
Application Note
Bridge Design between CAN and I2C with MSPM0 MCUs

ABSTRACT

This application note introduces the example for CAN to I2C bridge. The document describes the structure
and behavior of CAN to I2C bridge. Then the document introduces the software implementation, hardware
connection and application usage. Users can configure the bridge by modifying the predefinition. In addition, the
relevant code is provided to the users.

Table of Contents
1 Introduction...3

1.1 Bridge Between CAN and I2C..3
2 Implementation... 4

2.1 Principle... 4
2.2 Structure...5

3 Software Description..8
3.1 Software Functionality..8
3.2 Configurable Parameters... 9
3.3 Structure of Custom Element... 11
3.4 Structure of FIFO... 13
3.5 I2C Receive and Transmit (Transparent Transmission)...14
3.6 I2C Receive and Transmit (Protocol Transmission)...15
3.7 CAN Receive and Transmit..16
3.8 Application Integration..17

4 Hardware... 19
5 Application Aspects... 21

5.1 Flexible Structure... 21
5.2 Optional Configuration for I2C ...21
5.3 Optional Configuration for CAN ...21
5.4 CAN Bus Multinode Communication Example...22

6 Summary... 23
7 References.. 24

List of Figures
Figure 1-1. Logic Analyzer for I2C Transparent Transmission...3
Figure 1-2. Logic Analyzer for I2C Protocol Transmission...3
Figure 2-1. Basic Principle of CAN-I2C Bridge.. 4
Figure 2-2. CAN FD Frame..5
Figure 2-3. Structure of CAN-I2C (I2C controller) Bridge: Protocol and Transparent..6
Figure 2-4. Structure of CAN-I2C (I2C Target) Bridge: Protocol and Transparent...7
Figure 2-5. Structure of FIFO...7
Figure 3-1. Files Required by the Software... 17
Figure 4-1. Basic Structure of Accompanying Demo...19
Figure 4-2. Messages Sent and Received by CAN Analyzer for the Demo(CAN_ID_LENGTH = 0).. 20
Figure 4-3. Hardware Connection of the Demo... 20
Figure 5-1. Basic Structure of Multinode Communication... 22

List of Tables
Table 2-1. CAN packet form...5
Table 2-2. I2C Packet Form... 5
Table 3-1. Functions and Descriptions...8
Table 3-2. Number of Bytes for Receiving or Sending with Different I2C Modes...9

www.ti.com Table of Contents

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

Table 3-3. Configurable Parameters.. 10
Table 3-4. Memory Footprint of the CAN-I2C Bridge... 18

Trademarks
LaunchPad™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

1 Introduction
Based on different applications, now there are many communication methods between devices. MCUs today
usually support more than one communication method. For example, MSPM0 can support UART, I2C, CAN, and
so on on a specific device. When devices must transfer data over different communication interfaces, a bridge is
constructed.

For CAN and I2C, a CAN-I2C bridge acts as a translator between the two interfaces. A CAN-I2C bridge allows
a device to send and receive information on one interface and receive and send the information on the other
interface.

This application note describes the software and hardware designs used in creating and using the CAN-I2C
bridge. The MSPM0G3507 microcontroller (MCU) can be used as a design by providing CAN and I2C
communication interfaces. The accompanying demo uses the MSPM0G3507 with 2Mbps CANFD and 400kHz
bus speed I2C to demonstrate transceiving data between channels.

1.1 Bridge Between CAN and I2C
The CAN-I2C bridge connects the CAN and I2C interfaces. The bridge supports I2C to work in slave mode or
master mode. The example in this document uses a CAN analyzer to observe the CAN data. A user can also
send messages from CAN analyzer over the CAN-I2C bridge to the I2C side. For I2C data, users can use a logic
analyzer, or use two LaunchPad™s to form a loop to observe, such as in the accompanying demo in Figure 4-1.

The example in this document support both transparent transmission and protocol transmission. Figure 1-1
shows the logic analyzer observation for transparent transmission. Figure 1-2 shows the logic analyzer
observation for protocol transmission.

For protocol transmission, this example specifies the I2C message format. Users can also modify the format
according to application requirements. When receiving the message from I2C, the message format is < 55 AA
ID1 ID2 ID3 ID4 Length Data1 Data2 ...>. Users can send data through the I2C as the same format. 55 AA is the
header. ID area is four bytes. Length area is one byte, which indicates the data length.

For transparent transmission, I2C stop interrupt is used to detect one message. Data from I2C is filled into the
data area of CAN (same in reverse). CAN ID is the default value.

Figure 1-1. Logic Analyzer for I2C Transparent Transmission

Figure 1-2. Logic Analyzer for I2C Protocol Transmission

www.ti.com Introduction

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

2 Implementation

2.1 Principle
In the design of this document, the CAN-I2C bridge uses both CAN receive and transmit and I2C receive and
transmit. So both the CAN module and the I2C module must be configured. Since the message formats of
different communications are different, the CAN-I2C bridge also must convert the message format.

