
����������� ��� �������
�������� �
 	�������� �� ���
�
����	���
��

July 1999 Advanced Analog Products
SLAA040

Application
Report

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  1999, Texas Instruments Incorporated

iii Interfacing the TLV1562 Parallel AD-Converter to the TMS320C54x DSP

Contents
1 Introduction 1.

2 The Board 1.
2.1 TMS320C54x Starter Kit 1.
2.2 TLV1562EVM 2.
2.3 ADC TLV1562 Overview 2.

2.3.1 Suggestions for the ’C54x to TLV1562 Interface 2.
2.3.2 Recyclic Architecture 3.
2.3.3 Note on the Interface, Using an External ADC Clock Drive 4.

2.4 Onboard Components 4.
2.4.1 TLC5618 – Serial DAC 4.
2.4.2 TLV5651 – Parallel DAC 5.

3 Operational Overview 6.
3.1 Reference Voltage Inputs 6.
3.2 Input Data Bits 6.
3.3 Connections Between the DSP and the EVM 7.

3.3.1 Jumpers Used on the TLV1562EVM 8.

4 The Serial DAC/DSP System 9.

5 The DSP Serial Port 10.

6 Other DSP/TLV1562 Signals 11.
6.1 DSP Internal Serial Port Operation 11.

7 Conversation Between the TLV1562 and the DSP 12.
7.1 Writing to the ADC 12.
7.2 Mono Interrupt Driven Mode Using RD 12.
7.3 Mono Interrupt Driven Mode Using CSTART 14.
7.4 Dual Interrupt Driven Mode 15.
7.5 Mono Continuous Mode 16.
7.6 Dual Continuous Mode 17.

8 Software Overview 18.
8.1 Software Development tools 18.
8.2 DSP Memory Map 18.
8.3 Programming Strategies for the ’C54x, Explanations 20.

8.3.1 Optimizing CPU Resources for Maximum Data Rates 20.
8.3.2 Address and Data Bus for I/O Tasks 20.
8.3.3 Timer Output 20.
8.3.4 Data Page Pointer 21.
8.3.5 Generating the Chip Select Signal and the CSTART Signal 21.
8.3.6 Interfacing the Serial DAC 5618 to the DSP 21.
8.3.7 Interrupt Latency 22.
8.3.8 Branch Optimization (goto/dgoto, call/dcall, ...) 22.
8.3.9 Enabling Software Modules (.if/.elseif/.endif) 23.

8.4 Software Code Explanation 23.
8.4.1 Software Principals of the Interface 23.

8.5 Flow Charts and Comments for All Software Modes 27.
8.5.1 The Mono Interrupt Driven Mode Using RD to Start Conversion 27.
8.5.2 Mono Interrupt Driven Mode Using CSTART to Start Conversion 30.
8.5.3 Dual Interrupt Driven Mode 33.
8.5.4 Mono Continuous Mode 36.

Contents

iv SLAA040

8.5.5 Dual Continuous Mode 38.
8.5.6 C-Callable With Mono Interrupt Driven Mode Using CSTART to Start Conversion 40.

8.6 Source Code 41.
8.6.1 Common Software for all Modes (except C-Callable) 41.
8.6.2 Mono Mode Interrupt Driven Software Using RD to Start Conversion 46.
8.6.3 Calibration of the ADC 53.
8.6.4 Mono Mode Interrupt Driven Software Using CSTART to Start Conversion 58.
8.6.5 Dual Interrupt Driven Mode 66.
8.6.6 Mono Continuous Mode 74.
8.6.7 Dual Continuous Mode 80.
8.6.8 C-Callable 86.

9 Summary 93.

10 References 93.

Figures

v Interfacing the TLV1562 Parallel AD-Converter to the TMS320C54x DSP

List of Figures
1 TLV1562 – DSP Interface of the EVM, Using RD or the CSTART Signal to Start Conversion 2.
2 TLV1562 – DSP Interface of the EVM, Using RD or the CSTART Signal to Start Conversion 3.
3 TLC5618 – DSP Interface 5.
4 TLC5651 – DSP Interface 5.
5 Memory Map 19.
6 Software Flow of the Mono Interrupt Driven Solution 29.
7 Flow Chart Mono Interrupt Driven Mode Using CSTART to Start Conversion 31.
8 Time Optimization (monocst1) Maximum Performance at 12 MSPS with Internal Clock 33.
9 Flow Chart Dual Interrupt Driven Mode (Using CSTART) to Start Conversion 35.
10 Flow Chart Mono Continuous Mode 37.
11 Flow Chart Dual Continuous Mode 39.

List of Tables
1 Signal Connections 7.
2 3-Position Jumpers 8.
3 2-Position Jumpers 8.
4 DSP/DAC Interconnection 9.
5 DSP Serial Port Signals and Registers 10.
6 DSP Algorithm for Writing to the ADC 12.
7 DSP Algorithm for Mono Interrupt Driven Mode Using RD 13.
8 DSP Algorithm for Mono Interrupt Driven Mode Using CSTART 14.
9 DSP Algorithm for Dual Interrupt Driven Mode 15.
10 DSP Algorithm for Mono Continuous Mode 16.
11 DSP Algorithm for Dual Continuous Mode 17.
12 Switch Settings 26.
13 Instruction in the Program Header (Step 1) 26.
14 Instruction in the Program Header (Step 1) 27.

vi SLAA040

1

Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Falk Alicke and Perry Miller

ABSTRACT
In this application report we discuss the hardware and software interface of the TLV1562,
10-bit parallel-output analog-to-digital converter (ADC) to the TMS320C54x digital signal
processor (DSP). The hardware interface board, or evaluation module (EVM)
consists of the TLV1562 10-bit ADC, a THS5651 10-bit parallel output
communication digital-to-analog converter (CommsDAC) and a TLC5618A
serial-output digital-to-analog converter (DAC).

Following the discussion of the ADC we explain the need for both the THS5651
CommsDAC and the TLC5618A serial DAC.

The application report concludes with several software application examples and
recommendations for simplifying the software through modifications of the DSP
hardware interface circuit.

1 Introduction
The analog-to-digital (A/D) interface can present a significant design problem
because hardware and software must work together across the interface to
produce a usable, complete design. This application report provides a design
solution for the interface between the TLV1562 10-bit parallel-output
analog-to-digital converter (ADC) and the TMS320C54x digital signal processor
(DSP).

The report describes the hardware and software needed to interface the ’C54x
DSP to the TLV1562 ADC, which is intended for applications, such as industrial
control and signal intelligence in which large amounts of data must be processed
quickly. The first sections describe the basic operation of the TLV1562. For
additional information see the References section at the end of this report.

2 The Board
The TLV1562 evaluation module (EVM) is a four-layer printed circuit board (PCB)
constructed from FR4 material. The PCB dimensions are 180 mm × 112 mm ×
12 mm. Ribbon cables are used to interface the TLV1562EVM to the
TMS320C54x DSK plus starter kit.

2.1 TMS320C54x Starter Kit
The starter kit simplifies the task of interfacing to the ’C54x processor. It comes
with an ADC for voice bandwidth, and GoDSP code explorer as the software tool.
A 10-MHz oscillator provides the clock signal to allow 40-MHz internal DSP clock
cycles generated by the internal DSP PLL. Therefore, the board provides 40
MIPS of processing power.

Ribbon cables are used to connect the DSP with the EVM. Detailed descriptions
of all connections are given later in this report.

CommsDAC is a trademark of Texas Instruments.

The Board

2 SLAA040

2.2 TLV1562EVM
The TLV1562EVM gives customers an easy start with employing many of the
features of this converter. A serial DAC (TLC5618A), a parallel DAC (THS5651),
and the ADC (TLV1562) make this EVM flexible enough to test the features of the
TLV1562. It also helps show how this ADC can be implemented.

2.3 ADC TLV1562 Overview
The TLV1562 is a CMOS 10-bit high-speed programmable resolution analog-to-
digital converter, using a low-power recyclic architecture.

The converter provides two differential or four single-ended inputs to interface the
analog input signals.

On the digital side, the device has a chip-select (CS), input clock (CLKIN),
sample/conversion start signal (CSTART), read signal input (RD), write signal
input (WR), and 10 parallel data I/O lines (D9:0).

The converter integrates the CSTART signal to coordinate sampling and
conversion timing without using the parallel bus. Since the TMS320C542 DSP
has no second general-purpose output, this signal is generated with the signal
(CSTART) from the address decoder.

2.3.1 Suggestions for the ’C54x to TLV1562 Interface
The following paragraphs describe two suggested interfaces between the ’C54x
and the TLV1562.

2.3.1.1 The Universal Interface

The schematic in Figure 1 shows the pin-to-pin connections between the
TLV1562 and ’C54x, realized on the EVM. This routing can test the converter in
each mode. One I/O-wait state is required for write operations to the ADC. The
read sequence from the ADC does not require any wait states because the RD
signal is generated with XF.

Address
Decoder

01

10

11

≥ 1

1: x
Divider

INT

CSTART

CS

RD

WR

CLKIN

D(0–9) D(0–9)

CLOCKOUT

R/W

IOSTRB

XF

A1

A0

INT

TLV1562 TMS320C54x

Figure 1. TLV1562 to ’C54x DSP Interface of the EVM,
Using RD or the CSTART Signal to Start Conversion

The Board

3 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

2.3.1.2 Simplification of Software Requirements Through Modified Interface

Of all the TLV1562 modes of operation, only the mono interrupt driven mode uses
the RD signal to start the conversion. This requires a very flexible handling of the
read signal and therefore has to be performed by a general-purpose output
signal. If the application excludes using the RD signal to start the conversion
(using CSTART instead). The TLV1562 RD input signal can be generated with
an OR gate, whose inputs are driven by IOSTRB and R/W signals from the DSP
(see Figure 2).

Using these connections saves the programming steps of setting/resetting RD
with the XF signal. Another advantage is having XF available to control the
CSTART signal. This saves busy times on the address bus (in Figure 1, CSTART
was generated through A0/A1.) and simplifies the software code.

CAUTION:
The time tEN(DATAOUT) between the RD high-to-low transition
(generated by the DSP) and the arrival of valid ADC output
data on the data bus is related to the capacitive load of the
bus. In most cases, the ADC come out of the 3-state mode
and supplies the correct voltage levels onto the bus lines in
less than 50 ns. Thus, the minimum number of I/O-wait states
becomes two (for tEN(DATAOUT) ≤50 ns).

Address
Decoder

01

10

11

≥ 1

1: x
Divider

INT

CSTART

CS

RD

WR

CLKIN

D(0–9) D(0–9)

CLOCKOUT

R/W

IOSTRB

A1

A0

INT

TLV1562 TMS320C54x

XF

≥ 1&

Figure 2. TLV1562 to ’C54x DSP Interface of the EVM,
Using RD or the CSTART Signal to Start Conversion

2.3.2 Recyclic Architecture
One specialty of this ADC is its recyclic architecture. Instead of limiting the device
power by the highest possible resolution at the fastest speed, this converter is
able to work at three maximum speeds for three resolutions. The highest
resolution runs at 2MSPS maximum throughput rate; 8-bit resolution
corresponds to 3MSPS, and 4-bit resolution to 7MSPS.

The Board

4 SLAA040

This feature fits well into monitoring application. For example, the ADC may have
to trigger on one event out of some channels inside an extremely small time
window and then sample the correct channel with a higher resolution, but lower
throughput to analyze this process. This feature also fits well into home security
applications or applications that must monitor several inputs simultaneously.

2.3.3 Note on the Interface, Using an External ADC Clock Drive

The TLV1562data sheet (Figure 9) shows that RD has to fall as close as possible
to the falling edge of the clock signal. The user must adhere to this timing,
otherwise the conversion result may be wrong. The user may not recognize the
erroneous result, since the ADC will signal that the conversion has finished during
the logic low transition of the INT signal. The following timing diagram shows the
interface behavior of the ADC whether the timing is correct or not. The following
figure shows what happens when the RD falling edge is timed wrong. Although
RD falls nearly 1/2 of one cycle too late, the conversion result is valid on the 5th

clock cycle.

1 2 3 4 5 6 7 8 9 10

CLK

1

RD

INT

Conversion Starts Next Sampling Starts Conversion Finished

2.4 Onboard Components

These sections describe the EVM onboard components.

2.4.1 TLC5618A – Serial DAC

This 12-bit DAC has a serial interface that can run at 20-MHz clock; therefore, it
can update the output at 1.21 MSPS. Two outputs are available on the 8-pin
package. The buffered SPI of the DSP provides the DSP interface. Using the
auto-buffer mode, updating the data on the DAC requires only four CPU
instructions/samples.

The Board

5 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Serial DAC

TLC5618A

SCLK

CS

DIN

DSP

TMS320C542

BCLKX

BCLKR

BFSX

BFSR

BDX

BDR

TLV1562 EVM Pin Connector

Figure 3. TLC5618A to ’C542 DSP Interface

2.4.2 THS5651 – Parallel Output CommsDAC

This 10-bit data converter has a parallel interface and is able to update its output
with 100 MSPS. The two outputs on the 28-pin package can each drive a current
between 2 mA and 20 mA with an output resistance >100 kΩ (ideal current
source: output impedance → ∞). The data bus and the address decoder provide
the interface to the DSP.

Parallel DAC

THS5651

CLK

D(0–9)

DSP

TMS320C542

CLKOUT

A(0–1) = 11b

D(0–9)

Buffer

Figure 4. THS5651 to C542 DSP Interface

Operational Overview

6 SLAA040

3 Operational Overview
This chapter discusses the software and hardware interface for the TLV1562.
Plus the overall operational sequence of the A/D interface is described.

3.1 Reference Voltage Inputs

The voltage difference between the VREFP and VREFM terminals determines
the analog input range, i.e., the upper and lower limits of the analog inputs that
produce the full-scale (output data all 1s) and zero-scale (output data all 0s)
readings, respectively.

For design reasons, this high-speed sampling ADC does not have a ground-
referenced input voltage range. Hence, level shifting is required unless the
application allows the signal to be ac coupled. Level shifting could be done with
single-supply op amps.

The absolute voltage values applied to VREFP, VREFM, and the analog input
should not be greater than the AVDD supply minus 1 V, or lower than 0.8 V. Other
input restrictions apply so consult the TLV1562 data sheet for further information.
The digital output is full scale when the analog input is equal to or greater than
the voltage on VREFP, and is zero scale when the input signal is equal to or lower
than VREFM.

3.2 Input Data Bits

The ADC contains the two user-accessible registers, CR0 and CR1. All user
defined features such as conversion mode, data output format or sample size are
programmed in CR0 and CR1. The data acquisition process must be started by
writing to these two registers. After this initialization, the converter processes
data in the same configuration until these registers are overwritten.

Operational Overview

7 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

3.3 Connections Between the DSP and the EVM

The following connections provide the interface between the DSP and the EVM:

Table 1. Signal Connections

DSP Signal Connector/Pin on the DSKplus cir-
cuit board

Connector/Pin on
the TLV1562EVM

ADC Signal

 General

GND Connector JP4: Pin 1, 10, 11, 12, 14,
15, 19, 20, 21, 27, 34, 35
Connector JP5: Pin 6, 10, 11, 12


J10/2,J10/4,...,J10/34
J11/4,J11/6,...,J11/26

GND

VCC JP1/32  N/A VCC

 Parallel Interface

CLKOUT JP3/2  J11/11 CLKIN

INT0 JP5/1  J11/5 INT

XF JP4/8  J11/3 RD

R/W JP4/30  J11/9 decoded to the WR line

IOSTRB JP4/36  J11/7 decoded to the WR line

A0 JP5/34  J11/2 addr. decoder for CS and CSTART

A1 JP5/35  J11/1 addr. decoder for CS and CSTART

D0 JP3/35  J10/13 D0

D1 JP3/34  J10/15 D1

D2 JP3/8  J10/17 D2

D3 JP3/12  J10/19 D3

D4 JP3/11  J10/21 D4

D5 JP3/15  J10/23 D5

D6 JP3/14  J10/25 D6

D7 JP3/18  J10/27 D7

D8 JP3/17  J10/29 D8

D9 JP3/21  J10/31 D9

 Serial Interface to the DAC TLC5618A

BCLKR JP1/14  J11/25 SCLK

BCLKX JP1/17  J11/23 SCLK

BFSR JP1/20  J11/21 CS

BFSX JP1/23  J11/19 CS

BDR JP1/26  J11/17 DIN

BDX JP1/29  J11/15 DIN

Signals D[9–0] of the TLV1562 and D[9–0] of the DSP are tied together in this
application to simplify hardware debugging during the development phase.
However, if the 2s complement feature of the DAC is to be used, it is easier to
connect D[15-6] of the DSP with D[9–0] of the ADC. A simple right shift of the
result then evaluates the result when sign extension mode (SXM) is enabled.

Operational Overview

8 SLAA040

3.3.1 Jumpers Used on the TLV1562EVM

Table 2. 3-Position Jumpers

JUMPER GENERAL DESCRIPTION PIN 1-2 PIN 2-3

W1 Connects BP/CH3 (ADC) to R45 or GND; Input not in use, grounded to reduce noise Use as single input channel3 or
differential input positive channel B

W2 Connects BM/CH4 (ADC) to R44 or GND; Input not in use, grounded to reduce noise Use as single input channel4 or
differential input negative channel B

W3 Connects RD to XF or /RD1 Logic generator is connected to the ADC DSP is connected to the ADC

W4 WR + WR1 is connected with DSP_WR or
U12-J9/3

Logic generator is connected to the ADC DSP is connected to the ADC

W5
W6
W7

The three Jumpers define the prescaling of the
CLKOUT signal to the MCB_CLK Pin, if W8 is
set to Counter-Mode

W8 MCB_CLK is connected to BUFCLK (U14) or
RD1 (U11)

Counter-Mode (MCB_CLK signal is
divided by the counter, set-up with
Jumper W(5-7)

Counter-Mode disabled (MCB_CLK is
synchronize with the CLKOUT signal)

W9 CLK input of the Counter (U2) is connected with
CLKOUT or CLKOUT/2

The counter is toggled by the DSP
system clock (signal BUFF_CLK)

The counter’s clock is prescaled by two
(toggled by half the DSP system clock
(CLKOUT2))

W10 ADC CLKIN is connected to CLK/2 or CLK/4 The ADC clock runs at a quarter of the
DSP clock frequency (10 MHz)

The ADC clock runs at half the DSP
clock frequency (20 MHz)

W11 Connects AP/CH1 (ADC) to R48 or GND; Input not in use, grounded to reduce
noise

Use as single input channel 1 or
differential input positive channel A

W12 Connects AM/CH2 (ADC) to R47 or GND; Input not in use, grounded to reduce
noise

Use as single input channel 2 or
differential input negative channel A

W13 Connects REFLO (TLV5651) to Vcc or GND Disable internal reference Enable internal reference

W14 Connects SCLK (TLC5618AA) to BCLKX or J8
(BNC)

Normal DSP mode An external clock source drives the
SCLK pin instead of the DSP

W15 Connects CLK (TLV5651) to CLKOUT (DSP) or
J7 (BNC)

Normal DSP mode An external clock source drives the CLK
pin instead of the DSP

W23 Connects CSTART to A0, A1, or XF A0 and A1 used to generate ADC
CSTART signal

XF signal connects to CSTART pin

W24 Connects DSP_RD to XF or IOSTRB, ORed with
R/W from the DSP

XF signal connected to ADC RD pin RD pin driven by IOSTRB ORed with R/W

Table 3. 2-Position Jumpers

JUMPER GENERAL DESCRIPTION PINS SHORTED PINS OPEN

W16 Connects Mode input (TLV 5651) to GND MODE 0 is chosen (binary data input) MODE 1 is chosen (2s complement
data input)

W17 Connects REFIO (TLV5651) to VREF1 or leaves
the REFIO pin decoupled to GND via a 0.1 µF
capacitor

Use as external reference voltage input Use as internal reference voltage
output with this pin terminated into
GND in series with 0.1 pF

W18 Connects DIR (U19) to GND or leaves the DIR
pin connected to WR

ADC can only write but not read to the data
bus

Normal operation mode

W19 Connects OE (U19) to GND or leaves the OE pin
connected to CS

Output driver is isolated and disabled (no
signal can bus trough the data bus)

Normal operation mode

W20 Connects BDX to BDR or leaves BDR open DSP BDR pin gets a shortcuted feedback
from the BDX (transmit) pin; normal mode

BDR remains open

W21 Connects BSFX to BSFR or leaves BCLKR open DSP BSFR pin gets a shortcuted feedback
from the BSFX (transmit) pin; normal mode

BSFR remains open

W22 Connects BCLKX backwards with BCLKR or
leaves it open

DSP BCLKR pin gets a shortcuted feedback
from the BCLKX (transmit) pin; normal mode

BCLKR remains open

W28 Connect Sleep input (TLV5651/5 GND Normal mode of operation Sleep mode seleted

The Serial DAC/DSP System

9 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

4 The Serial DAC/DSP System
The software configures the buffered DSP serial port to the 16-bit master mode
so that the DSP generates the frame sync signal at BFSX and the data clock at
BCLKX serial port terminals. Table 4 shows the connections between the DSP
and the DAC TLC5618A.

