Errata

MSPM0C1105、MSPM0C1106 マイコン

概要

この文書では、機能仕様に対する既知の例外 (アドバイザリ) について説明します。

目次

1 機能アドバイザリ	1
2 プログラム済みのソフトウェア アドバイザリ	<u>2</u>
3 デバッグ専用のアドバイザリ	2
4 コンパイラ アドバイザリによって修正	2
5 デバイスの命名規則	2
5.1 デバイスの記号表記とリビジョンの識別	<mark>2</mark>
6 アドバイザリの説明	4
7 商標	14
8 改訂履歴	14

1 機能アドバイザリ

デバイスの動作、機能、パラメータに影響を与えるアドバイザリ。

✓ チェックマークは、指定されたリビジョンに問題が存在することを示します。

エラッタ番号	Rev B
ADC_ERR_05	✓
COMP_ERR_05	✓
CPU_ERR_02	✓
CPU_ERR_03	✓
FLASH_ERR_02	✓
FLASH_ERR_03	✓
I2C_ERR_04	✓
I2C_ERR_05	✓
I2C_ERR_06	✓
I2C_ERR_07	✓
I2C_ERR_08	✓
I2C_ERR_09	✓
I2C_ERR_10	✓
PMCU_ERR_13	✓
RST_ERR_01	✓
RTC_ERR_01	✓
SPI_ERR_04	✓
SPI_ERR_05	✓
SPI_ERR_06	✓
SPI_ERR_07	✓
SYSOSC_ERR_02	✓
TIMER_ERR_04	✓

エラッタ番号	Rev B
TIMER_ERR_06	✓
UART_ERR_01	✓
UART_ERR_02	✓
UART_ERR_04	✓
UART_ERR_05	✓
UART_ERR_06	✓
UART_ERR_07	✓
UART_ERR_08	✓

2 プログラム済みのソフトウェア アドバイザリ

工場出荷時にプログラムされたソフトウェアに影響を及ぼすアドバイザリ。

✓ チェックマークは、指定されたリビジョンに問題が存在することを示します。

3 デバッグ専用のアドバイザリ

デバッグ動作のみに影響するアドバイザリ。

✓ チェックマークは、指定されたリビジョンに問題が存在することを示します。

4 コンパイラ アドバイザリによって修正

コンパイラの回避方法により解決されるアドバイザリ各アドバイザリについては、回避策が適用されている IDE およびコンパイラのバージョンを参照してください。

✓ チェック マークは、指定されたリビジョンに問題が存在することを示します。

5 デバイスの命名規則

製品開発サイクルの段階を示すため、TI はすべての MSP MCU デバイスの型番に接頭辞を割り当てています。MSP MCU 商用ファミリの各番号には、MSP、X のいずれかの接頭辞があります。MSP または XMS。これらの接頭辞は、製品開発の進展段階を表します。段階には、エンジニアリング プロトタイプ(XMS)から、完全認定済みの量産デバイス(MSP) までがあります。

XMS - 実験段階のデバイスであり、必ずしも最終製品の電気的特性を表しているとは限りません

MSP - 完全に認定済みの量産版デバイス

サポートツールの名前付けプレフィックス:

X: 開発サポート製品。テキサス・インスツルメンツの社内認定試験はまだ完了していません。

null: 完全に認定済みの開発サポート製品です。

XMS デバイスと MSPX 開発サポートツールは、以下の免責事項に基づいて出荷されます:

「開発中の製品は、社内での評価用です。」

MSP デバイスの特性は完全に明確化されており、デバイスの品質と信頼性が十分に示されています。テキサス・インスツルメンツの標準保証が適用されます。

プロトタイプ デバイス (XMS) は、標準の量産デバイスよりも故障率が高いことが予想されます。これらのデバイスは、予測される最終使用時の故障率が未定義であるため、テキサス・インスツルメンツはそれらのデバイスを量産システムで使用しないよう推奨しています。認定済みの量産デバイスのみを使用する必要があります。