For CAN, the CAN module supports both classic CAN and CAN FD (CAN with flexible data-rate) protocols. The
CAN module is compliant to ISO 11898-1:2015. For more information, see related documentation. For I2C, the
interface can be used as slave or master to transfer data between a MSPM0 device and another I2C device. For
more information, see related documentation. Since the receiving and transmitting of the I2C slave are controlled
by the I2C master, the I2C slave cannot initiate transmission to the I2C master. To achieve communication from
the slave to the master, a line is added to this design. The IO pull-down of the slave notifies the master that there
is information to be sent.

Figure 2-1 shows the basic principle of CAN-I2C bridge. Typically, the communication rate of CAN is different
from that of I2C. For CAN FD the baud rate can be up to 5Mbps, while the I2C operates at 400kHz bus speed as
in the example code. As a result, it is possible that the data received by one interface is not be sent by another
interface in time. To match the rate, this scheme uses a buffer to transfer data between CAN and I2C. This buffer
not only implements data caching, but also implements data format conversion. This is equivalent to adding a
barrier between the two communication interfaces. Users can add overload control actions for the overload case.

CAN

Buffer

I2C controller /
target IO

Figure 2-1. Basic Principle of CAN-I2C Bridge

Implementation www.ti.com

4 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

2.2 Structure
The structure of CAN-I2C bridge with protocol and transparent transmission is shown in Figure 2-3 and Figure
2-4. Figure 2-3 is for the I2C master and Figure 2-4 is for the I2C slave. The CAN- I2C bridge can be divided into
four independent tasks: receive from I2C, receive from CAN, transmit through CAN, transmit through I2C. Two
FIFOs implement bidirectional message transfer and message caching.

Both I2C and CAN reception are set to interrupt triggers so that messages are received in time. When entering
an interrupt, the message is first obtained through getXXXRxMsg().

For CAN, the CAN frame is a fixed format. MSPM0 supports classic CAN or CANFD. The frame for CANFD can
be seen in Figure 2-2. The example in this article can define 0/1/4 additional bytes (default length is one byte for
I2C address) in data area for protocol transmission, which is listed in Table 2-1.

mcan-004a

CAN FD
Arbitration

CAN FD
Arbitration

CAN FD
Data

* 17 bit CRC for data fields with up to 16 bytes

S
O
F

r
1

I
D
E

E
D
L

r
0

B
R
S

E
S
I

1 1 1 7 3
4 bit
DLC

0 - 64 bytes 21* bit
CRC

11 bit Identifier

Arbitration Field Control Field Data Field CRC Field ACK EOF Int. Bus Idle

Figure 2-2. CAN FD Frame

Table 2-1. CAN packet form
ID Area Data

Protocol Transmission 4/1/0 bytes (Data Length) bytes

For I2C protocol transmission, messages are identified based on serial frame information. The I2C message
format is listed in Table 2-2.

Table 2-2. I2C Packet Form
Header ID Area Data length Data

Protocol
Transmission 0x55 0xAA 4/1/0 bytes 1 byte (Data Length) bytes

Transparent
Transmission — — —

Master to slave - (Data Length)
bytes

Slave to master -
(I2C_TRANSPARENT_LENGTH)

bytes

The header is a fixed hex number combine 0x55 0xAA, which means the start of the group. ID area occupies
four bytes default to match CAN ID, which can be configured to be one byte or does not exist. The data length
area occupies one byte. After the data length area, a certain length of data is followed. This format is provided as
an example. Users can modify the format according to application requirements.

Note that I2C is a communication method where the I2C master controls the transmission and reception. In
general, an I2C slave cannot initiate communication. For I2C slave-to-master communication, I2C slave pulls
down the IO when messages must be sent, as shown in Figure 2-4. The I2C master initiates the I2C read
command in the IO interrupt when the IO is detected low, as shown in Figure 2-3.

For I2C transparent transmission, messages are identified by I2C stop interrupt, as shown in Figure 2-4. All
bytes are regards as pure data. The default value is loaded for packet information (For example, ID).

www.ti.com Implementation

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

After receiving the message, processXXXRxMsg() converts the format of the message and stores the message
in the FIFO as a new element. Figure 2-5 shows the format of a FIFO element. In the format of the FIFO
element, there are origin_id, destination_id, data length and data. Users can also change the message items
according to application requirements. In addition, this scheme also checks whether the FIFO is full for overload
control. Users can add overload control actions as requirements change.

Both CAN and I2C transmission are performed in the main function. When it is detected that the FIFO is not
empty, the FIFO element is fetched. The message is formatted and sent. For CAN, CAN frame is a fixed format
as described in Table 2-1. For the I2C, messages are sent in the format listed in Table 2-2.