Table 4. DSP/DAC Interconnection

FROM DSP TO DSP TO DAC

BFSX BFSR CS

BCLKX CLKR I/O CLK

BDX BDR DATA IN

The following statements describe the generation and application of the
configuration and control signals.

• The DSP BCLKX output provides a 20-MHz data clock, which is a divide-by-2
of the DSP master clock.

• The DSP BDX output supplies the 16-bit control and data move to the
TLC5618A at DATA IN.

• The DSP BFSX frame synchronization signal, connected to CS, triggers the
start of a new frame of data.

After the falling edge of FSX, the next 16 data clocks transfer data into the DSP
DR terminal and out of the DX terminal. Since this DSP/DAC interface is
synchronous, the FSX signal is sent to the FSR terminal, and the CLKX is sent
to the CLKR terminal.

The DSP Serial Port

10 SLAA040

5 The DSP Serial Port
The buffered serial port provides direct communication with serial I/O devices and
consists of six basic signals and five registers. The DSP internal serial port
operation section discusses the registers.

The six signals are:

• BCLKX - The serial transmit clock. This signal clocks the transmitted data
from the BDX terminal to the DIN terminal of the TLC5618A.

• BCLKR - The serial receive clock. This signal clocks data into the DSP BDR
terminal. Since the DAC does not send any information back to the DSP, this
signal is not important.

• BDX - Data transmit. From this terminal the DSP transmits 16-bit data to the
DIN terminal of the TLC5618A.

• BDR - Data receive – not in use

• BFSX - Frame sync transmit. This signal frames the transmit data. The DSP
begins to transmit data from BDX on the falling edge of BFSX and continues
to transmit data for the next 16 clock cycles from the BCLKX terminal. The
BFSX signal is applied to the TLC5618A CS terminal.

• BFSR - Frame sync receive. This signal frames the receive data. The DSP
begins to receive data on the falling edge of BFSR and continues to recognize
valid data for the following 16 clocks from BCLKR. This signal is not important
for this application.

Table 5 lists the serial port pins and registers.

Table 5. DSP Serial Port Signals and Registers

PINS DESCRIPTION REGISTERS DESCRIPTION

BCLKX Transmit clock signal BSPC Serial port control register

BCLKR Receive clock signal BSPCE extended BSPC

BDX Transmitted serial data signal BDXR Data transmit register

BDR Received serial data signal BDRR Data receive register

BFSX Transmit frame synchronization signal BXSR Transmit shift register

BFSR Receive frame synchronization signal BRSR Receive shift register

AXR Buffer start location

BKX Buffer size

For this application the DSP buffered serial port is programmed as the master,
so the BCLKX output is fed to the BCLKR terminal and the BFSX output is fed to
the BFSR terminal.

Other DSP/TLV1562 Signals

11 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

6 Other DSP/TLV1562 Signals
These paragraphs describe other DSP and TLV1562 signals.

6.1 DSP Internal Serial Port Operation

Three signals are necessary to connect the transmit pins of the transmitting
device with the receive pins of the receiving device for data transmission. The
transmitted serial data signal (BDX) sends the actual data. BFSX initiates the
transfer (at the beginning of the packet), and BCLKX clocks the bit transfer. The
corresponding pins on the receive device are BDR, BFSR and BCLKR,
respectively.

The transmit is executed by the autobuffer mode. This means there is no need
to write to the serial port output buffer. Instead, the DSP continuously sends the
data, located in the memory beginning on AXR. When all data are sent (defined
by the buffer length in BXR), the first word (pointed to by AXR) is sent again.
Therefore, the program has only to store the samples into this memory location.
The rest of the task is handled in the background, using no CPU power.

Conversation Between the TLV1562 and the DSP

12 SLAA040

7 Conversation Between the TLV1562 and the DSP
The complexity of the TLV1562 ADC may be confusing because of the number
of possible modes to drive the protocol between DSP and ADC. The following
paragraphs explain more about the data sheet descriptions for interfacing the
’C54x to the ADC.

7.1 Writing to the ADC

Registers CR0 and CR1 must be set to choose any of the modes the TLV1562
offers. Therefore, a write sequence must be performed from the DSP to the ADC.

After selecting the ADC (CS low), a high-low transition of the WR line tells the
converter that something is to be written to the data port.

Table 6. DSP Algorithm for Writing to the ADC

STEPS TIMING, NOTES

1. Set one DSP I/O waitstate Make timing between 40 MHz C54x CPU compatible with the TLV1562

2. Clear CS Select ADC

3. Send out data on the bus The signal WR is automatically handled by the DSP

4. Set CS Deselect ADC

7.2 Mono Interrupt Driven Mode Using RD

This mode is used when the application needs to sample one channel at a time
and performs the sampling, conversion, and serial transmission steps only once.
Although this mode produces continuous sampling data, the use of other modes
is recommended. One reason is the CS signal has to stay low during the whole
sampling/conversion time. An interesting advantage of this mode is its ability to
control the start-sample time.

The RD signal controls the sampling and converting. Every falling edge of RD
stops the sampling process (disconnects the capacitor from the input signal) and
starts the signal conversion. After two ADCSYSSCLKs, the sampling capacitor
gets connected back to the input signal to do the next sampling. The conversion
time needs five ADCSYSCLKs to finish the conversion before it gets written to the
data port.

During configuration, the rising edge of WR starts the sampling.

Also, when conversion is finished, the ADC clears the INT signal purposes. Next
the ADC writes the conversion result to the data port. The rising edge of RD resets
this status; in other words, the INT signal goes back to logic high and the
conversion result on the data port becomes invalid (the ADC data port gets
3-stated).

The configuration data needs to be written only once to the ADC. After this,
toggling the RD signal runs the ADC in a sampling/conversion/sending mode and
the RD signal releases every new cycle.

Conversation Between the TLV1562 and the DSP

13 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Table 7. DSP Algorithm for Mono Interrupt Driven Mode Using RD

Wait cycles for the DSP internally (40 MHz DSPCLK):

STEPS TIMING, NOTES APD=0
ADCSYCLK
= 7.5 MHz

APD=0
ADCSYCLK

= 10 MHz

APD=1
ADCSYCLK

= 10 MHz

APD=1
ADCSYCLK

= 10 MHz

0. Initialization

Write all configuration data to the
ADC

activate the mono interrupt-driven mode
in CR0(2;3)

1. set CS deselect ADC (optional with APD=0)

2. clear CS Select ADC
(Note: if Hardware Auto power down is
enabled, Chip select has to be used,
otherwise CS can be left high)

3. Wait for
tD(CSL-sample)+1ADCSYSCLK

tD(CSL-sample) = 5ns (APD=0)
tD(CSL-sample) = 500ns (APD=1)

≥6 ≥5 ≥26 ≥25

4. Clear RD ADC goes over from sampling into
conversion

5. Wait until INT goes low alternative: ignore the INT signal, wait 49
ns+5(6) ADCSYSCLK and goto step
number 7

≥34 ≥22 ≥34 ≥22

6. Wait the time tEN(DATAOUT) tEN(DATAOUT) = 41 ns ≥2 ≥2 ≥2 ≥2

7. Read sample out from the data port;
Reset RD signal

8. Goto step 1 or step 3 (if APD=0) for
more samples

Conversation Between the TLV1562 and the DSP

14 SLAA040

7.3 Mono Interrupt Driven Mode Using CSTART

Use the CSTART signal when two or more ADCs must sample/convert signals
at the same time. Instead of the RD signal, the timing for sampling and converting
is started with the edges of the CSTART signal. The RD signal is still required to
get the data out of the ADC and onto the bus.

Table 8. DSP Algorithm for Mono Interrupt Driven Mode Using CSTART

Wait cycles for the DSP internally (40MHz DSPCLK):

STEPS TIMING, NOTES APD=0
ADCSYCLK
= 7.5 MHz

APD=0
ADCSYCLK
= 10 MHz

APD=1
ADCSYCLK
= 10 MHz

APD=1
ADCSYCLK
= 10 MHz

1. Set CS Deselect ADC

2. Clear CSTART tTis starts sampling

3. Wait for tW(CSTARTL) tW(CSTARTL) = 100 ns (APD=0)
tW(CSTARTL) = 600 ns (APD=1)

≥4 ≥4 ≥24 ≥24

4. Set CSTART This starts the conversion

5. Wait until INT goes low Alternative: ignore the INT signal,
wait 14ns+5 ADCSYSCLK and goto
step number 7

≥33 ≥21 ≥33 ≥21

6. Wait the time tD(INTL-CSI) tD(INTL-CSI) = 10 ns ≥1 ≥1 ≥1 ≥1

7. Clear CS Select the ADC

8. Clear RD Start communication

9. Wait the time tEN(DATAOUT) tEN(DATAOUT) = 41 ns ≥2 ≥2 ≥2 ≥2

10. Read sample out from the data port;
Reset RD signal

11. Set CS Deselect ADC

12. Go to step 2 for the next samples

Conversation Between the TLV1562 and the DSP

15 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

7.4 Dual Interrupt Driven Mode

Using techniques similar to those described in the first two modes for
sampling/converting/sending tasks, the dual mode samples two channels at the
same time and sends out the results in series to the data port. The CSTART pin
is used to start sampling and converting.

Table 9. DSP Algorithm for Dual Interrupt Driven Mode

Wait cycles for the DSP internally (40MHz DSPCLK):

STEPS TIMING, NOTES APD=0
ADCSYCLK

= 7.5MHz

APD=0
ADCSYCLK

= 10MHz

APD=1
ADCSYCLK

= 10MHz

APD=1
ADCSYCLK

= 10MHz

1. Set CS Deselect ADC

2. Clear CSTART This starts sampling

3. Wait for tW(CSTARTL) tW(CSTARTL) = 100ns (APD=0)
tW(CSTARTL) = 600ns (APD=1)

≥4 ≥4 ≥24 ≥24

4. Set CSTART This starts the conversion

5. Wait until INT goes low Alternative: ignore the INT signal,
wait 210ns+10 ADCSYSCLK and go
to step number 7

≥62 ≥48 ≥62 ≥48

6. Wait the time tD(INTL-CSL) tD(INTL-CSI) = 10 ns ≥1 ≥1 ≥1 ≥1

7. Clear CS Select the ADC

8. Clear RD Start communication

9. Wait the time tEN(DATAOUT) tEN(DATAOUT) = 41 ns ≥2 ≥2 ≥2 ≥2

10. Read sample out from the data port;
reset RD signal

11. Wait tW(CSH) tW(CSH) = 50 ns ≥2 ≥2 ≥2 ≥2

12. Clear RD- Start communication

13. Wait the time tEN(DATAOUT) tEN(DATAOUT) = 41 ns ≥2 ≥2 ≥2 ≥2

14. Read sample out from the data port;
reset RD signal

15. Set CS Deselect ADC

16. Goto step 2 for the next samples

Conversation Between the TLV1562 and the DSP

16 SLAA040

7.5 Mono Continuous Mode

This mode simplifies data acquisition, since there is no need to generate a signal
to sample or convert data. Instead, initializing this mode once, the ADC sends out
the data continuously and will be read by the DSP with the RD signal.

CAUTION:
In this mode, the sampling result sent out by the ADC is the
value of the sample from the last cycle. Therefore, the first
sample after initialization is trash.

Table 10. DSP Algorithm for Mono Continuous Mode

Wait cycles for the DSP internally (40MHz DSPCLK):

STEPS TIMING, NOTES APD=0
ADCSYCLK
= 7.5 MHz

APD=0
ADCSYCLK

= 10 MHz

APD=1
ADCSYCLK

= 10 MHz

APD=1
ADCSYCLK

= 10 MHz

0. Initialization N/A N/A

Write all configuration data to the
ADC

Activate the mono continuous mode in
CR0(2;3)

N/A N/A

1. Set CS Deselect ADC N/A N/A

2. wait for t(SAMPLE1) t(SAMPLE1) = 100 ns ≥4 ≥4 N/A N/A

3. Clear CS Select ADC N/A N/A

4. Clear RD Start conversion N/A N/A

5. Wait the time tEN(DATAOUT) tEN(DATAOUT) = 41 ns ≥2 ≥2 N/A N/A

6. Read sample out from the data port;
reset RD signal

(Caution: the first result after initialization
is trash)

N/A N/A

7. Wait for the time t(CONV1) minus
step 7 and 8 to ensure 5(6) ADC-
SYSCLk

t(CONV1) = 5(6) ADCSYSCLK; since step
7 and 8 take at least 4 DSPSYSCLK, the
calculation are 5(6) ADCSYSCLK minus
100 ns

≥23 ≥16 N/A N/A

8. Go to step 4 for more samples N/A N/A

Conversation Between the TLV1562 and the DSP

17 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

7.6 Dual Continuous Mode

The dual continuous mode provides a data stream of two input signals. The
characteristic of the data protocol is similar to the mono continuous mode but with
the use of two RD cycles for one sample/hold cycle.

CAUTION:
In this mode, the sampling result sent out by the ADC is the
value of the sample from the last cycle. Therefore, the first
sample after initialization is trash.

Table 11. DSP Algorithm for Dual Continuous Mode

Wait cycles for the DSP internally (40MHz DSPCLK):

STEPS TIMING, NOTES APD=0
ADCSYCLK
= 7.5 MHz

APD=0
ADCSYCLK

= 10 MHz

APD=1
ADCSYCLK

= 10 MHz

APD=1
ADCSYCLK

= 10 MHz

0. Initialization N/A N/A

Write all configuration data to the
ADC

Activate the dual continuous mode in
CR0(2;3)

N/A N/A

1. Set CS deselect ADC N/A N/A

2. Wait for t(SAMPLE1) t(SAMPLE1) = 100 ns ≥4 ≥4 N/A N/A

3. Clear CS Select ADC N/A N/A

4. Clear RD Start conversion

5. Wait the time tEN(DATAOUT) tEN(DATAOUT) = 41 ns ≥2 ≥2 N/A N/A

6. Read first sample out from the
data port; reset RD signal

(Caution: the first result after initialization
is trash)

N/A N/A

7. Wait for the time t(CONV1) minus
step 7 and 8 to ensure 5(6) ADC-
SYSCLk

t(CONV1) = 5(6) ADCSysclk; since step 7
and 8 take at least 4 DSPSYSCLK, the
calculation are 5(6)ADCSYSCLK minus
100 ns

≥23 ≥16 N/A N/A

8. Clear RD Start conversion

9. Wait the time tEN(DATAOUT) tEN(DATAOUT) = 41 ns ≥2 ≥2 N/A N/A

10. Read second sample out from the
data port; reset RD signal

(Caution: the first result after initialization
is trash)

N/A N/A

11. Wait for the time t(CONV1) minus
step 7 and 8 to ensure 5(6) ADC-
SYSCLk

t(CONV1) = 5(6) ADCSysclk; since step 7
and 8 take at least 4 DSPSYSCLK, the
calculation are 5(6)ADCSYSCLK minus
100ns

≥23 ≥16 N/A N/A

12. Go to step 4 for more samples N/A N/A

Software Overview

18 SLAA040

8 Software Overview
The software in this report shows how to use all modes of the TLV1562 and useful
variations for each mode. It also includes a C program to start data acquisition
from a C level. To limit the number of programs, the report supplies five files for
running the ADC in five modes; a sixth program shows the C-callable function.
Each program can enable different software blocks to give the user a large choice
for generating the data acquisition. For more details, see paragraph 8.3.9.

Instead of using numbers for memory addresses or constants, very often
symbols replace the numbers. For that, the symbol (name) is assigned with the
real value (number) in the file header. The advantage of doing this is the higher
flexibility. Instead of changing a variable memory location in every related
instruction, the value for this location is changed only once in the program header.
This prevents software bugs from appearing through a forgotten correction of a
related instruction.

BSPC_BUFFER_START set 00800h ; memory location (800h) for the
; start address of the SPC buffer

@AXR = #(BSPC_BUFFER_START) ; assign the starting address of auto
; buffer

8.1 Software Development tools

The DSKplus Starter Kit of the TMS320C54x comes with a free compiler to
generate an absolute object file from assembler code (DSKPLASM.EXE in the
TMS320C54x DSKplus development tools). The object code is then loaded into
the GoDSP software to run it on the kit.

An advanced version of this kit is the TMS320C54x Optimizing C Compiler/
Assembler/Linker (for example: TMDS324L855-02). These tools allow
generation of object code from C and assembler files. Furthermore, they also link
the code to an executable COFF file. The software in this report was created with
these tools.

For more information visit TI’s Internet page at:
 http://www.ti.com/sc/docs/dsps/tools/c5000/c54x/index.htm.

8.2 DSP Memory Map

Figure 6 shows the memory map assigned to the application.

PROGRAM MEMORY (on-chip DARAM 10k words (OVLY=1) from 0080h to 27FFh):

Software Overview

19 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Original Interrupts DSKplus
Starter Kit

(OVLY = 1)

Communication Kernel
Starter Kit

RAM

BSP RAM Block or Program RAM

Kernel Buffer (10 Words)

HPI RAM Block or Porgram RAM

Program

External

On-Chip ROM

ROM (Bootloader)

ROM Interrupts

Unused

Software Interrupt Table

Unused

Linked Program Memory Code

0000h

007Fh
0080h

00FFh
0100h

017Fh
0180h

07FFh
0800h

0FFFh
1000h

1009h
100Ah

17FFh
1800h

27FFh
2800h

EFFFh
F000h

F7FFh
F800h

FF7Fh
FF80h

FFFFh

01FFh
0200h

027Fh
0280h

02FFh
0300h

Reserved Memory by The DSKplus Board

Memory-Mapped Register

Scratch-Pad RAM

DRAM See Program Memory

Software Data Memory
(All Variables)

Tables to Store Data Samples

External

Table 1

0000h

005Fh
0060h

007Fh
0080h

27FFh
1800h

1FFFh
2000h

27FFh
2800h

FFFFh

Table 2

Table 3

Table 4

data_log_A

data_loc_A + num_data_A

data_loc_B

data_loc_B + num_data_B

data_loc_C

data_loc_C + num_data_C

data_loc_D

data_loc_D + num_data_D

Figure 5. Memory Map

Software Overview

20 SLAA040

8.3 Programming Strategies for the ’C54x, Explanations

Before listing the program code, this chapter introduces some basic instructions
(strategies) to provide the ’C54x user with some ideas for dealing with the DSP
architecture.

8.3.1 Optimizing CPU Resources for Maximum Data Rates

The ’C54x processor on the DSKplus starter kit runs at an internal clock
frequency of 40 MHz. Since the pipeline architecture allows most instructions to
be executed in one cycle, the DSP provides up to 40 MIPS. However, some
instructions, especially branch instructions, are not single cycle instructions;
therefore, they lower the available CPU power. Because of the high transfer rate
of the TLV1562 ADC, the software code must be optimized to test the full ADC
performance. Since correct signal timing between DSP and ADC requires some
instructions per sample, the CPU power required between two samples is very
small.

The optimum case is to read a new sample, store it into memory, execute a
customized task as it could be data filtering (FFT, FIR, IIR), and send a digital
result to one of the DACs. Unfortunately, this task is impossible at the ADC’s
maximum throughput of 40 MIPS. Therefore, this software only stores the
samples and optionally moves them out to the DACs. Enabling all options at the
same time prevents the application from running at maximum throughput.

The following switches enable/disable these actions:

SAVE_INTO_MEMORY .set 00001h; set 1 to store the samples into memory

SEND_OUT_SERIAL .set 00001h; set 1 to send last sample to the serial DAC

SEND_OUT_PARALLEL .set 00001h; set 1 to send last sample out to the parallel DAC

8.3.2 Address and Data Bus for I/O Tasks

8.3.2.1 Writing

PORT(PA) = Smem

Writing something to the I/O bus uses the port instruction. PA sets the ADDRESS
bus permanently to that value. Smem is a value from memory, transferred for one
clock cycle to the DATA bus.

@send = #01234h ; set the content of memory address send to 1234h

port(0FFFFh) = @send ; set address bus to FFFFh and write 1234h for one cycle
; on the DATA bus

8.3.2.2 Reading

Smem = PORT(PA)

Reading from the I/O bus. PA sets the ADDRESS bus. Smem is a memory cell,
PA the address on the bus.

