
Application Note
Bridge Design between CAN and UART with MSPM0
MCUs

Yuhao Zhao

ABSTRACT

This application note introduces a CAN to UART bridge. The document describes the structure and behavior of
a CAN to UART bridge. This document details software implementation, hardware connection, and application
usage. Users can configure the bridge by modifying the predefine. Relevant code is also provided.

Table of Contents
1 Introduction...3

1.1 Bridge Between CAN and UART..3
2 Implementation... 4

2.1 Principle... 4
2.2 Structure...5

3 Software Description..9
3.1 Software Functionality..9
3.2 Configurable Parameters... 9
3.3 Structure of Custom Element... 11
3.4 Structure of FIFO... 12
3.5 UART Receive and Transmit (Transparent Transmission)...12
3.6 UART Receive and Transmit (Protocol Transmission)...12
3.7 CAN Receive and Transmit..14
3.8 Application Integration..15

4 Hardware... 16
5 Application Aspects... 18

5.1 Flexible structure..18
5.2 Optional Configuration for CAN ...18
5.3 CAN Bus Multi-Node Communication Example... 19

6 Summary... 20
7 References.. 21

List of Figures
Figure 1-1. PC Terminal Program for Transparent Transmission.. 3
Figure 1-2. PC Terminal Program for Protocol Transmission.. 3
Figure 2-1. Basic Principle of CAN-UART Bridge..4
Figure 2-2. CAN FD Frame..5
Figure 2-3. Structure of CAN-UART Bridge: Protocol..6
Figure 2-4. Structure of CAN-UART Bridge: Transparent..7
Figure 2-5. Structure of FIFO...8
Figure 3-1. Files Required by the Software... 15
Figure 4-1. Basic Structure of Accompanying Demo...16
Figure 4-2. Hardware Connection of the Demo... 17
Figure 5-1. Basic Structure of Multi-Node Communication..19

List of Tables
Table 2-1. CAN Packet Form... 5
Table 2-2. UART Packet Form...5
Table 3-1. Functions and Descriptions...9

www.ti.com Table of Contents

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

Table 3-2. Configurable Parameters.. 10
Table 3-3. Memory Footprint of the CAN-UART Bridge...15

Trademarks
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

1 Introduction
Based on different applications, there are many communication methods between devices. MCUs today usually
support more than one communication method. For example, MSPM0 can support UART, SPI, CAN, and
so on for a specific device. When devices transfer data over different communication interfaces, a bridge is
constructed.

For CAN and UART, a CAN-UART bridge acts as a translator between the two interfaces. CAN-UART bridge
allows a device to send and receive information on one interface and receive and send the information on the
other interface.

This application note describes the software and hardware designs used in creating and using the CAN-UART
bridge. The MSPM0G3507 microcontroller (MCU) can be used as a solution by providing CAN and UART
communication interfaces. The accompanying demo uses the MSPM0G3507 with 2Mbps CANFD and 9600
baud rate UART to demonstrate transceiving data between channels.

1.1 Bridge Between CAN and UART
The CAN-UART bridge connects the CAN and UART interfaces. The example in this article can rely on the
XDS110 on the launchpad to observe the UART data with a PC. User can also send messages from a PC over
the CAN-UART bridge to the CAN bus. For CAN bus data, users can use a CAN analyzer or two LaunchPADs to
form a loop, as shown in Basic Structure of Accompanying Demo.

The example in this article supports both transparent transmission and protocol transmission. Figure 1-1 shows
the PC terminal program for transparent transmission. Figure 1-2 shows the PC terminal program for protocol
transmission.

For protocol transmission, this example specifies the UART message format. Users can also modify the format
according to application requirements. When receiving the message from UART, the message format is < 55 AA
ID1 ID2 ID3 ID4 Length Data1 Data2 ...>. Users can send data to the CAN bus from the terminal by entering
data in the same format. 55 AA is the header. ID area is four bytes. The length area is one byte, which indicates
the data length.

For transparent transmission, a configurable timeout is used for UART to detect one message. Data from UART
is filled into the data area of CAN (same in reverse). CAN ID is the default value.

