
Application Note
F29x Error Handling and Debug Guide

Prarthan Bhatt

ABSTRACT

This application note focuses on providing overview of the error handling architecture and guidance on how
to efficiently debug error events. F29x device architecture provides systematic error handling management
focusing on functional safety for various end applications. Error Aggregator Module (EAM) and Error Signaling
Module (ESM) provides error aggregation, logging and configurable response for all error events throughout the
device. The application note provides guidance on debugging the error source using the tools and error logging
provided by EAM and ESM.

Table of Contents
1 Introduction...2
2 Error Handling Architecture Overview... 2
3 Example Overview.. 3
4 Error Aggregator Overview..3

4.1 Error Aggregation...3
4.2 Error Logging... 5
4.3 Error Debugging Using EAM Module... 5

5 Error Signaling Module Overview... 9
5.1 ESM Error Event Output Configuration and Status Information...10
5.2 ESM Error Events Debugging.. 13
5.3 Miscellaneous Debug Tips for ESM... 14

6 BootROM EAM and ESM Error Status.. 15
7 FAQ's:.. 16
8 Summary... 17
9 References.. 18

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

1 Introduction
For functional safety critical development, manage both systematic and random faults. F29x device architecture
has built-in hardware safety mechanisms that provides systematic management for all the error events across
the device. To begin, understand the error handling architecture at high level and then deep dive on how to
interpret the error logs and configure response for each error event.

This application note first provides an overview of the error handling architecture, then explains the EAM and
ESM features and tools in detail with an example and concludes with frequently asked questions and error
debugging tips.

Table 1-1 lists the terms and abbreviations used in this application note.

Table 1-1. Terms and Abbreviations Used and Their Explanations
Terms or Abbreviations Explanation
Systematic Error Systematic faults result from an inadequacy in the design, development or manufacturing process and

typically stem from gaps in the development process. Refer to safety standard like ISO 26262 for more
information

Random Error A random error is a hardware fault that occurs unpredictably during a component's operational lifetime.
Unlike systematic errors, which are deterministic and result from design flaws, random errors are
statistical and are managed through probabilistic analysis.

System Address Each MCU has a unique memory map that defines the address range for each component. A system
address is an address that falls within this map and corresponds to a specific resource

EAM Error Aggregator Module

ESM Error Signaling Module

NMI Non-maskable Interrupt

CCS Code Composer Studio

2 Error Handling Architecture Overview
The Figure 2-1 shows at a high level how the error handling is done. Error is detected at source which can be
a peripheral, module, memory, interconnect or processing unit and this propagates to EAM for error aggregation
and then passed on to ESM for user configurable error response within the device. Critical device error events
that need error aggregation and logging go through EAM whereas all other device error events are passed
on directly from the error source to ESM and are listed in the Error Events table in the ESM Chapter in F29x
Technical Reference Manual.

Figure 2-1. Device Error Handling Architecture

Introduction www.ti.com

2 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

3 Example Overview
The EAM and ESM functionality is understood in the below sections with an example taking ESM and EAM
components separetely one at a time. This application note uses the F29 SDK ESM multicore example from
F29x SDK which is multicore example (CPU1 and CPU3). CPU3 application code has write to M0RAM location
which causes CPU3 DW bus security violation error, example showcases how to handle this error using EAM
and ESM.

This application note takes this example and shows how an error can be debugged using tools.

4 Error Aggregator Overview
Error aggregator module (EAM) is an interface between ESM and critical modules that generate errors like
C29x CPU, PIPE, RTDMA, Memory controllers, Peripheral bridges and Read Interfaces. EAM provides error
logging and aggregation that is necessary for similar type of errors to reduce the number of errors passed to
ESM.

