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ABSTRACT
This document describes how to use the I2C master function set for MSP430™ devices with the USCI
module. These functions can be used by MSP430 master devices to ensure proper initialization of the
USCI module and provide I2C transmit and receive functionality. A similar version with DMA support has
also been included. The USCI I2C master function set only supports single-master transmitter or receiver
mode using 7-bit device addressing.

Related code files and additional information can be downloaded from http://www.ti.com/lit/zip/slaa382

NOTE: The USCI I2C master package includes a demonstration application that can be used on any
MSP430 2xx device with the USCI module.
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1 Introduction
When using an MSP430 device with peripherals, I2C is often used for communication. There are several
MSP430 devices that incorporate a USCI module that supports this communication protocol.

The USCI I2C master function set offers sample code that make I2C communication easy. Instead of
having to configure the different registers of the UCSI module, the user can easily use the included
functions with well-defined parameters to start a communication. These functions serve only for setting up
the USCI module. The user is free to include low-power mode functionality to allow the CPU to be turned
off at the application level or continue calculations during I2C communication.

The USCI I2C master package includes functions that support both transmit and receive operations:
• Master transmitter (the master addresses a slave and transmits data to it)

Figure 1. Master Transmitter

• Master receiver (the master addresses a slave and receives data from it)

Figure 2. Master Receiver

Both of these functions support only 7-bit addressing.
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2 Use From C
The file TI_USCI_I2C_master.c or TI_USCI_I2C_master_dma.c must be added to the project. The first file
supports I2C communication using only the USCI module, while the second file supports I2C
communication using USCI and DMA module. The corresponding header file (TI_USCI_I2C_master.h or
TI_USCI_I2C_master_dma.h) must be included to access to the master function set.

The master program TI_USCI_I2C_master.c (or TI_USCI_I2C_master_dma.c) runs on an MSP430 master
device and is connected to an MSP430 slave running the slave program (TI_USCI_I2C_slave.c). [4]

NOTE: The master demonstration applications were developed for use with the 2xx family. However,
they can be easily modified for use with any MSP430 device with the USCI module.

NOTE: One of two different source files for the USCI master can be used, depending on whether or
not DMA operation is desired. TI_USCI_I2C_master.c and TI_USCI_I2C_master.h must be
used for operation without DMA, and TI_USCI_I2C_master_dma.c and
TI_USCI_I2C_master_dma.h must be used for operation with DMA.

The use of DMA causes some overhead in the initialization and interrupt routines for cases
when only a few bytes are sent within a protocol. Therefore, it is recommended to use the
DMA supported version if a large number of bytes are to be moved.

2.1 Example With DMA
Note that these functions with DMA support work only if an MSP430 version with an integrated DMA
module is used.

#include "msp430x26x.h"
#include "TI_USCI_I2C_master_dma.h"

unsigned char array[9] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09 };

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Disable Watchdog

_EINT(); // enable interrupts

TI_USCI_I2C_DMA_transmitinit(0x48,0x3f); // initialize USCI and DMA module
while ( TI_USCI_I2C_notready() ); // wait for bus to be free
TI_USCI_I2C_DMA_transmit(8,array); // transmit the first 8 bytes of array

LPM0; // put CPU to sleep during communication

}

This short program transmits the slave address and eight bytes of data. During the transmission of the first
seven data bytes, the CPU is in Low-Power Mode 0, which is defined in the main program. The DMA
module manages loading the seven data bytes that need to be sent. The master transmit function
configures the interrupt to trigger the transmission of the last data byte (eighth data byte in the previous
code example). This means that the CPU is running during the execution of the interrupt service routines.

2.1.1 Initialization
As shown in the previous example, configuring the device in master-transmit mode with DMA support
requires that the function TI_USCI_I2C_DMA_transmitinit is called once before transmission begins.
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Two parameters must be passed in this function. The first is the address of the slave in the I2C
communication, and the second is a prescale factor that is used to set the baud rate. The resulting baud
rate is the DCO frequency divided by the prescale value.

Calling the initialization routine while an I2C communication is still active can result in undefined behavior.

2.1.2 Sending a Protocol Frame
After initialization of the USCI module, a protocol frame can be sent. Sending a protocol frame is done
with the following steps:
1. Check whether or note the bus is free. This can be done using the TI_USCI_I2C_notready function,

which returns a number greater than zero if the bus is busy. The return value is zero when the bus is
free.

2. Use TI_USCI_I2C_DMA_transmit function to send an I2C frame. This function has two parameters: the
first determines the number of bytes to be sent, and the second is a pointer to a data array that holds
the data to be sent.

2.2 Example Without DMA
If the MSP430 device does not have an integrated DMA module, the following functions might be used.