Figure 1-1. PC Terminal Program for Transparent Transmission

Figure 1-2. PC Terminal Program for Protocol Transmission

www.ti.com Introduction

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

2 Implementation

2.1 Principle
In the design of this article, the CAN-UART bridge uses both CAN receive and transmit and UART receive and
transmit. So both the CAN module and the UART module must be configured. Since the message formats of
different communications are different, the CAN-UART bridge also must convert the message format.

For CAN, the CAN module supports both classic CAN and CAN FD (CAN with flexible data-rate) protocols.
The CAN module is compliant to ISO 11898-1:2015. For more information, see to the related document. For
UART, the interface can be used to transfer data between a MSPM0 device and another device with serial
asynchronous communication protocols. For more information, see the related document.

Figure 2-1 shows the basic principle of the CAN-UART bridge. Typically, the communication rate of CAN is much
higher than that of UART. For CAN FD the baud rate can be up to 5Mbps, while the UART operates at 9600bps
as in the example code. As a result, it is possible that the data received by CAN is not sent by the UART in
time. To match the rate, this scheme uses a buffer to transfer data between CAN and UART. This buffer not
only implements data caching, but also implements data format conversion. This is equivalent to adding a barrier
between the two communication interfaces. Users can add overload control actions for the overload case.

CAN

Buffer

UART

Figure 2-1. Basic Principle of CAN-UART Bridge

Implementation www.ti.com

4 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

2.2 Structure
The structure of CAN-UART bridge with protocol transmission can be seen in Figure 2-3. The CAN-UART
bridge can be divided into four independent tasks: receive from UART, receive from CAN, transmit through CAN,
transmit through UART. Two FIFOs implement bidirectional message transfer and message caching.

Figure 2-4 shows the structure of a CAN-UART bridge with transparent transmission. A timer interrupt is added
to detect the timeout as the end of one packet.

Both UART and CAN reception are set to interrupt trigger so that messages can be received in time. When
entering an interrupt, the message is first fetched through getXXXRxMsg().

For CAN, the CAN frame is a fixed format. MSPM0 supports classic CAN or CANFD. The frame for CANFD is
shown in Figure 2-2. The example in this article can define 0, one, and four bytes of additional ID in the data
area for protocol transmission.

mcan-004a

CAN FD
Arbitration

CAN FD
Arbitration

CAN FD
Data

* 17 bit CRC for data fields with up to 16 bytes

S
O
F

r
1

I
D
E

E
D
L

r
0

B
R
S

E
S
I

1 1 1 7 3
4 bit
DLC

0 - 64 bytes 21* bit
CRC

11 bit Identifier

Arbitration Field Control Field Data Field CRC Field ACK EOF Int. Bus Idle

Figure 2-2. CAN FD Frame

Table 2-1. CAN Packet Form
ID Area Data

Protocol Transmission 4/1/0 bytes (Data Length) Bytes

For UART protocol transmission, messages are identified based on serial frame information. The UART
message format is listed in UART Packet Form.

Table 2-2. UART Packet Form
Header ID Area Data Length Data

Protocol
Transmission 0×55 0×AA 4/1/0 bytes 1 byte (Data Length) bytes

Transparent
Transmission — — — (Data Length) bytes

The header is a fixed hex number combined 0x55 0xAA, which means the start of the group. ID area occupies
four bytes by default to match CAN ID, which can be configured as one byte or the ID area does not exist. The
data length area occupies one byte. After Data Length area, a certain length of data is followed. This format is
provided as an example. Users can modify the format according to application requirements.

For UART transparent transmission, messages are identified when timeout occurs. All bytes are regarded as
pure data. The default value is the load for packet information. (For example, ID).

After receiving the message, processXXXRxMsg() converts the format of the message and stores the message
in the FIFO as a new element. The format of the FIFO element is shown in Figure 2-5. In the format of the FIFO
element, there are There are four categories in the FIFO element: Origin_ID, Destination ID, Data Length and
Data. Users can also change the message items according to application requirements. In addition, this scheme
also checks whether the FIFO is full for overload control. Users can add overload control actions according to
application requirements.

www.ti.com Implementation

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

Both CAN and UART transmissions are performed in the main function. When it is detected that the FIFO is not
empty, the FIFO element is fetched. The message is formatted and sent. For CAN, the CAN frame is a fixed
format. For UART, messages are sent in the format as described in CAN Packet Form. In the design of this
article, UART TX interrupt is used to fill the data into the UART TX buffer.

