
Application Note
IAR to CCS Project Porting Guide

ABSTRACT

Migrating embedded projects between IDEs requires careful planning due to differences in toolchains, project
structures, and configurations. This document is a structured guide to transition projects from IAR Embedded
Workbench® to Texas Instruments' Code Composer Studio™ (CCS).

Table of Contents
1 Introduction...2
2 Pre-Migration Preparation..2

2.1 CCS Version Comparison.. 2
2.2 Pre-Migration Preparation.. 2

3 Porting Code to CCS.. 4
3.1 Prepare for Porting...4
3.2 Set Up CCS Environment.. 4
3.3 Import Source Code and Files in CCS... 5
3.4 Handle Device-Specific Code.. 6
3.5 Adapt Code for CCS.. 7
3.6 Build and Debug...7

4 Post-Migration Optimization..8
5 Summary... 8
6 References.. 8

List of Figures
Figure 3-1. Create a New CCS Project..4
Figure 3-2. CCS Project Properties... 5
Figure 3-3. Linker File Comparison... 6

List of Tables
Table 2-1. Comparison between CCS v20 and CCS v12.8... 2
Table 2-2. Toolchain and Compiler Differences... 2
Table 2-3. Project Structure Differences.. 3
Table 2-4. Debugging and Hardware Support Differences.. 3
Table 2-5. Ecosystem & Integration Differences..3
Table 2-6. Build and Optimization Differences...3
Table 3-1. A Comparsion Table of Common Used IAR Flag vs CCS Equivalent...6
Table 3-2. Comparison of Assembly Code Example in IAR and CCS... 7

Trademarks
Code Composer Studio™ are trademarks of Texas Instruments.
IAR Embedded Workbench® is a registered trademark of IAR Systems AB.
Arm® and Cortex® are registered trademarks of Arm Limited.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLAAEQ6 – MARCH 2025
Submit Document Feedback

IAR to CCS Project Porting Guide 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEQ6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEQ6&partnum=

1 Introduction
This application note is designed to assist developers in migrating code and projects written with IAR
Embedded Workbench to Code Composer Studio (CCS). IAR and CCS are two widely used embedded
development environments provided by IAR Systems and Texas Instruments, respectively. There are differences
in functionality, interface design, and usage habits between the two, so special attention needs to be paid
to compatibility and configuration issues during the migration process. This document provides detailed steps
and considerations for migrating from IAR to CCS, helping developers complete the code migration smoothly.
Although there are differences between the two in some aspects, careful inspection and adjustments can
achieve a seamless transition. For new users, TI recommends to be familiar with the operation methods and
interface layout of CCS to adapt more quickly.

2 Pre-Migration Preparation
2.1 CCS Version Comparison
During the preparation of this document, Texas Instruments released Code Composer Studio™ (CCS) v20, a
significant architectural overhaul transitioning from the legacy Eclipse-based framework to the modern Theia
IDE platform. While this update introduces enhanced toolchain integration and a streamlined user interface,
the technical analysis and methodologies presented herein remain primarily grounded in CCS v12.8 and earlier
iterations. The migration to CCS v20 has minimal bearing on the core content of this article; however, to make
sure of clarity for readers utilizing the latest environment, TI provide a concise comparison of critical differences
between v12.8 and v20 in the following section.

Table 2-1. Comparison between CCS v20 and CCS v12.8
CCS v12.8 and Earlier CCS v20

Architecture Eclipse Rich Client Platform Eclipse Theia

Strengths Mature and stable, good for deeply customizable plugins
and toolchains in embedded development.

Modern architecture supporting cloud or desktop hybrid
workflows, native compatibility with VS Code extensions,
and seamless DevOps integration.

Weaknesses Relies on legacy technology, limited support for modern
web standards, and higher memory and resource usage.

Smaller community ecosystem compared to Eclipse; some
advanced plugins require third-party adaptation.

User Experience Classic multi-window layout with nested menus and a
steep learning curve.

VS Code-like interface with drag-and-drop panel
customization (for example, terminal, memory views).

2.2 Pre-Migration Preparation
Before starting the migration, be familiar with the differences between IAR Embedded Workbench (EW) and
Code Composer Studio that are in the toolchains, project management, and ecosystem integration. A concise
breakdown of the differences are shown below.

1. Toolchain and Compiler: IAR uses a proprietary compiler, while CCS typically uses TI's compiler (based on
GCC or Clang) or other supported compilers.

Table 2-2. Toolchain and Compiler Differences
IAR EW CCS

Uses proprietary compiler of IAR (ICCARM for ARM). Uses TI Arm Clang (based on LLVM/Clang) for TI devices.

Flags like --debug, -Oh, -D for defines. Flags differ (for example, -g for debug, --define=NAME for
macros).

Strict adherence to IAR-specific syntax (for example, #pragma
vector).

Requires TI-compatible syntax (for example,
__attribute__((interrupt))).