Interrupt

Receive message from I2C

Receive message from CAN

Main()

Transmit message to CAN

Transmit message to I2C

IO interrupt

getI2cRxMsg

processI2cRxMsg

getCANRxMsg

processCANRxMsg

gI2c2Can_FIFO

gCan2I2c_FIFO

Overload control

Overload control

processCANTxMsg

sendCANTxMsg

processI2cTxMsg

start sendI2cTxMsg

ReadI2cRxMsg

I2C TXFIFO Trigger Interrupt

sendI2cTxMsg

Figure 2-3. Structure of CAN-I2C (I2C controller) Bridge: Protocol and Transparent

Implementation www.ti.com

6 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

Interrupt

Receive message from I2C

Receive message from CAN

Main()

Transmit message to CAN

Transmit message to I2C

getI2cRxMsg

processI2cRxMsg

getCANRxMsg

processCANRxMsg

gI2c2Can_FIFO

gCan2I2c_FIFO

Overload control

Overload control

processCANTxMsg

sendCANTxMsg

processI2cTxMsg

start sendI2cTxMsg

I2C TXFIFO Trigger Interrupt

sendI2cTxMsg

Pulldown IO to trigger
controller to read

Figure 2-4. Structure of CAN-I2C (I2C Target) Bridge: Protocol and Transparent

Figure 2-5 shows the structure of the FIFO. Each FIFO uses three global variables to indicate the FIFO status.
For gI2c2Can_FIFO, gI2c2Can_FIFO.fifo_in indicates the write position, gI2c2Can_FIFO.fifo_out indicates the
read position,and gI2c2Can_FIFO.fifo_Count indicates the number of elements in the gI2c2Can_FIFO.

If the gI2c2Can_FIFO is empty, gI2c2Can_FIFO.fifo_in equals gI2c2Can_FIFO.fifo_out, and
gI2c2Can_FIFO.fifo_count is zero.

When performing processI2cRxMsg(), a new message from I2C is stored to gI2c2Can_FIFO. So the
gI2c2Can_FIFO.fifo_in moves to the next position, and gI2c2Can_FIFO.fifo_count is incremented by one.

When transmitting a message from gI2c2Can_FIFO to CAN, gI2c2Can_FIFO.fifo_out moves to next position,
and gI2c2Can_FIFO.fifo_count minus 1. gCan2I2c_FIFO is similar to gI2c2Can_FIFO.

Interrupt

Receive
message
from I2C

Receive
message
from CAN

Main()

Transmit
message
to CAN

Transmit
message
to I2C

gI2c2Can_FIFO.
fifo_out

0

1

2

34

5

6

7

gI2c2Can_FIFO.
fifo_count = 2

/*user-defined information storage structure */
typedef struct {
 /*! Origin Identifier, indicating the origin of the message */
 uint32_t origin_id;
 /*! Destination Identifier, indicating the destination of the message*/
 uint32_t destination_id;
 /*! Data Length Code */
 uint8_t dlc;
 /*! Data bytes */
 uint8_t data[TRANSMIT_DATA_LENGTH];
} Custom_Element;

gI2c2Can_FIFO

gCan2I2c_FIFO

gI2c2Can_FIFO.
fifo_out++

gI2c2Can_FIFO.
fifo_count--

gI2c2Can_FIFO.
fifo_in

gI2c2Can_FIFO.
fifo_in++

gI2c2Can_FIFO.
fifo_count++

gCan2I2c_FIFO.
fifo_out++

gCan2I2ci_FIFO.
fifo_count--

gCan2I2c_FIFO.
fifo_in++

gCan2I2c_FIFO.
fifo_count++

Figure 2-5. Structure of FIFO

www.ti.com Implementation

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

3 Software Description

3.1 Software Functionality
The functions are designed according to Figure 2-3 and Figure 2-4. The functions are listed in Table 3-1.

Table 3-1. Functions and Descriptions
Tasks Functions Description Location

I2C receive

readI2CRxMsg_controller(
) Send a read request to slave (I2C master only)

bridge_i2c.c
bridge_i2c.h

getI2CRxMsg_controller() Obtain the received I2C message (I2C master only) (protocol)

getI2CRxMsg_controller_
transparent()

Obtain the received I2C message (I2C master only)
(transparent)

getI2CRxMsg_target() Obtain the received I2C message (I2C slave only) (protocol)

getI2CRxMsg_target_
transparent()

Obtain the received I2C message (I2C slave only)
(transparent)

processI2CRxMsg_control
ler()

Convert the received I2C message format (protocol) and store
it into gI2C_RX_Element (I2C master only)

processI2CRxMsg_control
ler_ transparent()

Convert the received I2C message format (transparent) and
store it into gI2C_RX_Element (I2C master only)

processI2CRxMsg_target(
)

Convert the received I2C message format (protocol) and store
it into gI2C_RX_Element (I2C slave only)

processI2CRxMsg_target_
transparent()

Convert the received I2C message format (transparent) and
store it into gI2C_RX_Element (I2C slave only)

I2C transmit

processI2CTxMsg_controll
er()

Convert the gI2C_TX_Element format (protocol) to be sent
through I2C (I2C master only)

processI2CTxMsg_controll
er_ transparent()

Convert the gI2C_TX_Element format (transparent) to be sent
through I2C (I2C master only)

processI2CTxMsg_target() Convert the gI2C_TX_Element format (protocol) to be sent
through I2C (I2C slave only)

processI2CTxMsg_target_
transparent()

Convert the gI2C_TX_Element format (transparent) to be sent
through I2C (I2C slave only)

sendI2CTxMsg_controller(
) Send message through I2C (I2C master only)

sendI2CTxMsg_target() Send message through I2C (I2C slave only)

CAN receive
getCANRxMsg() Obtain the received CAN message

bridge_can.c
bridge_can.h

processCANRxMsg() Convert the received CAN message format and store the
message into gCAN_RX_Element

CAN transmit
processCANTxMsg() Convert the gCAN_TX_Element format to be sent through

CAN

sendCANTxMsg() Send message through CAN

Software Description www.ti.com

8 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

3.2 Configurable Parameters
All the configurable parameters are defined in user_define.h, which are listed in Table 3-3.

For I2C, both transparent transmission and protocol transmission are supported in this example, switching by
defining I2C_TRANSPARENT or I2C_PROTOCOL.

