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The fundamental mechanism relating input and output errors
lies in the feedback factor. Feedback factor is the fraction of
the amplifier output signal fed back to the amplifier input. In
the figure, a feedback voltage divider defines this fraction
through the output to input transfer response

This defines β as simply the voltage divider ratio, R1/(R1 +
R2). Comparison of this result with ACLi shows that ACLi =
1/β for the noninverting case.

Other op amp circuit configurations produce different ACLi

but β remains the same. As a general guideline, the feedback
factor of an op amp circuit equals the voltage divider ratio
of the feedback network. This fact extends the results devel-
oped below with the noninverting circuit to almost all other
op amp circuits. Just determining this voltage divider ratio
for a circuit defines the β term common to a broad range of
performance results. In rare cases, complex feedback defies
this simple guideline, requiring detailed feedback model-
ling.1

Given the numerous specifications describing op amp per-
formance, the above title suggests an ambitious goal for one
bulletin. Yet, this bulletin reflects the analysis power gained
through knowledge of an op amp circuit’s feedback factor.
Feedback dictates the performance of an op amp both in
function and in quality. The major specifications of the
amplifier describe an open-loop device awaiting feedback
direction of the end circuit’s function. Just how well the
amplifier performs the function reflects through the feed-
back interaction with the open-loop error specifications.
Fortunately, most open-loop errors simply reflect to the
circuit output amplified by the reciprocal of the circuit’s
feedback factor.

Amplifier bandwidth limits this simple relationship but the
feedback factor defines this limit as well. Above a certain
frequency, the amplifier lacks sufficient gain to continue
amplification of signal and errors alike. Graphical analysis
defines this frequency limit through plots representing avail-
able amplifier gain and the feedback demand for that gain.
This same analysis indicates frequency stability characteris-
tics for op amp circuits. Just the slopes of the plots indicate
the phase shift in the feedback loop. Thus, the feedback
factor of an op amp circuit is a powerful performance
indicator.

The determination of a circuit’s feedback factor depends
upon feedback modelling. The basic feedback model of an
op amp applies directly to the noninverting circuit configu-
ration. Using this configuration, this treatment demonstrates
the performance, feedback and stability concepts common to
all op amp configurations. A simple guideline extends feed-
back factor determination to most other op amp circuits. Just
knowing a circuit’s feedback factor extends the concepts and
conclusions of this bulletin to these other op amp configura-
tions.

FEEDBACK FACTOR DEFINES PERFORMANCE

More than any other parameter, the feedback factor of an op
amp application defines the circuit performance.1 Feedback
factor sets the gain received by the input-referred errors of
the amplifier. These open-loop errors include offset voltage,
noise and the error signals generated by limitations in open-
loop gain, common-mode rejection and power-supply rejec-
tion. In addition, a circuit’s feedback factor determines
bandwidth and frequency stability.

For the noninverting op amp configuration, a convenient
relationship between closed-loop gain and feedback factor
simplifies performance analysis. There, the gain of the
application circuit itself sets the amplification of input-

referred errors and determines the circuit bandwidth. Shown
in Figure 1 as a voltage amplifier, this noninverting circuit
produces the familiar, ideal closed-loop gain of ACLi = (R1 +
R2)/R1. This gain amplifies both the input signal ei and the
differential input error eid of the op amp. Simply multiplying
eid by ACLi defines the resulting output error. Later examina-
tion adds frequency dependence to this simple relationship.
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FIGURE 1. Noninverting op amp connections amplify input
signal ei and error signal eid by a gain of ACLi =
1/β.
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General error analysis depends on β rather than ACLi as
emphasized with the model of Figure 2. This model repre-
sents the noninverting op amp connection by an amplifier
with input error signal eid and with feedback transmission
factor β. This feedback factor determines the signal βeo fed
back to the amplifier input from the output signal eo. Writing
a loop equation for the model shows that

In this result, a gain of 1/β amplifies both ei and ei. Thus, the
Figure 1 circuit and Figure 2 model agree for purposes of
input-to-output transmission of amplifier signals.

ratio of a power supply change to the resulting change in
differential input voltage. Thus, PSRR = δVS/δeid and the
associated input-referred error is δeid = δVS/PSRR.