The device contains below EAM module's (where x is from 1 to 3 and y is from 1 to 2) :
1. CPUx PR Error Aggregator - Aggregates errors occurred during CPU program fetch access
2. CPUx DR1 Error Aggregator - Aggregates errors occurred during CPU Data Read access on DR1 port
3. CPUx DR2 Error Aggregator - Aggregates errors occurred during CPU Data Read access on DR2 port
4. CPUx DW Error Aggregator - Aggregates errors occurred during CPU data write access
5. CPUx INT Error Aggregator - Aggregates interrupt related errors from CPU and associated PIPE module
6. RTDMAy DR Error Aggregator - Aggregates errors occurred during RTDMA data read access
7. RTDMAy DW Error Aggregator - Aggregates errors occurred during RTDMA data write access
8. SSU Error Aggregator - Aggregates errors sent out by SSU module

For detailed view of the EAM modules refer to the Error Aggregator chapter in F29x Technical Reference
Manual.

The following sections showcases error aggregation, error logging and interpretation of the error flag registers
with an example.

4.1 Error Aggregation
C29x CPU has 4 buses – CPU DR1 (Data Read bus 1), DR2 (Data Read bus 2), DW (Data Write bus) and
PR (Program fetch/read bus). Error originating from each bus is detected and captured/logged separately in
respective EAM error flag registers for isolating the error source.

In addition to error aggregation, the error events are also segregated into low priority errors and high priority
errors. In this example, the error events across all four buses are first segregated into two categories – low
priority and high priority based on severity of error and then aggregated. The aggregated outputs – low priority
and high priority error events are then passed to ESM. Error priority is pre-defined in the device depending on
severity, refer to Error Aggregator Chapter in F29x Technical Reference Manual to know more about error priority
for all errors captured in EAM.

Each error has error type value and fixed pre-defined priority assigned to this as shown in the table below taking
CPU PR bus as an example.

An example shown in Table 4-1 is for CPU PR bus. Single bit (Correctable error) and WARNPSP errors are
classified as low priority errors and all other errors are classified as high priority errors. All high priority error type
within CPU PR EAM have single aggregated output similarly for all low priority errors within CPU PR EAM there
is one aggregated output.

www.ti.com Example Overview

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 3

Copyright © 2025 Texas Instruments Incorporated

https://software-dl.ti.com/C2000/docs/f29h85x-sdk/latest/docs/html/EXAMPLES_DRIVERS_ESM_EX1_BASIC_CPU1_CPU3_MULTI.html
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

Table 4-1. EAM CPU PR Error Type Priority
Error Type Value CPUx PR Error RAM, ROM, FRI – PR Error Priority
0x01 Instruction fetch security violation. Instruction packet crossed LINK,

STACK, ZONE boundary.
Linear code crossed LINK, STACK, ZONE boundary.
Regular Branch and Calls crossed STACK, ZONE boundary.

Reserved High

0x02 Secure entry error Reserved High
0x04 Secure exit error Reserved High
0x08 MAX PSP error Reserved High
0x10 Access timeout error Reserved High
0x20 Access ACK error Access ACK error High
0x40 Uncorrectable error Uncorrectable error High
0x80 Correctable error Reserved Low

0x100 WARN PSP error Reserved Low

0x200 Software breakpoint error Reserved High
0x400 Illegal instruction error Reserved High
0x800 Instruction timeout error Reserved High

All high-priority errors from all CPU buses - CPU PR, DR1, DR2 and DW are also combined as CPU HPERR
(high priority error) and sent to ESM. Similarly, all low-priority errors from CPU PR, DR1, DR2 and DW are
combined as CPU LPERR (Low priority error) and sent to ESM. This is shown in Figure 4-1.

Advantage for the aggregation is that this reduces the number of error events passed to ESM and the
corresponding error response configuration in ESM for these error events (captured in the table above) to
two error events (high priority and low priority) across all CPU buses. This is redundant to configure each error
originating from each CPU bus separately especially when there are several such error events in the device.
Hence the error across all the CPU buses are aggregated and provided to ESM. Along with aggregation of
errors, segregation is also important since this enables users to configure ESM to generate appropriate action
for low priority and high priority errors separately.

