initiates data transfer when data is moved to the
transmit data buffer UCXTXBUF. The UCXTXBUF data is moved to the TX shift
register when the TX shift register is empty, initiating data transfer on
UCxXSIMO starting with either the most-significant or least-significant bit
depending on the UCMSB setting. Data on UCXSOMI is shifted into the receive
shift register on the opposite clock edge. When the character is received, the
receive data is moved from the RX shift register to the received data buffer
UCxRXBUF and the receive interrupt flag, UCXRXIFG, is set, indicating the
RX/TX operation is complete.

A set transmit interrupt flag, UCXTXIFG, indicates that data has moved from
UCXTXBUF to the TX shift register and UCXTXBUF is ready for new data. It
does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to
UCXTXBUF because receive and transmit operations operate concurrently.

Universal Serial Communication Interface, SPI Mode 20-7

USCI Operation: SPI Mode

Four-Pin SPI Master Mode

In 4-pin master mode, UCXSTE is used to prevent conflicts with another
master and controls the master as described in Table 20-1. When UCXSTE
is in the master-inactive state:

[UCXSIMO and UCxCLK are set to inputs and no longer drive the bus

[The error bit UCFE is set indicating a communication integrity violation to
be handled by the user.

[The internal state machines are reset and the shift operation is aborted.

If data is written into UCXTXBUF while the master is held inactive by UCXSTE,
it will be transmit as soon as UCXSTE transitions to the master-active state.
If an active transfer is aborted by UCXSTE transitioning to the master-inactive
state, the data must be re-written into UCXTXBUF to be transferred when
UCXSTE transitions back to the master-active state. The UCXSTE input signal
is not used in 3-pin master mode.

20-8 Universal Serial Communication Interface, SPI Mode

20.3.4 Slave Mode

USCI Operation: SPI Mode

Figure 20-3. USCI Slave and External Master

MASTER siMo| [ucxsimo SLAVE
) Transmit Buffer Receive Buffer
SPI Receive Buffer UCXTXBUF UCXRXBUF
Px.x > UCXSTE
SS
STE <
Port.x
UCx
) . SOwmI SowmI -)) .)
L{ Data Shift Register DSR < Transmit Shift Register Receive Shift Register —
SCLK » UCXCLK
COMMON SPI MSP430 USCI

Figure 20-3 shows the USCI as a slave in both 3-pin and 4-pin configurations.
UCXCLK is used as the input for the SPI clock and must be supplied by the
external master. The data-transfer rate is determined by this clock and not by
the internal bit clock generator. Data written to UCXTXBUF and moved to the
TX shift register before the start of UCXCLK is transmitted on UCxSOMI. Data
on UCxSIMO is shifted into the receive shift register on the opposite edge of
UCxCLK and moved to UCXRXBUF when the set number of bits are received.
When data is moved from th