Interrupt

Receive message from UART

Receive message from CAN

Main()

Transmit message to CAN

Transmit message to UART

UART TX Interrupt

getUartRxMsg

processUartRxMsg

getCANRxMsg

processCANRxMsg

gUart2Can_FIFO

gCan2Uart_FIFO

Overload control

Overload control

processCANTxMsg

sendCANTxMsg

processUartTxMsg

start sendUartTxMsgsendUartTxMsg

Figure 2-3. Structure of CAN-UART Bridge: Protocol

Implementation www.ti.com

6 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

Interrupt

Receive message from UART

Receive message from CAN

Main()

Transmit message to CAN

Transmit message to UART

UART TX Interrupt

Timer Zero Interrupt

getUartRxMsg

getCANRxMsg

processCANRxMsg

gUart2Can_FIFO

gCan2Uart_FIFO

Reload Timer

Overload control

processCANTxMsg

sendCANTxMsg

processUartTxMsg

start sendUartTxMsgsendUartTxMsg

processUartRxMsg

Overload control

Figure 2-4. Structure of CAN-UART Bridge: Transparent

The structure of FIFO can be seen in Figure 2-5. Each FIFO uses three global variables to indicate the FIFO
status. For gUart2Can_FIFO, gUart2Can_FIFO.fifo_in indicates the write position, gUart2Can_FIFO.fifo_out
indicates the read position,and gUart2Can_FIFO.fifo_Count indicates the number of elements in the
gUart2Can_FIFO.

If the gUart2Can_FIFO is empty, gUart2Can_FIFO.fifo_in equals the gUart2Can_FIFO.fifo_out, and the
gUart2Can_FIFO.fifo_count is zero.

When performing processUartRxMsg(), a new message from UART is stored to gUart2Can_FIFO. So the
gUart2Can_FIFO.fifo_in moves to the next position, and the gUart2Can_FIFO.fifo_count is incremented by one.

When transmitting a message from gUart2Can_FIFO to CAN, gUart2Can_FIFO.fifo_out moves to the next
position, and the gUart2Can_FIFO.fifo_count subtracts one. gCan2Uart_FIFO is similar to gUart2Can_FIFO.

www.ti.com Implementation

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

Interrupt

Receive
message
from
UART

Receive
message
from
CAN

Main()

Transmit
message
to CAN

Transmit
message
to UART

gUart2Can_FIFO.
fifo_out

0

1

2

34

5

6

7

gUart2Can_FIFO.
fifo_count = 2

/*user-defined information storage structure */
typedef struct {
 /*! Origin Identifier, indicating the origin of the message */
 uint32_t origin_id;
 /*! Destination Identifier, indicating the destination of the message*/
 uint32_t destination_id;
 /*! Data Length Code */
 uint8_t dlc;
 /*! Data bytes */
 uint8_t data[TRANSMIT_DATA_LENGTH];
} Custom_Element;

gUart2Can_FIFO

gCan2Uart_FIFO

gUart2Can_FIFO.
fifo_out++

gUart2Can_FIFO.
fifo_count--

gUart2Can_FIFO.
fifo_in

gUart2Can_FIFO.
fifo_in++

gUart2Can_FIFO.
fifo_count++

gCan2Uart_FIFO.
fifo_out++

gCan2Uart_FIFO.
fifo_count--

gCan2Uart_FIFO.
fifo_in++

gCan2Uart_FIFO.
fifo_count++

Figure 2-5. Structure of FIFO

Implementation www.ti.com

8 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

3 Software Description

3.1 Software Functionality
Figure 2-3 shows the function design. The functions are listed in Table 3-1 .

Table 3-1. Functions and Descriptions
Tasks Functions Description Location

UART receive
getUartRxMsg() Receive the received UART message

bridge_uart.c
bridge_uart.h

processUartRxMsg() Convert the received UART message format and store the
message into gUART_RX_Element

UART transmit
processUartTxMsg() Convert the gUART_TX_Element format to be sent through

UART

sendUartTxMsg() Send message through UART

CAN receive
getCANRxMsg() Receive the received CAN message

bridge_can.c
bridge_can.h

processCANRxMsg() Convert the received CAN message format and store the
message into gCAN_RX_Element

CAN transmit
processCANTxMsg() Convert the gCAN_TX_Element format to be sent through

CAN

sendCANTxMsg() Send message through CAN

3.2 Configurable Parameters
All the configurable parameters are defined in user_define.h, which are listed in Configurable Parameters.

