
Application Report
SLAA130 –JUNE 2001

1

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

Robert Finger Texas Instruments, Inc.

ABSTRACT

This report describes various methods for connecting the ADS7842 to Texas Instruments
TMS320C5400TM DSP and TMS320C6000TM DSP platforms. The ADS7842 is a
4-channel, 12-bit analog-to-digital converter (ADC) with a maximum sampling rate of
200 kHz.

Contents
1 Introduction.. 3
2 ADS7842 ADC .. 3
3 How to Connect the ADS7842 to the TMS320C6000 DSP ... 4

3.1 Glueless Interface; External Memory Interface (EMIF) Only .. 4
3.2 Timer Used for /WR Generation .. 6
3.3 EMIF and One Multichannel Buffered Serial Port (McBSP) Transfer Channel Used.................. 9
3.4 Parallel Interface With External Control Logic.. 12

4 How to Connect the ADS7842 to the TMS320C5000 DSP ... 13
4.1 Direct Connection Between DSP and ADC ... 13
4.2 I/O-Port and One McBSP Transfer Channel Used... 15
4.3 Parallel Interface With External Control Logic.. 15

5 Sample Code.. 16
5.1 C6x11 DSP Example Program - /WR Generated by Timer.. 16
5.2 C6000 DSP McBSP Setup .. 19
5.3 C5000 DSP McBSP Setup .. 21

Figures
Figure 1. ADS7842 Block Diagram ... 3
Figure 2. Normal Operation of the ADS7842.. 4
Figure 3. Direct C6000 DSP/ADS7842 Interface... 5
Figure 4. Timer Used for /WR Generation .. 7
Figure 5. Signal Timing; /WR Generated by Timer Output.. 8
Figure 6. C6000 DSP/ADS7842 Interface With Signals Generated by McBSP........................... 10
Figure 7. McBSP Timing.. 11
Figure 8. C6000 DSP Parallel Interface With External Control Logic ... 12
Figure 9. Direct Connection Between TMS320C54xTM and ADS7842.. 14
Figure 10. Software Flow for /WR Controlled by XF-pin ... 14
Figure 11. C54xTM DSP/ADS7842 Interface With Control Signals Generated by McBSP 15

SLAA130

2 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 3

1 Introduction

This report describes how to connect the ADS7842 data converter to Texas Instruments DSP
devices of the C5000TM DSP and C6000TM DSP families. Depending on the application, some
glue logic might be needed to make use of all the features of the ADC. Several application-
specific methods are described. Software examples show how the converter can be controlled
and read by the DSP.

2 ADS7842 ADC

The ADS7842 is a complete, 4-channel, 12-bit analog-to-digital converter (ADC) with a
maximum sample rate of 200 kHz. It contains a 12-bit, capacitor-based, SAR A/D with a sample-
and-hold amplifier, an interface for microprocessors and parallel, 3-state output drivers. The
reference voltage can be varied from 100 mV to V

CC
 with a corresponding LSB resolution from 24

mV to 1.22 mV. The ADS7842 is assured down to 2.7-V operation.

Figure 1. ADS7842 Block Diagram

The ADS7842 requires an external clock to run the conversion process. This clock can vary
between 200 kHz (12 kHz throughput) and 3.2 MHz (200 kHz throughput). A conversion can be
initiated by bringing the /WR pin LOW for a minimum of 25 ns. /BUSY will go LOW 20 ns after
the falling edge of the /WR pin and return HIGH just after the ADS7842 has finished a
conversion. The conversion is initiated on the falling edge of the /WR input, with valid signals on
A0, A1, and /CS. The ADS7842 will enter the conversion mode on the first rising edge of the
external clock following the /WR pin going LOW. The conversion will start on the first clock cycle.
The MSB will be approximated by the capacitive digital-to-analog converter (CDAC) on the first
clock cycle, the 2nd MSB on the second cycle, and so on until the LSB has been decided on the
12th clock cycle.

SAR

Output
Latches

and
3-State
Drivers

3-State
Parallel
Data Bus

Comparator

ADS7842

/CS
/WR
/BUSY
CLK

/RD

CDAC

VREF

4-Channel
MUX

AIN2

AIN1

AIN0

A0 A1

AIN3

SLAA130

4 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

After /BUSY goes HIGH, the /CS and /RD pins may be brought LOW to enable the 12-bit output
bus. /CS and /RD must be held LOW for at least 25 ns following the rising edge of /BUSY. Data
will be valid 25 ns after the falling edge of both /CS and /RD and remain valid for 25 ns following
the rising edge of /CS and /RD. Both have to stay low for at least 25 ns.