#include "msp430x26x.h"
#include "TI_USCI_I2C_master.h"

unsigned char array[5] = { 0x1, 0x2, 0x3, 0x4, 0x5 };

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Disable Watchdog

_EINT(); // enable interrupts

TI_USCI_I2C_transmitinit(0x48,0x3f); // initialize USCI
while ( TI_USCI_I2C_notready() ); // wait for bus to be free
TI_USCI_I2C_transmit(3,array); // transmit the first 3 bytes of array
LPM0; // put CPU to sleep during communication

}

The use of the USCI I2C function set without DMA support is the same as the use of the functions
supporting DMA. The functions can be distinguished by their suffixes.
• Functions beginning with TI_USCI_I2C_DMA_ need a DMA for operation.
• Functions without DMA in their names (for example, TI_USCI_I2C_transmit) do not use DMA.

It is, of course, also possible to use the sample code without DMA support for devices with a DMA
module.
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3 Compiling the USCI I2C Master Code
This application package is distributed as source code and is intended to be compiled with a project. To
accomplish this:
• Add TI_USCI_I2C_master.c (or TI_USCI_I2C_master_dma.c for DMA support) to the project.
• Include the necessary header definitions by adding #include "TI_USCI_I2C_master.h" (or

#include "TI_USCI_I2C_master_dma.h" for DMA support) to the user file.
• Change the MSP430 device-specific include file (MSP430 standard header file) in the C file of the

function set.
• Adjust the definitions of SDA_PIN and SCL_PIN in the header file (TI_USCI_I2C_master.h or

TI_USCI_I2C_master_dma.h).

4 Included Files

TI_USCI_I2C_master.c This file contains all necessary functions to perform I2C communication
using the USCI module of the MSP430 without using the DMA.

TI_USCI_I2C_master.h This file includes the definitions of the functions and variables that are
used in TI_USCI_I2C_master.c. It also contains the precompiler
variables SDA_PIN and SCL_PIN that define which pins of the MSP430
are used for I2C. This file must be included in any C program that calls
the master function set. This file supports only USCI use without DMA.

TI_USCI_I2C_master_dma.c This file contains all necessary functions to perform I2C communication
using the USCI module of the MSP430 when using the DMA.

TI_USCI_I2C_master_dma.h This file includes the definitions of the functions and variables that are
used in TI_USCI_I2C_master_dma.c. It also contains the precompiler
variables SDA_PIN and SCL_PIN that define which pins of the MSP430
are used for I2C. This file must be included in any C program that calls
the master function set with DMA support.

4.1 Function Description

4.1.1 General Functions (TI_USCI_I2C_master_dma.h and TI_USCI_I2C_master.h)
• unsigned char TI_USCI_I2C_notready()

This function takes no parameters and returns zero if the I2C bus is not busy. If the I2C bus is busy, it
returns a value different from zero.

• unsigned char TI_USCI_I2C_slave_present(unsigned char slave_address)
This function checks whether or not a slave is connected to the I2C bus. It returns a number different
from zero if the slave replies to its address with acknowledge. Otherwise, it returns zero.
Unlike the other functions in this demonstration, this function blocks the CPU for as long as the
communication on the bus lasts. It has the following parameter:
– unsigned char slave_address

This is the slave address that is to be checked. This address may differ from the address provided
in the initialization procedure of the USCI module. Note that the 7-bit slave address is right justified.

5SLAA382A–December 2007–Revised March 2015 Using the USCI I2C Master
Submit Documentation Feedback

Copyright © 2007–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382A


Included Files www.ti.com

4.1.2 Functions With DMA Support (TI_USCI_I2C_master_dma.h)
• void TI_USCI_I2C_DMA_receiveinit(unsigned char slave_address, unsigned char prescale)

This function initializes the USCI module for master-receive operation with use of the DMA module. It
has the following parameters:
– unsigned char slave_address

This parameter sets the address of the slave in the communication. The 7-bit slave address is
right justified.

– unsigned char prescale
This parameter sets the desired baud rate. This works in an indirect manner, the resulting baud rate
is the quotient of DCO frequency and the prescale parameter.

• void TI_USCI_I2C_DMA_transmitinit(unsigned char slave_address, unsigned char prescale)
This function initializes the USCI module for master-transmit operation with use of the DMA module. It
has the following parameters:
– unsigned char slave_address

This parameter sets the address of the slave in the communication. The 7-bit slave address is
right justified.

– unsigned char prescale
This parameter sets the desired baud rate. This works in an indirect manner, the resulting baud rate
is the quotient of DCO frequency and the prescale parameter.

• void TI_USCI_I2C_DMA_receive(unsigned char byteCount, unsigned char *field)
This function starts an I2C communication in master-receiver mode with use of the DMA module. It has
the following parameters:
– unsigned char byteCount

This is the number of bytes that are to be received.
– unsigned char *field

This is a pointer into an array variable that is used to store the received bytes. Since I2C
communication works bytewise, it makes sense to use a field of bytes, for example, unsigned char
values.