In transparent transmission, users can configure the default data length(I2C_TRANSPARENT_LENGTH) for
message from I2C slave to I2C master. Table 3-2 lists the number of bytes for receiving or sending with different
modes.

In protocol transmission, users can configure the ID length for different formats. Please note there is a fixed
2-byte header (0x55 0xAA) and 1-byte data length. To modify the format more, users can modify the code
directly.

#define I2C_TRANSPARENT
#ifdef I2C_TRANSPARENT
/* The format of I2C:
 * Transparent transmission - Data1 Data2 ...*/
/* data length for I2C master receiving or I2C slave transmitting*/
#define I2C_TRANSPARENT_LENGTH (8)
#else
/* The format of I2C:
 * if I2C_ID_LENGTH = 4, format is 55 AA ID1 ID2 ID3 ID4 Length Data1 Data2 ...
 * if I2C_ID_LENGTH = 1, format is 55 AA ID Length Data1 Data2 ...
 * if I2C_ID_LENGTH = 0, format is 55 AA Length Data1 Data2 ...*/
//#define I2C_ID_LENGTH (0)
//#define I2C_ID_LENGTH (1)
#define I2C_ID_LENGTH (4)
#endif

/* default address for I2C master receiving */
#define I2C_TARGET_ADDRESS (0x48)

Table 3-2. Number of Bytes for Receiving or Sending with Different I2C Modes
Parameter I2C Interface: Master I2C Interface: Slave

How many bytes are
received?

How many bytes are
sent?

How many bytes are
received?

How many bytes are
sent?

Protocol Transmission (2+I2C_ID_LENGT+1+Len
gth) bytes

(2+I2C_ID_LENGT+1+Len
gth) bytes

(2+I2C_ID_LENGT+1+Len
gth) bytes

(2+I2C_ID_LENGT+1+Len
gth) bytes

Transparent Transmission (I2C_TRANSPARENT_LE
NGTH) bytes (Length) bytes I2C stop interrupt identify

the end of message
(I2C_TRANSPARENT_LE

NGTH) bytes

For CAN, an ID or data length are included in CAN frame. Users can add another ID in data area by changing
CAN_ID_LENGTH(default value is 1). In this example, a one-byte ID is added for the I2C address.

/* The format of CAN:
 * if CAN_ID_LENGTH = 4, format is ID1 ID2 ID3 ID4 Data1 Data2 ...
 * if CAN_ID_LENGTH = 1, format is ID Data1 Data2 ...
 * if CAN_ID_LENGTH = 0, format is Data1 Data2 ...*/
//#define CAN_ID_LENGTH (0)
#define CAN_ID_LENGTH (1)
//#define CAN_ID_LENGTH (4)

www.ti.com Software Description

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

Table 3-3. Configurable Parameters
Parameter Optional Value Description

#define I2C_TRANSPARENT Define / Not define Enables the I2C transparent transmission.

#define I2C_PROTOCOL Define / Not define Enables the I2C protocol transmission.

#defineI2C_TRANSPARENT_L
ENGTH (8)

Default data length for message from I2C slave to I2C master. Only available
when I2C_TRANSPARENT is defined. In this case, default value is eight

bytes.

#define
I2C_TARGET_ADDRESS (0x48)

Default I2C slave address for message from I2C slave to I2C master. In this
case, default value is 0x48

#define I2C_ID_LENGTH (4) 0/1/4
Optional I2C ID length, which is related to the ID area in protocol. Only

available when I2C_PROTOCOL is defined. In this case, default value is four
bytes.

#define CAN_ID_LENGTH (0) 0/1/4 Optional CAN ID length, which is related to the ID area in protocol. In this
case, default value is one byte

#define
TRANSMIT_DATA_LENGTH

(12)
<=64 Size of data area. If the received message contains more data than this

value, this can result in data loss

#define C2I_FIFO_SIZE (8) Size of CAN to I2C FIFO. Note the usage of SRAM.

#define ItoC_FIFO_SIZE (8) Size of I2C to CAN FIFO. Note the usage of SRAM.

#define
DEFAULT_I2C_ORIGIN_ID

(0x00)
Default value for I2C origin ID

#define
DEFAULT_I2C_DESTINATION_I

D (0x00)
Default value for I2C destination ID

#define
DEFAULT_CAN_ORIGIN_ID

(0x00)
Default value for CAN origin ID

#define
DEFAULT_CAN_DESTINATION

_ID (0x48)
Default value for CAN destination ID

Software Description www.ti.com

10 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

3.3 Structure of Custom Element
Custom_Element is the structure defined in user_define.h Figure 2-5 shows this structure.