For CMRR, the relationship between definition and input
error requires closer examination. Common-mode rejection
ratio is defined as the ratio of the differential gain to the
common-mode gain, AD/ACM. For an op amp, the differential
gain is simply the open-loop gain A. Then, CMRR = A/ACM

and rewriting this shows the common-mode gain to be ACM

= A/CMRR. However, by definition ACM = eocm/eicm where
eocm is the output signal resulting from eicm. Combining the
two ACM equations results in eocm = Aeicm/CMRR. To support
this component of output voltage, the op amp develops
another gain error signal in eid. As before, the resulting eid

component equals the associated output voltage divided by
the open-loop gain. Dividing the preceding eocm expression
by open-loop gain A defines the input-referred CMRR error
as eicm/CMRR.

Closer examination also clarifies the source resistances, RS+

and RS–, of the eid equation. In the simplest case, a source
resistance is just the output resistance of a signal source that
drives a circuit input. For op amp circuits, scaling and
feedback resistances alter the net resistances presented to the
amplifier’s inputs. The difference amplifier connection well
illustrates this as shown in Figure 3. There, scaling resistors
R3 and R4 alter the resistance presented to the amplifier’s
noninverting input and feedback resistors R1 and R2 alter that
presented to the inverting input.
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FIGURE 2. The input error amplified by 1/β, eid, includes the
effects of the major performance characteristics
of an op amp.

INPUT-REFERRED ERRORS
SUMMARIZE PERFORMANCE

The simple 1/β relationship between input and output errors
predicts the output errors resulting from almost all amplifier
performance characteristics. Each of these characteristics
produces an input-referred error source for the op amp as
combined in

Error terms included here cover the effects of the op amp
input offset voltage, input bias currents, input noise voltage,
open-loop gain, common-mode rejection and power-supply
rejection. Here, the second and third terms of the eid equation
include the source resistances presented to the two amplifier
inputs. The last three error terms include circuit signals
which are the output voltage, the common-mode voltage and
the power supply voltage change.

The input-referred representations of the individual error
terms generally follow from the definitions of the associated
performance characteristics. Definitions directly classify VOS,
IB+, IB– and en as input error sources. Open-loop gain is
simply a ratio of output voltage to differential input voltage.
Dividing the output voltage by the gain defines the associ-
ated input signal as eo/A. The amplifier’s finite open-loop
gain requires this input error signal to support the output
signal. Similarly, power-supply rejection ratio equals the

e
id

= V
OS

+ I
B+

R
S

+ I
B −

R
S −

+ e n + e o/A

+ e
icm

/C MR R + δV
S
/P SR R

Signal sources e1 and e2 drive the difference amplifier’s
inputs through conventional source resistances RS1 and RS2.
However, the scaling and feedback resistances alter the net
resistances presented to the op amp’s input currents IB+ and
IB–. Current IB+ divides between two paths to ground through
R4 and the R3 + RS2 combination. Here, the R3 + RS2 path
returns to ground through the low resistance of the e2 source.
Thus, for the eid equation, RS+ = R4 || (R3 + RS2). Analogously,
IB– divides between the path through R2 and that through R1
+ RS1. In this case, R2 departs from the analogy by returning

FIGURE 3. Scaling and feedback resistors alter the source
resistances presented to the input bias currents
of an op amp.
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Loop analysis defines the noninverting circuit’s transfer
response as

Gain A in this expression contains the frequency depen-
dence that shapes the circuit’s frequency response. Note that
the denominator  of this response contains the feedback
factor Z1/(Z1 + Z2). This makes the denominator 1 + Aβ and
this relates the circuit to the model presented next.

To more completely model the noninverting circuit, Figure
5 replaces the op amp of Figure 4 with a gain block and a
summation element. Also, a feedback block replaces the
feedback network from before. The gain block represents
the amplifier open-loop gain and the summation models the
differential action of the op amp inputs. Op amp open-loop
gain amplifies the differential signal between the two ampli-
fier inputs. Opposite polarities at the model’s summation
inputs reproduce the differential action in the summation.
Here, the polarity assignments match the polarities of the
corresponding op amp inputs. With these assignments, the
summation extracts the differential signal through subtrac-
tion. The model then supplies the differential signal to the
gain block and this block drives the feedback block β. For op
amps, this classic feedback model, initially developed by
Black3, only represents the noninverting case. Modifications
to the model adapt it to other configurations.1 However, the
noninverting case here suffices to define performance con-
ditions common to all op amp configurations.

to the op amp output instead of to ground. However, the low
output impedance of the op amp produces an equivalent
result for this resistance evaluation. Thus, RS– = R2 || (R1 +
RS1).