Figure 2. Normal Operation of the ADS7842

Channel selection of the four analog inputs is done via the A0 and A1 address inputs. These are
latched on the rising edge of /WR. This selection does not choose the channel for the current
conversion (started with the rising clock edge during the low-phase of /WR), but for the next
conversion. A0 has to be low on the rising edge of /RD. Otherwise the device will enter power-
down mode. The analog inputs are sampled during the sample phase in cycle 13 to 16. The
internal sample and hold capacitor is loaded during this time.

3 How to Connect the ADS7842 to the TMS320C6000 DSP

3.1 Glueless Interface; External Memory Interface (EMIF) Only

This section describes a simple way to connect the ADS7842 to a C6000 DSP. In this
configuration, the asynchronous memory interface of the C6000 DSP is used. If the ADS7842 is
the only device connected to a certain CE space, no external address decode logic is needed.

1

/CS

/WR

/BUSY

/RD

A0

A1

CLK

Latching in address for next Channel

Conversion
Sample

next Channel

DATA VALID
DB0-DB11

986 7542 3 11 16151412 1310

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 5

Figure 3. Direct C6000 DSP/ADS7842 Interface

In this example, timer 0 of the DSP generates the conversion clock. It could also be generated
by an external clock source. A4 and A5 of the DSP’s address lines are used for channel
selection, as there are no A0 and A1 lines on the C6000 DSP. These lines are internally
decoded to byte enable signals.

The DSP has to write to the data converter in order to start a conversion. At conversion start,
/BUSY will go low and back high when the conversion is finished. This rising edge is recognized
by the DSP as external interrupt. In the interrupt service routine, the DSP now reads one value
from the ADC. To prevent the ADS7842 from going into power down mode, A4 (A0 on the
ADS7842) has to be low during the read.

As the write can occur at any time and has no direct relation to the conversion clock, it has to be
certain that during the low phase of /AWE, a low to high transition of the clock takes place.
Otherwise the conversion might not start. A look in the data sheet of the ADS7842 shows, that
/WR has to stay low 25 ns (t

WR_hld
) after the rising edge of the clock. On the C6000 DSP this can

easily be achieved. The low time of /AWE (strobe) can be programmed via the CE space control
registers of the EMIF. The length of the strobe has to be longer than the clock cycle time of the
conversion clock (t

CLK
) plus 25 ns.

(1) t
strobe

 ≥ t
CLK

 + t
WR_hld

(2) t
strobe

 = STROBE · t
CLK_EMIF

The EMIF CE space control register of the C6000 DSP provides 6 bits for programming the
strobe phase (STROBE in equation (2)). This value represents the number of clock cycles that
/AWE stays low. Clock cycles are in terms of CPU clock for the C6x0x DSP and ECLKOUT
cycles for the C6x1x DSP. With the 6 bits, the strobe can be 64 clock cycles maximum. For a
C6x1x DSP with an external memory clock of 100 MHz (t

CLK_EMIF
 = 10ns), this leads to 64 · 10 ns

= 640 ns. With equation (1) we get a maximum clock cycle time of 615 ns (1.62 MHz). This
means the clock input of the ADS7842 has to run with at least 1.62 MHz.

TMS320C6000
(EMIF)

/CEx

/ARE

/AWE

A5

A4

EXT_INT

TOUT0

D[11:0]

ADS7842

/CS

/RD

/WR

A1

A0

/BUSY

CLK

DB[11:0]

SLAA130

6 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

On a 200 MHz C6x0x DSP, the resulting minimum input clock frequency would be 3.39 MHz
(64 · 5 ns). This exceeds the specified maximum clock frequency of 3.33 MHz for the ADS7842.
Smaller values for the strobe phase can be used, if it is certain that a rising edge will occur
during the low phase of /WR. Connecting the conversion clock to a general-purpose input pin of
the C6000 DSP and checking the status of the pin via software might do this. The program has
to wait until CLK goes low and initiates the write command. In this case the programmer has to
know the exact number of cycles it takes from detection of the falling clock-edge to the write
command.

There is no special output enable signal on the ADS7842. The /CS and /RD signals are
internally decoded and the outputs of the ADC will only be active, when both control signals are
low. Therefore, no bus contention will occur if /ARE goes low due to an access to any other
asynchronous device. Address decode logic would be necessary, if other devices are connected
to the same CE space.