TI デバイスの項目表記には、デバイス ファミリ名の接尾辞も含まれます。この接尾辞は、温度範囲、パッケージ タイプ、配布形式を示しています。

5.1 デバイスの記号表記とリビジョンの識別

次のパッケージ図はパッケージ記号化スキームを示しており、これは本番前バージョンです。リリース後、

www.ti.com/ja-jp デバイスの命名規則

RTM バージョンがここに追加されます。また、表 5-1 に、デバイス リビジョンからバージョン ID へのマッピングを定義します。

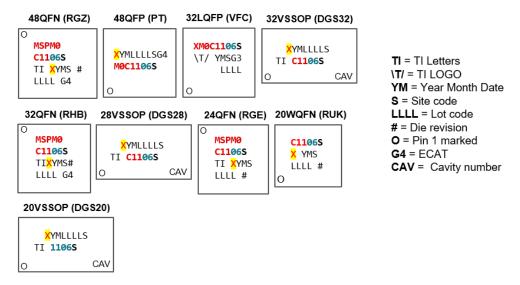


図 5-1. パッケージの記号表記

表 5-1. ダイ リビジョン

リビジョンレター	バージョン(デバイスの工場出荷時定数メモリ内)
В	1

リビジョン文字は、製品のハードウェアの改訂版を示します。このドキュメントのアドバイザリには、リビジョン文字に基づいて、特定のバイスに該当するか否かがマークされています。この文字は、デバイスのメモリに保存された整数にマップされ、アプリケーションソフトウェア または接続されたデバッグプローブによるリビジョンの検索に使用できます。

6 アドバイザリの説明

ADC_ERR_05 ADC モジュール

カテゴリ

機能

機能

IP(周辺モジュール)が有効化される前にハードウェアイベントが生成された場合、その ADC トリガはキューに保持されたままになります

概要

ADC を HW イベントトリガモードに構成されていて、ADC が有効になる前にトリガが生成される と、ADC トリガはキュー内にとどまります。 ADC が有効になると、サンプリングおよび変換がトリガ されます。

回避方法

ADC をハードウェアトリガ モードで設定した後、外部トリガを与える前に、まず ADC を有効にします。

COMP_ERR_05

COMP モジュール

カテゴリ

機能

機能

コンパレータが有効になると、出力により立ち上がりおよび立ち下がり割り込みが設定されます

概要

コンパレータが有効なとき、コンパレータによって立ち上がりと立ち下がりが設定されします。

回避方法

1.ICLR ビットを使用して CPU 割り込みをクリアします。

ICLR は一般的イベントのクリアには機能しません。COMP の汎用イベントをクリアするには、以下の手順に従ってください(以下は DriverLib 関数です。当社の MSPM0 SDK の機能の内容を確認して、ビット操作を確認できます)

a. COMP を有効にする前に、COMP パブリッシャを何らかのダミー ID で構成します。 DL_COMP_setPublisherChanID(COMP_0_INST, 0); // 実際のパブリッシャを削除します b. DL_COMP_enableEvent(COMP_0_INST, (DL_COMP_EVENT_OUTPUT_EDGE)); // IMASK で COMP イベントを有効にします

c. DL_COMP_enable(COMP_0_INST); // COMP モジュールを有効にします。この手順で RIS のイベントがクリアされます。

d. DL_COMP_disableEvent(COMP_0_INST、(DL_COMP_EVENT_OUTPUT_EDGE));// IMASK におけるクリアで COMP イベントが無効になります。

DL_COMP_setPublisherChanID(COMP_0_INST、COMP_0_INST_PUB_CH)//実際のパブリッシャ f を構成。DL_COMP_enableEvent(COMP_0_INST,

(DL_COMP_EVENT_OUTPUT_EDGE)); // IMASK で COMP イベントを再度有効化

または

コンパレータを有効後、割り込みを読み取り、コンパレータが有効になったために最初の割り込みが発生したことを検出します。

CPU_ERR_02 CPU モジュール

カテゴリ

機能

機能

CPUSS のプリフェッチ機能を無効にする制限

概要

保留中のフラッシュメモリアクセスがある場合、CPU プリフェッチを無効にしても無効にはなりませ

回避方法

プリフェッチを無効にした後、SYSCTL のシャットダウンメモリ(SHUTDNSTORE)へのメモリアク セスを実行してください。これは SYSCTL->SOCLOCK.SHUTDNSTORE0 にアクセスすること で行えます。メモリアクセスが完了すると、プリフェッチャは無効化されます。