Together, the error terms of the Figure 2 model provide a
fairly complete representation of op amp performance lim-
its. However, the eid expression does not specifically list
errors due to distortion, bandwidth and slew rate limiting.
Actually, eid includes the amplifier’s distortion error in the
gain and CMRR error signals.2 A circuit’s bandwidth limit
restricts the effects of the eid error sources at higher frequen-
cies. Slew rate limiting simply imposes a secondary band-
width limit for large signal operation. Feedback factor analysis
treats the bandwidth limiting of error effects later.

Up to the circuit’s bandwidth limit, each input-referred error
term of the Figure 2 model reflects to the amplifier output
through a gain equal to 1/β. Multiplication of the error terms
by 1/β produces some familiar results. Output error due to
the finite open-loop gain becomes eo/Aβ. This shows that
error due to open-loop gain reduces the output eo by a
fraction of that output. This fraction equals the reciprocal of
the loop gain Aβ. The decline of A with frequency makes
this error rise and this shapes the closed-loop frequency
response of the circuit. Similar multiplication of the input
noise error defines the output noise as en/β, leading to the
term “noise gain” for 1/β. This description of 1/β only holds
under the bandwidth limits to be described. For both the loop
gain and noise errors, greater visibility results through the
frequency response analysis described below. Similarly, the
frequency dependencies of CMRR and PSRR reflect to the
circuit output with circuit-specific bandwidths.

FEEDBACK MODELLING DEFINES
CLOSED-LOOP RESPONSE

The above discussion presents the 1/β relationship between
input-referred op amp error sources and the resulting output
errors. However, the frequency dependance of amplifier
gain modifies this simple, initial relationship. Amplifier
response roll off defines a bandwidth limit for both signal
and error sources. This reduces the output error effect of all
error sources except for the DC errors VOS, IB+ RS+ and IB
RS–. Amplifier gain, noise, CMRR and PSRR produce AC
errors and their output effects depend on the circuit’s fre-
quency response. More complete feedback modelling de-
fines this frequency response through the noninverting am-
plifier example. However, the frequency response results
developed here extend to any op amp configuration through
a standardized response denominator.

Figure 4 shows the generalized noninverting connection
with the feedback network as the generalized Z1 and Z2

rather than the resistors shown before. Redrawing the ampli-
fier configuration as shown highlights the voltage divider
action of the feedback network. The network’s divider
action again displays the fraction of the amplifier output fed
back to the amplifier input. In preparation for the next
modelling step, the figure reduces the amplifier input error
signal, eid, to just the open-loop gain error eo/A. Feedback

modelling focuses on gain and related frequency character-
istics. Still, this one error signal suffices to define frequency
response for use with the previous multi-error analysis.

FIGURE 4. Redrawing the op amp circuit and reducing eid to
the gain error signal, eo/A, prepares the circuit
for feedback modelling.

FIGURE 5. Black’s classic feedback model reproduces the
ACL transfer response of the noninverting op
amp configuration.
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Comparison of circuit and model responses demonstrates
the model validity. The model amplifies the difference
between the summation inputs by gain A to produce the
output signal. This results in eo = A(ei - βeo) and solving for
eo/ei defines the modelled transfer response as

Comparison of terms in the ACL equations for the model,
above, and the circuit, before, shows the feedback factor to
be β = Z1/(Z1 + Z2), validating the model.

LOOP GAIN SUSTAINS RESPONSE

Further analysis of the ACL result defines the op amp fre-
quency response and stability conditions.4 This added per-
formance information depends upon the denominator of the
ACL response and not upon the noninverting case considered
here. Conclusions based upon this denominator extend to all
other op amp configurations. Rewriting the ACL equation for
the noninverting case yields

Then, the response numerator expresses the ideal closed-
loop gain, ACLi = 1/β, and the denominator expresses the
frequency dependance in through A and β.