CPU1 Program Read

CPU1 Data Read
Port2

CPU1 Data Write

CPU1 HPERR

CPU1 LPERR
FLG

FLG

FLG

FLG

FLG

FLG

FLG

FLG

CPU1 Data Read
Port1

FLG

FLG

Figure 4-1. CPU1 EAM Modules Error Aggregation

Error Aggregator Overview www.ti.com

4 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

Note
The EAM error type priority is not to be confused with ESM output priority. To know more about ESM
output priority refer to ESM chapter in F29x Technical Reference Manual.

4.2 Error Logging
The EAM module provides comprehensive error logging capabilities needed for user to debug the source of all
critical errors in the device.

All errors are logged in EAM registers with the following information:
1. Error Type – Multibit value that maps to specific error type (for example Access acknowledge error,

Uncorrectable error etc.). The value is pre-defined for each type, for example – 0x20 for Access ACK error
on CPU PR error as shown in the table in Error Aggregation section above.

2. Error Address – System Address at which the error occurred used to debug the error origin. There are
separate high priority and low priority error address registers.

3. Program Counter (Applicable only for CPU EAM modules) – Program counter address captured helps
identify the source of error. The PC address is particularly useful to identify code corresponding to the
program counter address that respective CPU was executing which caused the error.

4.3 Error Debugging Using EAM Module
To make error debugging easier, error handling functions are integrated in the Code Composer Studio (CCS) as
shown in Figure 4-2.

Using CCS Scripts Menu, user can find the error status captured. All the below steps mentioned below for
error debug are done with the Error_Agg_Check_Status() hotmenu function in the GEL file executable from the
Scripts Menu as shown in the image Figure 4-2.

Figure 4-2. Error Aggregator GEL File Function

1. Check the error type register value for each EAM module (CPU PR/DR1/DR2/DW, RTDMA, SSU, CPU INT,
Ethercat) if this has value other than 0x0 to identify if any error has occurred or not.

2. If particular EAM module error type register has a value other than 0x0 then find the corresponding error
aggregator low priority error address for low priority error and high priority error address for high priority
error.

3. If particular EAM module error type register has a value other than 0x0 then find the error aggregator
program counter address – only in case of CPU EAM modules.

www.ti.com Error Aggregator Overview

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

4.3.1 EAM Error Debugging

1. Run the Error_Agg_Check_Status() GEL file hotmenu function, Figure 4-3 is the CCS GEL output for the
ESM Multicore example (esm_ex1_cpu1_cpu3) from the F29 SDK. The Error_Agg_Check_Status() function
does the following for the output:
a. Error_Agg_Check_Status() maps the error type value to the error. In this example as seen in the GEL

output, the error is CPU3 DW Security Violation error since in the example CPU3 code writes to M0RAM
location which is not allowed. This was intentionally done to create an error scenario to showcase the
error debug example.

b. High priority error address is 0x20000000 and Program counter is 0x10402C14 as seen from the GEL
output below, this is fetched from the corresponding CPU3_DW high priority error address and program
counter registers.

Figure 4-3. Error Aggregator Check Status GEL Output Log

2. The Error_Agg_Check_Status() GEL function needs to be run before clearing the ESM/EAM flags from
either CPU1 or CPU3 as shown below. To achieve this the breakpoint was placed before ESM/EAM flag
clear function execution as shown in the NMI ISR – ESM/EAM Clear Flags figure below so that the EAM
register can be read and decoded by GEL function before they are cleared.

Interrupt_clearEsmEaFlags() is the reference driverlib function provided as part of F29 SDK that clears
all the EAM and ESM flags which is used in this example's CPU1 and CPU3 NMI ISR's (as seen
in NMI ISR – ESM/EAM Clear Flags) and also present in driverlib default NMI handler. In case, the
Interrupt_clearEsmEaFlags() function was already executed then user can look at the nmiStatus struct
(memory location used to store the ESM/EAM error flag register values) to find the error information in the
CCS watch window as shown in Figure 4-5.

Note
The clearing of EAM and ESM flags is an important step in NMI (Non-Maskable Interrupt) ISR since
that avoids NMIWD (NMI Watchdog) to timeout and trigger system reset (XRSn).