Origin Identifier indicates the origin of the message. The following are the examples (CAN_ID_LENGTH =1,
I2C_ID_LENGTH =4).
• Example 1 - CAN interface receive and transmit

1. When the CAN-I2C bridge receives a CAN message, the ID from CAN frame is the Origin Identifier,
which indicates where the message comes from.

2. When the CAN-I2C bridge transmits a CAN message, Origin Identifier is 1-byte ID in
CAN(CAN_ID_LENGTH is set to 1 default), which indicates where the message comes from.

• Example 2 - I2C interface receive and transmit(I2C protocol transmission)
1. When the CAN-I2C bridge receives an I2C message (I2C protocol transmission) and if I2C works

as the master, I2C_TARGET_ADDRESS is the Origin Identifier, which indicates where the message
comes from. If I2C works as a slave and the I2C master does not have an address, the
DEFAULT_I2C_ORIGIN_ID is the Origin Identifier.

2. When the CAN-I2C bridge transmits an I2C message (I2C protocol transmission), the Origin Identifier is
a 4-byte ID in I2C data (I2C _ID_LENGTH is set to 4 default), which indicates where the message comes
from.

• Example 3 - I2C interface receive and transmit(I2C transparent transmission)
1. When the CAN-I2C bridge receives an I2C message (I2C transparent transmission), and if I2C

works as a master, the I2C_TARGET_ADDRESS is the Origin Identifier, which indicates where the
message comes from. If I2C works as a slave, and if the I2C master does not have an address,
DEFAULT_I2C_ORIGIN_ID is the Origin Identifier.

2. When the CAN-I2C bridge transmits an I2C message (I2C transparent transmission), Origin Identifier is
ignored (transparent transmission does not have an ID area).

Destination Identifier indicates the destination of the message. The following are the
examples(CAN_ID_LENGTH =1, I2C_ID_LENGTH =4).

• Example 1 - CAN interface receive and transmit
1. When the CAN-I2C bridge receives a CAN message, a 1 byte ID from the CAN data area

(CAN_ID_LENGTH is set to 1 default) is the Destination Identifier, which indicates the destination of
the message(I2C address).

2. When the CAN-I2C bridge transmits a CAN message, the Destination Identifier is the CAN ID in the CAN
frame. In this example, 11 bits or 29 bits are both supported.

• Example 2 - I2C interface receive and transmit(I2C protocol transmission)
1. When the CAN-I2C bridge receives an I2C message (I2C protocol transmission), a 4-byte ID from I2C

data is the Destination Identifier (I2C_ID_LENGTH is set to 4 default). The CAN transmit requires ID
information.

2. When the CAN-I2C bridge transmits an I2C message (I2C protocol transmission), and if I2C works as a
master, the Destination Identifier is the I2C address. If the I2C works as a slave, Destination Identifier is
ignored. (Use the IO to trigger the master for a message.)

• Example 3 - I2C interface receive and transmit(I2C transparent transmission)
1. When the CAN-I2C bridge receives an I2C message (I2C transparent transmission), the

DEFAULT_I2C_DESTINATION_ID is the Destination Identifier. (Transparent transmission does not have
ID area). The CAN transmit requires ID information.

2. When the CAN-I2C bridge transmits an I2C message (I2C transparent transmission), and if I2C works as
a master, Destination Identifier is the I2C address. If I2C works as a slave, the Destination Identifier is
ignored (Use the IO to trigger the master for a message).

www.ti.com Software Description

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

/*user-defined information storage structure */
typedef struct {
 /*! Origin Identifier, indicating the origin of the message */
 uint32_t origin_id;
 /*! Destination Identifier, indicating the destination of the message */
 uint32_t destination_id;
 /*! Data Length Code */
 uint8_t dlc;
 /*! Data bytes */
 uint8_t data[TRANSMIT_DATA_LENGTH];
} Custom_Element;

Software Description www.ti.com

12 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

3.4 Structure of FIFO
Custom_FIFO is the structure defined in user_define.h. Custom_FIFO is also shown in Figure 2-5.

typedef struct {
 uint16_t fifo_in;
 uint16_t fifo_out;
 uint16_t fifo_count;
 Custom_Element *fifo_pointer;
} Custom_FIFO;

gCan2I2c_FIFO and gI2c2Can_FIFO are defined in main.c. Note the usage of SRAM, which is related to
C2I_FIFO_SIZE, ItoC_FIFO_SIZE and the size for Custom_Element.

/* Variables for ItoC_FIFO
 * ItoC_FIFO is used to temporarily store message from I2C to CAN */
Custom_Element gItoC_FIFO[ItoC_FIFO_SIZE];
Custom_FIFO gI2c2Can_FIFO = {0, 0, 0, gItoC_FIFO};

/* Variables for C2I_FIFO
 * C2I_FIFO is used to temporarily store message from CAN to I2C */
Custom_Element gC2I_FIFO[C2I_FIFO_SIZE];
Custom_FIFO gCan2I2c_FIFO = {0, 0, 0, gC2I_FIFO};

www.ti.com Software Description

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

3.5 I2C Receive and Transmit (Transparent Transmission)
In general, the I2C master controls the I2C communication, and the I2C slave cannot trigger slave-to-master
communication. In this design, another IO is used. The IO pull-down of the slave notifies the master that there is
information to be sent. The user can modify the pin or remove the IO function as required.