For UART, both transparent transmission and protocol transmission are supported in this example. These
functions can switch by defining UART_TRANSPARENT or UART_PROTOCOL.

In transparent transmission, users can configure timeout for detecting one UART message receiving done.

In protocol transmission, users can configure the ID length for different formats. Please note there is a fixed
2-byte header (0×55 0×AA) and 1 byte data length. To modify the format more, users can require modifying the
code directly.

#define UART_TRANSPARENT
#ifdef UART_TRANSPARENT
/* The format of Uart:
 * Transparent transmission - Data1 Data2 ...*/
#define UART_TIMEOUT (0x4000) //timeout 250ms
#else
#define UART_PROTOCOL
/* The format of Uart:
 * if UART_ID_LENGTH = 4, format is 55 AA ID1 ID2 ID3 ID4 Length Data1 Data2 ...
 * if UART_ID_LENGTH = 1, format is 55 AA ID Length Data1 Data2 ...
 * if UART_ID_LENGTH = 0, format is 55 AA Length Data1 Data2 ...*/
//#define UART_ID_LENGTH (0)
//#define UART_ID_LENGTH (1)
#define UART_ID_LENGTH (4)
#endif

For CAN, ID and data length are included in CAN frame. Users can add another ID in the data area by changing
the CAN_ID_LENGTH. (Default value is 0).

/* The format of CAN:
 * if CAN_ID_LENGTH = 4, format is ID1 ID2 ID3 ID4 Data1 Data2 ...
 * if CAN_ID_LENGTH = 1, format is ID Data1 Data2 ...
 * if CAN_ID_LENGTH = 0, format is Data1 Data2 ...*/
#define CAN_ID_LENGTH (0)
//#define CAN_ID_LENGTH (1)
//#define CAN_ID_LENGTH (4)

www.ti.com Software Description

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

Table 3-2. Configurable Parameters
Parameter Optional Value Description

#define UART_TRANSPARENT Define / Not defined Enable the UART transparent transmission.

#define UART_PROTOCOL Define / Not defined Enable the UART protocol transmission.

#define UART_TIMEOUT
(0x4000)

Timeout =
UART_TIMEOUT / 32768

s

Timeout to indicate one UART message receiving done.Only available when
UART_TRANSPARENT is defined. In this case, default value is 250ms.

#define UART_ID_LENGTH (4) 0/1/4
Optional UART ID length, which is related to the ID area in protocol. Only

available when UART_PROTOCOL is defined. In this case, the default value
is four bytes.

#define CAN_ID_LENGTH (0) 0/1/4 Optional CAN ID length, which is related to the ID area in protocol. In this
case, default value is 0 bytes.

#define
TRANSMIT_DATA_LENGTH

(12)
<=64 Size of data area. If the received message contains more data than this

value, data loss can occur.

#define C2U_FIFO_SIZE (8) Size of CAN to Uart FIFO. Note the usage of SRAM.

#define U2C_FIFO_SIZE (8) Size of Uart to CAN FIFO. Note the usage of SRAM.

#define
DEFAULT_UART_ORIGIN_ID

(0x00)
Default value for UART origin ID

#define
DEFAULT_UART_DESTINATIO

N_ID (0x00)
Default value for UART destination ID

#define
DEFAULT_CAN_ORIGIN_ID

(0x00)
Default value for CAN origin ID

#define
DEFAULT_CAN_DESTINATION

_ID (0x00)
Default value for CAN destination ID

Software Description www.ti.com

10 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

3.3 Structure of Custom Element
Custom_Element is the structure defined in user_define.h. Custom_Element is also shown in Figure 2-5.