Figure 4-4. NMI ISR – ESM/EAM Clear Flags

Error Aggregator Overview www.ti.com

6 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/F29-SDK
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

Figure 4-5. NMI Status Capture log
3. Following is the register view output from CCS for the same example.

a. The register output high priority error address, program counter address and error type value matches
with the GEL function file output shown in Error Aggregator Check Status GEL Output Log - Figure 4-3.

Figure 4-6. CCS Register View of Error Aggregator Registers

www.ti.com Error Aggregator Overview

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

4.3.2 Interpreting Error Address and Program Counter Values

As explained in section 3.2, error address and program counter addresses can be used for debugging source
of the error. This section showcases interpretation of error address and program counter taking esm multicore
example (esm_ex1_cpu1_cpu3) from the F29 SDK.

The program counter (PC) address can be copied to the CCS disassembly view to find the source code where
the error occurred. For this example, when looking at the corresponding PC address CCS disassembly view
for the EAM captured PC address (0x10402C14) as shown in Figure 4-7, points to the data write operation
to location 0x20000000 (M0 RAM) also logged in the High Priority Address register in EAM. Hence with the
PC address and error address information, user can pin-point the issue to a specific CPU3 source code write
operation to memory location that caused the error.

The error occurred on CPU3 DW (data write) bus which also matches the expected behavior from the code
perspective since the CPU3 application code has write operation for the M0RAM_data to M0RAM which is not
allowed from CPU3 code. CPU3 only has read data permission for M0RAM hence write operation in this case
caused security violation error on CPU3 DW bus.

Figure 4-7. Disassembly View of Program Counter

Error Aggregator Overview www.ti.com

8 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/F29-SDK
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

Table 4-2. M0RAM Access from CPU3
Memory Interleaved CPU1 CPU2 CPU3 HSM RTDMA1 RTDMA2
M0 RAM Yes 0WS data (read

and write)
0WS data
(read-only)

3WS data
(read-only)

- - -

5 Error Signaling Module Overview
The Error Signaling Module (ESM) provides systematic consolidation of responses to error events throughout
the device into one location which is crucial for several safety critical applications.

ESM Subsystem contains following modules:
1. ESM CPU1 - Dedicated ESM module for output to CPU1
2. ESM CPU2 - Dedicated ESM module for output to CPU2
3. ESM CPU3 - Dedicated ESM module for output to CPU3
4. System ESM - Dedicated ESM module for system level outputs (mainly the ERRORSTS pin output, device

reset, and integration to other modules using XBAR event outputs)

Figure 5-1 describes how the ESM subsystem integrates at the device level in detail, for more info refer to ESM
chapter in the F29x TRM.

ESM CPU2

ESM CPU1

ESM CPU3

SYS ESM

Safety (Register Parity
Error) Aggregator

Low Priority Interrupt

High Priority Interrupt

High Priority WD Event

Critical Priority Interrupt

Low Priority Interrupt

Critical Priority Interrupt

Error Pin Monitor Event

Err_O

Low Priority Interrupt

High Priority Interrupt

High Priority WD Event

Critical Priority Interrupt

Low Priority Interrupt

High Priority Interrupt

High Priority WD Event

Critical Priority Interrupt

I/p from all ESM
Interfaces Parity Error Interrupt

ESM Subsystem

Err_I

Error Inputs

CPU 1

CPU 2

CPU 3

CPU 1
CPU 2
CPU 3

INTx

NMI

Int_req
rtint_req
nmi_req

PIPE
CPU1

Int_req
rtint_req
nmi_req

PIPE
CPU2

INTx

NMI

INTx

NMI

Int_req
rtint_req
nmi_req

ESMPARITYERRINT
Int_req

rtint_req

PIPE CPU1
PIPE CPU2
PIPE CPU3

SYS CTRL
CPU2NMIWDRSn

ESMCPU1CRITICAL

ESMCPU3CRITICAL

ESMCPU2CRITICAL XRSn

XBARESM_GEN_EVENT

ESMRESET

GPIO
Out

In

PIPE
CPU3

ERRPIN_MON_EVT

CPU1NMIWDRSn XRSn

CPU3NMIWDRSn

CPU2.RSn

CPU3.RSn

Figure 5-1. ESM Subsystem Integration Block Diagram

The ESM provides features to classify errors by severity and to provide programmable error response. Error
Signaling Module provides a way to indicate error pin response, selectable interrupt priority response, or
Non-Maskable interrupt (NMI) to CPU depending on severity of error encountered. The user is responsible
to determine what error response is to be taken for each error event so that this is consistent with the system
safety concept.