If a continuous conversion is needed, this configuration has one drawback. A new conversion
has to be started periodically, and always at the same time-difference. The DSP starts the
conversion by writing to the ADS7842. If the DSP is busy and can not start a conversion at a
certain moment of time, the conversion starts later and jitter will occur. To avoid this, the scheme
described in Section 3.2 can be used. But there, an external clock signal or additional timer of
the DSP has to be used to provide the data converter clock.

3.2 Timer Used for /WR Generation

The timer of the C6000 DSP is very flexible and can be used to generate the desired timing
behavior for the /WR signal. An external clock source, an additional timer of the DSP, or a clock
signal from one of the serial ports is needed as input for the timer.

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 7

Figure 4. Timer Used for /WR Generation

Two pins of an unused serial port are used as general-purpose output pins in this example
schematic. They control the address lines of the ADC to select the desired analog channel. If
only one analog channel is needed, both address lines could be tied to ground. In the example,
the ADS7842 is the only device connected to /CEx. Additional address decode logic has to be
used, if other devices are also connected to the same CE-space.

The C6000 DSP timers are programmed via 2 registers, a third register holds the current count
value:

Table 1. C6000 DSP Timer Registers

Name Description

Timer control register Determines the operating mode of the timer, monitors the timer status, and
controls the function of the TOUT pin.

Timer period register Contains the number of timer input clock cycles to count. This number controls
the signal frequency

Timer counter register Current value of the incrementing counter.

The data converter clock is used as the clock source for the timer. A low phase of /WR is
needed every 16 clock cycles. Therefore, the timer period register will be set to 16 in order to
achieve the maximum sample rate. Bigger values can also be used, if a slower sample rate is
needed.

TMS320C6000

/CEx

/ARE

EXT_INTx

D[11:0]

ADS7842

/CS

/RD

/WR

A1

A0

/BUSY

CLK

DB[11:0]

EMIF

TIN0

FSX

DX

McBSP
as GP I/O

GND

OR

TOUT0

Clock external or
generated by DSP

SLAA130

8 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

A detailed description of the timer control register can be found in the TMS320C6000
Peripherals Reference Guide. It has to be programmed to work in pulse mode and to invert the
timer input and the timer output in order to generate the desired /WR signal timing. The following
code segment shows an example of how to setup timer 0 for the desired operating mode:

#define TIMER0_PRD *(unsigned volatile int *)0x1940004

#define TIMER0_CTRL *(unsigned volatile int *)0x1940000

#define TIMER0_COUNT *(unsigned volatile int *)0x1940008

...

 TIMER0_CTRL = 0x00000403; /* TOUT as timer output; Timer operates in pulse */
 /* mode; external clock source; Inverted TINP */
 /* drives timer; Inverted TSTAT drives TOUT; */
 /* Timer halted */

 TIMER0_COUNT = 0; /* set count register to zero */

 TIMER0_PRD = 16; /* period register=16 (divide input clock by 16) */

 TIMER0_CTRL |= 0xc0; /* start timer 0 */

...

Section 5.1 shows a complete example program for this configuration. The program is written for
a C6211/C6711 DSP with the ADS7842 connected to CE space /CE2. External interrupt 4 is
used as input for the /BUSY signal. The analog input channel selection is done via the FSX and
DX pins of McBSP 1. These pins are configured as general-purpose output pins. The resulting
signal timing of this example program is shown in Figure 5.

Figure 5. Signal Timing; /WR Generated by Timer Output

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 9

Phase 1: The DSP outputs are in their reset state at the beginning. The timer output
(ADS_WR) will go high and both general-purpose McBSP outputs will be set to low
after initialization. The timer is started and begins to work. The DSP now waits for
the first rising edge of /BUSY.

Phase 2: The timer internally counts 16 clock cycles. After that, /WR goes low for one cycle.
This will start the first conversion. Which analog input channel is sampled is not
defined, as this is the first conversion. /BUSY goes low with the falling edge of /WR.
The address for next channel (channel 0) is latched with the rising edge of /WR. The
program is still waiting for the first rising edge of /BUSY.

Phase 3: The first conversion is finished, /BUSY goes high. This rising edge sets the interrupt
flag of the DSP, and the program detects this flag and continues. No value is read
from the ADC, as the first conversion is only a dummy conversion. The address of
the next analog channel (channel 1) is set and interrupts will now be enabled. The
second /WR low pulse starts the next conversion (now for channel 0) and the new
address (1) is latched.