• void TI_USCI_I2C_DMA_transmit(unsigned char byteCount, unsigned char *field)
This function starts an I2C communication in master-receiver mode with use of the DMA module. It has
the following parameters:
– unsigned char byteCount

This is the number of bytes that are to be transmitted.
– unsigned char *field

This is a pointer into an array of values that are to be sent. Since I2C communication works
bytewise, it makes sense to use a field of bytes, for example, unsigned char values.
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4.1.3 Functions Without DMA Support (TI_USCI_I2C_master.h)
• void TI_USCI_I2C_receiveinit(unsigned char slave_address, unsigned char prescale)

This function initializes the USCI module for master-receive operation without DMA support. It has the
following parameters:
– unsigned char slave_address

This parameter sets the address of the slave in the communication. The 7-bit slave address is
right justified.

– unsigned char prescale
This parameter sets the desired baud rate. This works in an indirect manner, the resulting baud rate
is the quotient of DCO frequency and the prescale parameter.

• void TI_USCI_I2C_transmitinit(unsigned char slave_address, unsigned char prescale)
This function initializes the USCI module for master-transmit operation without DMA support. It has the
following parameters:
– unsigned char slave_address

This parameter sets the address of the slave in the communication. The 7-bit slave address is
right justified.

– unsigned char prescale
This parameter sets the desired baud rate. This works in an indirect manner, the resulting baud rate
is the quotient of DCO frequency and the prescale parameter.

• void TI_USCI_I2C_receive(unsigned char byteCount, unsigned char *field)
This function starts an I2C communication in master-receiver mode without DMA support. It has the
following parameters:
– unsigned char byteCount

This is the number of bytes that are to be received.
– unsigned char *field

This is a pointer into an array variable that is used to store the received bytes. Since I2C
communication works bytewise, it makes sense to use a field of bytes, for example, unsigned char
values.

• void TI_USCI_I2C_transmit(unsigned char byteCount, unsigned char *field)
This function is used to start an I2C communication in master-transmit mode without DMA support. It
has the following parameters:
– unsigned char byteCount

This is the number of bytes that are to be transmitted.
– unsigned char *field

This is a pointer into an array of values that are to be sent. Since I2C communication works
bytewise, it makes sense to use a field of bytes, for example unsigned char values.
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5 Examples of USCI I2C Master Usage
The following examples use the DMA for I2C communication. If the use of the DMA is not wanted or not
possible, the corresponding functions need to be chosen.

The use of functions with and without DMA is the same. Only the function name differs by the suffix
DMA_.

5.1 Receiving n Bytes

#include "msp430x26x.h"
#include "TI_USCI_I2C_master.h"

unsigned char array[5] = { 0, 0, 0, 0, 0 };

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

_EINT(); // enable interrupts

TI_USCI_I2C_DMA_receiveinit(0x48,0x3f); // initialize USCI and DMA module
while ( TI_USCI_I2C_notready() ); // wait for bus to be free
TI_USCI_I2C_DMA_receive(3,array); // receive the first 3 bytes of array

LPM0; // put CPU to sleep during communication

}

5.2 Transmitting n Bytes

#include "msp430x26x.h"
#include "TI_USCI_I2C_master.h"

unsigned char array[5] = { 0x1, 0x2, 0x3, 0x4, 0x5 };

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Disable Watchdog

_EINT(); // enable interrupts

TI_USCI_I2C_DMA_transmitinit(0x48,0x3f); // initialize USCI and DMA module
while ( TI_USCI_I2C_notready() ); // wait for bus to be free
TI_USCI_I2C_DMA_transmit(3,array); // transmit the first 3 bytes

LPM0; // put CPU to sleep during communication

}
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5.3 Checking Presence of a Slave
This example shows how to check whether or not a slave with a certain address is connected to the I2C
bus. This function differs from the functions described in Section 5.1 and Section 5.2, in that it blocks the
CPU during its execution and returns whether or not a slave has acknowledged the master.

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

TI_USCI_I2C_transmitinit(transmit_cb,0x48,0x2f);
_EINT();

if (!TI_USCI_I2C_slave_present(0x11)) // check for slave
while (1); // trap cpu if slave with address 0x11

// doesn't answer
LPM0; // Enter LPM0 w/ interrupt

}

6 Code Size

Table 1. Code Size (IAR)

Functions Size Without DMA (Bytes) Size With DMA (Bytes)
Transmit_Initialize and Transmit 172 254
Receive_Initialize and Receive 210 312

7 References
1. MSP430x2xx Family User’s Guide (SLAU144)
2. MSP430F241x, MSP430F261x Mixed-Signal Microcontrollers (SLAS541)
3. I2C-Bus Specification and User Manual, NXP Semiconductors, 2007

(http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf)
4. Using the USCI I2C Slave (SLAA383)
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Revision History

Changes from Original (December 2007) to A Revision ................................................................................................ Page

• Added link to related code files.......................................................................................................... 1
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NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
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