For I2C receive, there are three global variables defined in bridge_i2c.c.

uint8_t gI2CReceiveGroup[I2C_RX_SIZE];
Custom_Element gI2C_RX_Element;
uint16_t gGetI2cRxMsg_Count;

The following is the process for the I2C master receive. An IO interrupt is used to detect the IO pull-down.

1. In IO interrupt, call readI2CRxMsg_controller() to send a read request to the I2C slave for
I2C_TRANSPARENT_LENGTH) bytes.

2. Call getI2CRxMsg_controller_transparent() to store a message into gI2cReceiveGroup. Message reception
is finished when (I2C_TRANSPARENT_LENGTH) bytes are received.

3. Call processI2CRxMsg_controller_transparent() to extract data from gI2cReceiveGroup and the store
message into gI2C_RX_Element.

4. Place gI2C_RX_Element into gI2c2Can_FIFO.

The following is the process for I2C slave receive.

1. Call getI2CRxMsg_target_transparent() to store message into gI2cReceiveGroup. Message receiving is
finished when I2C stop interrupt occurs(I2C STOP condition).

2. Call processI2CRxMsg_target_transparent() to extract data from gI2cReceiveGroup and store the data in
gI2C_RX_Element.

3. Place gI2C_RX_Element into gI2c2Can_FIFO.

For the I2C transmit, there are four global variables defined in bridge_i2c.c.

uint8_t gI2cTransmitGroup[I2C_TX_SIZE];
Custom_Element gI2C_TX_Element;
uint32_t gTxLen, gTxCount;

The following is the process for I2C master/slave transmit.

1. Obtain gI2C_TX_Element from gCan2I2c_FIFO.
2. Call processI2CTxMsg_controller_transparent() and processI2CTxMsg_target_ transparent() to receive data

from gI2C_TX_Element and store the message into gI2cTransmitGroup.
3. Call sendI2CTxMsg_controller() and sendI2CTxMsg_target() to transmit gI2cTransmitGroup through the

I2C. For the I2C slave, an IO is used to trigger the master to read from the slave, and only
(I2C_TRANSPARENT_LENGTH) bytes are sent.

The functions for master mode or slave mode are both included in bridge_i2c.c.

Software Description www.ti.com

14 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

3.6 I2C Receive and Transmit (Protocol Transmission)
In general, the I2C master controls the I2C communication, and the I2C slave cannot trigger slave-to-master
communication. In this design, another IO is used. The slave's IO pull-down notifies the master that there is
information to be sent. Users can modify the pin or remove the IO function as required.

For I2C receive, there are two global variables defined in bridge_i2c.c.

uint8_t gI2CReceiveGroup[I2C_RX_SIZE];
Custom_Element gI2C_RX_Element;

The following is the process for I2C master receive. IO interrupt is used to detect the IO pull-down.

1. In IO interrupt, call readI2CRxMsg_controller() to send a read request to the I2C slave.
2. Call getI2CRxMsg_controller() to detect a header to store the complete message in gI2cReceiveGroup.
3. Call processI2CRxMsg_controller() to extract data from gI2cReceiveGroup and store the data in

gI2C_RX_Element.
4. Place gI2C_RX_Element into gI2c2Can_FIFO.

The following is the process for the I2C slave reception.

1. Call getI2CRxMsg_target() to store the message into gI2cReceiveGroup.
2. Call processI2CRxMsg_target() to extract data from gI2cReceiveGroup and store the data into

gI2C_RX_Element.
3. Place gI2C_RX_Element into gI2c2Can_FIFO.

For I2C transmit, there are four global variables defined in bridge_i2c.c.

uint8_t gI2cTransmitGroup[I2C_TX_SIZE];
Custom_Element gI2C_TX_Element;
uint32_t gTxLen, gTxCount;

The following is the process for I2C master and slave transmission.

1. Obtain gI2C_TX_Element from gCan2I2c_FIFO.
2. Call processI2CTxMsg_controller() / processI2CTxMsg_target() to obtain data from gI2C_TX_Element and

store the message into gI2cTransmitGroup.
3. Call sendI2CTxMsg_controller() and sendI2CTxMsg_target() to transmit gI2cTransmitGroup through the I2C.

For the I2C slave, an IO is used to trigger the master to read from the slave.

The functions for master mode or slave mode are both included in bridge_i2c.c.

www.ti.com Software Description

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

3.7 CAN Receive and Transmit
For CAN receive, there are 2 global variables defined in bridge_can.c.

DL_MCAN_RxBufElement rxMsg;
Custom_Element gCAN_RX_Element;

The following is the process for CAN receive.

1. Call getCANRxMsg() to obtain the complete message from CAN message RAM to rxMsg.
2. Call processCANRxMsg() to extract information from rxMsg and store it into gCAN_RX_Element.
3. Place gCAN_RX_Element into gCan2I2c_FIFO.

For CAN transmit, there are two global variables defined in bridge_can.c.

DL_MCAN_TxBufElement txMsg0;
Custom_Element gCAN_TX_Element;

The following is the process for CAN transmit.