Phase 4: The rising edge of /BUSY will now initiate an interrupt. First, both ADS7842 address
lines are set to zero in the interrupt service routine in order to prevent the ADC from
entering power-down mode. Afterwards the first value is read (channel 0) and the
ADC address lines are set to the next channel number (2).

Phase 5: The same as in phase 4 will happen for the next interrupts. After each read, the
address lines are set for the next channel.

The interrupt service routine will set a flag when a complete block of data has been sampled.
This signals the main program that the block contains valid data. In a real-time application,
different blocks of data would be used. One block of data would be filled with sampled data. At
the same time, the CPU could work on another block with previously sampled values. These
implementations will always be application specific.

3.3 EMIF and One Multichannel Buffered Serial Port (McBSP) Transfer Channel Used

This section describes an interface, in which the McBSP generates the clock and conversion
start signal for the data converter. Figure 6 shows the schematic.

SLAA130

10 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

Figure 6. C6000 DSP/ADS7842 Interface With Signals Generated by McBSP

A look at the timing diagram of the ADS7842 reveals that this device needs a /WR low pulse
every 16 clock cycles to operate at maximum conversion rate. The McBSP of the C6000 DSP
can easily generate both signals, clock and /WR. For the /WR signal, frame sync of a transfer
channel (FSX) can be used and programmed to stay high for 15 clock cycles and afterwards go
low for one clock cycle. A new conversion will be started every 16 clock cycles, without the need
to interrupt the DSP. Unfortunately, the DSP now can not select an analog input channel and
only one analog input can be used. But with a simple trick, it is also possible to automatically
switch between two channels; the data output signal DX can be used for channel selection.

The McBSP is configured to transfer 32-bit words, but the frame sync period will only be set to
16. This generates two frame sync signals every 32 bits. If the XFIG bit (transmit frame ignore)
in the transmit control register (XCR) is set to 1, the second frame sync after at bit 16 will be
ignored and a full 32-bit word will be transferred. The address bits have to be valid at the rising
edge of /WR. This edge is exactly between two bits of the serial output. The output might go to a
high impedance state at that moment. Therefore an R-C combination is used to keep the input
level at A1 between the bits at a constant level. A0 is tied to low in order to prevent the device
from going into power-down mode during reads. Analog inputs 1 and 3 will be sampled
priodically in this configuration. The resulting signal timing is shown in Figure 7.

TMS320C6000

/CEx

/ARE

FSX

DX

INTx

CLKX

D[11:0]

ADS7842

/CS

/RD

/WR

A1

A0

/BUSY

CLK

DB[11:0]

GND

EMIF

McBSP

OR
Gate

330p47Ω

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 11

Figure 7. McBSP Timing

The whole period lasts 32 clock cycles and one bit per clock cycle will be transferred on the DX
line. To get the desired bit pattern, a value of 0xFFFF0000 has to be written once into the data
transmit register of the McBSP. The serial port will transfer this value continuously. The rising
edge of /BUSY is used to generate the DSP interrupt. Either an interrupt service routine will be
executed, in which one value is read from the ADC, or the /INTx signal might be used to start a
DMA transfer of one word.

Section 5.2 shows in an example program for how the McBSP must be configured. It uses serial
port one. The CLKX frequency, which must be 16 times the desired sampling rate, is
programmed via the clock division factor CLKGDV in the sample rate generator register. The
value depends on the DSP frequency and the DSP type used. The CPU clock will be used as
source for the divider (f

McBSP_clock
) on the C6201 DSP and half the CPU clock on the C6211 DSP.

(3) CLKGDV = f
McBSP_clock

 / (f
sample

 · 16)

Examle:

150 MHz C6211 Æ f
McBSP_clock

 = 75 MHz
desired ADS7842 sample rate (f

sample
): 100 kHz

CLKGDV = 75 000 000 / (100 000 · 16) = 46.875

As fractional numbers are not allowed, a value of 46 or 47 must be used. Exactly 100 kHz
can not be achieved this way. The following values are possible:

CLKGDV = 46 Æ f
sample

 = 101 902 Hz

CLKGDV = 47 Æ f
sample

 = 99 734 Hz

The software example in Section 5.2 uses the function provided by the chip support library
(CSL). A global #define called SP1_CLKGDV is used in the example to set the clock divider of
the serial port.