8.3.3 Timer Output
@TCR = #00010h ; deactivate timer

@PRD = #00000h ;

@TCR = #00C01h ; set timer output toggling frequency to � CLKOUT
; frequency ; and start toggling

Software Overview

21 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

The timer output pin TOUT can be used to generate an output function with a
prescale from half the CLK frequency down to 1FFFF. The problem: the high-time
is always one clock cycle and only the low time of the TOUT signal changes with
the timer.

8.3.4 Data Page Pointer
DP = #0 ; load DP with 0

DP = #variable ; point with DP to the page, where variable is stored

DP ≠ #register ; error, this won’t work, the DP gets not loaded with
; register page, instead load DP with zero

If a register has to be written (example: IFR), the DP has to be loaded with zero
since DP=#register will not work.

8.3.5 Generating the Chip Select Signal and the CSTART Signal
port(CSTART) = @ZERO ; clear CSTART- (CSTARTlow)

port(ADC) = @CR0_SEND ; clear CS- (CSlow)

port(DEACTIVE) = @ZERO ; set CS or CSTART back (CS high or CSTARThigh)

The chip select signal and the CSTART signal can be accessed using the address
bus (decoder on A0/A1). The basic idea of having CSTART was to allow ADC
triggering for sampling/conversion purposes without having to use CS (which
always blocks the address bus). Since the ’C542 DSP does not have enough
general purpose outputs, this application still uses the address bus to activate
CSTART.

8.3.6 Interfacing the Serial DAC 5618A to the DSP

A buffered serial port on the ’C542 board interfaces the TLC5618A DAC. The
advantage of using a buffered serial port compared to the standard port is the
auto buffer mode. This allows the programmer to save CPU power. A background
process takes the data from a defined memory location (table) and moves it out
to the serial port. (An interrupt can be generated after sending out half or the full
table content. However, disabling this interrupt and writing the new ADC samples
into the same memory location where the SPI takes the send value from, allows
continuous transmission of the data stream to the DAC. When debugging the
EVM it is preferable to compare the analog output signal of the DAC with the
analog input signal applied to the ADC.

The TLC5618A is very easy to use. The sample size is limited to 10 bits and the
first six MSBs are set so that the converter outputs the value on the right pin in
the right mode.

The next lines of code show the initialization. The only requirement is to initialize
the buffered serial port, since the DAC does not need an initialization procedure.

@BSPC = #00000h ; reset SPI

@IFR = #00020h ; clear any pending SPI IRQ

@IMR = #00020h ; allow BXINT0

@BSPCE = #00521h ; set Auto buffer mode

@AXR = #(BSPC_BUFFER_START); set the starting address of the auto buffer

@BKX = #(BSPC_BUFFER_SIZE) ; buffer size

@BSPC = #0C07Ch ; start serial port, FSX in Burst (every word)

Software Overview

22 SLAA040

8.3.7 Interrupt Latency
The time required to execute an interrupt depends on the handling of the IRQ at
the four-word vector address or jumping further with a GOTO instruction. Using
the fast return from IRQ instruction, and branching from the IRQ vector to a
separate routine memory location, produces an IRQ overhead of:

3 sysclk (goto IRQ vector) + 4sysclk (goto/dgoto) + 1 sysclk (fast return) = 8
instruction cycles

The time between when the IRQ occurs and the routine executes its first
instruction depends on the instruction in the CPU pipeline when the interrupt
occurs. Running a repeat command delays the IRQ until the full number of
repetitions is finished.

NOTE: Using a delayed branch instruction (dgoto) and putting
two useful words of instruction behind this instruction saves the
CPU calculation power.(See the explanations about delayed
branches Section 8.3.8).

8.3.8 Branch Optimization (goto/dgoto, call/dcall, ...)
The easiest solution for a branch is to use the goto instruction. Since the ’C54x
has a pipeline to allow execution of one instruction in one clock cycle, a simple
branch instruction will take four cycles for execution. Example:

GOTO MARK

 ...

MARK: DP = #1;

ARP = #5;

 ...

The program counter (PC) points after the last instruction (ARP=#5) past 6 sysclk
cycles. However, this can be optimized, using a delayed branch.

DGOTO MARK
DP = #1;
ARP = #5;
 ...

MARK: ...

The time to execute the same number of instructions is now only four CPU clock
cycles. (After four instructions, the PC points to the address MARK. The reason
for this is the processor’s pipeline finishes the instructions after dgoto and does
not just trash the already-processed fetch when the branch is in the pipeline’s
decoding state.

Conclusion: The goto and dgoto instructions both execute the branch in less
than four SYSCLCKs, but the dgoto instruction can execute the next two
instructions following dgoto in the same amount of time.

CAUTION:
Use the delayed branches carefully, since it looks confusing when
an instruction has been executed after a call instruction. A solution
is to first use the normal branches when writing the code, and when
all tasks have been finished, optimize the code with the delayed
algorithms.

Software Overview

23 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

8.3.9 Enabling Software Modules (.if/.elseif/.endif)
To test different software solutions while keeping the number of files small
requires integrating all the modules in the same file. Furthermore, a switch is
needed to enable any of the software modules. Setting the constant SWITCH in
the program header to either one or zero enables/disables the instructions inside
an .IF-.ENDIF loop. Example:

SWITCH1 .set 00001h

SWITCH2 .set 00000h

 ...

 .if SWITCH1

instruction_X ; the instructions on this line will be assembled

.elseif SWITCH2

instruction_Y ; the instructions on this line will be ignored

.endif

In this example, instruction_X is executed (linked into object code) while
instruction_Y is ignored. Setting SWITCH2 instead of SWITCH1 to 1 enables
instruction_Y and makes the compiler link it to object code. If both switches are
one, only instruction_X is compiled.

8.4 Software Code Explanation
The next capture describes the software solution to interface the TLV1562 and
the two DACs on the EVM board. Although the code looks very large and
complicated at first, it is a simple solution with only a little knowledge of the code
required to verify/customize the settings. The TLV1562 (ADC) offers a wide
choice of settings. First, choose the conversation mode. This application report
provides one file for each mode. Many settings (2s complement, channels, etc.)
must be selected. This software allows a variation of those parameters in the
program header. A simple switch enables or disables each component. After
recompiling the code with a special setting of all switches, the code becomes
much smaller and easier to understand. The .if/.elsif/.endif instruction allows the
program to use or ignore blocks of instruction between the statements.

If, for example, one does not want to use the serial DAC and disables the switch
SEND_OUT_SERIAL, all the source code for the serial conversation between
DSP and DAC is ignored. The compiler will not implement any code related to the
serial DAC.

8.4.1 Software Principals of the Interface
Controlling the status of signals can be done in different ways. One of the
challenges in this interface is controlling signal status when the ADC conversion
is finished and the digital result is ready to be transferred from the ADC to DSP.
A high/low transition on the INT line of the TLV1562 informs the DSP that the ADC
has completed the conversion. Optionally, the DSP can ignore the INT signal,
initialize the conversion instead, wait for a defined time, and directly read the
result out of the ADC. This solution requires knowing the precise time for
conversion/data ready on the bus for each converter/mode.

Three options are given for each mode to match different custom needs; they are
listed in the next three sections.

Software Overview

24 SLAA040

8.4.1.1 Software Polling

The status of the input pin is tested in a loop until the valid transition occurs. After
this transition, the program branches to the next instruction (reads data sample).

Advantage:
• Relatively fast program response after high-to-low transition of INT
• The software compensates for variations of timing given in data sheets for

conversion and the real time until the flag goes high.
• Not critical for any software changes (e.g. adding new features)
• Even when the program reaches the polling loop later than the transition

occurred, it steps ahead properly.

Disadvantage:
• Time inside the polling loop is not usable for other software features (wasted

CPU power)
• A hang up (ADC does not respond) will not be recognized without a watchdog

algorithm
• The polling algorithm requires five instruction cycles. Depending on when the

conversion finishes during these five instructions (when the INT signal goes
low), the time response after the falling edge can vary up to the five instruction
cycles. As experiments confirmed, this can result in a variation in the length
of the sampling window. So, a filter algorithm (eg. FFT) on the samples might
result in slightly different results for a steady (stable) input function, related
to the sampling time variations. The only way to prevent this is to control the
conversion with the on-chip timer of the DSP. Unfortunately, the maximum
throughput falls off with increased requirements for CPU power.

8.4.1.2 Timed Solution

How long the ADC requires for conversion must be factored into the software flow.
In other words, the DSP has to wait a certain time between initializing the
conversion and reading the conversion result on the data bus from the ADC. This
timing is critical to the sampling device. If the conversion time of a data converter
changes (data sheet), the timing must be verified again.

Advantage:
• Fastest solution (with a fine tune, the maximum performance can be

extracted from the converter)
• Saves CPU power of the DSP (no time wasted for polling)

• Program can not hang up in an endless loop

• Less hardware required (input pin on the DSP and INT connection are left out)

Disadvantage:
• Every software variation changes timing and therefore, requires fine tuning

again. This can be avoided by using the DSP timer module, but since the
TLV1562 is an extremely fast device (2 MSPS at 10 bit), a timer module
solution becomes too slow.

• If the conversion time of the ADC varies for some reasons, this algorithm is
not able to respond; instead, the maximum conversion time is used.

Software Overview

25 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

8.4.1.3 Interrupt Driven Solution

Usually, the most elegant solution is to use an interrupt procedure to control
external signals. The problem for this application is the high speed. First, if more
than a few words of code have to be executed between two samples, the software
has to ensure that the first interrupts will be completed before the second interrupt
is enabled. This can be done by globally disabling IRQs while executing one IRQ.
The second problem is the interrupt latency. According to the pipeline
architecture of the ’C54x, an interrupt routine is started at the earliest after three
clock cycles (the last instruction in the pipeline will be executed before branching
to the IRQ vector). Another processing overhead is the branch instruction from
the original IRQ vector to the IRQ handler memory location.

In summary, the large number of instructions used to organize the interrupt and
to branch from the actual code execution into the interrupt service routine will
significantly use up resources.

Advantages:
• Data acquisition runs fully automated in the background; the main program

(filtering, other controlling, etc.) does not need to control any data acquisition
software flow.

• Easy software debugging and implementing of new features (not critical for
any software changes)

• The software compensates for variations in timing given in data sheets for
conversion and the real time until the flag goes high.

Disadvantages:
• Program overhead uses a lot of resources, which is critical for maximum

throughput performance
• Watchdog algorithms needed to avoid a hang up of the ADC

8.4.1.4 Enabling One Software Mode

Every main file (given later in this document), offers the following three switches
in the program header:
SWITCH DESCRIPTION

POLLING_DRV software polls the INT0 pin until conversion is finished

INT0_DRIVEN software uses Interrupt INT0 to organize conversion

NO_INT0_SIG INT0 signal not in use, interface is controlled with timing solution

NOTE: Only one of the three switches is to be enabled.
Example: Run in interrupt driven mode:

POLLING_DRV .set 00000h

INT0_DRIVEN .set 00001h

NO_INT0_SIG .set 00000h

8.4.1.5 Setting the Right Switches

As the software offers the choice of three conversion-end recognition strategies,
it allows selection of other ADC-related features, such as the clock source, power
save mode, or the resolution. Depending on the custom requirements of data
throughput, the program header also defines whether the samples will be stored
into memory, sent serially out to the TLC5618A DAC, or sent in parallel to the
TLV5651 CommsDAC.

Software Overview

26 SLAA040

Table 12. Switch Settings

SWITCH DESCRIBTION

SAVE_INTO_MEMORY Store the samples into DSP memory (location defined in constants.asm)

SEND_OUT_SERIAL Send the samples always to the serial DAC TLC5618A

SEND_OUT_PARALLEL Update always the parallel DAC with the last sample (DAC1) THS5651
Note: the 3 switches are independent from each other

R10BIT_RESOLUT Use maximum resolution of 10 bit

R8BIT_RESOLUT Use 8-Bit resolution

R4BIT_RESOLUT Use fastest mode (4-Bit resolution)
Note: enable only one of the 3 switches

INTERNAL_CLOCK Use the internal clock of the ADC

EXTERNAL_CLOCK Use the external clock of the ADC
Note: enable only one of the 2 switches

AUTO_PWDN_ENABLE ADC reduces power consumption after conversion
1 – enable power down mode
0 – no PWDN mode

DIFF_INPUT_MODE Use differential mode instead of single ended inputs
1 – differential ADC input
0 – single ADC input

IME_CALIBRATION Internal Midscale Error Calibration

SME_CALIBRATION System midscale error calibration
Note: the 2 switches are independent from each other; however, performing
more than one calibration does not make sense see data sheet)

Features not listed in Table 12 must be changed directly in the two data words,
CR0/1, that are sent to the ADC. In general, correct bit setting is described in the
data sheet. However, the file CONSTANT.ASM includes a look-up table to
simplify the task of setting the right bits in CR0 and CR1. Thus, all it requires is
to place the synonym for each feature into the correct bracket as shown in the
next example:

EXAMPLE

Task 1.1:

Sample channel 1 in mono interrupt driven mode with single ended inputs. Use
the internal 8-MHz clock of the ADC and do not run in any power save mode. The
result should have a binary format with 10-bit resolution. The conversion start is
controlled by the RD signal.

Table 13. Instruction in the Program Header (Step 1)

R10BIT_RESOLUT .set 00001h ; enable 10-bit resolution

R8BIT_RESOLUT .set 00000h ;

R4BIT_RESOLUT .set 00000h ;

INTERNAL_CLOCK .set 00001h ; use internal clock

EXTERNAL_CLOCK .set 00000h ;

AUTO_PWDN_ENABLE .set 00000h ; disable auto power down

DIFF_INPUT_MODE .set 00000h ; single input mode

IME_CALIBRATION .set 00000h ; no internal calibration

SME_CALIBRATION .set 00000h ; no system calibration

Software Overview

27 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Task 1.2:

Use channel B in differential input mode and an external clock source. Following
changes have to be done with the set-up of Task 1.1:

Table 14. Instruction in the Program Header (Step 1)

R10BIT_RESOLUT .set 00001h ; enable 10-bit resolution

R8BIT_RESOLUT .set 00000h

R4BIT_RESOLUT .set 00000h

INTERNAL_CLOCK .set 00000h

EXTERNAL_CLOCK .set 00001h ; use external clock

AUTO_PWDN_ENABLE .set 00000h ; disable auto power down

DIFF_INPUT_MODE .set 00001h ; differential input mode

IME_CALIBRATION .set 00000h ; no internal calibration

SME_CALIBRATION .set 00000h ; no system calibration

Additional correction in the middle of the main program files (step 2):

@CR0_SEND = #(PAIR_B|MONO_INT|SINGLE_END|CLK_INTERNAL|NO_CALIB_OP);

@CR1_SEND = #(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

CAUTION:
Changing statements in step 2 is not required, if they are
already defined in the header. For example, the statement
CLK_INTERNAL does not change to CLK_EXTERNAL in
step 2 because the clock source is defined in the program header
and therefore will be justified behind the step 2 instructions later
in the program. That is why in step 2 only the CH1-value is
replaced with PAIR_B, but nothing else has been specified.

8.4.1.6 Common Software for all Modes

The files CONSTANT.ASM and VECTORS.ASM include constant definitions and
the interrupt vector table. Those parameters are identical for all ADC modes.
Therefore, the two files will be used for each mode and are described next:

CONSTANT.ASM Definition of constant values as it is the bit code for different
ADC modes (CR0/1), the serial DAC send words and the
DSP memory saving locations

VECTORS.ASM Interrupt vector table of the TMS320C542

CALIBRAT.ASM ADC calibration procedure (except for mono interrupt driven
mode using RD, this mode has not implemented any
calibration so far)

8.5 Flow Charts and Comments for All Software Modes

The following paragraphs show the flow charts and include comments for all
software modes.

8.5.1 The Mono Interrupt Driven Mode Using RD to Start Conversion

The following descriptions explain the software for the data acquisition in
monomode. The required interface connections are shown in Figure 1.

Software Overview

28 SLAA040

Program Files:

MONOIDM1.ASM includes the complete software algorithm to control the monomode

CONSTANT.ASM common file of all modes (constants definition)

VECTORS.ASM common file of all modes (IRQ vector table)

Other Files:

linker.cmd organization of the DSP memory (data and program memory)

auto.bat batch file to start the compiler for the monomode software

asm500.exe C54x Code compiler

lnk500.exe C54x linker

The timing requirements to interface the ’C54x to the ADC are provided in
Tables 6 and 7. The STEP numbers given there can be found again as Marker
in the code. This helps to debug and verify the code.

Code verification:

To verify the software, the user must change the code in the MONIDM1.ASM file
and save those changes. The next step is to recompile the three .ASM files by
executing the AUTO.BAT batch file. If compiler and linker finish without error
messages, the new output file is ready to load in the DSP program memory (e.g.
with the GoDSP development tools) and to execute.

The flow chart in Figure 7 gives a general overview of the software structure
(MONOIDM1.ASM).

Software Overview

29 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Table End Reached?
(AR& = AR0 ?)

Start

Initialize DSP
Wait States, AR Pointer, IRQ Table, Data Memory, Serial Port

Initialize SPI
Active Transmitter, Use Frame Sync,

Generate External Clock

SAVE_INTO_MEMORY = 1

SAVE_INTO_MEMORY = 0
Initialize DSP Memory For Sample Store
AR7 Points to The First Store Location
AR0 Points to The Table End
ADCOUNT = Table Size (Number of Samples)

Initialize (Id) The Two ADC Registers
CR0 = CR0_SEND
CR1 = CR1_SEND

Start First Conversion

POLLING_DRIVEN = 1

Wait Until End of Conversion
Poll INTO Pin Until h/0 Transition Occurs

INTO_DRINEN = 1

Main Program
Stay in Idle Mode

NO_INTO_SIGNAL = 1

Wait Until End of Conversion
Wait For a Certain Time

1

INTO

2

Read Sample

SEND_OUT_PARALLEL = 1

SEND_OUT_PARALLEL = 1Copy Last Sample to Parallel DAC

SEND_OUT_SERIAL = 1

SEND_OUT_SERIAL = 0
Copy Last Sample to Serial DAC

if Send Register is Empty

Start New Conversion

SAVE_INTO_MEMORY = 0

SAVE_INTO_MEMORY = 0

Store Sample Into Memory
Save Sample to AR7 – Pointed Location

H/L Transition on INTO ?

Yes

No

Reset Actual Memory Pointer
AR& = First Memory Store Location

1

No

Yes

INTO (External Interrupt)

Save Modified Register of
The IRQ Routine, if Not

Automatically Saved by The
DSP

(Not Required)

1

Figure 6. Software Flow of the Mono Interrupt Driven Solution

Software Overview

30 SLAA040

8.5.2 Mono Interrupt Driven Mode Using CSTART to Start Conversion

The following descriptions explain the software for the data acquisition in
monomode using the CSTART signal. The required interface connections are
shown in Figure 1.

Program Files:

MONOCST1.ASM Includes the complete software algorithm to control the monomode

CALIBRAT.ASM Calibration procedure of the DAC

CONSTANT.ASM Common file of all modes (constants definition)

VECTORS.ASM Common file of all modes (IRQ vector table)

Other Files:

linker.cmd Organization of the DSP memory (data and program memory)

auto.bat Batch file to start the compiler for the monomode software

asm500.exe C54x Code compiler

lnk500.exe C54x linker

The timing requirements to interface the ’C54x to the ADC are provided in Table
8. The STEP numbers, given there, can be found again as Marker in the code.
This helps to debug and verify the code.

IMPORTANT NOTE: The code has been optimized during the
software development to maximize the data throughput. It was
found that CSTART can be pulled down earlier than the data read
instruction is performed by the DSP. The advantage is to save the
100-ns wait time in STEP 6 because the data read requires at least
100 ns. Therefore, CSTART gets pulled back high directly after
data read and the interface becomes faster and gains throughput.
This variation will be found in the code; the data acquisition
software contains a small number of steps, and everything is
explained in the code.

Code verification:

To verify the software, the user must change the code in the MONCST1.ASM file
and save those changes. The next step is to recompile the four .ASM files by
executing the AUTO.BAT batch file. If compiler and linker finish without error
messages, the new output file is ready to load in the DSP program memory (e.g.
with the GoDSP development tools) and to execute.

The flowchart in Figure 8 gives a general overview of the software structure
(MONOCST1.ASM).