1. Get gCAN_TX_Element from gI2c2Can_FIFO.
2. Call processCANTxMsg() to receive information from gCAN_TX_Element and store it into txMsg0.
3. Call sendCANTxMsg() to transmit txMsg0 through CAN.

Software Description www.ti.com

16 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

3.8 Application Integration
Functions in Table 3-1 are categorized into different files. Functions for I2C reception and transmission are
included in bridge_i2c.c and bridge_i2c.h. Functions for CAN reception and transmission are included in
bridge_can.c and bridge_can.h. Structure of FIFO element is defined in user_define.h.

Users can separate functions by file. For example, if only I2C functions are required, users can reserve
bridge_i2c.c and bridge_i2c.h to call the functions.

For the basic configuration of peripherals, this project integrates the SysConfig configuration file. Users can
modify the basic configuration of peripherals by using SysConfig.

Applications requiring this functionality must include the CAN module API and the I2C module API. All API files
are included with the SDK.

Main Application

bridge_can.c
bridge_can.h

bridge_i2c.c
bridge_i2c.h

user_define.h

SysConfig CAN I2CMSPM0 Driver
Library

Bridge Module
Layer

Application

Figure 3-1. Files Required by the Software

Table 3-4 details the footprint of the CAN-I2C bridge solution in terms of Flash size and RAM size. The table and
figure below have been determined using the Code Composer Studio (Version: 12.7.1.00001) with optimization
level 2.

The user can adjust the size of the FIFO. A larger FIFO means more cache capacity, but also takes up more
RAM space. For details, please see the relevant content in Application Aspects. The user can configure the data
field size according to the actual data length. As listed in Table 3-4, using a less-byte data field can significantly
reduce RAM usage.

www.ti.com Software Description

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

Table 3-4. Memory Footprint of the CAN-I2C Bridge
Minimum required code size (bytes) Flash SRAM
CAN-I2C master bridge
(protocol transmission
ItoC_FIFO_SIZE=8
C2S_FIFO_SIZE=8
Data size = 12 bytes)

6352 1428

CAN-I2C slave bridge
(protocol transmission
ItoC_FIFO_SIZE=8
C2I_FIFO_SIZE=8
Data size = 12 bytes)

6264 1428

CAN-I2C master bridge
(protocol transmission
ItoC_FIFO_SIZE=8
C2I_FIFO_SIZE=8
Data size = 64 bytes)

6440 2572

CAN-I2C slave bridge
(protocol transmission
ItoC_FIFO_SIZE=8
C2I_FIFO_SIZE=8
Data size = 64 bytes)

6360 2572

CAN-I2C master bridge
(protocol transmission
ItoC_FIFO_SIZE=30
C2I_FIFO_SIZE=30
Data size = 12 bytes)

6456 2484

CAN-I2C slave bridge
(protocol transmission
ItoC_FIFO_SIZE=30
C2I_FIFO_SIZE=30
Data size = 12 bytes)

6368 2484

Software Description www.ti.com

18 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

4 Hardware
By using a CAN analyzer, users can send and receive messages on the CAN side. As a demonstration, two
LaunchPads can be used as two CAN-I2C bridges (one I2C master and one I2C slave) to form a loop. When the
CAN analyzer sends CAN messages through the master LaunchPad™, the analyzer receives CAN messages
from the slave LaunchPad. Figure 4-1shows the basic structure. Note that CAN transceivers are required to
construct a CAN bus. Figure 4-2 shows the messages sent and received by CAN analyzer for the demo.

The accompanying demo uses two LaunchPads, a TCAN1046EVM and a CAN analyzer. TCAN1046EVM is a
high-speed dual channel CAN transceiver evaluation module. Figure 4-3 shows the connection of the demo. For
the LaunchPad, PA12 is used for the CAN transmit and PA13 is used for the CAN receive. PA12 and PA13 must
be connected to the TX pin and the RX pin of the TCAN1046EVM. PB2 is used for I2C SCL (Serial Clock line).
PB3 is used for I2C SDA (Serial Data line). A PB20 is used for IO trigger from a I2C slave to the master.

Since TCAN1046 supports level shifting, VCC must be connected to 5V and VIO must be connected to 3.3V.
The termination on the CAN bus (CANH and CANL) must be configured with the J2 (or J3) and J6 (or
J8) jumpers. Each jumper adds 120Ω termination to the respective bus. For more information, see related
documentation.

CAN

Buffer

I2C
controller

CAN
transceiver

CAN

Buffer

I2C
target

CAN
transceiver

Terminal

Figure 4-1. Basic Structure of Accompanying Demo

www.ti.com Hardware

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

Figure 4-2. Messages Sent and Received by CAN Analyzer for the Demo(CAN_ID_LENGTH = 0)

CAN
analyzer

TCAN1046EVM

LP-MSPM0G3507

Figure 4-3. Hardware Connection of the Demo

Hardware www.ti.com

20 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

5 Application Aspects
This section describes the application-level features of the CAN-I2C bridge design and how to configure the
design to meet application requirements.