Other op amp configurations produce different numerators,
but always with the same 1 + 1/Aβ denominator. This
common denominator unifies bandwidth and stability char-
acteristics for all op amp configurations. All op amp con-
figurations produce a closed-loop response of

Writing a given configuration’s response in this form imme-
diately identifies the ideal response, ACLi, as the numerator.
It also directly links the configuration to the denominator-
based bandwidth results and stability criteria that follow.

The frequency dependencies of A and β combine to set a
configuration’s frequency response. At low frequencies, the
high level of open-loop gain A reduces the denominator
above to 1 + 1/Aβ ≈ 1. Then, the circuit response simplifies
to the ideal gain of ACLi. At higher frequencies, the op amp
open-loop gain drops, causing this denominator to increase.
Then, ACL declines from it’s ideal value ACLi. Similarly, a
high-frequency drop in β would add to the ACL decline.
Initially, a constant β simplifies the analysis. Constant β
results with the resistive feedback networks common to the
majority of applications.

The open-loop gain decline with frequency produces the
circuit’s bandwidth limit as illustrated in Figure 6. There, the
resistive feedback case illustrates the most common condi-
tion. Reactive rather than resistive feedback slightly modi-
fies the bandwidth conclusions developed here and a later
example describes this effect. However, reactive feedback
does not alter the frequency stability conditions developed

through this resistive feedback example. The plot of the
figure displays the frequency responses of all three variables
in the ACL equation. Shown are the closed-loop gain, ACL, the
open-loop gain, AOL, and 1/β as a function of frequency. The
graphical interaction of these variables provides visual in-
sight into bandwidth and frequency stability limits. The
heavier curve represents the resulting closed-loop response
ACL.
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1 + 1/Aβ FIGURE 6. Graphical analysis with a circuit’s A and 1/β
curves defines the circuit’s closed-loop band-
width.

The loop gain of the circuit, Aβ in the above denominator,
represents the amplifier gain resource available to maintain
the ideal closed-loop response. In Figure 6, the shaded area
of the graph highlights this gain. At any given frequency, the
corresponding loop gain equals the vertical distance between
the A and 1/β curves. The logarithmic scale of the graph
makes this distance log(A) – log(1/β) = log(Aβ). Loop gain
Aβ represents the amplifier’s reserve capacity to supply the
feedback demand for gain. Where loop gain drops below
unity, the closed-loop curve drops from the ideal ACLi.

The A and 1/β curves graphically display this loop gain
limit. Here, the 1/β curve represents the feedback demand.
Loop gain meets this demand as long as the 1/β curve
remains below the open-loop gain curve. However, at higher
frequencies, the open-loop gain curve falls below the 1/β
level. There, feedback demand exceeds the available ampli-
fier gain and ACL rolls off, following the amplifier open-loop
response. This response roll off follows a –20 dB/decade
slope for the single-pole response characteristic of typical op
amps.
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1/β INTERCEPT MARKS BANDWIDTH LIMIT

The bandwidth limit of most op amp circuits occurs at the
1/β intercept with the open-loop gain curve. Some circuits
reduce bandwidth further, through reactive feedback ele-
ments, but all op amp circuits encounter a bandwidth limit
at the 1/β intercept. Figure 6 illustrates this intercept and the
coincident roll off of the ACL response. By definition, the
3dB bandwidth limit occurs where ACL drops from its DC
value to 0.707 times that value. Analysis shows that this
condition results at the intersection of the A and 1/β curves.
These curves are actually magnitude responses and, at their
intersection, their magnitudes are the same or |A| = |1/β|.
Rearranging this result shows that the intercept occurs where
the loop gain is |Aβ| = 1 at the frequency fi. A phase shift of
–90° accompanies this unity gain magnitude because of the
single-pole roll off of gain A. Then, Aβ = –j1, at the
intercept, and the denominator of the ACL equation  becomes
1 + 1/Aβ = 1 + j1.