1. Interrupt to specific CPU:
a. Interrupt (INT or RTINT from PIPE to CPU) (Low priority interrupt output of ESM) - Generally selected

for correctable or low severity errors encountered in the device or can be implemented for diagnostics

www.ti.com Error Signaling Module Overview

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

outside the CPU. An interrupt allows events external to the CPU to generate a program sequence
context transfer to an interrupt handler where software has an opportunity to manage the fault.

b. Non-Maskable Interrupt (NMI) (High priority interrupt output of ESM) - Generally selected for
uncorrectable or critical errors encountered in the device where error response is required to transfer
context to NMI ISR and software has an opportunity to manage the fault and abort the operation safely.

2. Error Signaling Pin:
a. Error pin (ERRORSTS) action for external monitor like PMIC (Power management integrated circuits) to

act for cases where required response is to generate an external error response.

3. Resets
a. Respective CPU Reset (CPURSn): ESM is capable of generating reset to individual CPU to bring

system in safe state upon detection of error in MCU.
b. Device Reset (XRSn): Upon detection of error, trigger device reset (XRSn) to bring MCU in safe state.

The section below gives a brief overview of configurations for the ESM CPU and System ESM modules for
above outputs in ESM subsystem for more details refer to the ESM chapter in F29x Technical Reference Manual
and device integration.

Overview and key points to know about error events in ESM:

1. Error events are common to all ESM module (ESM CPU1/2/3 and System ESM)
2. Each ESM module has separate configuration and status registers hence all ESM modules can work

independently of each other allowing flexibility for different use cases. For example, an error event on the
occurrence can be configured to output an interrupt to CPU1 from ESM CPU1 and not configured to output
an interrupt to CPU3 from ESM CPU3 module.

3. Error events are divided in further groups of 32. F29x devices have total of 256 error events hence there are
total 8 Groups.

Note
All Group0 Error Events are mapped to trigger NMI by default. Group0 error events are high priority
aggregated CPU error outputs from EAM (Error Aggregator Module).

5.1 ESM Error Event Output Configuration and Status Information
Figure below shows how the respective ESM block can be configured to affect the available output from
respective ESM modules. To see further how these outputs are connected to device peripherals refer to ESM
subsystem device integration diagram in F29x Technical Reference Manual ESM chapter.

Status Registers listed below are useful in identifying which error event is active and enabled to influence the
output from ESM CPU and Sys ESM module:

1. RAW Status/Set Register (RAW_j) - This indicates if the error event is active where j stands for error event
index (j= 0 to 255).

2. Interrupt Enable Status/Clear Register (STS_j) – This indicates if the error event is active and enabled to
influence either low priority or high priority interrupt where j stands for error event index (j= 0 to 255).

Error Signaling Module Overview www.ti.com

10 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

ESM CPUx

Event Raw Status/Set
Register (RAW_j) High Priority Interrupt

Low Priority Interrupt

Critical Interrupt, Warm Reset

Error Event_j

High Priority Watchdog InterruptHigh Priority Watchdog
Counter

(HI_PRI_WD_CNTR)

Global Enable
(EN)

Interrupt Enable
Set Register

(INTR_EN_SET_j)

Interrupt Priority
Register

(INT_PRIO_j)

Interrupt Enable
Status/Clear

Register (STS_j)

Critical Priority
Interrupt Influence Set

Register
(CRIT_EN_SET_j)

0

1

Read raw error event
Status/ Write 1 to set
raw error event status

Read Interrupt Status/
Write 1 to clear raw
error event status

Figure 5-2. ESM CPU Detailed Configuration and Status Info View

ERRPIN_MON_EVT

System ESM

Event Raw Status/Set
Register (RAW_j)