Introduction www.ti.com

2 IAR to CCS Project Porting Guide SLAAEQ6 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEQ6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEQ6&partnum=

2. Project Structure: IAR and CCS have different project file structures and configurations.
Table 2-3. Project Structure Differences

IAR EW CCS

Proprietary project format (.ewp, .eww). Eclipse-based project (.cproject, .project).

Manages settings via GUI or .icf linker files. Uses linker command files (.cmd) and Eclipse-style configuration
menus.

Limited plugin ecosystem. Extensible via Eclipse plugins (for example, TI Resource Explorer,
GIT integration).

3. Debugging Tools and Hardware Support: CCS integrates TI-specific debugging tools, which can differ from
the debugging environment of the IAR.

Table 2-4. Debugging and Hardware Support Differences
IAR EW CCS

Broad third-party debug probes. Support TI debug probes (XDS110 and so forth.) and third party
debug probes

Requires manual HAL setup. Pre-integrated TI libraries (for example, TI-RTOS, FreeRTOS).

Limited RTOS integration. Native support for TI-RTOS and real-time debugging tools.

4. Ecosystem and Integration: CCS is free to use and supports a variety of tools to help users design projects.
Table 2-5. Ecosystem & Integration Differences

IAR EW CCS

Paid license with limited free features. Free tier with optional paid upgrades.

Minimal vendor-specific tools. Tight integration with TI tools (for example, UniFlash, SysConfig).

Community support via IAR forums. Strong TI community (E2E forums, detailed app notes).

5. Build and Optimization: CCS supports a variety of optimization level to meet different requirements.
Table 2-6. Build and Optimization Differences

IAR EW CCS

Known for highly optimized code. Balances optimization with TI-specific tuning.

Custom build steps via GUI. Flexible build customization using Eclipse or Makefile.

Static memory allocation via .icf. Dynamic linker configuration (.cmd files).

www.ti.com Pre-Migration Preparation

SLAAEQ6 – MARCH 2025
Submit Document Feedback

IAR to CCS Project Porting Guide 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEQ6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEQ6&partnum=

3 Porting Code to CCS
3.1 Prepare for Porting
First, understand the IAR project structure. Document the project hierarchy, source files, and dependencies.
Note the target microcontroller (MCU) and the variant (for example, TI MSP430, Arm® Cortex®-M). Identify
compiler and linker flags, memory configurations (.icf/.xcl files), and preprocessor symbols.

Second, backup the project. Create a copy of the original IAR project for reference and rollback.

Third, review code for toolchain-specific features. Issues like, check for IAR-specific pragmas, intrinsics (for
example, __no_init), or inline assembly. Identify dependencies on IAR libraries or runtime files (for example,
low_level_init.c). Note down important settings such as: compiler flags, linker configuration, memory layout (for
example, linker script or ICF file), preprocessor definitions and include paths.

Finally, identify project dependencies. List all external libraries, drivers, and middleware used in the IAR project.

3.2 Set Up CCS Environment
1. Install CCS:

a. Download and install the latest version of Code Composer Studio from TI's website. Make sure that the
required device support packages (Cores, Compilers, and Debuggers) are installed in CCS.

b. Install device-specific SDKs (for example, MSP432, C2000, or SimpleLink SDKs) by TI Resource
Explorer or TI website.

c. Install required libraries. If the project uses TI-specific libraries (for example, DriverLib, TivaWare, or
MSPWare), then download and install them.

2. Create a New CCS Project:
a. File → New → CCS Project.
b. Select the target MCU, compiler (TI Arm Clang), and project template (for example, Empty Project).
c. Make sure the output format (for example, ELF) matches the target.

Figure 3-1. Create a New CCS Project

Porting Code to CCS www.ti.com

4 IAR to CCS Project Porting Guide SLAAEQ6 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEQ6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEQ6&partnum=

3.3 Import Source Code and Files in CCS
1. Copy source files:

a. Copy the source files (`.c`, `.h`, `.asm`) from the IAR project to the CCS project directory.
b. Use Project Explorer → Right-click Import → File System to add files.

2. Include paths and preprocessor symbols:
a. Add the necessary include paths in the project properties (Right-click Project > Properties > Build >

Include Options). Shown in figure below.
b. Under Predefined Symbols, define macros if necessary.

Figure 3-2. CCS Project Properties

3. Linker configuration:
a. Replace IAR .icf/.xcl with a TI linker command file (.cmd).
b. Configure memory regions (for example, FLASH, RAM) in the .cmd file. Users not familiar with .cmd file

need to refer to the TI Linker Command File Primer for basic explanation of the code, which typically
appears in most TI linker command files.

www.ti.com Porting Code to CCS

SLAAEQ6 – MARCH 2025
Submit Document Feedback

IAR to CCS Project Porting Guide 5

Copyright © 2025 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/sdto_cgt_Linker-Command-File-Primer.html
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEQ6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEQ6&partnum=

Figure 3-3. Linker File Comparison

4. Translate compiler and linker flags:
a. Set stack or heap size in the linker file or by Project Properties → Build → ARM Linker → Basic Options.
b. Map IAR flags to TI Arm Clang equivalents:

Table 3-1. A Comparsion Table of Common Used IAR Flag vs CCS Equivalent
IAR Flag CCS Equivalent (TI Arm Clang) Purpose

--debug -g Debug symbols

-Oh -O3 High optimization

-DNAME --define=NAME Define preprocessor macro

--cpu=cortex-m4 -mcpu=cortex-m4 Target CPU

-I<path> -I<path> Include directory

--data_model medium Not needed (configure in .cmd) Memory model

3.4 Handle Device-Specific Code
1. Replace IAR Startup Code:

a. Use TI-provided startup files (for example, startup_<device>.c from the SDK) instead of IAR’s
startup_<device>.s.

b. Update interrupt vector tables to match TI’s syntax (for example, #pragma DATA_SECTION for vectors).