Software Overview

31 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Start

Initialize DSP
Wait States, AR Pointer, IRQ Table, Data Memory, Serial Port

Initialize SPI
Active Transmitter, Use Frame Sync,

Generate External Clock

SAVE_INTO_MEMORY = 1

SAVE_INTO_MEMORY = 0 Initialize DSP Memory For Sample Store
AR7 Points to The First Store Location
AR0 Points to The Table End
ADCOUNT = Table Size (Number of Samples)

Initialize (Id) The Two ADC Registers
CR0 = CR0_SEND
CR1 = CR1_SEND

H/L Transition on INTO ?

1

No

Yes

INTO (External Interrupt)

Save Modified Register of
The IRQ Routine, if Not

Automatically Saved by The
DSP

(Not Required)

1

IME CALABRATION = 1

Calibrate Internal Midscale ErrorIME CALABRATION = 0

SME CALABRATION = 1

Calibrate System Midscale Error IME CALABRATION = 0

Start Sampling
Pull Down CSTART

Wait 100 ns
Stop Sampling and Start Conversion

Reset CSTART (Set Back High)

Table End Reached?
(AR7 = AR0 ?)

POLLING_DRIVEN =
1

Wait Until End of Conversion
Poll INTO Pin Until h/0 Transition Occurs

INTO_DRINEN = 1

Main Program
Stay in Idle Mode

NO_INTO_SIGNAL =
1

Wait Until End of Conversion
Wait For a Certain Time

1

INTO

2

SEND_OUT_PARALLEL = 1

SEND_OUT_PARALLEL = 1Copy Last Sample to Parallel DAC

SEND_OUT_SERIAL = 1

SEND_OUT_SERIAL = 0
Copy Last Sample to Serial DAC

if Send Register is Empty

Start New Conversion

SAVE_INTO_MEMORY = 0

SAVE_INTO_MEMORY = 0

Store Sample Into Memory
Save Sample to AR7 – Pointed Location

Yes

No

Reset Actual Memory Pointer
AR& = First Memory Store Location

Start New Sampling
Pull Down CSTART

Read Sample
Stop Sampling and Start Conversion

Reset CSTART (Set Back High)

Figure 7. Flow Chart Mono Interrupt Driven Mode Using CSTART to Start Conversion

Software Overview

32 SLAA040

8.5.2.1 Throughput Optimization†

According to the data sheet, the mono interrupt driven mode with CSTART
starting the conversion can be described as follows: After the conversion is done
(INT set low), the DSP

• selects the converter,

• brings down the RD signal,

• waits until the data are valid,

• reads the data from the ADC and

• resets RD to a high signal level.

• Now, CSTART can be pulled low, for at least 100 ns, and set high to start a
new conversion.

As tests showed, it does not matter at what time the CSTART signal gets pulled
low to start the sampling.

Changing the signal flow slightly by pulling CSTART low, before the ADC output
data are read on the data bus, will save at least of 100 ns of CSTART low time
after read instruction (additional advantage: the longer the analog input is
sampled, the more precisely the sampling capacitor will be charged assuming
that the noise located by RD is negligible). In this algorithm, CSTART can be
taken high right after the data has been read by the DSP without any wait
instruction. Therefore, the maximum throughput is gained because the 100-ns
sampling time is saved. Test results showed a maximum throughput of more than
1.2 MSPS (approximately 20% of gain in throughput), with the internal ADC clock,
when using this strategy (see Figure 8).

A concern is that possible small spikes during conversion at the same time as the
data gets read onto the data bus might worsen the analog input signal accuracy.
Some measurements could help here to verify the applicability of the throughput
optimization.

A concern is that during conversion if any small spikes occurs on the CSTART
signal while the ADC data is being read out onto the data bus, then the accuracy
of the ADC quantized output data could be affected.

This only works for one TLV1562 (not multiple) because CS is not used.

Software Overview

33 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

825 ns = 1.2 MPS Throughput

CSTART

RD

CS

INT

Figure 8. Time Optimization (monocst1)
Maximum Performance at 1.2 MSPS with Internal Clock

8.5.3 Dual Interrupt Driven Mode

The following descriptions explain the software for the data acquisition in Dual
Interrupt Driven Mode (using the CSTART signal). The required interface
connections are shown in Figure 2.

Program Files:

DUALIRQ1.ASM Includes the complete software algorithm to control the Dual IRQ Driven Mode

CALIBRAT.ASM Calibration procedure of the DAC

CONSTANT.ASM Common file of all modes (constants definition)

VECTORS.ASM Common file of all modes (IRQ vector table)

Other Files:

linker.cmd Organization of the DSP memory (data and program memory)

auto.bat Batch file to start the compiler for the dual interrupt driven software

asm500.exe 54x Code compiler

lnk500.exe C54x linker

The timing requirements to interface the ’C54x to the ADC are provided in
Table 9. The STEP numbers given there can be found again as Marker in the
code. This helps to debug and verify the code.

Software Overview

34 SLAA040

IMPORTANT NOTE: The code has been optimized to maximize
the data throughput. It was found that CSTART can be pulled low
earlier than the data read instruction is performed by the DSP. This
saves the 100-ns wait time in STEP 3 because the data read
requires at least 100 ns. Therefore, CSTART gets pulled high
directly after data read, and the interface becomes faster and
gains throughput. This variation will be found in the code. The data
acquisition is done in a small number of steps that explains
everything inside the code.

Code verification:

To verify the software, the user must change the code in the DUALIRQ1.ASM file
and save those changes. The next step is to recompile the four .ASM files by
executing the AUTO.BAT batch file. If compiler and linker finish without error
messages, the new output file is ready to load into the DSP program memory (e.g.
with the GoDSP development tools) and to execute.

The flow chart in Figure 10 gives a general overview of the software structure
(DUALIRQ1.ASM).

Software Overview

35 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Start

Initialize DSP
Wait States, AR Pointer, IRQ Table, Data Memory, Serial Port

Initialize SPI
Active Transmitter, Use Frame Sync,

Generate External Clock

SAVE_INTO_MEMORY = 1

SAVE_INTO_MEMORY = 0 Initialize DSP Memory For Sample Store
AR7 Points to The First Store Location
AR0 Points to The Table End
ADCOUNT = Table Size (Number of Samples)

Initialize (Id) The Two ADC Registers
CR0 = CR0_SEND
CR1 = CR1_SEND

H/L Transition on INTO ?

1

No

Yes

INTO (External Interrupt)

Save Modified Register of
The IRQ Routine, if Not

Automatically Saved by The
DSP

(Not Required)

1

IME CALABRATION = 1

Calibrate Internal Midscale ErrorIME CALABRATION = 0

SME CALABRATION = 1

Calibrate System Midscale Error IME CALABRATION = 0

Start Sampling
Pull Down CSTART

Wait 100 ns
Stop Sampling and Start Conversion

Reset CSTART (Set Back High)

Table End Reached?
(AR7 = AR0 ?)

POLLING_DRIVEN = 1

Wait Until End of Conversion
Poll INTO Pin Until h/0 Transition Occurs

INTO_DRINEN = 1

Main Program
Stay in Idle Mode

NO_INTO_SIGNAL = 1

Wait Until End of Conversion
Wait For a Certain Time

1

INTO

2

SEND_OUT_PARALLEL = 1

SEND_OUT_PARALLEL = 0Copy Last Sample to Parallel DAC

SEND_OUT_SERIAL = 1

SEND_OUT_SERIAL = 0
Copy Last Sample to Serial DAC

if Send Register is Empty

SAVE_INTO_MEMORY = 0

SAVE_INTO_MEMORY = 1

Store Sample Into Memory
Save Sample to AR7 – Pointed Location

Yes

No

Reset Actual Memory Pointer
AR7/7= First Memory Store Location

AR7 = Data_Loc_A; AR6 = Data_Loc_B

Start New Sampling
Pull Down CSTART
Read Both Samples

Stop Sampling and Start Conversion
Reset CSTART (Set Back High)

Figure 9. Flow Chart Dual Interrupt Driven Mode (Using CSTART) to Start Conversion

Software Overview

36 SLAA040

8.5.4 Mono Continuous Mode

The following descriptions explain the software for the data acquisition in Mono
Continuous Mode. The required interface connections are shown in Figure 2

Program Files:

MONOCON1.ASM Includes the complete software algorithm to control the Mono Continuous Mode

CALIBRAT.ASM Calibration procedure of the DAC

CONSTANT.ASM Common file of all modes (constants definition)

VECTORS.ASM Common file of all modes (IRQ vector table)

Other Files:

linker.cmd Organization of the DSP memory (data and program memory)

auto.bat Batch file to start the compiler for the mono continuous software

asm500.exe C54x Code compiler

lnk500.exe C54x linker

The timing requirements to interface the ’C54x to the ADC are provided in
Table 11. The STEP numbers given there can be found again as Marker in the
code. This helps to debug and verify the code.

Code verification:

To verify the software, the user must change the code in the MONOCON1.ASM
file and save those changes. The next step is to recompile the four .ASM files by
executing the AUTO.BAT batch file. If compiler and linker finish without error
messages, the new output file is ready to load in the DSP program memory (e.g.
with the GoDSP development tools) and to execute.

The flow chart in Figure 11 gives a general overview of the software structure
(MONOCON1.ASM).

Software Overview

37 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Start

Initialize DSP
Wait States, AR Pointer, IRQ Table, Data Memory, Serial Port

Initialize SPI
Active Transmitter, Use Frame Sync,

Generate External Clock

SAVE_INTO_MEMORY = 1

SAVE_INTO_MEMORY = 0
Initialize DSP Memory For Sample Store
AR7 Points to The First Store Location
AR0 Points to The Table End
ADCOUNT = Table Size (Number of Samples)

Initialize (Id) The Two ADC Registers
CR0 = CR0_SEND
CR1 = CR1_SEND

IME CALABRATION = 1

Calibrate Internal Midscale ErrorIME CALABRATION = 0

SME CALABRATION = 1

Calibrate System Midscale Error SME CALABRATION = 0

Start Sampling
This Has Been Initialized
by The WR 1/0 Transmit

Wait 450 ns

Table End Reached?
(AR7 = AR0 ?)

Read Sample Into DSP
AD_SAMPLE = Port (ADC)

1

SEND_OUT_PARALLEL = 1

SEND_OUT_PARALLEL = 0Copy Last Sample to Parallel DAC

SEND_OUT_SERIAL = 1

SEND_OUT_SERIAL = 0
Copy Last Sample to Serial DAC

if Send Register is Empty

SAVE_INTO_MEMORY = 0

SAVE_INTO_MEMORY = 1

Store Sample Into Memory
Save Sample to AR7 – Pointed Location

Yes

No

Reset Actual Memory Pointer
AR7= First Memory Store
Location = Data_Loc_A

Increase I/O-Wait States to 7

Wait 5(6) ADC Clock Cycles

Started at Time Stamp

tC(RD) = 800 ns (With 8 MHz ADC Clock)

1

Figure 10. Flow Chart Mono Continuous Mode

Software Overview

38 SLAA040

8.5.5 Dual Continuous Mode

The following descriptions explain the software for data acquisition in dual
continuous mode. The required interface connections are shown in Figure 2.

Program Files:

DUALCON1.ASM Includes the complete software algorithm to control the Dual Continuous Mode

CALIBRAT.ASM Calibration procedure of the DAC

CONSTANT.ASM Common file of all modes (constants definition)

VECTORS.ASM Common file of all modes (IRQ vector table)

Other Files:

linker.cmd Organization of the DSP memory (data and program memory)

auto.bat Batch file to start the compiler for the dual continuous software

asm500.exe C54x Code compiler

lnk500.exe C54x linker

The timing requirements to interface the ’C54x to the ADC are provided in
Table 12. The STEP numbers given there can be found again as Marker in the
code. This helps to debug and verify the code.

Code verification:

To verify the software, the user must change the code in the DUALCON1.ASM
file and save those changes. The next step is to recompile the four .ASM files by
executing the AUTO.BAT batch file. If compiler and linker finish without error
messages, the new output file is ready to load in the DSP program memory (e.g.
with the GoDSP development tools) and to execute.

The flow chart in Figure 12 gives a general overview of the software structure
(DUALCON1.ASM).

Software Overview

39 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

Start

Initialize DSP
Wait States, AR Pointer, IRQ Table, Data Memory, Serial Port

Initialize SPI
Active Transmitter, Use Frame Sync,

Generate External Clock

SAVE_INTO_MEMORY = 1

SAVE_INTO_MEMORY = 0
Initialize DSP Memory For Storing Samples
AR7 Points to The First Store Location
AR0 Points to The Table End
ADCOUNT = Table Size (Number of Samples)

Initialize (Id) The Two ADC Registers
CR0 = CR0_SEND
CR1 = CR1_SEND

IME CALABRATION = 1

Calibrate Internal Midscale ErrorIME CALABRATION = 0

SME CALABRATION = 1

Calibrate System Midscale Error SME CALABRATION = 0

Start Sampling
This Has Been Initialized
by The WR 1/0 Transmit

Wait 450 ns

Table End Reached?
(AR7 = AR0 ?)

Read Sample A
A = Port(ADC)

1

SEND_OUT_PARALLEL = 1

SEND_OUT_PARALLEL = 0Copy Last Sample to Parallel DAC

SEND_OUT_SERIAL = 1

SEND_OUT_SERIAL = 0
Copy Last Sample to Serial DAC

if Send Register is Empty

SAVE_INTO_MEMORY = 0

SAVE_INTO_MEMORY = 1

Store Sample Into Memory
Save Sample to AR7 – Pointed Location

Ye
s

No

Reset Actual Memory Pointer
AR6/7= First Memory Store Location

AR7= Data_Loc_A; AR6 = Data_LOc_B

Increase I/O-Wait States to 7

Wait 5(6) ADC Clock Cycles

Started at Time Stamp

tC(RD) = 800 ns (With 8 MHz ADC Clock)

1

Wait 5(6) ADC Clock Cycles
tC(RD) = 800 ns (With 8 MHz ADC Clock)

Read Sample B
B = Port(ADC)

Figure 11. Flow Chart Dual Continuous Mode

Software Overview

40 SLAA040

8.5.6 C-Callable with Mono Interrupt Driven Mode Using CSTART to Start Conversion

The following descriptions explain the software for the data acquisition with a user
friendly C program interface in monomode using the CSTART signal. The
required interface connections are shown in Figure 2.

Program Files:

C1562.ASM Includes the complete software in the C-layer

asm1562.ASM Includes the complete software algorithm to control the monomode

CONSTANT.ASM Common file of all modes (constants definition)

VECTORS.ASM Common file of all modes (IRQ vector table)

Other Files:

linker.cmd Organization of the DSP memory (data and program memory)

auto.bat Batch file to start the compiler for the monomode software

C1500.exe Compiler c-code into assembler

mnem2alg.exe Mnemonic – algebraic instruction converter

asm500.exe C54x Code compiler

lnk500.exe C54x linker

rts.lib Library to organize boot loader

The timing requirements for interfacing the ’C54x to the ADC are provided in
Table 13. The STEP numbers given there can be found again as Marker in the
code. This helps to debug and verify the code.

Code verification:

The user only needs to edit the C1562.C – software file and to run the AUTO.BAT
to adapt the acquisition. This software samples one of the four channels, with a
specified number of samples, and stores each sample into a defined memory
location.

To verify the software, the user must change the code in the C1562.ASM file and
save those changes. The next step is to recompile the four .ASM files by
executing the AUTO.BAT batch file. If compiler and linker finish without error
messages, the new output file is ready to load in the DSP program memory (e.g.
with the GoDSP development tools) and to execute.

Software Overview

41 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

8.6 Source Code

The following paragraphs contain the source code.

8.6.1 Common Software for all Modes (except C-Callable)

The files shown below contained the actual ’C54x program listings and program
examples.

8.6.1.1 Constants.asm

* TITLE : TLV1562 ADC Interface routine *

* FILE : CONSTANT.ASM *

* FUNCTION : N/A *

* PROTOTYPE : N/A *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* SPECIAL COND. : N/A *

* DESCRIPTION : definition of constant values for interface software *

* AUTHOR : AAP Application Group, ICKE, Dallas/Freising *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x Assembly Language Tools, TI 1997 *

* TMS320C54x DSKPlus User’s Guide, TI 1997 *

* Data Aquisation Circuits, TI 1998 *

* SEND WORDS FOR THE ADC TLV1562

* INDEX MODE 0:

CH1 .set 00000h ; Channel selection is Channel 1

CH2 .set 00001h ; Channel selection is Channel 2

CH3 .set 00002h ; Channel selection is Channel 3

CH4 .set 00003h ; Channel selection is Channel 4

PAIR_A .set 00000h ; Channel selection is Pair A

PAIR_B .set 00003h ; Channel selection is Pair B

MONO_INT .set 00000h ; Conversion mode selection is Mono Interrupt

DUAL_INT .set 00004h ; Conversion mode selection is Dual Interrupt

MONO_CONTINUOUS .set 00008h ; Conversion mode selection is Mono Continuous

DUAL_CONTINUOUS .set 0000Ch ; Conversion mode selection is Dual Continuous

SINGLE_END .set 00000h ; Input type is Single Ended

DIFFERENTIAL .set 00010h ; Input type is Differential

CLK_INTERNAL .set 00000h ; Conversion clock selection is Internal

CLK_EXTERNAL .set 00020h ; Conversion clock selection is External

CALIB_OP .set 00000h ; Operate with the calibrated inputs

SYS_OFF_CALIB .set 00040h ; do a system offset calibration

INT_OFF_CALIB .set 00080h ; do a internal offset calibration

Software Overview

42 SLAA040

NO_CALIB_OP .set 000C0h ; Operate without calibrated inputs (no offset)

* INDEX MODE 1:

NO_SW_PWDN .set 00100h ; Software power down mode disabled

SW_PWDN .set 00101h ; instruction for software power down

NO_AUTO_PWDN .set 00100h ; Automatic internal power–down Disabled

AUTO_PWDN .set 00102h ; Automatic internal power–down Enabled

TWO_COMPLEMENT .set 00100h ; ADC output in 2s complement format

NO_2COMPLEMENT .set 00104h ; ADC output is binary, not in 2s complement

NO_DEBUG .set 00000h ; Debug mode disabled

DEBUG_MODE .set 00108h ; Debug mode enabled

RES_10_BIT .set 00100h ; 10-bit resolution of the ADC

RES_8_BIT .set 00120h ; 8-bit resolution of the ADC

RES_4_BIT .set 00110h ; 4-bit resolution of the ADC

RD_CONV_START .set 00100h ; start Conversion by RD Signal

CST_CONV_START .set 00140h ; start Conversion by CSTART Signal

; Example to use the constants, decribed on the top:

; set the sending value ”send” to sampling Channel 4 with external clock source

; calibrated inputs into Mono Continuous Mode
;
; @send = #(CH4|MONO_CONTINUOUS|SINGLE_END|CLK_EXTERNAL|CALIB_OP);

; port(xxxxh) = @send ; send the value over the Data lines to the TLCV1562

* memory organization (table write of samples) for the C54x

num_data_A .set 00200h ; Number of data from channel A

num_data_B .set 00200h ; Number of data from channel B

num_data_C .set 00200h ; Number of data from channel C

num_data_D .set 00200h ; Number of data from channel D

data_loc_A .set 02000h ; Start data location for channel A

data_loc_B .set 02200h ; Start data location for channel B

data_loc_C .set 02400h ; Start data location for channel C

data_loc_D .set 02600h ; Start data location for channel D

TRASH .set 02000h ; address to waste the first input sample

 ; after initialization

* bit setting of the serial DAC to match the right mode

TLC5618_LATCH_A .set 08000h ; update output A

TLC5618_LATCH_B .set 00000h ; update B

TLC5618_DOUBLE_LATCH.set 01000h ; update both outputs

TLC5618_FAST_MODE .set 04000h ; fast settling time (2.5us)

TLC5618_SLOW_MODE .set 00000h ; slower settling time (power save)

TLC5618_POWER_UP .set 00000h ; remain active

TLC5618_POWER_DOWN .set 02000h ; go sleep

Software Overview

43 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

8.6.1.2 Interrupt Vectors

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : VECTORS.ASM *

* FUNCTION : N/A *

* PROTOTYPE : N/A *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* SPECIAL COND. : N/A *

* DESCRIPTION : definition of of all interrupt vectors *

* Vector Table for the ’C54x DSKplus *

* AUTHOR : AAP Application Group, ICKE, Dallas/Freising *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x DSKPlus User’s Guide, TI 1997 *

**

 .title ”Vector Table”