Origin Identifier indicates the origin of the message. The following are the examples(CAN_ID_LENGTH
=0,UART_ID_LENGTH =4).

• Example 1 - CAN interface receive and transmit
– When CAN-UART bridge receives a CAN message, the ID from the CAN frame is the Origin Identifier,

which indicates where the message came from.
– When CAN-UART bridge transmits a CAN message, Origin Identifier will be ignored(CAN_ID_LENGTH is

set to 0 default).
• Example 2 - UART interface receive and transmit (UART protocol transmission)

– When CAN-UART bridge receives the UART message(UART protocol transmission),
DEFAULT_UART_ORIGIN_ID is the Origin Identifier since the UART does not have an ID.

– When CAN-UART bridge transmits the UART message(UART protocol transmission), Origin Identifier will
be 4-byte ID in UART data(UART_ID_LENGTH is set to 4 default), indicating where the message came
from.

• Example 3 - UART interface receive and transmit (UART transparent transmission)
– When the CAN-UART bridge receives the UART message (UART transparent transmission),

DEFAULT_UART_ORIGIN_ID is the Origin Identifier since the UART does not have an ID.
– When the CAN-UART bridge transmits the UART message (UART transparent transmission), Origin

Identifier will be ignored (Transparent transmission does not have an ID area).

Destination Identifier indicates the destination of the message. The following are the
examples(CAN_ID_LENGTH =0,UART_ID_LENGTH =4).

• Example 1 - CAN interface receive and transmit
– When the CAN-UART bridge receives a CAN message, the DEFAULT_CAN_DESTINATION_ID is the

Destination Identifier since the CAN_ID_LENGTH is set to 0 by default. UART transmit does not require
an ID.

– When the CAN-UART bridge transmits a CAN message, Destination Identifier will be CAN ID in CAN
frame. In this example, 11 bit or 29 bit are both supported.

• Example 2 - UART interface receive and transmit (UART protocol transmission)
– When the CAN-UART bridge receives a UART message (UART protocol transmission), the 4-byte ID

from UART data is the Destination Identifier (UART_ID_LENGTH is set to 4 default). The CAN transmit
requires ID information.

– When the CAN-UART bridge transmits a UART message (UART protocol transmission), Destination
Identifier will be ignored since UART transmit does not require an ID.

• Example 3 - UART interface receive and transmit (UART transparent transmission)
– When CAN-UART bridge receives UART message (UART transparent transmission),

DEFAULT_UART_DESTINATION_ID is the Destination Identifier. (Transparent transmission does not
have an ID area). CAN transmit requires ID information.

– When the CAN-UART bridge transmits a UART message (UART transparent transmission), Destination
Identifier will be ignored since UART transmit does not require an ID.

/*user-defined information storage structure */
typedef struct {
 /*! Origin Identifier, indicating the origin of the message */
 uint32_t origin_id;
 /*! Destination Identifier, indicating the destination of the message */
 uint32_t destination_id;
 /*! Data Length Code */
 uint8_t dlc;
 /*! Data bytes */
 uint8_t data[TRANSMIT_DATA_LENGTH];
} Custom_Element;

www.ti.com Software Description

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

3.4 Structure of FIFO
Custom_FIFO is the structure defined in user_define.h. This is also shown in Figure 2-5.

typedef struct {
 uint16_t fifo_in;
 uint16_t fifo_out;
 uint16_t fifo_count;
 Custom_Element *fifo_pointer;
} Custom_FIFO;

gCan2Uart_FIFO and gUart2Can_FIFO are defined in main.c. Please note the usage of SRAM, which is related
to C2U_FIFO_SIZE, U2C_FIFO_SIZE and the size for Custom_Element.