Low Priority Interrupt

Critical Interrupt, Warm Reset

Error Event_j
Global Enable(EN)

Interrupt Enable Set
Register

(INTR_EN_SET_j)

Interrupt Priority
Register (INT_PRIO_j)

Interrupt Enable
Status/Clear Register

(STS_j)

Critical Priority Interrupt
Influence Set Register

(CRIT_EN_SET_j)

Read raw error event Status/
Write 1 to set raw error event

status

Read Interrupt Status/
Write 1 to clear raw error

event status

0

Error Pin Influence Set
Register (PIN_EN_SET_j)

Error Pin Output

Error Pin
Error Pin Input

Error Pin Monitor

Error Pin Monitor Config
Register

(ERRPIN_MON_CFG)

Figure 5-3. System ESM Detailed Configuration and Status Info View

5.1.1 Sysconfig ESM Configuration

Sysconfig supports configuring the individual error events for desired output from respective ESM module as
described in Section 5.1.

The Figure 5-4 for example showcases how ESM CPU1 can be configured for error event - Error Aggregator
CPU1 HPERR for high priority NMI output. Global parameters settings in respective ESM CPU Sysconfig
module can be used to configure high priority watchdog enable, watchdog counter pre-load value as well as
define interrupt handler configuration for low priority interrupt and NMI outputs.

www.ti.com Error Signaling Module Overview

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

Figure 5-4. ESM CPU Sysconfig Module

The Figure 5-5 for example showcases how System ESM can be configured for error event - Error Aggregator
CPU1 HPERR to enable influence on error pin. The error status pin (ERRORSTS) configuration like polarity,
output pin mode configuration, and so on can also be done using the global parameters section in System ESM
Sysconfig module.

Figure 5-5. System ESM Sysconfig Module

Error Signaling Module Overview www.ti.com

12 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

5.2 ESM Error Events Debugging
Follow the below steps for error events debug :

1. Run the following scripts ESM_CPU_Check_Status() GEL file hot menu function from CCS to check status
of the error events as shown in Figure 5-6. This function output indicates error events separated in two
categories:
a. Active/Pending Error Events – Indicates error events that are active/pending

i. When an error event is active means the raw status of the error event is set, the function checks for
RAW status register (RAW_j) for each event stated in F29x TRM ESM error events table.

b. Active, Pending, and Enabled Error Events – Indicates error events that are active/pending and
enabled.
i. When an error event is active, pending and enabled means that the RAW status is set for the error

event as well as the Interrupt Enable Set Register is also set by the user to trigger interrupt output
from respective ESM module.

Figure 5-6. ESM Error Status GEL Function

2. Example output from the GEL output and correlation to the ESM registers is shown in the figure below. This
is continuation of the same ESM Multicore example taken from F29 SDK.
a. Figure 5-7 shows the CPU1_ERAD_NMI error event is both active and enabled. The ESM CPU1 -

Interrupt priority register (INT_PRIO) is also set for the CPU1_ERAD_NMI error event to trigger NMI
both for CPU1 (in ESM CPU1) and CPU3 (in ESM CPU3).

b. In addition to this there are other error events like ErrorAggregator_CPU3_HPERR (Error aggregator
CPU3 high priority error from security violation error on CPU3 DW bus as explained in sections above),
EPWMXBAR1, CPU1 High Priority interrupt and CPU3 High priority interrupt output also active which
is decoded using the ESM RAW Status register (RAW_j) value. CPU1 and CPU3 high priority interrupt
outputs are CPU1 and CPU3 NMI output flags whereas EPWM XBAR and ERAD NMI events are used
in the NMI errata workaround implementation hence active as expected, check details in the F29x device
errata.

www.ti.com Error Signaling Module Overview

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

Figure 5-7. ESM Error Event Status GEL Output

3. Similar to EAM register flags, check for the GEL output before RAW status register is cleared in NMI ISR
or check the same structure (nmiStatus) as shown before where they are saved for debug later. Clearing
ESM RAW status (RAW_j) register flags is necessary to avoid the NMIWD timeout in case particular event is
configured to trigger NMI when active.