 .mmregs

 .width 80

 .length 55

reset goto _MAIN ;00; RESET * DO NOT MODIFY IF USING DEBUGGER *

 nop

 nop

nmi goto START ;04; non–maskable external interrupt

 nop

 nop

trap2 goto trap2 ;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *

 nop

 nop

 .space 52*16 ;0C–3F: vectors for software interrupts 18–30

int0

; return_fast ;come out of the IDLE

; nop

; nop

; nop

 goto IRQ_INT0 ;40; external interrupt int0

 nop

 nop

int1 return_enable ;44; external interrupt int1

 nop

 nop

 nop

int2 return_enable ;48; external interrupt int2

Software Overview

44 SLAA040

 nop

 nop

 nop

tint return_enable ;4C; internal timer interrupt

 nop

 nop

 nop

brint return_enable ;50; BSP receive interrupt

 nop

 nop

 nop

bxint goto BXINT0 ;54; BSP transmit interrupt

 nop

 nop

trint goto trint ;58; TDM receive interrupt

 nop

 nop

txint return_enable ;5C; TDM transmit interrupt

 nop

 nop

 nop

int3 return_enable ;60; external interrupt int3

 nop

 nop

 nop

hpiint goto hpiint ;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *

 nop

 nop

 .space 24*16 ;68–7F; reserved area

Software Overview

45 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

8.6.1.3 linker,cmd

The linker file for each mode is specified with called file names, but in general
looks like the following, made for the Mono Continuous Mode:

/**/

/* File: Linker.lnk COMMAND FILE */

/* .title ”COMMAND FILE FOR TLV1562.ASM” */

/* */

/* This CMD file allocates the memory area for the TLV1562 */

/* interface Program */

/**/

 –stack 0x0080

 –M monocon1.MAP

 –O monocon1.OUT

 –e START

monocon1.obj

 MEMORY

 {

 PAGE 0: VECT: origin = 0200h, length = 0080h

 PROG: origin = 0300h, length = 0400h

 PAGE 1: RAMB0: origin = 1800h, length = 1600h

 }

 SECTIONS

 {

 .text : {} > PROG PAGE = 0

 .vectors : {} > VECT PAGE = 0

 .data : {} > RAMB0 PAGE = 1

 .variabl : {} > RAMB0 PAGE = 1

 }

8.6.1.4 Auto.bat

The batch file to compile changes is specified for each mode, but in general looks
like the following, made for the mono continuous mode:

del *.map

del *.obj

del *.out

del *.lst

asm500 monocon1.asm –l –mg –q –s

pause

lnk500 linker.cmd

Software Overview

46 SLAA040

8.6.2 Mono Mode Interrupt Driven Software Using RD to Start Conversion

Mainprogram (Monomode.asm)

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : MONOIDM1.ASM *

* FUNCTION : MAIN *

* PROTOTYPE : void MAIN () *

* CALLS : SERIAL_DAC_INI() initialzation of the BSPI/serial DAC *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* SPECIAL COND. : AR0 protected – in use for the data storage procedure *

* AR5 protected – in use for polling IFR *

* (only for software polling solution) *

* AR7 protected – in use for the data storage procedure *

* DESCRIPTION : main routine to use the mono interrupt driven mode *

* AUTHOR : AAP Application Group, ICKE, Dallas *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x User’s Guide, TI 1997 *

* TMS320C54x DSKPlus User’s Guide, TI 1997 *

* Data Aquisation Circuits, TI 1998 *

**

 .title ”MONOIDM1”

 .mmregs

 .width 80

 .length 55

 .version 542

* the next 4 lines (setsect) have to be enabled if the DSKplus code generator

* instead of the asm500.exe tools are in use

; .setsect ”.vectors”,0x00180,0 ; sections of code

; .setsect ”.text”, 0x00200,0 ; these assembler directives specify

; .setsect ”.data”, 0x01800,1 ; the absolute addresses of different

; .setsect ”.variabl”,0x01800,1 ; sections of code

 .sect ”.vectors”

 .copy ”vectors.asm”

 .sect ”.data”

 .copy ”constant.asm”

* ADC conversation

AD_DP .usect ”.variabl”, 0 ; pointer address when using any of the following variables

ACT_CHANNEL .usect ”.variabl”, 1 ; jump address to init. new channel

ADCOUNT .usect ”.variabl”, 1 ; counter for one channel

ADMEM .usect ”.variabl”, 1 ; points to act. memory save location

Software Overview

47 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

CR0_SEND .usect ”.variabl”, 1 ; sent value to register CR0 of the ADC

CR1_SEND .usect ”.variabl”, 1 ; sent value to register CR1 of the ADC

ZERO .usect ”.variabl”, 1 ; the value zero to send a ”Zero Dummy”

ADSAMPLE .usect ”.variabl”, 1 ; last read sample from the ADC

* TLC5618 conversation

SERIAL_SEND .usect ”.variabl”, 1 ; serial output send word

* other

TEMP .usect ”.variabl”, 1 ; temporary variable, can be changed anywhere during
 ; the program

* Address Decoder constants:

CSTART .set 00001h ; activate A1 when CSTART is choosen

ADC .set 00002h ; activate A2 when TLV1562 is choosen

DAC1 .set 00003h ; activate A3 when DAC1 is choosen

DEACTIV .set 00000h ; deactivate the address lines A0, A1 and A2

* set timing mode (use od IRQ, or timer)

POLLING_DRV .set 00001h ; software polls the INT0 pin to wait, until conversion
is done

INT0_DRIVEN .set 00000h ; software uses Interrupt INT0 to organize conversion

NO_INT0_SIG .set 00000h ; INT0 signal not in use, interface is controlled with
timing solution

SAVE_INTO_MEMORY .set 00001h ; store the samples into DSP memory, defined in
”constants.asm”

SEND_OUT_SERIAL .set 00000h ; send the samples always to the serial DAC

SEND_OUT_PARALLEL .set 00001h ; update always the parallel DAC with the last sample
 (DAC1)

R10BIT_RESOLUT .set 00001h ; use maximum resolution of 10-bit

R8BIT_RESOLUT .set 00000h ; use 8-bit resolution

R4BIT_RESOLUT .set 00000h ; use fastest mode (4-bit resolution)

INTERNAL_CLOCK .set 00001h ; use the internal clock of the ADC

EXTERNAL_CLOCK .set 00000h ; use the external clock of the ADC

AUTO_PWDN_ENABLE .set 00000h ; ADC goes into power reduced state after conversion

DIFF_INPUT_MODE .set 00001h ; use differential mode instead of single ended inputs

 .sect ”.text”

_MAIN:

START:

INITIALIZATION:

* disable IRQ, sign extension mode, ini Stack

 INTM = 1 ; disable IRQ

 SXM = 0 ; no sign extension mode

; SP = #0280h ; initialize Stack pointer

Software Overview

48 SLAA040

* initialize waitstates:

 DP = #00000h ; point to page zero

 @SWWSR = #01000h ; one I/O wait states

* copy interrupt routine, which are not critical for the EVM to the IRQ table location:

* this is required for the DSKplus kit but has to be changed on other platforms

 DP = #1 ; point to page 1 (IRQ vector table)

 AR7 = #00200h

 repeat(#3h)

 data(0084h) = *AR7+ ; copy the NMI vector

 AR7 = #00240h

 repeat(#35)

 data(00C0h) = *AR7+ ; copy INT0, INT1,...

* clear all memory locations of the sampling table (table, where the samples will be stored)

 DP = #AD_DP ;

 @TEMP = #00000h ;

 repeat(#num_data_A–1)

 data(data_loc_A) = @TEMP ; fill memory table 1

 repeat(#num_data_B–1)

 data(data_loc_B) = @TEMP ; fill memory table 2

 repeat(#num_data_C–1)

 data(data_loc_C) = @TEMP ; fill memory table 3

 repeat(#num_data_D–1)

 data(data_loc_D) = @TEMP ; fill memory table 4

 .if SEND_OUT_SERIAL

**

* SERIAL_DAC_INI:

* initialize the serial interface to send out the samples for the serial DAC

* set up the serial interface for a DSP–DAC (5618A) conversation

* initialize the SPI interface and the DAC

* the serial interface will be updated with the last sample if the serial

* buffer is empty (after the last bit has been send)

**
SERIAL_DAC_INI:

BSPI_INI:

 DP = #0

 @BSPC = #00038h ; reset SPI

 @BSPCE = #00101h ; set clock speed, no Autobuffer Mode

 @BSPC = #0C078h ; start serial port

 .endif

 .if (INT0_DRIVEN|POLLING_DRV)

Software Overview

49 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

* reset pending IRQs

 IFR = #1 ; reset any old interrupt on pin INT0

 .endif

 .if INT0_DRIVEN

* enable Interrupt INT0

 @IMR |= #01 ; allow INT0

 .endif

* enable global interrupt (this is required even if no IRQ routine is used

* by this program because the GoDSP debugger needs to do its backgroud interrupts)

 INTM = 0 ; enable global IRQ

* initialize storage table for the ADC samples

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 AR0 = #(num_data_A+data_loc_A); AR0 points to table end

 DP = #AD_DP ;

 @ADCOUNT= #(num_data_A) ; initialize ADCOUNT with the number of
 required samples

 .if POLLING_DRV

 AR5 = #(IFR) ; AR5 points to the IFR register (only for
 polling mode)

 .endif

 DP = #AD_DP

 @ZERO = #00000 ; set the dummy send value

* initialize the send values to set–up the two programmable register of the ADC

 @CR0_SEND = #(CH1|MONO_INT|SINGLE_END|CLK_INTERNAL|NO_CALIB_OP);

 @CR1_SEND = #(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

* change some of the possible modes by variation of the bit setting in the file header

* this next steps can be erased, if the user is running in only one special configuration

 .if (R8BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_8_BIT ; set 8–Bit conversion mode

 .elseif (R4BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_4_BIT ; set 8–Bit conversion mode

 .endif

 .if (EXTERNAL_CLOCK)

 @CR0_SEND ^= #CLK_INTERNAL ; clear CLK_INTERNAL bit if one

 @CR0_SEND |= #CLK_EXTERNAL ; set CLK_EXTERNAL mode

 .endif

Software Overview

50 SLAA040

 .if (AUTO_PWDN_ENABLE)

 @CR1_SEND ^= #NO_AUTO_PWDN ; clear NO_AUTO_PWDN bit if one

 @CR1_SEND |= #AUTO_PWDN ; set AUTO_PWDN mode

 .endif

 .if (DIFF_INPUT_MODE)

 @CR0_SEND ^= #SINGLE_END ; clear single ended input bit if one

 @CR0_SEND |= #DIFFERENTIAL ; set differential input mode

 .endif

* ADC_INI:

* set ADC register CR0/CR1

ADC_INI:

* write CR1:

 port(ADC) = @CR1_SEND ; Address decoder sets CS low,

 ; WR low and send CR1 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CShigh)

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR0_SEND ; send CR0 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CShigh)

 NOP ; wait for tW(CSH)=50ns

* ADC_mono_IRQ_Start:

* read samples and store them into memory

ADC_mono_IRQ_Start:

STEP2: @TEMP = port(ADC) ; select ADC (CS low) (change address bus signal)

STEP3: repeat(#4)

 NOP ; wait for tD(CSL–SAMPLE)+1SYSCLK=6

STEP4: XF = 0 ; clear RD

STEP5:

 .if POLLING_DRV

* wait until INT– goes low in polling the INT0 pin:

M1: TC = bit(*AR5,15–0) ; test, is the INT0 Bit in IFR=1?

 if (NTC) goto M1 ; wait until INT signal goes high

 IFR = #1 ; reset any old interrupt on pin INT0

 .elseif INT0_DRIVEN

* user main program area (this could execute additional code)

* go into idle state until the INT0 wakes the processor up

USER_MAIN: IDLE(2) ; the user software could do something else here

 goto USER_MAIN ;

Software Overview

51 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 .elseif NO_INT0_SIG

* instead of using the INT signal, the processor waits

* for 6ADCSYSCLK+49ns and reads then the sample

 repeat(#32)

 nop ; wait for 34 processor cycles

 .endif

* read sample

STEP7: @ADSAMPLE = port(ADC) ; read the new sample into the DSP

 XF = 1 ; set RD

 .if (SEND_OUT_PARALLEL)

* store sample into the parallel buffer location if choosen

 port(DAC1) = @ADSAMPLE ; update DAC output

 @TEMP = port(ADC) ; activate ADC CS again

 .endif

 .if (AUTO_PWDN)

* deselect/select the ADC with CS (requirment in Auto power down mode)

 @TEMP = port(DEACTIVE) ; deselect ADC

 @TEMP = port(ADC) ; activate ADC CS again

 repeat(#18)

 nop ; wait for 20 clock cycles [t(APDR)=500ns]

 .endif

 XF = 0 ; clear RD (step 4)

 call STORE ; handle storing of the samples into memory and serail DAC

 .if INT0_DRIVEN

 return ; return from routine back to IRQ_INT0

 .else

 goto STEP5 ; go back to receive next sample

 .endif

* STORE:

* saving the samples into memory

STORE:

 .if SAVE_INTO_MEMORY

* store new sample into DSP data memory

 *AR7+ = data(@ADSAMPLE) ; write last sample into memory table

 .endif

 .if SEND_OUT_SERIAL

* store sample into the serial buffer location

Software Overview

52 SLAA040

 DP = #00000h ; point to page zero

 TC = bitf(@SPC,#01000h) ; test, is the XRDY Bit in SPC=1?

 if (TC) goto SEND_SERIAL_END ; don’t send something until XDR is empty

; this has been included because the serial DAC TLC5618A is not able to understand

; endless data-streem (the CS should not become high before end of sending

; the 16th bit)

 DP = #AD_DP ; reset Data page pointer to variables

 A = @ADSAMPLE<<2 ; leftshift of the sample for a 12-bit format

 @ADSAMPLE = A ;

 @ADSAMPLE |= #(TLC5618_LATCH_A|TLC5618_FAST_MODE|TLC5618_POWER_UP) ; set the mode
 of the DAC

 data(BDXR) = @ADSAMPLE ; send out the sample to the serial DAC

SEND_SERIAL_END:

 .endif

 .if SAVE_INTO_MEMORY

* test for table end, set pointer back if true

 TC = (AR0 ==AR7) ; is AR0 = AR7? (table end reached?)

 if (NTC) goto STORE_END ;

* set pointer back to table start

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 .endif

STORE_END: RETURN ; jump back into data aquisition routine

**

* IRQ_INT0:

* Interrupt routine of the external interrupt input pin INT0

**

IRQ_INT0:

 call STEP7 ; initialize the next conversion and store results

 return_enable ; return from IRQ (wake up from the IDLE mode)

**

* BXINT0:

* Interrupt routine of the serial transmit interrupt of the buffered SPI

**

BXINT0:

 return_enable ; interrupt is not in use

 .sect ”.text”

 .copy ”TLC5618.asm”

 .end

Software Overview

53 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

8.6.3 Calibration of the ADC

CALIBRAT.ASM

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : CALIBRAT.ASM *

* FUNCTION : CALIBRAT_INTERNAL_MID_SCALE *

* CALIBRAT_SYSTEM_MID_SCALE *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* SPECIAL COND. : N/A *

* DESCRIPTION : routine to perform a ADC calibration *

* AUTHOR : AAP Application Group, ICKE, Dallas *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x User’s Guide, TI 1997 *

**
 .title ”CALIBRAT”

 .mmregs

 .width 80

 .length 55

 .version 542

 .if (IME_CALIBRATION|SME_CALIBRATION)

 .sect ”.data”

CR_CALIBRA .usect ”.variabl”, 1 ; temporary variable, can be changed anywhere during
 the program

 .sect ”.text”

 .if (IME_CALIBRATION)

**

* CALIBRAT_INTERNAL_MID_SCALE

* performs an internal calibration of the ADC to offset for internal device errors

* basic idea: do a error calibration in mono interrupt driven mode using CSTART

* for conversion but use the channel & single/differential input information already

* set-up in the CR0_send register from

**
CALIBRAT_INTERNAL_MID_SCALE:

 DP = #AD_DP ; initialize data pointer

* clear calibration related bits in CR0:

 @CR0_SEND &= #(NO_CALIB_OP^0FFFFh) ; clear bit for no calibration use

 @CR0_SEND &= #(CALIB_OP^0FFFFh) ; clear bit for no calibration use

* initialize the send values to setup the two programmable registers of the ADC to calibrate

 data(CR_CALIBRA) = @CR0_SEND ; load help register with CR0 content

* use calibrated mode in the following for conversion

 @CR0_SEND |= #CALIB_OP ; set calibration for further use

Software Overview

54 SLAA040

* clear mode related bits in CR0 and set MONO_INT:

 @CR0_SEND &= #(MONO_INT^0FFFFh) ; clear bit for no calibration use

 @CR0_SEND &= #(DUAL_INT^0FFFFh) ; clear bit for no calibration use

 @CR0_SEND &= #(MONO_CONTINUOUS^0FFFFh); clear bit for no calibration use

 @CR0_SEND &= #(DUAL_CONTINUOUS^0FFFFh); clear bit for no calibration use

 @CR0_SEND |= #MONO_INT ; set calibration for further use

* clear clock related bits in CR0 and set internal clock mode:

 @CR0_SEND &= #(CLK_INTERNAL^0FFFFh) ; clear bit for no calibration use

 @CR0_SEND &= #(CLK_EXTERNAL^0FFFFh) ; clear bit for no calibration use

 @CR0_SEND |= #CLK_INTERNAL ; set calibration for further use

* set mode for intermal offset calibration:

 @CR_CALIBRA |= #INT_OFF_CALIB ; set internal calibration mode

* verify ADC register CR0/CR1

* write CR1 (to reset old CSTART mode initialization, because otherwise, the ADC never sets

* back its INT– pin to show a sample is available:

 @CR_PROBLEM = #(SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

 port(ADC) = @CR_PROBLEM ; Address decoder sets CS low,

 ; WR– low and send CR_PROBLEM value to the ADC

 NOP ; wait for tW(CSH)=50ns

* write CR1

* initialize the send values to setup the two programmable registers of the ADC

 @CR_PROBLEM =
#(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|CST_CONV_START);

 port(ADC) = @CR_PROBLEM ; send CR0 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR_CALIBRA ; send CR0 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

**

* do one sample to perform the calibration

**

 XF = 0 ; clear CSTART

 repeat(#10)

 nop ; wait for some sampling time

 XF = 1 ; reset CSTART

 repeat(#34)

Software Overview

55 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 nop ; wait for 34 cycles until conversion has been finished

 @TEMP = port(ADC) ; read the sample but don’t care about the content

 IFR = #1 ; reset any old interrupt on pin INT0

* set back ADC register CR0/CR1

* write CR1 (to reset old CSTART mode initialization, because otherwise, the ADC never resets

* the INT pin to show a sample is available:

 @CR_PROBLEM = #(SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

 port(ADC) = @CR_PROBLEM ; Address decoder sets CS low,

 ; WR– low and send CR_PROBLEM value to the ADC

 NOP ; wait for tW(CSH)=50ns

* write CR1:

 port(ADC) = @CR1_SEND ; Address decoder sets CS low,

 ; WR– low and send CR1 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR0_SEND ; send CR0 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

 return ; return from call

 .endif

 .if (SME_CALIBRATION)

**

* CALIBRAT_SYSTEM_MID_SCALE

* performs an internal calibration of the ADC to offset for the device midscale

* error and input offset

* basic idea: do a error calibration in mono interrupt driven mode using CSTART

* for conversion, but use the channel & single/differential input information already

* set–up in the CR0_send register from

**
CALIBRAT_SYSTEM_MID_SCALE:

 DP = #AD_DP ; initialize data pointer

* clear calibration related bits in CR0:

 @CR0_SEND &= #(NO_CALIB_OP^0FFFFh) ; clear bit for no calibration use

 @CR0_SEND &= #(CALIB_OP^0FFFFh) ; clear bit for no calibration use

* initialize the send values to setup the two programmable registers of the ADC to calibrate

 data(CR_CALIBRA) = @CR0_SEND ; load help register with CR0 content

Software Overview

56 SLAA040

* use calibrated mode in the following for conversion

 @CR0_SEND |= #CALIB_OP ; set calibration for further use

* clear mode related bits in CR_CALIBRA and set MONO_INT:

 @CR_CALIBRA &= #(MONO_INT^0FFFFh) ; clear bit for no calibration use

 @CR_CALIBRA &= #(DUAL_INT^0FFFFh) ; clear bit for no calibration use

 @CR_CALIBRA &= #(MONO_CONTINUOUS^0FFFFh); clear bit for no calibration use

 @CR_CALIBRA &= #(DUAL_CONTINUOUS^0FFFFh); clear bit for no calibration use

 @CR_CALIBRA |= #MONO_INT ; set calibration for further use

* clear clock related bits in CR_CALIBRA and set internal clock mode:

 @CR_CALIBRA &= #(CLK_INTERNAL^0FFFFh) ; clear bit for no calibration use

 @CR_CALIBRA &= #(CLK_EXTERNAL^0FFFFh) ; clear bit for no calibration use

 @CR_CALIBRA |= #CLK_INTERNAL ; set calibration for further use

* set mode for intermal offset calibration:

 @CR_CALIBRA |= #SYS_OFF_CALIB ; set internal calibration mode

* verify ADC register CR0/CR1

* write CR1 (to reset old CSTART mode initialization, because otherwise, the ADC never sets

* back its INT– pin to show a sample is available:

 @CR_PROBLEM = #(SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

 port(ADC) = @CR_PROBLEM ; Address decoder sets CS low,

 ; WR low and send CR_PROBLEM value to the ADC

 NOP ; wait for tW(CSH)=50ns

* write CR1

* initialize the send values to setup the two programmable registers of the ADC

 @CR_PROBLEM =
#(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|CST_CONV_START);

 port(ADC) = @CR_PROBLEM ; send CR0 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR_CALIBRA ; send CR0 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

**

* do one sample to perform the calibration

**

 XF = 0 ; clear CSTART

 repeat(#10)

Software Overview

57 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 nop ; wait for some sampling time

 XF = 1 ; reset CSTART

 repeat(#34)

 nop ; wait for 34 cycles until conversion has been finished

 @TEMP = port(ADC) ; read the sample but don’t care about the content

 IFR = #1 ; reset any old interrupt on pin INT0

* set back ADC register CR0/CR1

* write CR1 (to reset old CSTART mode initialization, because otherwise, the ADC never sets

* back its int– pin to show a sample is available:

 @CR_PROBLEM = #(SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

 port(ADC) = @CR_PROBLEM ; Address decoder sets CS low,

 ; WR low and send CR_PROBLEM value to the ADC

 NOP ; wait for tW(CSH)=50nS

* write CR1:

 port(ADC) = @CR1_SEND ; Address decoder sets CS low,

 ; WR low and send CR1 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR0_SEND ; send CR0 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

 return ; return from call

 .endif

 .endif

Software Overview

58 SLAA040

8.6.4 Mono Mode Interrupt Driven Software Using CSTART to Start Conversion

Mainprogram (Monomode.asm)

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : MONOCST1.ASM *

* FUNCTION : MAIN *

* PROTOTYPE : void MAIN () *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* SPECIAL COND. : AR0 protected – in use for the data storage procedure *

* AR5 protected – in use for polling IFR *

* (only for software polling solution) *

* AR7 protected – in use for the data storage procedure *

* DESCRIPTION : main routine to use the mono interrupt driven mode *

* and the CSTART signal to CPU power for the conversion *

* time *

* AUTHOR : AAP Application Group, ICKE, Dallas *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x User’s Guide, TI 1997 *

* TMS320C54x DSKPlus User’s Guide, TI 1997 *

* Data Aquisation Circuits, TI 1998 *

**
 .title ”MONOCST1”

 .mmregs

 .width 80

 .length 55

 .version 542

* the next 4 lines (setsect) have to be enabled if the DSKplus code generator

* instead of the asm500.exe tools are in use

; .setsect ”.vectors”,0x00180,0 ; sections of code

; .setsect ”.text”, 0x00200,0 ; these assembler directives specify

; .setsect ”.data”, 0x01800,1 ; the absolute addresses of different

; .setsect ”.variabl”,0x01800,1 ; sections of code

 .sect ”.vectors”

 .copy ”vectors.asm”

 .sect ”.data”

 .copy ”constant.asm”

* ADC conversation

AD_DP .usect ”.variabl”, 0 ; pointer address when using any of the
 following variables

ACT_CHANNEL .usect ”.variabl”, 1 ; jump address to init. new channel

Software Overview

59 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

ADCOUNT .usect ”.variabl”, 1 ; counter for one channel

ADMEM .usect ”.variabl”, 1 ; points to act. memory save location

CR0_SEND .usect ”.variabl”, 1 ; sent value to register CR0 of the ADC

CR1_SEND .usect ”.variabl”, 1 ; sent value to register CR1 of the ADC

CR_PROBLEM .usect ”.variabl”, 1 ; problem with initialization of this mode
 ; when repeated (reset)

ZERO .usect ”.variabl”, 1 ; the value zero to send a ”Zero Dummy”

ADSAMPLE .usect ”.variabl”,1 ; last read sample from the ADC

* TLC5618 conversation

SERIAL_SEND .usect ”.variabl”, 1 ; serial output send word

* other

TEMP .usect ”.variabl”, 1 ; temporary variable, can be changed anywhere
 during the program

* Address Decoder constants:

RD_CALIBRATION .set 00001h ; activate A1 when RD_CALIBRATION is choosen

ADC .set 00002h ; activate A2 when TLV1562 is choosen

DAC1 .set 00003h ; activate A3 when DAC1 is choosen

DEACTIVE .set 00000h ; deactivate the address lines A0, A1 and A2

* set timing mode (use od IRQ, or timer)

POLLING_DRV .set 00001h ; software polls the INT0 pin to wait, until
 conversion is done

INT0_DRIVEN .set 00000h ; software uses Interrupt INT0 to organize conversion

NO_INT0_SIG .set 00000h ; INT0 signal not in use, interface is controlled
 with timing solution

SAVE_INTO_MEMORY .set 00000h ; store the samples into DSP memory, defined in
 ”constants.asm”

SEND_OUT_SERIAL .set 00000h ; send the samples always to the serial DAC

SEND_OUT_PARALLEL.set 00001h ; update always the parallel DAC with the last
 sample (DAC1)

R10BIT_RESOLUT .set 00001h ; use maximum resolution of 10 bit

R8BIT_RESOLUT .set 00000h ; use 8 Bit resolution

R4BIT_RESOLUT .set 00000h ; use fastest mode (4 Bit resolution)

INTERNAL_CLOCK .set 00001h ; use the internal clock of the ADC

EXTERNAL_CLOCK .set 00000h ; use the external clock of the ADC

AUTO_PWDN_ENABLE .set 00000h ; ADC goes into power reduced state after conversion

DIFF_INPUT_MODE .set 00000h ; use differential mode instead of single ended inputs

IME_CALIBRATION .set 00000h ; do an Internal Midscale Error Calibration

SME_CALIBRATION .set 00000h ; do a System Midscale Error Calibration

 .sect ”.text”

Software Overview

60 SLAA040

_MAIN:

START:

INITIALIZATION:

* disable IRQ, sign extension mode, ini Stack

 INTM = 1 ; disable IRQ

 SXM = 0 ; no sign extension mode

; SP = #0280h ; initialize Stack pointer

* initialize waitstates:

 DP = #00000h ; point to page zero

 @SWWSR = #01000h ; one I/O wait states

* copy interrupt routine, which are not critical for the EVM to the IRQ table location:

* this is required for the DSKplus kit but has to be changed on other platforms

 DP = #1 ; point to page 1 (IRQ vector table)

 AR7 = #00200h

 repeat(#3h)

 data(0084h) = *AR7+ ; copy the NMI vector

 AR7 = #00240h

 repeat(#35)

 data(00C0h) = *AR7+ ; copy INT0, INT1,...

* clear all memory locations of the sampling table (table, where the samples will be stored)

 DP = #AD_DP ;

 @TEMP = #00000h ;

 repeat(#num_data_A–1)

 data(data_loc_A) = @TEMP ; fill memory table 1

 repeat(#num_data_B–1)

 data(data_loc_B) = @TEMP ; fill memory table 2

 repeat(#num_data_C–1)

 data(data_loc_C) = @TEMP ; fill memory table 3

 repeat(#num_data_D–1)

 data(data_loc_D) = @TEMP ; fill memory table 4

 .if SEND_OUT_SERIAL

**
* SERIAL_DAC_INI:

* initialize the serial interface to send out the samples for the serial DAC

* set up the serial interface for a DSP–DAC (5618A) conversation

* initialize the SPI interface and the DAC

* the serial interface will be updated with the last sample if the serial

* buffer is empty (after the last bit has been sent)

**

Software Overview

61 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

SERIAL_DAC_INI:

BSPI_INI:

 DP = #0

 @BSPC = #00038h ; reset SPI

 @BSPCE = #00101h ; set clock speed, no Autobuffer Mode

 @BSPC = #0C078h ; start serial port

 .endif

 .if (INT0_DRIVEN|POLLING_DRV)

* reset pending IRQs

 IFR = #1 ; reset any old interrupt on pin INT0

 .endif

 .if INT0_DRIVEN

* enable Interrupt INT0

 DP = #0

 @IMR |= #01 ; allow INT0

 .endif

* enable global interrupt (this is even required, if no IRQ routine is used

* by this program because the GoDSP debugger needs to do its backgroud interrupts)

 INTM = 0 ; enable global IRQ

* initialize storage table for the ADC samples

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 AR0 = #(num_data_A+data_loc_A); AR0 points to table end

 DP = #AD_DP ;

 @ADCOUNT= #(num_data_A) ; initialize ADCOUNT with the number of required samples

 .if POLLING_DRV

 AR5 = #(IFR) ; AR5 points to the IFR register (only for polling mode)

 .endif

 DP = #AD_DP

 @ZERO = #00000 ; set the dummy send value

* initialize the send values to set–up the two programmable register of the ADC

 @CR0_SEND = #(CH1|MONO_INT|SINGLE_END|CLK_INTERNAL|NO_CALIB_OP);

 @CR1_SEND = #(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|CST_CONV_START);

* change some of the possible modes by variation of the bit setting in the file header

* this next steps can be erased, if the user is running in only one special configuration

 .if (R8BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_8_BIT ; set 8–Bit conversion mode

Software Overview

62 SLAA040

 .elseif (R4BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_4_BIT ; set 8–Bit conversion mode

 .endif

 .if (EXTERNAL_CLOCK)

 @CR0_SEND ^= #CLK_INTERNAL ; clear CLK_INTERNAL bit if one

 @CR0_SEND |= #CLK_EXTERNAL ; set CLK_EXTERNAL mode

 .endif

 .if (AUTO_PWDN_ENABLE)

 @CR1_SEND ^= #NO_AUTO_PWDN ; clear NO_AUTO_PWDN bit if one

 @CR1_SEND |= #AUTO_PWDN ; set AUTO_PWDN mode

 .endif

 .if (DIFF_INPUT_MODE)

 @CR0_SEND ^= #SINGLE_END ; clear single ended input bit if one

 @CR0_SEND |= #DIFFERENTIAL ; set differential input mode

 .endif

 .if (IME_CALIBRATION)

 call CALIBRAT_INTERNAL_MID_SCALE

 .endif

 .if (SME_CALIBRATION)

 call CALIBRAT_SYSTEM_MID_SCALE

 .endif

* ADC_INI:

* set ADC register CR0/CR1

ADC_INI:

* write CR1 (to reset old CSTART mode initialization, because otherwise, the ADC never sets

* back its int– pin to show a sample is available:

 @CR_PROBLEM = #(SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

 port(ADC) = @CR_PROBLEM ; Address decoder sets CS low,

 ; WR– low and send CR_PROBLEM value to the ADC

 NOP ; wait for tW(CSH)=50ns

* write CR1:

 port(ADC) = @CR1_SEND ; Address decoder sets CS low,

 ; WR– low and send CR1 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

Software Overview

63 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

* write CR0

 port(ADC) = @CR0_SEND ; send CR0 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

* ADC_mono_IRQ_Start:

* read samples and store them into memory

ADC_mono_IRQ_Start:

ISTEP2: XF = 0 ; clear CSTART

ISTEP3: NOP

 NOP

 NOP ; wait for TW(CSTARTL)

ISTEP4: XF = 1 ; set CSTART

STEP5:

 .if POLLING_DRV

* wait until INT– goes low in polling the INT0 pin:

M1: TC = bit(*AR5,15–0) ; test, is the INT0 Bit in IFR=1?

 if (NTC) goto M1 ; wait until INT signal goes high

 IFR = #1 ; reset any old interrupt on pin INT0

 .elseif INT0_DRIVEN

* user main program area (this could execute additional code)

* go into idle state until the INT0 wakes the processor up

USER_MAIN: IDLE(2) ; the user software could do something else here

 goto USER_MAIN ;

 .elseif NO_INT0_SIG

* instead of using the INT signal, the processor waits

* for 6ADCSYSCLK+49ns and reads then the sample

 repeat(#32)

 nop ; wait for 34 processor cycles

 .endif

* read sample

STEP2: XF = 0 ; clear CSTART

STEP10: @ADSAMPLE = port(ADC) ; read the new sample into the DSP

 .if (AUTO_PWDN)

* wait 800ns before finishing the sampling (requirment in Auto power down mode)

 repeat(#24)

 nop ; wait for 20 clock cycles [t(APDR)=500ns]

 .endif

Software Overview

64 SLAA040

STEP4: XF = 1 ; wait for TW(CSTARTL) and set CSTART

 call STORE ; store the last sample into the table

 .if INT0_DRIVEN

 return ; return from routine back to IRQ_INT0

 .else

 goto STEP5 ; go back to receive next sample

 .endif

* STORE:

* saving the samples into memory

STORE:

 .if (SEND_OUT_PARALLEL)

* store sample into the parallel buffer location if choosen

 port(DAC1) = @ADSAMPLE ; update DAC output

 .endif

 .if SAVE_INTO_MEMORY

* store new sample into DSP data memory

 *AR7+ = data(@ADSAMPLE) ; write last sample into memory table

 .endif

 .if SEND_OUT_SERIAL

* store sample into the serial buffer location

 DP = #00000h ; point to page zero

 TC = bitf(@SPC,#01000h) ; test, is the XRDY Bit in SPC=1?

 if (TC) goto SEND_SERIAL_END ; don’t send something until XDR is empty

; this has been included because the serial DAC TLC5618A is not able to understand

; endless data-stream (the CS should not become high before end of sending

; the 16th bit)

 DP = #AD_DP ; reset Data page pointer to variables

 A = @ADSAMPLE<<2 ; leftshift of the sample for a 12 bit format

 @ADSAMPLE = A ;

 @ADSAMPLE |= #(TLC5618_LATCH_A|TLC5618_FAST_MODE|TLC5618_POWER_UP) ; set the mode of the
DAC

 data(BDXR) = @ADSAMPLE ; send out the sample to the serial DAC

SEND_SERIAL_END:

 .endif

 .if SAVE_INTO_MEMORY

* test for table end, set pointer back if true

 TC = (AR0 ==AR7) ; is AR0 = AR7? (table end reached?)

 if (NTC) goto STORE_END ;

* set pointer back to table start

Software Overview

65 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 .endif

STORE_END: RETURN ; jump back into data aquisition routine

**

* IRQ_INT0:

* Interrupt routine of the external interrupt input pin INT0

**

IRQ_INT0:

 call STEP2 ; initialize the next conversion and store results

 return_enable ; return from IRQ (wake up from the IDLE mode)

**

* BXINT0:

* Interrupt routine of the serial transmit interrupt of the buffered SPI

**

BXINT0:

 return_enable ; interrupt is not in use

 .sect ”.text”

 .copy ”calibrat.asm”

 .end

Software Overview

66 SLAA040

Constants definition – see 8.6.1.1 Constants.asm

Interrupt Routine handler – see 8.6.1.2 Interrupt Vectors

8.6.5 Dual Interrupt Driven Mode

Mainprogram (DUALIRQ1.asm)

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : DUALIRQ1.ASM *

* FUNCTION : MAIN *

* PROTOTYPE : void MAIN () *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* DESCRIPTION : main routine to use the mono interrupt driven mode *

* and the CSTART signal to CPU power for the conversion *

* time *

* AUTHOR : AAP Application Group, ICKE, Dallas *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x User’s Guide, TI 1997 *

* : Data Aquisation Circuits, TI 1998 *

**

 .title ”DUALIRQ1”

 .mmregs

 .width 80

 .length 55

 .version 542

; .setsect ”.vectors”,0x00180,0 ; sections of code

; .setsect ”.text”, 0x00200,0 ; these assembler directives specify

; .setsect ”.data”, 0x01800,1 ; the absolute addresses of different

; .setsect ”.variabl”,0x01800,1 ; sections of code

 .sect ”.vectors”

 .copy ”vectors.asm”

 .sect ”.data”

 .copy ”constant.asm”

AD_DP .usect ”.variabl”, 0 ;

ACT_CHANNEL .usect ”.variabl”, 1 ; jump address to init. new channel

ADWORD .usect ”.variabl”, 1 ; send–bytes to the ADC

ADCOUNT .usect ”.variabl”, 1 ; counter for one channel

ADMEM .usect ”.variabl”, 1 ; points to act. memory save location

Software Overview

67 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

CR0_SEND .usect ”.variabl”, 1 ; the last value, sent to register CR0

CR1_SEND .usect ”.variabl”, 1 ; the last value, sent to register CR1

CR_PROBLEM .usect ”.variabl”, 1 ; problem with initialization of this mode
 when repeated (reset)

ZERO .usect ”.variabl”, 1 ; the value zero to send

TEMP .usect ”.variabl”, 1 ; temporary variable

isr_save .usect ”.variabl”, 1 ; memory location to save AR7 during

 ; interrupts

CH1_ADSAMPLE .usect ”.variabl”,1 ; last read sample of channel 1

CH2_ADSAMPLE .usect ”.variabl”,1 ; last read sample of channel 2

* Address Decoder constants:

ADC .set 00002h ; activate A0 when TLV1562 is choosen

CSTART .set 00001h ; activate A1 when CSTART is choosen

DAC1 .set 00003h ; activate A2 when DAC1 is choosen

DEACTIVE .set 00000h ; deactivate the address lines A0, A1 and A2

* set timing mode (use od IRQ, or timer)

POLLING_DRV .set 00001h ; software polls the INT0 pin to wait, until
 conversion is done

INT0_DRIVEN .set 00000h ; software uses Interrupt INT0 to wait for end of
 conversion

NO_INT0_SIG .set 00000h ; INT0 signal not in use, timing solution

SAVE_INTO_MEMORY.set 00001h ; store the samples into DSP memory

SEND_OUT_SERIAL .set 00000h ; store the last sample allways into serial buffer memory

SEND_OUT_PARALLEL.set 00001h ; store the last sample allways into DAC1

R10BIT_RESOLUT .set 00001h ; use maximum resolution of 10 bit

R8BIT_RESOLUT .set 00000h ; use 8 Bit resolution

R4BIT_RESOLUT .set 00000h ; use fastest mode (4 Bit resolution)

INTERNAL_CLOCK .set 00001h ; use the internal clock of the ADC

EXTERNAL_CLOCK .set 00000h ; use the external clock of the ADC

AUTO_PWDN_ENABLE.set 00000h ; ADC goes into power reduced state after conversion

DIFF_INPUT_MODE .set 00000h ; use differential mode instead of single ended inputs

IME_CALIBRATION .set 00000h ; do an Internal Midscale Error Calibration

SME_CALIBRATION .set 00000h ; do a System Midscale Error Calibration

 .sect ”.text”

_MAIN:

START:

INITIALIZATION:

* disable IRQ, sign extension mode, ini Stack

Software Overview

68 SLAA040

 INTM = 1 ; disable IRQ

 SXM = 0 ; no sign extension mode

; SP = #0280h ; initialize Stack pointer

* initialize waitstates:

 DP = #00000h ; point to page zero

 @SWWSR = #01000h ; one I/O wait states

* copy interrupt routine, which are uncritical by the EVM to the IRQ table location:

* this is required for the DSKplus kit but has to be changed on other platforms

 DP = #1 ; point to page 1 (IRQ vector table)

 AR7 = #00200h

 repeat(#3h)

 data(0084h) = *AR7+ ; copy the NMI vector

 AR7 = #00240h

 repeat(#35)

 data(00C0h) = *AR7+ ; copy INT0, INT1,...