/* Variables for C2U_FIFO
 * C2U_FIFO is used to temporarily store message from CAN to UART */
Custom_Element gC2U_FIFO[C2U_FIFO_SIZE];
Custom_FIFO gCan2Uart_FIFO = {0, 0, 0, gC2U_FIFO};

/* Variables for U2C_FIFO
 * U2C_FIFO is used to temporarily store message from UART to CAN */
Custom_Element gU2C_FIFO[U2C_FIFO_SIZE];
Custom_FIFO gUart2Can_FIFO = {0, 0, 0, gU2C_FIFO};

3.5 UART Receive and Transmit (Transparent Transmission)
For UART Receive, there are three global variables defined in bridge_uart.c.

uint8_t gUartReceiveGroup[UART_RX_SIZE];
Custom_Element gUART_RX_Element;
uint16_t gGetUartRxMsg_Count;

The following is the process for UART Receive

1. Call getUartRxMsg_transparent() to store message into gUartReceiveGroup. Message receiving is done
when timeout occurs or when the group is full (data up to TRANSMIT_DATA_LENGTH bytes)

2. Call processUartRxMsg_transparent() to extract data from gUartReceiveGroup and store the data into
gUART_RX_Element.

3. Put gUART_RX_Element into gUart2Can_FIFO.

For UART transmit, there are two global variables defined in bridge_uart.c.

uint8_t gUartTransmitGroup[UART_TX_SIZE];
Custom_Element gUART_TX_Element;

The following is the process for UART Transmit.

1. Receive gUART_TX_Element from gCan2Uart_FIFO.
2. Call processUartTxMsg_transparent() to get data from gUART_TX_Element and store it into

gUartTransmitGroup.
3. Call sendUartTxMsg() to transmit gUartTransmitGroup through UART.

3.6 UART Receive and Transmit (Protocol Transmission)
For UART receive, there are two global variables defined in bridge_uart.c.

uint8_t gUartReceiveGroup[UART_RX_SIZE];
Custom_Element gUART_RX_Element;

The following is the process for UART receive.

1. Call getUartRxMsg() to detect header to store the complete message into gUartReceiveGroup.
2. Call processUartRxMsg() to extract information from gUartReceiveGroup and store the information in

gUART_RX_Element.
3. Put gUART_RX_Element into gUart2Can_FIFO.

Software Description www.ti.com

12 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

For UART transmit, there are two global variables defined in bridge_uart.c.

uint8_t gUartTransmitGroup[UART_TX_SIZE];
Custom_Element gUART_TX_Element;

The following is the process for UART transmit.

1. Get gUART_TX_Element from gCan2Uart_FIFO.
2. Call processUartTxMsg() to get information from gUART_TX_Element and store the information into

gUartTransmitGroup.
3. Call sendUartTxMsg() to transmit gUartTransmitGroup through UART.

www.ti.com Software Description

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

3.7 CAN Receive and Transmit
For CAN receive, there are two global variables defined in bridge_can.c.

DL_MCAN_RxBufElement rxMsg;
Custom_Element gCAN_RX_Element;

The following is the process for CAN receive.

1. Call getCANRxMsg() to get complete message from CAN message RAM to rxMsg.
2. Call processCANRxMsg() to extract information from rxMsg and store it into gCAN_RX_Element.
3. Put gCAN_RX_Element into gCan2Uart_FIFO.

For CAN transmit, there are two global variables defined in bridge_can.c.

DL_MCAN_TxBufElement txMsg0;
Custom_Element gCAN_TX_Element;

The following is the process for CAN transmit.

1. Get gCAN_TX_Element from gUart2Can_FIFO.
2. Call processCANTxMsg() to get information from gCAN_TX_Element and store it into txMsg0.
3. Call sendCANTxMsg() to transmit txMsg0 through CAN.

Software Description www.ti.com

14 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

3.8 Application Integration
Functions in Table 3-1 are categorized into different files. Functions for UART receive and transmit are included
in bridge_uart.c and bridge_uart.h. Functions for CAN receive and transmit are included in bridge_can.c and
bridge_can.h. The structure of the FIFO element is defined in user_define.h.

Users can easily separate functions by file. For example, if only UART functions are required, users can reserve
bridge_uart.c and bridge_uart.h to call the functions.

For the basic configuration of peripherals, this project integrates the SysConfig configuration file. Users can
easily modify the basic configuration of peripherals by using SysConfig.

Applications requiring this functionality must include the CAN module API and UART module API. All API files
are included with the SDK download.