The √2 magnitude of this denominator drops circuit gain
from ACLi to 0.707ACLi. Thus, for frequency independent
feedback factors, the 3 dB bandwidth occurs at the intercept
frequency fi. With frequency dependent feedback factors,
the closed-loop response still rolls off following the inter-
cept but this point may not be the 3dB bandwidth limit.
Then, peaking or additional roll off in the closed-loop
response curve moves the actual 3dB point away from fi.

For the more common op amp applications, constant feed-
back factors permit a simple equation for the 3dB band-
width. Single-pole responses characterize the open-loop roll
offs of most op amps and virtually all 1/β intercepts occur in
this single-pole range. There, the single-pole makes the gain
magnitude simply |A| = fC/f where fC is the unity-gain
crossover frequency of the amplifier. Then, at the intercept,
f = fi and A = 1/β = fC/fi. Solving for fi defines the 3dB
bandwidth for most op amp applications as

This result holds for all op amp applications having fre-
quency independent β and single-pole op amp roll off.

Technically, the above bandwidth limit portrays only the
small-signal performance of an op amp. In large-signal
applications, slew rate limiting often sets a lesser bandwidth
limit, especially in lower gain applications. There, the slew
rate limit, Sr, imposes a power bandwidth limit of BWP =
Sr/2πEop where Eop is the peak value of the output voltage
swing. This limit represents the only major performance
characteristic of an op amp not directly related to the
feedback factor β.

However, an indirect relationship still links large-signal
bandwidth and β. The value of β helps determine which
bandwidth limit, BW or BWP above,  applies in a given
application. Both bandwidth limits set performance bound-
aries and the lower of the two prevails in large-signal
applications. Higher values of β imply lower closed-loop
gains and increase the frequency boundary set by BW = βfC.

There, BWP = Sr/2πEop generally produces the lower of the
two boundaries, controlling the circuit bandwidth. Con-
versely, lower values of β reduce the BW = βfC boundary,
making this the dominant limit. For a given application,
compare the two limits to determine which applies.

BANDWIDTH ALSO
RESTRICTS ERROR SIGNALS

The frequency dependence defined by the 1/β intercept also
applies to the AC error sources of the previous Figure 2
analysis. That analysis showed that the input-referred errors
of op amps transfer to the amplifier output through a gain of
1/β. However, 1/β does not include the high frequency
limitations of the amplifier. Thus, the earlier analysis re-
mains valid only for frequencies up to the 1/β intercept at fi.
Above this frequency, the amplifier lacks sufficient gain to
amplify input error sources by a gain of 1/β. The bandwidth
limit BW = βfC marks a response roll off that reduces
amplification of signal and error alike. Beyond this BW
limit, the gain available to error signals rolls off with the
amplifier open-loop response. Here, the limited error signal
magnitudes always invoke the small-signal, rather than slew-
rate, bandwidth limit.

This error signal roll off produces the previously mentioned
difference between 1/β and “noise gain”. Beyond the inter-
cept, the gain supplied to noise follows the amplifier re-
sponse roll off even though the 1/β curve continues uninter-
rupted. For ACL, the response roll off results from the
denominator of this gain’s equation. For error signal gain,
adding this denominator to the original 1/β gain inserts the
frequency dependance. This makes the closed-loop error
gain

Here, the added frequency dependance reduces the higher-
frequency output errors calculated for the noise, CMRR and
PSRR error sources.

For the noninverting case considered here, ACLe = ACL but,
for other cases, ACL varies. Error gain ACLe, however, re-
mains the same. This gain always equals 1/β up to this
curve’s intercept with the amplifier open-loop response.
Then, ACLe rolls off with that response. Note that ACLe above
depends only upon the variables β and A. Any feedback
model with β and A blocks configured like Figure 5 yields
the same expression for ACLe.

1/β INTERCEPT ALSO DEFINES STABILITY

The AC performance indications of the feedback factor also
predict op amp frequency stability. The response plots that
define bandwidth also communicate the phase shift of the
feedback loop. Excess phase shift promotes response ringing
or oscillation and the plot slopes indicate this phase shift
directly. Mathematical analysis defines the stability indica-
tors applied to the plots and an intuitive evaluation verifies
these indicators.