* clear all memory locations of the sampling table (table, where the samples will be stored)

 DP = #AD_DP ;

 @TEMP = #00000h ;

 repeat(#num_data_A–1)

 data(data_loc_A) = @TEMP ; fill memory table 1

 repeat(#num_data_B–1)

 data(data_loc_B) = @TEMP ; fill memory table 2

 repeat(#num_data_C–1)

 data(data_loc_C) = @TEMP ; fill memory table 3

 repeat(#num_data_D–1)

 data(data_loc_D) = @TEMP ; fill memory table 4

 .if SEND_OUT_SERIAL

**

* SERIAL_DAC_INI:

* initialize the serial interface to send out the samples for the serial DAC

* set up the serial interface for a DSP to DAC (5618A) conversation

* initialize the SPI interface and the DAC

* the serial interface will be updated with the last sample if the serial

* buffer is empty (after the last bit has been send)

**
SERIAL_DAC_INI:

BSPI_INI:

 DP = #0

 @BSPC = #00038h ; reset SPI

Software Overview

69 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 @BSPCE = #00101h ; set clock speed, no Autobuffer Mode

 @BSPC = #0C078h ; start serial port

 .endif

 .if (INT0_DRIVEN|POLLING_DRV)

* reset pending IRQs

 IFR = #1 ; reset any old interrupt on pin INT0

 .endif

 .if INT0_DRIVEN

* enable Interrupt INT0

 DP = #0

 @IMR |= #01 ; allow INT0

 .endif

* enable global interrupt (this is even required, if no IRQ routine is used

* by this program because the GoDSP debugger needs to do its backgroud interrupts)

 INTM = 0 ; enable global IRQ

* initialize storage table for the ADC samples

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 AR0 = #(num_data_A+data_loc_A); AR0 points to table end

 DP = #AD_DP ;

 @ADCOUNT= #(num_data_A) ; initialize ADCOUNT with the number of required samples

 .if POLLING_DRV

 AR5 = #(IFR) ; AR5 points to the IFR register (only for polling mode)

 .endif

 DP = #AD_DP

 @ZERO = #00000 ; set the dummy send value

* initialize the send values to set–up the two programmable register of the ADC

 @CR0_SEND = #(CH1|MONO_INT|SINGLE_END|CLK_INTERNAL|NO_CALIB_OP);

 @CR1_SEND = #(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|CST_CONV_START);

* change some of the possible modes by variation of the bit setting in the file header

* this next steps can be erased, if the user is running in only one special configuration

 .if (R8BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_8_BIT ; set 8–Bit conversion mode

 .elseif (R4BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_4_BIT ; set 8–Bit conversion mode

 .endif

Software Overview

70 SLAA040

 .if (EXTERNAL_CLOCK)

 @CR0_SEND ^= #CLK_INTERNAL ; clear CLK_INTERNAL bit if one

 @CR0_SEND |= #CLK_EXTERNAL ; set CLK_EXTERNAL mode

 .endif

 .if (AUTO_PWDN_ENABLE)

 @CR1_SEND ^= #NO_AUTO_PWDN ; clear NO_AUTO_PWDN bit if one

 @CR1_SEND |= #AUTO_PWDN ; set AUTO_PWDN mode

 .endif

 .if (DIFF_INPUT_MODE)

 @CR0_SEND ^= #SINGLE_END ; clear single ended input bit if one

 @CR0_SEND |= #DIFFERENTIAL ; set differential input mode

 .endif

**

* Calibration:

* do a calibration of the input if choosen (the location of this instruction

* is only for an EVM test, in practice, the calibration procedure should

* be executed when the inputs are shorted to the correct voltage and after

* calibration, the analog signal is to apply before doing any further signal

* conversion)

* the calibration implementation is more or less inserted as an example

**
 .if (IME_CALIBRATION)

 call CALIBRAT_INTERNAL_MID_SCALE

 .endif

 .if (SME_CALIBRATION)

 call CALIBRAT_SYSTEM_MID_SCALE

 .endif

* ADC_INI:

* set ADC register CR0/CR1

ADC_INI:

* write CR1 (to reset old CSTART mode initialization, because otherwise, the ADC never sets

* back its INT pin to show a sample is available:

 @CR_PROBLEM = #(SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

 port(ADC) = @CR_PROBLEM ; Address decoder sets CS low,

 ; WR– low and send CR_PROBLEM value to the ADC

 NOP ; wait for tW(CSH)=50ns

* write CR1:

 port(ADC) = @CR1_SEND ; Address decoder sets CS low,

 ; WR– low and send CR1 value to the ADC

Software Overview

71 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR0_SEND ; send CR0 value to the ADC

STEP1: port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ;

* ADC_dual_IRQ_Start:

* read samples and store them into memory

ADC_dual_IRQ_Start:

ISTEP2: XF = 0 ; clear CSTART

ISTEP3: NOP

 NOP

 NOP ; wait for TW(CSTARTL)

 .if (AUTO_PWDN_ENABLE)

* wait 800ns before finishing the sampling (requirment in Auto power down mode)

 repeat(#38)

 nop ; wait for 40 clock cycles [t(APDR)=1000ns]

 .endif

ISTEP4: XF = 1 ; set CSTART

STEP5:

 .if POLLING_DRV

* wait until INT– goes low in polling the INT0 pin:

M1: TC = bit(*AR5,15–0) ; test, is the INT0 Bit in IFR=1?

 if (NTC) goto M1 ; wait until INT signal went high

 IFR = #1 ; reset any old interrupt on pin INT0

 .elseif INT0_DRIVEN

* user main program area (this could execute additional code)

* go into idle state until the INT0 wakes the processor up

USER_MAIN: IDLE(2) ; the user software could do something else here

 goto USER_MAIN ;

 .elseif NO_INT0_SIG

* instead of using the INT signal, the processor waits

* for 6ADCSYSCLK+49ns and reads then the sample

 repeat(#32)

 nop ; wait for 34 processor cycles

 .endif

Software Overview

72 SLAA040

* read sample

STEP2: XF = 0 ; clear CSTART

STEP10: @CH1_ADSAMPLE = port(ADC) ; read the new sample into the DSP

STEP14: @CH2_ADSAMPLE = port(ADC) ; read the new sample into the DSP

STEP3: ; wait for TW(CSTARTL)

 .if (AUTO_PWDN_ENABLE)

* wait 800ns before finishing the sampling (requirment in Auto power down mode)

 repeat(#38)

 nop ; wait for 40 clock cycles [t(APDR)=1000ns]

 .endif

STEP4: XF = 1 ; wait for TW(CSTARTL) and set CSTART

 call STORE ; store the last sample into the table

 .if INT0_DRIVEN

 return ; return from routine back to IRQ_INT0

 .else

 goto STEP5 ; go back to receive next sample

 .endif

* STORE:

* saving the samples into memory

STORE:

 .if (SEND_OUT_PARALLEL)

* store sample into the parallel buffer location if chosen

 port(DAC1) = @CH1_ADSAMPLE ; update DAC output with sample one

 .endif

 .if SAVE_INTO_MEMORY

* store new sample into DSP data memory

 *AR7+ = data(@CH1_ADSAMPLE) ; write last sample of channel 1 into memory table

 *AR6+ = data(@CH2_ADSAMPLE) ; write last sample of channel 2 into memory table

 .endif

 .if SEND_OUT_SERIAL

* store sample into the serial buffer location

 DP = #00000h ; point to page zero

 TC = bitf(@SPC,#01000h); test, is the XRDY Bit in SPC=1?

 if (TC) goto SEND_SERIAL_END ; don’t send something until XDR is empty

; this has been included because the serial DAC TLC5618A isn’t able to understand

; endless data–stream (the CS should not become high before end of sending

; the 16th bit)

 DP = #AD_DP ; reset Data page pointer to variables

 A = @ADSAMPLE<<2 ; leftshift of the sample for a 12 bit format

 @ADSAMPLE = A ;

Software Overview

73 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 @ADSAMPLE |= #(TLC5618_LATCH_A|TLC5618_FAST_MODE|TLC5618_POWER_UP) ; set the mode of the
 DAC

 data(BDXR) = @ADSAMPLE ; send out the sample to the serial DAC

SEND_SERIAL_END:

 .endif

* test for table end, set pointer back if true

 .if SAVE_INTO_MEMORY

 TC = (AR0 == AR7) ; is AR7 = AR0? (table end reached?)

 if (NTC) goto STORE_END ;

* set pointer back to table start

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 AR6 = #(data_loc_B) ; point to first date location of the storage table

 .endif

STORE_END: RETURN ; jump back into data aquisition routine

**

* IRQ_INT0:

* Interrupt routine of the external interrupt input pin INT0

**

IRQ_INT0:

 call STEP2 ; initialize the next conversion and store results

 return_enable ; return from IRQ (wake up from the IDLE mode)

**

* BXINT0:

* Interrupt routine of the serial transmit interrupt of the buffered SPI

**

BXINT0:

 return_enable ; interrupt is not in use

 .sect ”.text”

 .copy ”calibrat.asm”

 .end

Software Overview

74 SLAA040

Constants definition – see 8.6.1.1 Constants.asm

Interrupt Routine handler – see 8.6.1.2 Interrupt Vectors

8.6.6 Mono Continuous Mode

Mainprogram (MONOCON1.asm)

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : MONOCON1.ASM *

* FUNCTION : MAIN *

* PROTOTYPE : void MAIN () *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* DESCRIPTION : main routine to use the mono continuous driven mode *

* AUTHOR : AAP Application Group, ICKE, Dallas *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x User’s Guide, TI 1997 *

* : Data Aquisation Circuits, TI 1998 *

**

 .title ”MONOCON1”

 .mmregs

 .width 80

 .length 55

 .version 542

; .setsect ”.vectors”, 0x00180,0 ; sections of code

; .setsect ”.text”, 0x00200,0 ; these assembler directives specify

; .setsect ”.data”, 0x01800,1 ; the absolute addresses of different

; .setsect ”.variabl”, 0x01800,1 ; sections of code

 .sect ”.vectors”

 .copy ”vectors.asm”

 .sect ”.data”

 .copy ”constant.asm”

AD_DP .usect ”.variabl”, 0 ;

ACT_CHANNEL .usect ”.variabl”, 1 ; jump address to init. new channel

ADWORD .usect ”.variabl”, 1 ; send–bytes to the ADC

ADCOUNT .usect ”.variabl”, 1 ; counter for one channel

ADMEM .usect ”.variabl”, 1 ; points to act. memory save location

CR0_SEND .usect ”.variabl”, 1 ; the last value, sent to register CR0

CR1_SEND .usect ”.variabl”, 1 ; the last value, sent to register CR1

CR_PROBLEM .usect ”.variabl”, 1 ; problem with initialization of this mode when
 repeated (reset)

ZERO .usect ”.variabl”, 1 ; the value zero to send

TEMP .usect ”.variabl”, 1 ; temporary variable

Software Overview

75 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

isr_save .usect ”.variabl”, 1 ; memory location to save AR7 during

 ; interrupts

ADSAMPLE .usect ”.variabl”, 1 ; last read sample from the ADC

* Address Decoder constants:

ADC .set 00002h ; activate A0 when TLV1562 is choosen

RD_CALIBRATION .set 00001h ; activate A1 when CSTART is choosen

DAC1 .set 00003h ; activate A2 when DAC1 is choosen

DEACTIVE .set 00000h ; deactivate the address lines A0, A1 and A2

SAVE_INTO_MEMORY .set 00000h ; store the samples into DSP memory

SEND_OUT_SERIAL .set 00000h ; store the last sample allways into serial buffer memory

SEND_OUT_PARALLEL.set 00001h ; store the last sample allways into DAC1

R10BIT_RESOLUT .set 00001h ; use maximum resolution of 10-bit

R8BIT_RESOLUT .set 00000h ; use 8-Bit resolution

R4BIT_RESOLUT .set 00000h ; use fastest mode (4-Bit resolution)

INTERNAL_CLOCK .set 00001h ; use the internal clock of the ADC

EXTERNAL_CLOCK .set 00000h ; use the external clock of the ADC

DIFF_INPUT_MODE .set 00000h ; use differential mode instead of single ended inputs

IME_CALIBRATION .set 00000h ; do an Internal Midscale Error Calibration

SME_CALIBRATION .set 00000h ; do a System Midscale Error Calibration

 .sect ”.text”

_MAIN:

START:

INITIALIZATION:

* disable IRQ, sign extension mode, ini Stack

 INTM = 1 ; disable IRQ

 SXM = 0 ; no sign extension mode

; SP = #0280h ; initialize Stack pointer

* initialize waitstates:

 DP = #00000h ; point to page zero

 @SWWSR = #01000h ; one I/O wait states

* copy interrupt routine, which are not critical for the EVM to the IRQ table location:

* this is required for the DSKplus kit but has to be changed on other platforms

 DP = #1 ; point to page 1 (IRQ vector table)

 AR7 = #00200h

 repeat(#3h)

 data(0084h) = *AR7+ ; copy the NMI vector

 AR7 = #00240h

 repeat(#35)

 data(00C0h) = *AR7+ ; copy INT0, INT1,...

* clear all memory locations of the sampling table (table, where the samples will be stored)

 DP = #AD_DP ;

 @TEMP = #00000h ;

 repeat(#num_data_A–1)

Software Overview

76 SLAA040

 data(data_loc_A) = @TEMP ; fill memory table 1

 repeat(#num_data_B–1)

 data(data_loc_B) = @TEMP ; fill memory table 2

 repeat(#num_data_C–1)

 data(data_loc_C) = @TEMP ; fill memory table 3

 repeat(#num_data_D–1)

 data(data_loc_D) = @TEMP ; fill memory table 4

 .if SEND_OUT_SERIAL

**

* SERIAL_DAC_INI:

* initialize the serial interface to send out the samples for the serial DAC

* set up the serial interface for a DSP–DAC (5618A) conversation

* initialize the SPI interface and the DAC

* the serial interface will be updated with the last sample if the serial

* buffer is empty (after the last bit has been send)

**

SERIAL_DAC_INI:

BSPI_INI:

 DP = #0

 @BSPC = #00038h ; reset SPI

 @BSPCE = #00101h ; set clock speed, no Autobuffer Mode

 @BSPC = #0C078h ; start serial port

 .endif

* enable global interrupt (this is even required, if no IRQ routine is used

* by this program because the GoDSP debugger needs to do its backgroud interrupts)

 INTM = 0 ; enable global IRQ

* initialize storage table for the ADC samples

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 AR0 = #(num_data_A+data_loc_A) ; AR0 points to table end

 DP = #AD_DP ;

 @ADCOUNT= #(num_data_A) ; initialize ADCOUNT with the number of required samples

 DP = #AD_DP

 @ZERO = #00000 ; set the dummy send value

* initialize the send values to set–up the two programmable register of the ADC

 @CR0_SEND = #(CH1|MONO_CONTINUOUS|SINGLE_END|CLK_INTERNAL|NO_CALIB_OP);

 @CR1_SEND = #(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

* change some of the possible modes by variation of the bit setting in the file header

* this next step can be erased, if the user is running in only one special configuration

 .if (R8BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_8_BIT ; set 8–Bit conversion mode

 .elseif (R4BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

Software Overview

77 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 @CR1_SEND |= #RES_4_BIT ; set 8–Bit conversion mode

 .endif

 .if (EXTERNAL_CLOCK)

 @CR0_SEND ^= #CLK_INTERNAL ; clear CLK_INTERNAL bit if one

 @CR0_SEND |= #CLK_EXTERNAL ; set CLK_EXTERNAL mode

 .endif

 .if (DIFF_INPUT_MODE)

 @CR0_SEND ^= #SINGLE_END ; clear single ended input bit if one

 @CR0_SEND |= #DIFFERENTIAL ; set differential input mode

 .endif

**

* Calibration:

* do a calibration of the input if chosen (the location of this instruction

* is only for an EVM test, in practice, the calibration procedure should

* be executed when the inputs are shorted to the correct voltage and after

* calibration, the analog signal is to apply before doing any further signal

* conversion)

* the calibration implementation is more or less inserted as an example

**

 .if (IME_CALIBRATION)

 call CALIBRAT_INTERNAL_MID_SCALE

 .endif

 .if (SME_CALIBRATION)

 call CALIBRAT_SYSTEM_MID_SCALE

 .endif

* ADC_INI:

* set ADC register CR0/CR1

ADC_INI:

* write CR1:

 port(ADC) = @CR1_SEND ; Address decoder sets CS low,

 ; WR– low and send CR1 value to the ADC

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR0_SEND ; send CR0 value to the ADC

STEP1: port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

STEP2: NOP ;

 NOP ;

 NOP ; wait for t(SAMPLE1)=100ns

* initialize longer waitstates:

 DP = #00000h ; point to page zero

 @SWWSR = #07000h ; one I/O wait states

Software Overview

78 SLAA040

 DP = #AD_DP ;

* ADC_mono_con_Start:

* read samples and store them into memory

ADC_mono_con_Start:

 repeat(#12)

 NOP ; wait for t(SAMPLES) (450ns)

STEP6: @ADSAMPLE = port(ADC) ; read the new sample into the DSP

* IMPORTANT: fine–tune the counter number of the next repeat loop in order

* to achive maximum throughput related to the delay of the store instructions

STEP7: repeat(#7)

 NOP ; wait for t(CONV1) (about 800ns)

STEP8: call STORE ; store the last sample into the table

 goto STEP6 ; go back to receive next sample

* STORE:

* saving the samples into memory

STORE:

 .if (SEND_OUT_PARALLEL)

* store sample into the parallel buffer location if chosen

 port(DAC1) = @ADSAMPLE ; update DAC output

 .endif

 .if SAVE_INTO_MEMORY

* store new sample into DSP data memory

 *AR7+ = data(@ADSAMPLE) ; write last sample into memory table

 .endif

 .if SEND_OUT_SERIAL

* store sample into the serial buffer location

 DP = #00000h ; point to page zero

 TC = bitf(@SPC,#01000h) ; test, is the XRDY Bit in SPC=1?

 if (TC) goto SEND_SERIAL_END ; don’t send something until XDR is empty

; this has been included because the serial DAC TLC5618A is not able to understand

; endless data–stream (the CS should not become high before end of sending

; the 16th bit)

 DP = #AD_DP ; reset Data page pointer to variables

 A = @ADSAMPLE<<2 ; leftshift of the sample for a 12-bit format

 @ADSAMPLE = A ;

 @ADSAMPLE |= #(TLC5618_LATCH_A|TLC5618_FAST_MODE|TLC5618_POWER_UP) ; set the
 mode of the DAC

 data(BDXR) = @ADSAMPLE ; send out the sample to the serial DAC

SEND_SERIAL_END:

Software Overview

79 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 .endif

 .if SAVE_INTO_MEMORY

* test for table end, set pointer back if true

 TC = (AR0 ==AR7) ; is AR0 = AR7? (table end reached?)

 if (NTC) goto STORE_END ;

* set pointer back to table start

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 .endif

STORE_END: RETURN ; jump back into data aquisition routine

**

* IRQ_INT0:

* Interrupt routine of the external interrupt input pin INT0

**

IRQ_INT0:

 return_enable ; interrupt is not in use

**

* BXINT0:

* Interrupt routine of the serial transmit interrupt of the buffered SPI

**

BXINT0:

 return_enable ; interrupt is not in use

 .sect ”.text”

 .copy ”calibrat.asm”

 .end

Software Overview

80 SLAA040

Constants definition – see 8.6.1.1 Constants.asm

Interrupt Routine handler – see 8.6.1.2 Interrupt Vectors

8.6.7 Dual Continuous Mode

Mainprogram (DUALCON1.asm)

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : DUALCON1.ASM *

* FUNCTION : MAIN *

* PROTOTYPE : void MAIN () *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* DESCRIPTION : main routine to use the mono continuous driven mode *

* AUTHOR : AAP Application Group, ICKE, Dallas *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x User’s Guide, TI 1997 *

* : Data Aquisation Circuits, TI 1998 *

**

 .title ”DUALCON1”

 .mmregs

 .width 80

 .length 55

 .version 542

; .setsect ”.vectors”, 0x00180,0 ; sections of code

; .setsect ”.text”, 0x00200,0 ; these assembler directives specify

; .setsect ”.data”, 0x01800,1 ; the absolute addresses of different

; .setsect ”.variabl”, 0x01800,1 ; sections of code

 .sect ”.vectors”

 .copy ”vectors.asm”

 .sect ”.data”

 .copy ”constant.asm”

AD_DP .usect ”.variabl”, 0 ;

ACT_CHANNEL .usect ”.variabl”, 1 ; jump address to init. new channel

ADWORD .usect ”.variabl”, 1 ; send–bytes to the ADC

ADCOUNT .usect ”.variabl”, 1 ; counter for one channel

ADMEM .usect ”.variabl”, 1 ; points to act. memory save location

CR0_SEND .usect ”.variabl”, 1 ; the last value, sent to register CR0

CR1_SEND .usect ”.variabl”, 1 ; the last value, sent to register CR1

CR_PROBLEM .usect ”.variabl”, 1 ; problem with initialization of this mode
 when repeated (reset)

ZERO .usect ”.variabl”, 1 ; the value zero to send

TEMP .usect ”.variabl”, 1 ; temporary variable

Software Overview

81 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

isr_save .usect ”.variabl”, 1 ; memory location to save AR7 during

 ; interrupts

CH1_ADSAMPLE .usect ”.variabl”, 1 ; last readed sample of channel 1

CH2_ADSAMPLE .usect ”.variabl”, 1 ; last readed sample of channel 2

* Address Decoder constants:

ADC .set 00002h ; activate A0 when TLV1562 is choosen

RD_CALIBRATION .set 00001h ; activate A1 when CSTART is choosen

DAC1 .set 00003h ; activate A2 when DAC1 is choosen

DEACTIVE .set 00000h ; deactivate the address lines A0, A1 and A2

SAVE_INTO_MEMORY .set 00001h ; store the samples into DSP memory

SEND_OUT_SERIAL .set 00000h ; store the last sample allways into serial buffer memory

SEND_OUT_PARALLEL .set 00001h ; store the last sample allways into DAC1

R10BIT_RESOLUT .set 00001h ; use maximum resolution of 10-bit

R8BIT_RESOLUT .set 00000h ; use 8-Bit resolution

R4BIT_RESOLUT .set 00000h ; use fastest mode (4-Bit resolution)

INTERNAL_CLOCK .set 00001h ; use the internal clock of the ADC

EXTERNAL_CLOCK .set 00000h ; use the external clock of the ADC

DIFF_INPUT_MODE .set 00000h ; use differential mode instead of single ended inputs

IME_CALIBRATION .set 00000h ; do an Internal Midscale Error Calibration

SME_CALIBRATION .set 00000h ; do a System Midscale Error Calibration

 .sect ”.text”

_MAIN:

START:

INITIALIZATION:

* disable IRQ, sign extension mode, ini Stack

 INTM = 1 ; disable IRQ

 SXM = 0 ; no sign extension mode

; SP = #0280h ; initialize Stack pointer

* initialize waitstates:

 DP = #00000h ; point to page zero

 @SWWSR = #01000h ; one I/O wait states

* copy interrupt routine, which are uncritical by the EVM to the IRQ table location:

* this is required for the DSKplus kit but has to be changed on other platforms

 DP = #1 ; point to page 1 (IRQ vector table)

 AR7 = #00200h

 repeat(#3h)

 data(0084h) = *AR7+ ; copy the NMI vector

 AR7 = #00240h

 repeat(#35)

 data(00C0h) = *AR7+ ; copy INT0, INT1,...