Main Application

bridge_can.c
bridge_can.h

bridge_uart.c
bridge_uart.h

user_define.h

SysConfig CAN UARTMSPM0 Driver
Library

Bridge Module
Layer

Application

Figure 3-1. Files Required by the Software

Table 3-3 lists the footprint of the CAN-UART bridge design in terms of flash size and RAM size. Figure 3-1 and
Table 3-3 were made using Code Composer Studio (Version: 12.7.1.00001) with optimization level 2.

The user can adjust the size of the FIFO. A larger FIFO means more cache capacity, but also takes up more
RAM space. For details, see the relevant content in Section 5. In addition, the size of the data field in this code is
set to a maximum of 64 bytes by default. The user can configure the data field size according to the actual data
length. Using an 12 byte data field can significantly reduce RAM usage, as listed in Table 3-3

Table 3-3. Memory Footprint of the CAN-UART Bridge
Minimum Required Code Size (bytes) Flash SRAM

CAN-UART bridge
(Protocol Transmission)
U2C_FIFO_SIZE=8
C2U_FIFO_SIZE = 8
Data size = 12 bytes)

6328 910

CAN-UART bridge
(Protocol Transmission)
U2C_FIFO_SIZE=8
C2U_FIFO_SIZE=8
Data size = 64 bytes)

6416 2054

CAN-UART bridge
(Protocol Transmission
U2C_FIFO_SIZE=30
C2U_FIFO_SIZE=30
Data size = 12 bytes)

6432 1966

www.ti.com Software Description

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

4 Hardware
By using the XDS110 on the launchpad, users can use the PC to send and receive messages on the UART
side. As a demonstration, two LaunchPads can be used as two CAN-UART bridges to form a loop. When the
PC sends UART messages through one of the LaunchPads, the PC receives UART messages from the other
LaunchPad™. Figure 4-1 shows the basic structure. Note that CAN transceivers are required to construct a CAN
bus.

The accompanying demo uses two LaunchPads: a TCAN1046EVM and a PC. A TCAN1046EVM is a high-
speed dual channel CAN transceiver evaluation module. Figure 4-2 shows the connection of the demo. For
LaunchPad, a PA12 is used for CAN transmit and a PA13 is used for CAN receive. PA12 and PA13 should be
connected to the TX pin and the RX pin of TCAN1046EVM. PA20 is used for UART transmit, and PA21 is used
for UART receive. Note that back-channel UART interface on eZ-FET of the LaunchPad can be used on UART
communication with PC.

For TCAN1046EVM, VCC must be connected to 5V and VIO must be connected to 3.3V since TCAN1046
supports level shifting. To build up a CAN bus, CANH1 and CANL1 must be connected to CANH2 and CANL2.
Besides, the termination on the CAN bus (CANH and CANL) must be configured with the J2 (or J3) and J6
(or J8) jumpers. Each jumper adds 120Ω termination to the respective bus. For more information, see related
documentation.

CAN

Buffer

UART

CAN
transceiver

CAN

Buffer

UART

CAN
transceiver

Terminal

Figure 4-1. Basic Structure of Accompanying Demo

Hardware www.ti.com

16 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

PC

Figure 4-2. Hardware Connection of the Demo

www.ti.com Hardware

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

5 Application Aspects
This section describes the application-level features of the CAN-UART bridge design and how to configure the
design to meet application requirements.

5.1 Flexible structure
There are various configurable parameters, which are shown in Section 3.2. Users can configure the CAN and
UART packet frame, the size of the FIFO, or the maximum size of data area by modifying these parameters
which are all defined in user_define.h.

Users can modify the definition of Custom_Element in user_define.h. Entries can be increased or decreased
based on application and storage requirements.

/*user-defined information storage structure */
typedef struct {
 /*! Origin Identifier, indicating the origin of the message */
 uint32_t origin_id;
 /*! Destination Identifier, indicating the destination of the message */
 uint32_t destination_id;
 /*! Data Length Code */
 uint8_t dlc;
 /*! Data bytes */
 uint8_t data[TRANSMIT_DATA_LENGTH];
} Custom_Element;

The reception and transmission of the two communication interfaces are separated. Messages are delivered
through the FIFO. Users can make changes to the structure (for example, make messages follow a specific
format or even a specific communication protocol). Additionally, users can split the structure into a one-way
transmission according to Figure 2-3.