5.3 Miscellaneous Debug Tips for ESM
1. Check RESC (Reset Cause) register to verify if the ESM High Priority Watchdog Interrupt (NMIWD) caused

NMIWDRSn to occur. If System ESM is configured for Critical Priority Interrupt output for any error event
check ESMRESET bit in RESC register.

2. Check ESM HI_PRI Register which shows the highest priority outstanding high priority interrupt. The lowest
event number has the highest priority, value of 0xFFFF indicates that there are no high priority interrupts
active/pending.

3. Check ESM LOW_PRI Register which shows highest priority outstanding low priority interrupt. The lowest
event number has the highest priority, value of 0xFFFF indicates that there are no low priority interrupts
active/pending.

Error Signaling Module Overview www.ti.com

14 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

6 BootROM EAM and ESM Error Status
When the application is not able to clear the error before a NMIWD (High Priority Watchdog) timeout, then a
reset is triggered from ESM CPU1 instance. In this case, bootROM which runs after the device reset (XRSn)
clears errors to avoid a back-to-back NMIWD rest loop and stores the error information and status to M0 RAM
(refer to Table below) for further debug.

BootROM clears the following status:

1. ESM Group0 RAW Status for ESM CPU1 and System ESM instances of ESM-Subsystem
2. All CPUx error aggregator type registers

Also saves the following in M0 RAM for user to debug the source of error:
1. ESM RAW Status for Group0 only
2. Error Aggregator CPU1 - PR, DR1/2, DW, and INT instances error information including high-priority error

address, low-priority error address, error type, and program counter registers

Table 6-1. BootROM Error Status Information
Description Address

ESM RAW Status 0x2000_0868

CPU1 PR Error Aggregator High Priority Error address 0x2000_086C

CPU1 PR Error Aggregator Low Priority Error address 0x2000_0870

CPU1 PR Error Aggregator Error Type 0x2000_0874

CPU1 PR Error Aggregator PC value 0x2000_0878

CPU1 DR1 Error Aggregator High Priority Error address 0x2000_087C

CPU1 DR1 Error Aggregator Low Priority Error address 0x2000_0880

CPU1 DR1 Error Aggregator Error Type 0x2000_0884

CPU1 DR1 Error Aggregator PC value 0x2000_0888

CPU1 DR2 Error Aggregator High Priority Error address 0x2000_088C

CPU1 DR2 Error Aggregator Low Priority Error address 0x2000_0890

CPU1 DR2 Error Aggregator Error Type 0x2000_0894

CPU1 DR2 Error Aggregator PC value 0x2000_0898

CPU1 DW Error Aggregator High Priority Error address 0x2000_089C

CPU1 DW Error Aggregator Low Priority Error address 0x2000_08A0

CPU1 DW Error Aggregator Error Type 0x2000_08A4

CPU1 DW Error Aggregator PC value 0x2000_08A8

CPU1 INT Error Aggregator High Priority Error address 0x2000_08AC

CPU1 INT Error Aggregator Low Priority Error address 0x2000_08B0

CPU1 INT Error Aggregator Error Type 0x2000_08B4

CPU1 INT Error Aggregator PC value 0x2000_08B8

www.ti.com BootROM EAM and ESM Error Status

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

7 FAQ's:
1. Does the user setup and configure NMI ISR ?

Answer – Yes, this is recommended that users' setup NMI ISR during device initialization so that when
high priority error occurs (for example Group0 error events) which trigger NMI to respective CPU can then
gracefully clear the Error flags in EAM and ESM as per guidance in F29x TRM and ESM multicore F29 SDK
example. Failure to clear ESM raw status flag causes NMIWD timeout to trigger XRSn (Device reset). User
can check NMIWD bit in RESC (Reset Cause) register to confirm the same.

2. What if there was no NMI ISR setup by application and error event caused NMI based on default settings
from Group 0 ESM error events ?