* clear all memory locations of the sampling table (table, where the samples will be stored)

 DP = #AD_DP ;

 @TEMP = #00000h ;

Software Overview

82 SLAA040

 repeat(#num_data_A–1)

 data(data_loc_A) = @TEMP ; fill memory table 1

 repeat(#num_data_B–1)

 data(data_loc_B) = @TEMP ; fill memory table 2

 repeat(#num_data_C–1)

 data(data_loc_C) = @TEMP ; fill memory table 3

 repeat(#num_data_D–1)

 data(data_loc_D) = @TEMP ; fill memory table 4

 .if SEND_OUT_SERIAL

**

* SERIAL_DAC_INI:

* initialize the serial interface to send out the samples for the serial DAC

* set up the serial interface for a DSP–DAC (5618A) conversation

* initialize the SPI interface and the DAC

* the serial interface will be updated with the last sample if the serial

* buffer is empty (after the last bit has been sent)

**
SERIAL_DAC_INI:

BSPI_INI:

 DP = #0

 @BSPC = #00038h ; reset SPI

 @BSPCE = #00101h ; set clock speed, no Autobuffer Mode

 @BSPC = #0C078h ; start serial port

 .endif

* enable global interrupt (this is even required, if no IRQ routine is used

* by this program because the GoDSP debugger needs to do its backgroud interrupts)

 INTM = 0 ; enable global IRQ

* initialize storage table for the ADC samples

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 AR0 = #(num_data_A+data_loc_A) ; AR0 points to table end

 DP = #AD_DP ;

 @ADCOUNT= #(num_data_A) ; initialize ADCOUNT with the number of required samples

 DP = #AD_DP

 @ZERO = #00000 ; set the dummy send value

* initialize the send values to set–up the two programmable register of the ADC

 @CR0_SEND = #(CH1|MONO_CONTINUOUS|SINGLE_END|CLK_INTERNAL|NO_CALIB_OP);

 @CR1_SEND = #(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

* change some of the possible modes by variation of the bit setting in the file header

* this next step can be erased, if the user is running in only one special configuration

 .if (R8BIT_RESOLUT)

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_8_BIT ; set 8–Bit conversion mode

 .elseif (R4BIT_RESOLUT)

Software Overview

83 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 @CR1_SEND ^= #RES_10_BIT ; clear bit for 10–Bit Resolution

 @CR1_SEND |= #RES_4_BIT ; set 8–Bit conversion mode

 .endif

 .if (EXTERNAL_CLOCK)

 @CR0_SEND ^= #CLK_INTERNAL ; clear CLK_INTERNAL bit if one

 @CR0_SEND |= #CLK_EXTERNAL ; set CLK_EXTERNAL mode

 .endif

 .if (DIFF_INPUT_MODE)

 @CR0_SEND ^= #SINGLE_END ; clear single ended input bit if one

 @CR0_SEND |= #DIFFERENTIAL ; set differential input mode

 .endif

**

* Calibration:

* do a calibration of the input if chosen (the location of this instruction

* is only for an EVM test, in practice, the calibration procedure should

* be executed when the inputs are shorted to the correct voltage and after

* calibration, the analog signal is to apply before doing any further signal

* conversion)

* the calibration implementation is more or less inserted as an example

**

 .if (IME_CALIBRATION)

 call CALIBRAT_INTERNAL_MID_SCALE

 .endif

 .if (SME_CALIBRATION)

 call CALIBRAT_SYSTEM_MID_SCALE

 .endif

* ADC_INI:

* set ADC register CR0/CR1

ADC_INI:

* write CR1:

 port(ADC) = @CR1_SEND ; Address decoder sets CS low,

 ; WR low and send CR1 value to the ADC

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR0_SEND ; send CR0 value to the ADC

STEP1: port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

STEP2: NOP ;

 NOP ;

 NOP ; wait for t(SAMPLE1)=100ns

* initialize longer waitstates:

 DP = #00000h ; point to page zero

Software Overview

84 SLAA040

 @SWWSR = #07000h ; one I/O wait states

 DP = #AD_DP ;

* ADC_dual_con_Start:

* read samples and store them into memory

ADC_dual_con_Start:

 repeat(#12)

 NOP ; wait for t(SAMPLES) (450ns)

STEP6: @CH1_ADSAMPLE = port(ADC) ; read the new sample into the DSP

STEP7: repeat(#20)

 NOP ; wait for t(CONV1) (about 800ns)

STEP10: @CH2_ADSAMPLE = port(ADC); read the new sample into the DSP

* IMPORTANT: fine–tune the counter number of the next repeat loop in order

* to achive maximum throughput related to the delay of the store instructions

STEP11: repeat(#7)

 NOP ; wait for t(CONV1) (about 800ns)

STEP12: call STORE ; store the last sample into the table

 goto STEP6 ; go back to receive next sample

* STORE:

* saving the samples into memory

STORE:

 .if (SEND_OUT_PARALLEL)

* store sample into the parallel buffer location if choosen

 port(DAC1) = @CH1_ADSAMPLE ; update DAC output with sample one

 .endif

 .if SAVE_INTO_MEMORY

* store new sample into DSP data memory

 *AR7+ = data(@CH1_ADSAMPLE) ; write last sample of channel 1 into memory table

 *AR6+ = data(@CH2_ADSAMPLE) ; write last sample of channel 2 into memory table

 .endif

 .if SEND_OUT_SERIAL

* store sample into the serial buffer location

 DP = #00000h ; point to page zero

 TC = bitf(@SPC,#01000h) ; test, is the XRDY Bit in SPC=1?

 if (TC) goto SEND_SERIAL_END ; don’t send something until XDR is empty

; this has been included because the serial DAC TLC5618A is not able to understand

; endless data–streem (the CS should not become high before end of sending

; the 16th bit)

 DP = #AD_DP ; reset Data page pointer to variables

 A = @ADSAMPLE<<2 ; leftshift of the sample for a 12 bit format

Software Overview

85 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 @ADSAMPLE = A ;

 @ADSAMPLE |= #(TLC5618_LATCH_A|TLC5618_FAST_MODE|TLC5618_POWER_UP) ; set the mode of
 the DAC

 data(BDXR) = @ADSAMPLE ; send out the sample to the serial DAC

SEND_SERIAL_END:

 .endif

* test for table end, set pointer back if true

 .if SAVE_INTO_MEMORY

 TC = (AR0 == AR7) ; is AR7 = AR0? (table end reached?)

 if (NTC) goto STORE_END ;

* set pointer back to table start

 AR7 = #(data_loc_A) ; point to first date location of the storage table

 AR6 = #(data_loc_B) ; point to first date location of the storage table

 .endif

STORE_END: RETURN ; jump back into data aquisition routine

**

* IRQ_INT0:

* Interrupt routine of the external interrupt input pin INT0

**

IRQ_INT0:

 return_enable ; interrupt is not in use

**

* BXINT0:

* Interrupt routine of the serial transmit interrupt of the buffered SPI

**

BXINT0:

 return_enable ; interrupt is not in use

 .sect ”.text”

 .copy ”calibrat.asm”

 .end

Software Overview

86 SLAA040

Constants definition – see 8.6.1.1 Constants.asm

Interrupt Routine handler – see 8.6.1.2 Interrupt Vectors

8.6.8 C-Callable

Mainprogram (C1562.c)

/* File: C1562.C */

/* This file will select the parameters to allow a C–call of the ADC sampling */

extern void TLV1562(int, int, int);

main()

{

/* TLV1562(Channel, Save Memory Start address, NUMBER_OF_SAMPLES); */

 TLV1562(1, 0x2000, 0x0080);

 /* 80h samples of channel 1 will be stored beginning on 2000h */

 TLV1562(2, 0x2100, 0x0080);

 /* 80h samples of channel 2 will be stored beginning on 2100h */

 TLV1562(3, 0x2200, 0x0080);

 /* 80h samples of channel 3 will be stored beginning on 2200h */

}

Assembler Routine to Control the Interface to the ADC (ASM1562.asm)

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : DUALIRQ1.ASM *

* FUNCTION : MAIN *

* PROTOTYPE : void MAIN () *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* DESCRIPTION : main routine to use the mono interrupt driven mode *

* and the CSTART signal to CPU power for the conversion *

* time *

* AUTHOR : AAP Application Group, ICKE, Dallas *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x User’s Guide, TI 1997 *

* : Data Aquisation Circuits, TI 1998 *

**

 .title ”DUALIRQ1”

 .mmregs

 .width 80

 .length 55

 .version 542

Software Overview

87 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

; .setsect ”.vectors”, 0x00180,0 ; sections of code

; .setsect ”.text”, 0x00200,0 ; these assembler directives specify

; .setsect ”.data”, 0x01800,1 ; the absolute addresses of different

; .setsect ”.variabl”, 0x01800,1 ; sections of code

 .sect ”.vectors”

 .copy ”vectors.asm”

 .sect ”.data”

 .copy ”constant.asm”

AD_DP .usect ”.variabl”, 0 ;

ACT_CHANNEL .usect ”.variabl”, 1 ; jump address to init. new channel

ADWORD .usect ”.variabl”, 1 ; send–bytes to the ADC

ADCOUNT .usect ”.variabl”, 1 ; counter for one channel

ADMEM .usect ”.variabl”, 1 ; points to act. memory save location

CH_NO .usect ”.variabl”, 1 ; channel number 1 to 4

CR0_SEND .usect ”.variabl”, 1 ; the last value, sent to register CR0

CR1_SEND .usect ”.variabl”, 1 ; the last value, sent to register CR1

CR_PROBLEM .usect ”.variabl”, 1 ; problem with initialization of this mode
 when repeated (reset)

ZERO .usect ”.variabl”, 1 ; the value zero to send

TEMP .usect ”.variabl”, 1 ; temporary variable

isr_save .usect ”.variabl”, 1 ; memory location to save AR7 during

 ; interrupts

ADSAMPLE .usect ”.variabl”,1 ; last read sample

* Address Decoder constants:

ADC .set 00002h ; activate A0 when TLV1562 is choosen

CSTART .set 00001h ; activate A1 when CSTART is choosen

DAC1 .set 00003h ; activate A2 when DAC1 is choosen

DEACTIVE .set 00000h ; deactivate the address lines A0, A1 and A2

.def _TLV1562

 .sect ”.text”

START:

INITIALIZATION:

_TLV1562:

 data(ADMEM) = *SP(1) ; read saving location

 data(ADCOUNT) = *SP(2) ; read number of samples

 push(AR6) ; save AR6

 push(AR7) ; save AR7

 CPL = #0 ; do DP pointer addressing

* sign extension mode, ini Stack

 SXM = 0 ; no sign extension mode

* reset pending IRQs

 IFR = #1 ; reset any old interrupt on pin INT0

Software Overview

88 SLAA040

* initialize storage table for the ADC samples

 DP = #AD_DP ;

 A += #–1 ; decrement A

 @CH_NO = A ; read number of sampling channel

 A = @ADMEM

 AR7 = A ; point to first date location of the storage table

 A = @ADCOUNT ; AR0 points to table end

 B = @ADMEM

 A += B

 AR0 = A ; AR0 is loaded with last save location

 AR5 = #(IFR) ; AR5 points to the IFR register (only for polling mode)

 DP = #AD_DP

 @ZERO = #00000 ; set the dummy send value

* initialize the send values to set–up the two programmable register of the ADC

 @CR0_SEND = #(MONO_INT|SINGLE_END|CLK_INTERNAL|NO_CALIB_OP);

 A = @CR0_SEND

 A |= @CH_NO

 @CR0_SEND = A

 @CR1_SEND = #(NO_SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|CST_CONV_START);

* ADC_INI:

* set ADC register CR0/CR1

ADC_INI:

* write CR1 (to reset old CSTART mode initialization, because otherwise, the ADC never sets

* back its int– pin to show a sample is available:

 @CR_PROBLEM = #(SW_PWDN|NO_AUTO_PWDN|NO_2COMPLEMENT|NO_DEBUG|RES_10_BIT|RD_CONV_START);

 port(ADC) = @CR_PROBLEM ; Address decoder sets CS low,

 ; WR– low and send CR_PROBLEM value to the ADC

 NOP ; wait for tW(CSH)=50ns

* write CR1:

 port(ADC) = @CR1_SEND ; Address decoder sets CS low,

 ; WR– low and send CR1 value to the ADC

 port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ; wait for tW(CSH)=50ns

* write CR0

 port(ADC) = @CR0_SEND ; send CR0 value to the ADC

STEP1: port(DEACTIVE) = @ZERO ; deselect ADC (CS high)

 NOP ;

* ADC_mono_IRQ_Start:

* read samples and store them into memory

Software Overview

89 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

ADC_mono_IRQ_Start:

ISTEP2: XF = 0 ; clear CSTART

ISTEP3: NOP

 NOP

 NOP ; wait for TW(CSTARTL)

ISTEP4: XF = 1 ; set CSTART

STEP5:

* wait until INT– goes low in polling the INT0 pin:

M1: TC = bit(*AR5,15–0) ; test, is the INT0 Bit in IFR=1?

 if (NTC) goto M1 ; wait until INT– signal went high

 IFR = #1 ; reset any old interrupt on pin INT0

* read sample

STEP2: XF = 0 ; clear CSTART

STEP10: @ADSAMPLE = port(ADC) ; read the new sample into the DSP

STEP4: XF = 1 ; wait for TW(CSTARTL) and set CSTART

* STORE:

* saving the samples into memory

STORE:

* store new sample into DSP data memory

 *AR7+ = data(@ADSAMPLE) ; write last sample into memory table

* test for table end, set pointer back if true

 TC = (AR0 ==AR7) ; is AR0 = AR7? (table end reached?)

 if (NTC) goto STORE_END ;

* finish conversion

 CPL = #1 ; do stack pointer addressing

 AR7 = pop() ; restore AR7

 AR6 = pop() ; restore AR6

 A = #0 ; clear ACCU

 RETURN ; jump back to C–layer

STORE_END:

 goto STEP5 ; go back to receive next sample

**

* IRQ_INT0:

* Interrupt routine of the external interrupt input pin INT0

**

IRQ_INT0:

 return_enable ; return from IRQ (wake up from the IDLE mode)

**

* BXINT0:

* Interrupt routine of the serial transmit interrupt of the buffered SPI

**

Software Overview

90 SLAA040

BXINT0:

 return_enable ; interrupt is not in use

 .end

Vectors.asm

**

* TITLE : TLV1562 ADC Interface routine *

* FILE : VECTORS.ASM *

* FUNCTION : N/A *

* PROTOTYPE : N/A *

* CALLS : N/A *

* PRECONDITION : N/A *

* POSTCONDITION : N/A *

* SPECIAL COND. : N/A *

* DESCRIPTION : definition of of all interrupt vectors *

* Vector Table for the ’C54x DSKplus *

* AUTHOR : AAP Application Group, ICKE, Dallas/Freising *

* CREATED 1998(C) BY TEXAS INSTRUMENTS INCORPORATED. *

* REFERENCE : TMS320C54x DSKPlus User’s Guide, TI 1997 *

**

 .title ”Vector Table”

 .mmregs

 .width 80

 .length 55

 .ref _c_int00

reset goto _c_int00 ;00; RESET * DO NOT MODIFY IF USING DEBUGGER *

 nop

 nop

nmi goto START ;04; non-maskable external interrupt

 nop

 nop

trap2 goto trap2 ;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *

 nop

 nop

 .space 52*16 ;0C–3F: vectors for software interrupts 18–30

int0

; return_fast ;come out of the IDLE

; nop

; nop

; nop

 goto IRQ_INT0 ;40; external interrupt int0

 nop

 nop

int1 return_enable ;44; external interrupt int1

Software Overview

91 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 nop

 nop

 nop

int2 return_enable ;48; external interrupt int2

 nop

 nop

 nop

tint return_enable ;4C; internal timer interrupt

 nop

 nop

 nop

brint return_enable ;50; BSP receive interrupt

 nop

 nop

 nop

bxint goto BXINT0 ;54; BSP transmit interrupt

 nop

 nop

trint goto trint ;58; TDM receive interrupt

 nop

 nop

txint return_enable ;5C; TDM transmit interrupt

 nop

 nop

 nop

int3 return_enable ;60; external interrupt int3

 nop

 nop

 nop

hpiint goto hpiint ;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *

 nop

 nop

 .space 24*16 ;68–7F; reserved area

Software Overview

92 SLAA040

Constants definition – see 8.6.1.1 Constants.asm and for Interrupt Routine handler – see 8.6.1.2
Interrupt Vectors

Auto.bat
@ECHO ON

del *.map

del *.obj

del *.out

del *.lst

del *.cnv

cl500.exe –k –n c1562.c

pause

mnem2alg.exe c1562.asm

pause

asm500 asm1562.asm –l –mg –q –s

pause

asm500 c1562.cnv –l –mg –q –s

pause

lnk500 linker.cmd

Linker.cmd

/**/

/* File: Linker.lnk COMMAND FILE */

/* .title ”COMMAND FILE FOR TLV1562.ASM” */

/* */

/* This CMD file allocates the memory area for the TLV1562 */

/* interface Program */

/**/

 –stack 0x0080

 –M asm1562.MAP

 –O asm1562.OUT

 –v0

 –c

 –l rts.lib

asm1562.obj

c1562.obj

 MEMORY

 {

 PAGE 0: VECT: origin = 0200h, length = 0080h

 PROG: origin = 0400h, length = 0300h

 PAGE 1: RAMB0: origin = 1900h, length = 1500h

 STAC: origin = 1800h, length = 0100h

 }

 SECTIONS

 {

Summary

93 Interfacing the TLV1562 Parallel ADC to the TMS320C54x DSP

 .text : {} > PROG PAGE = 0

 .vectors : {} > VECT PAGE = 0

 .data : {} > RAMB0 PAGE = 1

 .variabl : {} > RAMB0 PAGE = 1

 .stack : {} > STAC PAGE = 1

 }

9 Summary
This application report provides several software application examples and
recommendations for simplifying the software, through modifications to the DSP
hardware interface circuit. The user can customize any of the number of software
routines provided in this document to fit his specific applicaltion.

10 References
• TLV1562 Data Sheet

• TMS320C54x Fixed-Point Digital Signal Processor Data Sheet, Literature
number SPRS039B

• TMS320C54x DSP Algebraic Instruction Set, Literature number SPRU179

• TMS320C54x DSP Mnemonic Instruction Set, Literature number SPRU172

• TMS320C54x DSP CPU and Peripherals, Literature number SPRU131D

• TMS320C54x Optimizing C Compiler, Literature number SPRU103B

• TMS320C54x Assembly Language Tools, Literature number SPRU102B

• TMS320C54x DSKplus DSP Starter Kit, Literature number SPRU191

• TLV1544 Data Sheet, Literature number SLAS139

• TMS320C54x DSK plus Adapter Kit, Literature number SLAU030