5.2 Optional Configuration for CAN
The CAN module of MSPM0 conforms with CAN Protocol 2.0 A, B and ISO 11898-1:2015. Users can configure
various functions of the CAN module. By using SysConfig, users can change the basic configuration of CAN.
(For example, the data transmission rate).

The code provide with an optional configuration for the CAN ID. The sample code defaults to 11 bit ID (standard
ID). The configuration can be changed by modifying user_define.h.

• Add #define CAN_ID_EXTEND to enable 29-bit ID (Extended ID).

In addition, this sample code supports carrying 64 bytes of data in a single frame. Users can configure the
appropriate data size according to requirements, which can further reduce the RAM space occupied by the
FIFO.

Application Aspects www.ti.com

18 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

5.3 CAN Bus Multi-Node Communication Example
CAN communication is a bus communication. Users can use the CAN-UART bridge design to test the multi-node
communication of the CAN bus. Figure 5-1 shows the basic structure. When the user sends a message to the
CAN bus through any CAN-UART bridge, the message is read back from other nodes immediately.

At least three LaunchPads must be used. Each CAN communication on the LaunchPad requires a transceiver.
The connection between the LaunchPad and transceiver is shown in Figure 4-2.

The CAN module of MSPM0 supports hardware filtering to select messages with specific IDs. Note that
hardware filtering is not performed by default in this sample code. The user can configure hardware filtering.
For specific configuration, see related documentation.

MSPM0

CAN
transceiver

MSPM0

CAN
transceiver

MSPM0

CAN
transceiver

Terminal 2Terminal 1

CAN BUS

CAN

UART

CAN

UART

CAN

UART

Terminal 3

Figure 5-1. Basic Structure of Multi-Node Communication

www.ti.com Application Aspects

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

6 Summary
This document introduce the implementation of CAN to UART bridge, including structure, function definition,
interface usage and application aspects. With the example, MSPM0 can act like a translator between CAN and
UART, allowing the user to send and receive information on one interface and receive and send the information
on the other interface.

Summary www.ti.com

20 Bridge Design between CAN and UART with MSPM0 MCUs SLAAEN4 – MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

7 References
• Texas Instruments, Bridge Solution between CAN and SPI with MSPM0 MCUs, application note.
• Texas Instruments, Bridge Solution between CAN and I2C with MSPM0 MCUs, application note.
• Texas Instruments, CAN to UART Bridge, subsystem design.
• Texas Instruments, CAN to SPI Bridge, subsystem design.
• Texas Instruments, CAN to I2C Bridge, subsystem design.
• Texas Instruments, Download the MSPM0 SDK, resource explorer.
• Texas Instruments, Learn more about SysConfig, system configuration tool.

www.ti.com References

SLAAEN4 – MARCH 2025
Submit Document Feedback

Bridge Design between CAN and UART with MSPM0 MCUs 21

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slaaen5
https://www.ti.com/lit/pdf/slaaen6
https://www.ti.com/lit/sd/slaaej2/slaaej2.pdf
https://www.ti.com/lit/sd/slaaej3/slaaej3.pdf
https://www.ti.com/lit/sd/slaaej4/slaaej4.pdf
https://dev.ti.com/tirex/explore/node?node=A__ALyPeNcgTQHHgrTzIpVMFA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/tool/SYSCONFIG
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEN4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEN4&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Bridge Between CAN and UART

	2 Implementation
	2.1 Principle
	2.2 Structure

	3 Software Description
	3.1 Software Functionality
	3.2 Configurable Parameters
	3.3 Structure of Custom Element
	3.4 Structure of FIFO
	3.5 UART Receive and Transmit (Transparent Transmission)
	3.6 UART Receive and Transmit (Protocol Transmission)
	3.7 CAN Receive and Transmit
	3.8 Application Integration

	4 Hardware
	5 Application Aspects
	5.1 Flexible structure
	5.2 Optional Configuration for CAN
	5.3 CAN Bus Multi-Node Communication Example

	6 Summary
	7 References