BW = f
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Response plots like that of Figure 6 permit frequency stability
evaluation directly from the curve slopes. Specifically, the
slopes of the A and 1/β curves at the intercept indicate phase
shift for a critical feedback condition. As mentioned, the
intercept corresponds to a loop gain magnitude of |Aβ| = 1. If
the loop phase shift reaches 180°, the loop gain at the intercept
becomes Aβ = –1. Then, the denominator of ACL equation
reduces to 1 + 1/Aβ = 0 making ACL infinite. With infinite gain,
a circuit supports an output signal in the absence of an input
signal. In other words, the circuit oscillates and it does so at the
intercept frequency fi.

The relative slopes of the gain magnitude and 1/β curves
reflect the phase shift of the feedback loop. The relationship
between response slope and phase shift follows from the
basic effects of response poles and zeros. A pole creates a
–20dB/decade response slope and –90° of phase shift and a
zero produces the same effects with opposite polarities.
Additional poles and zeroes simply add response slope and
phase shift in increments of the same magnitudes. The slope
and phase correlation accurately predicts the loop phase shift
when the critical intercept remains well separated from
response break frequencies. Within a frequency decade of
the intercept, any break frequency of the amplifier or feed-
back network requires the more detailed analysis described
later. However, even in these cases, the response slopes
provide insight into probable stability behavior.

Relying on the slope and phase correlation, the rate-of-
closure guideline quickly approximates the phase shift of
Aβ. Rate-of-closure is simply the difference between the
slopes of the A and 1/β curves at the intercept. Both slopes
communicate phase shift and the slope difference indicates
the net phase shift of the loop. Figure 7 illustrates the slope
and phase correspondence for two common feedback cases.
There, two 1/β curves having different slopes intercept the
gain magnitude curve |A|. The 1/β1 curve has the zero slope
of resistive feedback networks and the rate-of-closure de-
pends only upon the gain magnitude curve. This curve has
the –20dB/decade slope common to most op amps. To-
gether, the two curves develop a 20dB/decade slope differ-
ence, or rate-of-closure, for 90° of Aβ phase shift.

In the feedback loop, the phase inversion of the op amp adds
another 180° for a net phase shift of 270°. This leaves a
phase margin of Φm = 90° from the 360° needed to support
oscillation. For op amp stability analysis, the 180° phase
shift from the amplifier phase inversion is automatic. Thus,
op amp phase analysis simplifies, replacing the normal 360°
stability criteria with a criteria of 180° of feedback phase
shift. This convention applies in the examples that follow.

The second 1/β curve  of Figure 7 illustrates the feedback
condition of the basic differentiator circuit. This circuit
produces a feedback demand curve represented in the figure
by 1/β2. That curve slopes upward at +20dB/decade and
intercepts the |A| curve where the slope difference is 40dB/
decade. Then, the rate-of-closure guideline indicates a feed-
back phase shift of 180°, leaving zero phase margin. This
explains the inherent oscillation of the basic differentiator
circuit.

APPROXIMATION SIMPLIFIES PHASE ANALYSIS

As mentioned, the rate-of-closure criteria accurately predicts
the Aβ phase shift when no response break frequencies
occur within a decade of the intercept. Other cases require
more detailed phase analysis but this too simplifies with the
Bode phase approximation.5 This approximation produces a
maximum error of 5.7°. Shown in Figure 8, this approxima-
tion predicts the phase effect of a response singularity
through a straight line approximation. The actual phase shift
introduced by the illustrated pole at fp progresses through the
arctangent curve shown. The actual phase shift at any
frequency can be calculated from Φ = Arctan(f/fp).

However, the Bode approximation provides quicker, visual
feedback when examining response plots. This approxima-
tion simplifies the phase shift curve to a straight line having
a slope of –45°/decade. This line centers on the frequency fp,
where the phase shift is 45°. From there, the approximation
line predicts 0° at 0.1fp and the full 90° at 10fp. Just these
three reference points provide a quick visual indication of
the effect a given response break produces at a frequency of

FIGURE 7. Plotted together, the 1/β and open-loop gain
curves display a circuit’s frequency stability
conditions through the curves’ rate-of-closure.
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FIGURE 8. The Bode phase approximation refines phase
analysis for cases where the rate-of-closure
criteria looses accuracy.
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interest. Outside the band of 0.1fp to 10fp, a response break
produces little influence. Near fp, the response break intro-
duces around 45° of phase shift.