5.1 Flexible Structure
There are various configurable parameters, which have been mentioned in Section 3.2. Users can configure
CAN and I2C packet frame, the size of the FIFO, and the maximum size of data area by modifying these
parameters, which are all defined in user_define.h.

Users can also modify the define of Custom_Element in user_define.h. Entries can be increased or decreased
based on application and storage requirements.

/*user-defined information storage structure */
typedef struct {
 /*! Origin Identifier, indicating the origin of the message */
 uint32_t origin_id;
 /*! Destination Identifier, indicating the destination of the message */
 uint32_t destination_id;
 /*! Data Length Code */
 uint8_t dlc;
 /*! Data bytes */
 uint8_t data[TRANSMIT_DATA_LENGTH];
} Custom_Element;

The reception and transmission of the two communication interfaces are separated. Messages are delivered
through FIFO. Users can make changes to the structure. For example, users can make messages follow
a specific format or even a specific communication protocol. The structure can be divided into a one-way
transmission according to Figure 2-3.

5.2 Optional Configuration for I2C
The I2C module acts as a master or slave interface for synchronous serial communication with peripheral
devices and other controllers. The design provides with one code for CAN-I2C bridge (I2C master) and another
code for CAN-I2C (I2C slave).

Besides, users can configure various functions of the I2C module. By using SysConfig, users can change the
basic configuration of I2C. For more configuration, see related documentation.

5.3 Optional Configuration for CAN
The CAN module of the MSPM0 conforms with CAN Protocol 2.0 A, B and ISO 11898-1:2015. Users can
configure various functions of the CAN module. By using SysConfig, users can change the basic configuration of
CAN. (For example, the data transmission rate).

The code provided has an optional configuration for the CAN ID. The sample code defaults to an 11-bit ID
(standard ID). The configuration can be changed by modifying user_define.h.

• Add #define CAN_ID_EXTEND to enable a 29-bit ID (Extended ID).

This sample code supports carrying 64 bytes of data in a single frame. Users can configure the appropriate data
size according to application requirements, which can further reduce the RAM space occupied by the FIFO.

www.ti.com Application Aspects

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 21

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

5.4 CAN Bus Multinode Communication Example
CAN communication is a bus communication. Users can use this CAN-I2C bridge design to test the multinode
communication of the CAN bus. Figure 5-1 shows the basic structure. When the user sends a message to the
CAN bus through any CAN-I2C bridge, the message is read back from other nodes immediately.

At least three LaunchPads need to be used. Each CAN communication on the LaunchPad requires a
transceiver. The connection between the LaunchPad and the transceiver is shown in Figure 4-3.

The CAN module of the MSPM0 supports hardware filtering to select messages with specific IDs. Note hardware
filtering is not performed by default in this sample code. The user can configure hardware filtering. For specific
configuration, see related documentation.

MSPM0

CAN
transceiver

MSPM0

CAN
transceiver

MSPM0

CAN
transceiver

Terminal 2Terminal 1

CAN BUS

CAN

I2C

CAN

I2C

CAN

I2C

Terminal 3

Figure 5-1. Basic Structure of Multinode Communication

Application Aspects www.ti.com

22 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

6 Summary
This document introduces the implementation of the CAN to I2C bridge, including structure, function definition,
interface usage and application aspects. MSPM0 can act as a translator between the CAN and the I2C, allowing
for transmission and reception of information on one interface and to receive and send the information on the
other interface.

www.ti.com Summary

SLAAEN6 – JUNE 2024
Submit Document Feedback

Bridge Design between CAN and I2C with MSPM0 MCUs 23

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

7 References
• Bridge Solution between CAN and UART with MSPM0 MCUs
• Bridge Solution between CAN and SPI with MSPM0 MCUs
• Texas Instruments, CAN to UART Bridge, subsystem design.
• Texas Instruments, CAN to SPI Bridge, subsystem design.
• Texas Instruments, CAN to I2C Bridge, subsystem design.
• Download the MSPM0 SDK
• Texas Instruments, SysConfig tool, configuration tool.

References www.ti.com

24 Bridge Design between CAN and I2C with MSPM0 MCUs SLAAEN6 – JUNE 2024
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/lit/pdf/slaaen5
https://www.ti.com/lit/sd/slaaej2/slaaej2.pdf
https://www.ti.com/lit/sd/slaaej3/slaaej3.pdf
https://www.ti.com/lit/sd/slaaej4/slaaej4.pdf
https://dev.ti.com/tirex/explore/node?node=A__ALyPeNcgTQHHgrTzIpVMFA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN6&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Bridge Between CAN and I2C

	2 Implementation
	2.1 Principle
	2.2 Structure

	3 Software Description
	3.1 Software Functionality
	3.2 Configurable Parameters
	3.3 Structure of Custom Element
	3.4 Structure of FIFO
	3.5 I2C Receive and Transmit (Transparent Transmission)
	3.6 I2C Receive and Transmit (Protocol Transmission)
	3.7 CAN Receive and Transmit
	3.8 Application Integration

	4 Hardware
	5 Application Aspects
	5.1 Flexible Structure
	5.2 Optional Configuration for I2C
	5.3 Optional Configuration for CAN
	5.4 CAN Bus Multinode Communication Example

	6 Summary
	7 References