CLKX
CLK 1 2 13 14 15 16 17 18 29 30 31 32 1 2

A1 latched A1 latched

DSP interrupt DSP interrupt

Serial data bits 31-16 Bits 15-0

FSX
/WR

DX
A1

/INTx
/BUSY

/ARE
/RD

SLAA130

12 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

3.4 Parallel Interface With External Control Logic

There are various ways that external logic could control the ADS7842. The logic would have to
implement a counter, which starts a conversion every 16 clock cycles and periodically switches
between the channels. One problem is that the DSP does not know which channel is sampled at
a certain moment of time. General-purpose I/O-pins of the DSP could be used by the control
logic to indicate to the DSP what channel is currently available. As the ADS7842 only uses 12
data bits, unused data bits could also be used for transmitting channel information. In this case,
the control logic would have to drive these data pins at every read that goes to the ADS7842.

One possible solution is shown in Figure 8:

Figure 8. C6000 DSP Parallel Interface With External Control Logic

In this example, an SN74HC163 counter is used to generate the /WR signal for the ADS7842.
The RCO output goes high every 16 clock cycles and stays high for one cycle. With the inverter,
this signal can be used for the /WR to start a new conversion. Two general-purpose output pins
of the C6000 DSP must be used for the ADS7842 address lines, if all four channels of the
ADS7842 are needed. Two pins of the serial port have been used in the example. Alternatively,
additional glue logic could be used to automatically switch between channels after each
conversion. The timing looks quite similar to Figure 7.

TMS320C6000

/CEx

/ARE

INTx

D[11:0]

ADS7842

/CS

/RD

/WR

A1

A0

/BUSY

CLK

DB[11:0]

EMIF

SN74HC163

A
B
C
D
ENP
ENT
/LOAD
/CLR

CLK RCO

QD
QC
QB
QA

GND

VCC

TOUT0

CLKR

FSR

McBSP
as GP I/O

GND

OR

Clock generated by
DSP-timer or by

external clock source

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 13

When the ADS7842 is finished with a conversion, it will initiate a DSP interrupt. At the first step
in the interrupt service routine, the general-purpose pin for A0 has to be set to low. Otherwise
the ADC would enter power-down mode after the read. Now the DSP reads one value from the
ADC. After the read, the general-purpose outputs pins must be set to make the channel
selection for the conversion following the next conversion. If only one channel is used, both
address lines of the ADS7842 can be tied to ground and no general-purpose output pin is
needed.

4 How to Connect the ADS7842 to the TMS320C5000 DSP

4.1 Direct Connection Between DSP and ADC

A direct connection between the ADS7842 and a C5000 DSP is not as easy as with the C6000
DSP. The timer output pin of the C54x can not be used as clock source for the ADC, as the
C54x timer output only operates in pulse mode. The pulse is too short for the ADS7842, which
requires a low phase of at least 150 ns. A clock signal generated by the serial port could still be
used.

The timing parameters of the C54x external bus are programmable only in a limited range. For
example, on a C5402 DSP the maximum programmable value for the software wait states is 14.
Wait states are programmable in terms of CPU clock cycles. This leads to a 140 ns (14 · 10 ns)
low phase on a 100 MHz DSP (cycle time 10 ns). But this is not enough for an ADS7842
operating at a sample rate of 200 kHz. For a 200 kHz sample rate, the ADC clock has to run at
3.2 MHz (cycle time 313 ns). This would require a low phase of 338 ns (313 ns + 15 ns hold
time) to securely start a conversion (see also Section 3.1 for a detailed description).

One way to safely start a conversion, is to use a general-purpose output pin of the C54x to
control the /WR input of the ADC. The clock signal is fed back to the DSP via a general-purpose
input pin. Figure 9 shows the schematics, the software flow to start a conversion is shown in
Figure 10.

SLAA130

14 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

Figure 9. Direct Connection Between TMS320C54xTM and ADS7842

Figure 10. Software Flow for /WR Controlled by XF-pin

The program first waits for /BIO to be high and then low. This makes certain that there is enough
time to set /WR low before the next rising edge of the conversion clock. After /WR has been set
low, the program waits for the rising edge of the clock. Afterwards it sets /WR back to high.

TMS320C54x

R/W

IOSTRB

INTx

D[11:0]

ADS7842

CS

RD

WR

A1

A0

CLK

DB[11:0]

GND

OR
Gate

BUSY

External clock (or
generated by McBSP)

XF

/BIO

/BIO=HIGH ?