In between these reference points, visual extrapolation ap-
proximates the phase shift. For example, consider a point
midway between the fp and 10fp marks of the Log f scale.
Note that this midpoint is a linear measure on the log scale.
This requires no logarithmic conversion and visual percep-
tion of distance applies directly. At this midpoint, the phase
approximation indicates a phase shift of approximately 45°
+ 0.5(45°) = 67.5°. Similarly, at a point two-tenths of the
way between 0.1fp and fp the approximation indicates 0.2
(45°) = 9°. These analyses require no knowledge of the
actual frequencies represented by the example points. In
contrast, exact analysis with the arctangent relationship first
requires conversion of the linear distance observed into the
equivalent frequency of the log f scale. Then, the arctangent
relationship must be calculated.

Figure 9 illustrates the application of the Bode phase ap-
proximation to the stability indication of the 1/β intercept. In
the figure, the intercept occurs where the open-loop gain
response has a slope of –20dB/decade. The rate-of-closure
guideline suggests 90° of loop phase shift. However, a
second amplifier pole at fp develops a –40dB/decade slope in
the open-loop gain response. As shown, the pole at fp occurs
less than a decade from the intercept. This limited separation
compromises the simple rate-of-closure indication.

example shown places fi about midway between fp and 0.1fp.
This communicates a phase effect from fp of 0.5(45°) = 22.5°
at the intercept frequency fi. Adding this to the 90° produced
by the –20db/decade gain slope results in a net loop phase
shift of 112.5°. This leaves 67.5° of phase margin from the
180° of feedback phase shift required for oscillation.

INTUITIVE ANALYSIS EXPLAINS OSCILLATION

With op amps, conventional insight into the cause of ampli-
fier oscillation can be misleading. In the general amplifier
case, high gain combined with high phase shift promotes
oscillation. In the op amp case, these conditions often exist
together without producing instability. The distinction lies in
the simultaneous gain and phase conditions required for op
amp oscillation. At lower frequencies, high loop gain pre-
vents oscillation by attenuating the amplifier’s input error
signal. At higher frequencies, lack of loop gain restricts the
output signal to similarly prevent oscillation. In between, the
loop gain reaches a point where the high and low frequency
limitations cross, satisfying the gain condition for oscilla-
tion. Still, the feedback phase shift at this crossover must
reach 180° to produce oscillation.

To illustrate this gain and phase combination, Figure 10
demonstrates the basic requirements for op amp oscillation.
This figure grounds the normal signal input of the circuit to
remove the effect of any applied signal upon the output
voltage. With the grounded input, only the gain error signal,
–eo/A, excites the input circuit. This signal must indepen-
dently produce the output signal in order to sustain an
oscillation. The circuit amplifies the gain error signal by the
closed-loop gain ACL, producing eo = ACL(–eo/A). In turn, this
output signal reflects back through the amplifier, producing
the attenuated input signal –eo/A. If this circuit gain and
attenuation cycle supports an output signal, it is self-sustain-
ing oscillation.

FIGURE 10. To sustain oscillation, error signal eo/A and gain
ACL must support the output voltage in the
absence of an applied input signal.

At lower frequencies, ACL = 1/β, making the oscillation
condition eo = –eo/Aβ. To sustain oscillation, the circuit must
satisfy this equality and only two solutions do, eo = 0 and
Aβ = –1. The eo = 0 solution indicates an oscillation of zero
amplitude, representing the stable state. The Aβ = –1 solu-
tion represents the actual oscillation state, as noted in the
previous mathematical analysis. This second solution places
very specific magnitude and phase requirements upon the

FIGURE 9. Application of the Bode approximation defines
the phase effects of response breaks that occur
less than a decade from the intercept at fi.