Answer - If there was no user/application NMI ISR setup then CPU goes to default NMI handler in BootROM
where CPU clears and saves the error status and flags in M0 RAM address for debug. Refer to BootROM
TRM chapter for more information.

3. What happens if NMI ISR is configured but the error flags are not cleared ?

Answer – The ESM NMIWD timeout occurs and causes High priority watchdog interrupt output from
respective CPU. ESM CPU1 High priority watchdog interrupt output is connected to cause XRSn while
ESM CPU2/CPU3 causes respective CPURSn as shown in ESM Subsystem Integration View diagram.

4. What if ESM is not configured to generate NMI to respective CPU for high priority CPU EAM errors (passed
to ESM as Group 0 error event) ?

Answer – When ESM Group0 error event is active passed on through EAM module and is not configured
to generate NMI, CPU goes in fault state. CPU EAM module high priority errors when active should be
configured to always trigger NMI to respective CPU.

5. Does ESM/EAM flags clear after XRSn (Device Reset) or CPURSn (CPU Reset) ?

Answer – No, error type register (which is referred to as EAM error flags in this document) and ESM RAW
status register (RAW_j) (which is referred to as ESM error flags) are only reset by PORESETn. These
flags retain the value even after XRSn and CPURSn since application needs this error flag information for
debug in case of reset triggered by ESM as response to error event occurrence not handled by application
software.

6. Why does CPU keeps entering NMI ISR even after clearing ESM Raw status register for all events that
caused NMI ?

Answer – After clearing the ESM RAW status register (RAW_j) flags make sure the EOI Register is also
written to with appropriate key for corresponding error ESM interrupt output. This step of writing EOI is
basically user acknowledging the ESM interrupt output which de-asserts the ESM output. If EOI register is
not written to then ESM interrupt output remains asserted even if ESM error event flag is cleared.

7. Is it possible to generate NMI to CPU1 only and not to CPU3 and vice-versa based on a specific error event
occurence ?

Answer – Yes, ESM is highly configurable and since there are separate ESM tiles dedicated for each CPU
it is possible to setup configuration during initialization to generate NMI or any other error response to either
CPU from its respective ESM CPU tile and disable error response or configure different error response for
particular error event from another ESM CPU tile.

FAQ's: www.ti.com

16 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

8 Summary
ESM and EAM provide users systematic way to handle errors in the device upon occurrence. Application note
highlights how the error event propagates from the source where this is detected to how the error response is
provided from ESM to the device. Lastly, this document lists details on debug tools which can be used to identify
the source of error.

www.ti.com Summary

SDAA104 – SEPTEMBER 2025
Submit Document Feedback

F29x Error Handling and Debug Guide 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

9 References
1. Texas Instruments, F29H85x and F29P58x Real-Time Microcontrollers, technical reference manual
2. Texas Instruments, F29H85x-SDK: ESM Example Between CPU1 and CPU3
3. Texas Instruments, CCSTUDIO: Code Composer Studio™ integrated development environment (IDE)
4. Texas Instruments, C2000™ SysConfig

References www.ti.com

18 F29x Error Handling and Debug Guide SDAA104 – SEPTEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://software-dl.ti.com/C2000/docs/f29h85x-sdk/latest/docs/html/EXAMPLES_DRIVERS_ESM_EX1_BASIC_CPU1_CPU3_MULTI.html
https://www.ti.com/tool/CCSTUDIO
https://www.ti.com/tool/SYSCONFIG#overview
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA104
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA104&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Error Handling Architecture Overview
	3 Example Overview
	4 Error Aggregator Overview
	4.1 Error Aggregation
	4.2 Error Logging
	4.3 Error Debugging Using EAM Module
	4.3.1 EAM Error Debugging
	4.3.2 Interpreting Error Address and Program Counter Values

	5 Error Signaling Module Overview
	5.1 ESM Error Event Output Configuration and Status Information
	5.1.1 Sysconfig ESM Configuration

	5.2 ESM Error Events Debugging
	5.3 Miscellaneous Debug Tips for ESM

	6 BootROM EAM and ESM Error Status
	7 FAQ's:
	8 Summary
	9 References