/BIO=LOW ?

XF = LOW

/BIO=HIGH ?

XF = HIGH

no

no

noyes

yes

yes

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 15

4.2 I/O-Port and One McBSP Transfer Channel Used

The signals of the McBSP can be used to generate the clock and the conversion start signal, just
as described in Section 3.3 for the C6000 DSP. The following example refers to devices that
feature a ‘multichannel buffered serial port’ (McBSP). On devices which only have a BSP
(buffered serial port) instead of a McBSP, this scheme could also be used, but without the option
to make a channel selection between two channels. The BSP only allows transferring 16-bit
values. Devices with a standard serial port (SP) would need external logic. On this device frame
sync can not be programmed to be low active, but this is needed. Figure 11 shows the
schematic for a C5000 DSP with a McBSP.

Figure 11. C54xTM DSP/ADS7842 Interface With Control Signals Generated by McBSP

For a detailed description how the McBSP has to be configured to generate the necessary
signals see Section 3.3. In the example, the ADS7842 is connected to the I/O-space of the
C54x. Additional address decode logic will be required if other devices are also connected to the
I/O-space. Interrupts on the C54x are low active and react on a high to low transition on the
interrupt pin. The polarity is not programmable. An inverter between /BUSY and /INTx is
therefore needed.

Section 5.3 shows an example of how the McBSP has to be set up. The example uses the serial
port functions provided by the mcbsp54.h include file. This file comes with Code Composer
Studio™ and can be found in the directory \ti\c5400\dsk\include. The example code allows an
automatic switching between two channels of the ADS7842.

4.3 Parallel Interface With External Control Logic

An external counter could be used to initiate a new conversion start every 16 clock cycles, just
like described in Section 3.4. Various other methods are possible.

TMS320C54x

R/W

IOSTRB

FSX

DX

INTx

CLKX

D[11:0]

ADS7842

CS

RD

WR

A1

A0

CLK

DB[11:0]

GND

McBSP

OR
Gate

BUSY

SLAA130

16 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

5 Sample Code

5.1 C6x11 DSP Example Program - /WR Generated by Timer

/**/

/* ADS7842 example program for the C6x11 */

/* This program assumes that the ADC is connected to CE2. An external clock */

/* is used as conversion clock for the ADC. The clock is into the DSP via the */

/* timer 0 input pin, the timer outpin pin is used as /WR signal for the ADC. */

/* Two pins of serial port 1 (DX, FSX) are used as general purpose output */

/* pins and are connected to A0 (FSX) and A1 (DX) of the ADC. */

/**/

/* define peripherals control registers */

#define EMIF_CE2 *(unsigned volatile int *)0x1800010 /* EMIF CE2 control */

#define TIMER0_PRD *(unsigned volatile int *)0x1940004 /* Timer 0 period */

#define TIMER0_CTRL *(unsigned volatile int *)0x1940000 /* Timer 0 control */

#define TIMER0_COUNT *(unsigned volatile int *)0x1940008 /* Timer 0 count */

#define McBSP1_SPCR *(unsigned volatile int *)0x1900008 /* McBSP 1 SPCR */

#define McBSP1_PCR *(unsigned volatile int *)0x1900024 /* McBSP 1 PCR */

/* define interrupt control registers */

extern cregister volatile unsigned int CSR; /* Control Status Register */

extern cregister volatile unsigned int IFR; /* Interrupt Flag Register */

extern cregister volatile unsigned int ICR; /* Interrupt Clear Register */

extern cregister volatile unsigned int IER; /* Interrupt Enable Register */

#define ADS7842_ADDR 0xA0000000 /* define ADC address; uses whole CE2 space */

#define SMPL_BLK_SZ 128 /* define sample block size */

short ad_buffer[4][SMPL_BLK_SZ]; /* array for the sampled data */

volatile int channel; /* variable for switching between analog channels */

volatile int cnt; /* holds the current offset in the data array */

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 17

volatile int finished; /* flag to show that a block of data has been aquired */

int ChSelValue[4] = { /* array for the serial port control register to */

 0x00002800, /* program the general purpose output pins for */

 0x00002808, /* the channel selection (channels 0 to 3) */

 0x00002820,

 0x00002828

};

/**/

/* void main(void) */

/* The main routine performs the setup of interrupts, the CE space control */

/* register, timer and the pins of the serial port, used as GPIO pins. */

/* After enabling interrupts the program will sample data in an endless loop. */

/**/

void main(void)