–20dB/Decade

20 Log |A|

|A|

1/β

–40dB/Decade

Log f

∅ = 90° + 0.5 (45°)

fpfi0.1fp

Then, the Bode phase approximation estimates the phase
effect of fp at the intercept fi. As shown, fi occurs below fp so
the effect is less than 45°. Refinement of this initial estimate
follows from the linear distance separating fp and fi on the
plot. This linear distance represents a fraction of a frequency
decade. The fraction equals this distance divided by the
linear distance between fp and 0.1fp. Visual reading of the
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Over the same frequency range, the composite amplifier
provides high open-loop gain. This gain and phase combina-
tion might first suggest stability problems over the entire
range. However, the high open-loop gain actually serves to
stabilize the circuit through the circuit’s loop gain. High
values for A increase the loop gain Aβ to prevent the
magnitude equality |eo| = |eo/Aβ| required for oscillation. It
does so by limiting the eo/A error signal as illustrated in the
figure. At lower frequencies, high levels of open-loop gain
A reduce this input signal to a level insufficient to support
oscillation.

The eo/A curve rises as gain A declines but flattens when ACL

declines. The rise in eo/A must reach a certain level to
support the oscillation condition of eo = –ACL(eo/A). Also, to
support this condition, the high-frequency roll off of ACL

must not excessively reduce this gain. Otherwise, the ampli-
fication of eo/A by ACL fails to develop sufficient eo to
sustain oscillation. Only one point in the plots satisfies this
oscillation condition. As described before, where A = 1/β,
eo/A reaches the level required to support oscillation. This
intercept also marks the peak value for ACL(eo/A). Beyond
there, ACL rolls off with gain A, reducing eo and leveling the
eo/A curve. With a level eo/A curve, the ACL roll off also rolls
off the quantity ACL(eo/A).

Before this intercept, eo/A remains too small to support
oscillation. After the intercept, the amplifier lacks the ACL

needed to sustain oscillation. Thus, before or after the
intercept, 180° of feedback phase shift does not compromise
stability. This phase shift produces oscillation only if present
at the frequency of the intercept. There, gain magnitude
conditions always permit oscillation given the required 180°
phase condition. Phase compensation reduces this phase
shift for the composite amplifier.

The 1/β intercept represents a critical mass point for fre-
quency stability. There, the magnitude of the gain error and
the feedback phase shift must both reach specific levels to
support oscillation. Despite the very specific requirements
for oscillation, the greatly varied applications of op amps
make this critical mass condition all to easy to find. To
contend with this, the 1/β curve presents visual prediction of
the problem and provides insight into its solution.
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loop gain Aβ. The condition Aβ = –1 requires that |Aβ| = 1
in combination with 180° of phase shift for the minus sign.

Consider the magnitude requirement first. If |Aβ| is too
large, the circuit conditions would require |eo| > |eo/Aβ|. This
condition can not be self sustaining. Here, the attenuated
input error signal eo/A, when amplified by a gain of 1/β,
remains too small to support the required eo. Only when the
attenuating gain, A, equals the amplifying gain, 1/β, does the
circuit meet the magnitude condition for oscillation. Ex-
pressing this in an equation, |A| = |1/β|, repeats the previous
mathematically derived condition for oscillation. Only at the
intercept of the A and 1/β curves do their magnitudes
become equal. Only then does the circuit fill the magnitude
condition for oscillation.

At this intercept, oscillation also requires 180° of feedback
phase shift. If Aβ lacks 180° of phase shift, then the minus
sign of the Aβ = –1 condition remains unsatisfied, prevent-
ing oscillation. Further, oscillation only results when this
phase condition coincides with the magnitude condition
above. An Aβ phase shift of 180° at frequencies other than
the intercept frequency does not produce oscillation. At
those other frequencies, the circuit fails to meet the magni-
tude condition for oscillation.

Composite amplifiers permit a graphical illustration of this
combined oscillation requirement. These amplifiers inher-
ently produce the 180° phase shift required for  the minus
sign.  They consist of two op amps connected in series and
each amplifier contributes a –20dB/decade slope to the
composite open-loop gain. This produces a –40dB/decade
gain slope as illustrated by Figure 11. This slope indicates
180° of phase shift over most of the amplifier’s useful
frequency range. Thus, composite amplifiers meet the phase
condition for oscillation over a broad range.

FIGURE 11. A composite amplifier response illustrates the
fact that 180° of phase shift fails to support
oscillation where eo/A lacks sufficient magni-
tude.
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