2. Adapt Hardware Abstraction:
a. Replace IAR-specific HAL functions with TI DriverLib or register-based code.
b. Example: use MAP_GPIO_setAsOutputPin() instead of the GPIO library of the IAR.

3. Update Inline Assembly and Pragmas:
a. Rewrite IAR-specific pragmas (for example, __packed becomes __attribute__((packed))).
b. Convert inline assembly to TI Clang syntax.

Porting Code to CCS www.ti.com

6 IAR to CCS Project Porting Guide SLAAEQ6 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEQ6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEQ6&partnum=

Table 3-2. Comparison of Assembly Code Example in IAR and CCS
IAR EW CCS

#pragma asm
MOV R0, #0x10

#pragma endasm

__asm(" MOV R0, #0x10 ");

3.5 Adapt Code for CCS
1. Fix compiler-specific code:

a. IAR and CCS compilers can have different syntax or behavior for certain constructs (for example, inline
assembly, pragmas).

b. Update any compiler-specific code to be compatible with CCS.

2. Replace IAR-specific functions:
a. Replace IAR-specific functions (for example, `__enable_interrupt()`) with equivalent CCS or TI-specific

functions.

3. Update debugging code:
a. If the project uses IAR-specific debugging macros or functions, then replace those macros or functions

with CCS-compatible alternatives.

3.6 Build and Debug
1. Build and validate the project:

a. Resolve build errors if there is any. Check the error report in the Problems console first. Then locate the
error and fix. Common issues are missing includes, undefined macros, and syntax mismatches.

b. Adjust compiler optimization levels and other settings for performance or size. Please refer to TI ARM
Clang Compiler User Manual for a more detailed description of the optimization options.

2. Create a debug configuration:
a. Run → Debug Configurations → New Launch Configuration.
b. Select the target connection (XDS110, JTAG, SWD).
c. Use a .ccxml file to define the debug probe and MCU.

3. Run on hardware and debug:
a. Connect the target microcontroller to CCS and load the program.
b. Load the program and verify breakpoints, register views, and memory inspection. Verify that the program

runs correctly and performs as expected.
c. Compare behavior with the original IAR project.

www.ti.com Porting Code to CCS

SLAAEQ6 – MARCH 2025
Submit Document Feedback

IAR to CCS Project Porting Guide 7

Copyright © 2025 Texas Instruments Incorporated

https://software-dl.ti.com/codegen/docs/tiarmclang/rel2_1_0_LTS/compiler_manual/using_compiler/compiler_options/optimization_options.html
https://software-dl.ti.com/codegen/docs/tiarmclang/rel2_1_0_LTS/compiler_manual/using_compiler/compiler_options/optimization_options.html
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEQ6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEQ6&partnum=

4 Post-Migration Optimization
1. Document the migration:

a. Document all changes made during the migration process for future reference.
b. Update the project documentation to reflect the new CCS environment.

2. Common concerns:
a. Interrupt handlers: Make sure ISRs use #pragma WEAK or are correctly named (for example, void

TIMER0_A0_ISR(void)).
b. Memory alignment: TI Clang can enforce stricter alignment than IAR. Use __attribute__((aligned(8))) if

needed.
c. Linker errors: Verify .cmd file addresses match the MCU memory map.

5 Summary
By following this application note, users can systematically transition projects to CCS while addressing toolchain-
specific nuances. Test incrementally and leverage TI’s robust debugging tools to streamline validation.

6 References
• Texas Instruments, ARM-CGT, webpage
• IAR Systems AB, IAR Embedded Workbench, webpage
• Texas Instruments, CCSTUDIO, webpage

Post-Migration Optimization www.ti.com

8 IAR to CCS Project Porting Guide SLAAEQ6 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/ARM-CGT
https://www.iar.com/knowledge/learn/programming/iar-embedded-workbench-overview---part-1/
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEQ6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEQ6&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Pre-Migration Preparation
	2.1 CCS Version Comparison
	2.2 Pre-Migration Preparation

	3 Porting Code to CCS
	3.1 Prepare for Porting
	3.2 Set Up CCS Environment
	3.3 Import Source Code and Files in CCS
	3.4 Handle Device-Specific Code
	3.5 Adapt Code for CCS
	3.6 Build and Debug

	4 Post-Migration Optimization
	5 Summary
	6 References