{

 CSR = 0x0100; /* disable all interrupts */

 IER = 0x0001; /* disable all interrupts except NMI */

 ICR = 0xffff; /* clear all pending interrupts */

 /* Configure CE2 - CE2 space control register, 32-bit asynch */

 /* Read setup = 1, strobe = 2, hold = 1 */

 /* Write setup = 1, strobe = 2, hold = 1 */

 EMIF_CE2 = 0x2A340922;

 /* program timer 0 to pulse mode, clocked by external signal */

 TIMER0_CTRL = 0x00000403; /* invert input and outut, TOUT = timer out */

 TIMER0_COUNT = 0; /* timer count register set to zero */

 TIMER0_PRD = 16; /* devide input frequency by 16 */

 channel = 1;

 cnt = 0;

 finished = 0;

SLAA130

18 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

 IER = 0x00000012; /* enable INT4 (ADS7842 /BUSY) and NMI */

 McBSP1_SPCR = 0x00000000; /* configure McBSP as general purpose I/O */

 McBSP1_PCR = ChSelValue[0]; /* select channel 0 for the first conversion */

 TIMER0_CTRL |= 0xc0; /* start timer 0 */

 /* After reset it's not defined, which analog channel will be converted */

 /* first. Therefore the program waits for the first conversion to be */

 /* finished but doesn't read the resulting data word. */

 while (! (IFR & 0x0010)); /* wait for interrupt flag (/BUSY) */

 ICR=0x0010; /* clear pending interrupts */

 McBSP1_PCR = ChSelValue[1]; /* select channel 1 for the next conversion */

 CSR = CSR | 0x01; /* int global enable, ready for int's now */

 /* endless loop, just as demo... */

 while(1) {

 while(!finished); /* wait for the whole block of data */

 /* ...data processing would start here... */

 finished = 0;

 }

}

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 19

5.2 C6000 DSP McBSP Setup

/**/

/* void init_McBSP1(void) */

/* This routine sets up McBSP channel 1 to generate the desired signals as */

/* described in section xxx */

/* It uses functions of the Chip Support Library V1.2. CSL_Init() has to be */

/* called prior calling this routine. */

/**/

void init_McBSP1(void)

{

 static MCBSP_CONFIG MyConfig = {

 MCBSP_SPCR_DEFAULT,

 MCBSP_RCR_DEFAULT,

 MCBSP_MK_XCR(

 MCBSP_XCR_XWDREVRS_NA, /* no bit reversal */

 MCBSP_XCR_XWDLEN1_32BIT, /* word length 32 bit */

 MCBSP_XCR_XFRLEN1_OF(0), /* one word in phase 1 */

 MCBSP_XCR_XPHASE2_NA, /* don't care */

 MCBSP_XCR_XDATDLY_0BIT, /* transmit data delay 0 */

 1, /* MCBSP_XCR_XFIG hard coded due */

 /* to a bug in CSL Version 1.2 */

 MCBSP_XCR_XCOMPAND_MSB, /* no companding, MSB first */

 MCBSP_XCR_XWDLEN2_8BIT, /* don't care */

 MCBSP_XCR_XFRLEN2_OF(0), /* don't care */

 MCBSP_XCR_XPHASE_SINGLE /* single phase frame */

),

 MCBSP_MK_SRGR(

 MCBSP_SRGR_CLKGDV_OF(SP1_CLKGDV), /* clock divider - gloabl define */

 MCBSP_SRGR_FWID_OF(0), /* FS width - one cycle low (0+1) */

 MCBSP_SRGR_FPER_OF(15), /* FS period - 16 (15+1) cycles */

 MCBSP_SRGR_FSGM_FSG, /* FS driven by sample rate gen. */

 MCBSP_SRGR_CLKSM_INTERNAL, /* SRG driven by internal clock */

 MCBSP_SRGR_CLKSP_RISING, /* rising edge of CLKS used */

 MCBSP_SRGR_GSYNC_FREE /* CLKG running free */

),

SLAA130

20 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

 MCBSP_MCR_DEFAULT, /* don't care */

 MCBSP_RCER_DEFAULT, /* don't care */

 MCBSP_XCER_DEFAULT, /* don't care */

 MCBSP_MK_PCR(

 MCBSP_PCR_CLKRP_FALLING, /* don't care */

 MCBSP_PCR_CLKXP_FALLING, /* xmit data on falling edge */

 MCBSP_PCR_FSRP_ACTIVEHIGH, /* don't care */

 MCBSP_PCR_FSXP_ACTIVELOW, /* transmit frame sync active low */

 MCBSP_PCR_DXSTAT_0, /* don't care */

 MCBSP_PCR_CLKSSTAT_0, /* don't care */

 MCBSP_PCR_CLKRM_INPUT, /* don't care */

 MCBSP_PCR_CLKXM_OUTPUT, /* CLKX used as clock output pin */

 MCBSP_PCR_FSRM_EXTERNAL, /* don't care */

 MCBSP_PCR_FSXM_INTERNAL, /* xmit FS generated internally */

 MCBSP_PCR_RIOEN_SP, /* don't care */

 MCBSP_PCR_XIOEN_SP /* transmitter in serial port mode */

)

 };

 /* Call MCBSP_Open and open serial port 1. Handle will be returned. */

 hMcbsp = MCBSP_Open(MCBSP_DEV1, MCBSP_OPEN_RESET);

 /* Write above configuration in McBSP1 configuration registers. */

 MCBSP_ConfigA(hMcbsp,&MyConfig);

 /* Port is setup, let's enable it in steps. */

 MCBSP_EnableSrgr(hMcbsp);

 MCBSP_EnableXmt(hMcbsp);

 MCBSP_EnableFsync(hMcbsp);

 /* wait until the transmitter is ready for a sample, then write to it. */

 /* The 32 bit value contains of 16 high bits, followed by 16 low bits. */

 while (!MCBSP_Xrdy(hMcbsp));

 MCBSP_Write(hMcbsp,0xFFFF0000);

}

SLAA130

Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms 21

5.3 C5000 DSP McBSP Setup

#define DSP_FRQ 100000 /* DSP frequency in kHz */

#define AD_FRQ 150 /* AD converter sampling freq in kHz */

#define SP1_CLKGDV (DSP_FRQ/AD_FRQ/16) /* value for the clock divider */

/**/

/* void init_McBSP(short SP_Channel) */

/* */

/* This routine sets up the McBSP channel SP_channel to generate the desired */

/* signals as described in section xxx */

/**/

void init_McBSP(short SP_Channel)

{

 /* Reset transmitter and receiver of the serial port */

 MCBSP_SUBREG_BITWRITE(SP_Channel, SPCR1_SUBADDR, RRST, RRST_SZ, 0);

 MCBSP_SUBREG_BITWRITE(SP_Channel, SPCR2_SUBADDR, XRST, XRST_SZ, 0);

 /* Set the transmit word length 1 to 32 bits */

 MCBSP_SUBREG_WRITE(SP_Channel, XCR1_SUBADDR, 0x00A0);

 /* XFIG=1, transmit frame ignore set to 1 */

 MCBSP_SUBREG_WRITE(SP_Channel, XCR2_SUBADDR, 0x0004);

 /* Sample rate generator - use the defined clock division factor */

 MCBSP_SUBREG_WRITE(SP_Channel, SRGR1_SUBADDR, SP1_CLKGDV);

 /* CLK and FS generated internally. Frame period = 16 (15+1) */

 MCBSP_SUBREG_WRITE(SP_Channel, SRGR2_SUBADDR, 0x300F);

 /* CLKX is an output, FS generated by sample rate generator, FS active */

 /* low, data sampled on falling edge of CLKX */

 MCBSP_SUBREG_WRITE(SP_Channel, PCR_SUBADDR, 0x0A0A);

 /* Enable sample rate generator and frame sync */

 MCBSP_SAMPLE_RATE_ENABLE(SP_Channel);

SLAA130

22 Interfacing the ADS7842 ADC to the TMS320C5400™
and TMS320C6000™ DSP Platforms

 MCBSP_FRAME_SYNC_ENABLE(SP_Channel);

 /* Release the transmitter from reset and enable it */

 MCBSP_ENABLE(SP_Channel,2);

 /* Write data in the DXR register */

 while (!MCBSP_XRDY(SP_Channel));

 MCBSP_DXR12_WRITE(SP_Channel,0xFFFF0000);

}

References

1. Data sheet, TMS320C6201 Fixed-Point Digital Signal Processor (SPRS051)

2. TMS320C6000 Peripherals Reference Guide (SPRU190)

3. TMS320C54x DSP CPU and Peripherals Reference Set Volume 1 (SPRU131)

4. Data sheet, ADS7842 12-Bit, 4-Channel Analog To Digital Converter (SDAS103)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