CPU_ERR_03

CPU モジュール

カテゴリ

機能

機能

プリフェッチャは、SLEEP モードへの遷移時にデータ整合性の問題を引き起こす可能性がありま

す

概要

SLEEPO に移行するとき、プリフェッチャで不正なデータ(すべて 0)が誤ってフェッチされること があります。スリープモードから復帰したときに、プリフェッチャとキャッシュが ISR コードによって 上書きされない場合、フラッシュからのメインコード実行が破損するおそれがあります。たとえば、 ISR が SRAM 内にある場合、フラッシュからプリフェッチされた誤ったデータは上書きされませ ん。ISR から復帰する際に、プリフェッチャ内の破損したデータが CPU によってフェッチされ、誤

った命令が実行されるおそれがあります。

回避方法

SLEEP に入る前にプリフェッチャーを無効にします。

FLASH ERR 02

FLASH モジュール

カテゴリ

機能

機能

NONMAIN でのデバッグ無効は、デフォルトのパスワードで再度有効にできます

説明

NONMAIN 構成(DEBUGACCESS = 0x5566)でデバッグが無効になっている場合でも、デバ イスにはデフォルトのパスワードでアクセスできます。

回避方法

1. DEBUGACCESS を Debug Enabled with Password オプション(DEBUGACCESS = 0xCCDD)に設定し、PWDDEBUGLOCKフィールドに一意のパスワードを入力します。より高度 のセキュリティを確保するために、暗号化されたランダムなデバイス固有のパスワードを使用する ことをお勧めします。これにより、適切な 128 ビットのパスワードでデバッグアクセスが可能になり ますが、一部のデバッグコマンドで、CFG-APと SEC-AP にアクセスすることもできます。

2. SWDP MODE を無効にして、物理的な SW デバッグポートを完全に無効にします。これによ

FLASH ERR 02

(続き)

FLASH モジュール

り、デバイスへのデバッグアクセスや要求は完全に防止されますが、Failure Analysis やリターンフローに影響が出るおそれがあります。

FLASH_ERR_03 FLASH モジュール

カテゴリ

機能

機能

2 待機状態のフラッシュ アクセスの直後に無効なブート コード領域へのアクセスが行われると、 次のフラッシュ アクセスでも違反が発生する可能性があります

説明

2 待機状態が設定されている状態で、フラッシュ アクセスの直後に BOOTCODE 領域へのアクセスを行うと、その次のフラッシュ アクセスでも違反が発生する可能性があります。

回避方法

ブートフェーズ終了後は、ブートコード領域へのアクセスを行わないでください。そうしない場合、 ブートコード違反の後に正しいフラッシュ アクセスを行うまでに、少なくとも **4** クロック サイクルの 間隔を空ける必要があります。

12C ERR 04

I2C モジュール

カテゴリ

機能

機能

SCL が Low で SDA が High の状態では、ターゲット I2C はストレッチを解除できません。

概要

1:SCL ラインを接地して解放し、デバイスは無制限に SCL を Low にプルします。

2:ポストクロックストレッチ、タイムアウト、解放。ライン上に別のクロック Low がある場合、本デバイスは無期限に SCL を Low にプルします。

回避方法

I2C ターゲットアプリケーションで、非同期高速クロック要求を使用した低電力モードでのデータ 受信が不要な場合は、SWUEN をデフォルトで無効にすることを推奨します(リセット時や電源サイクル時を含む)。この場合、バグの説明 1 と 2 は発生しません。

I2C ターゲットアプリケーションで、非同期高速クロック要求を使用した低電力モードでのデータ 受信が必要な場合は、低電力モードへ移行する直前に SWUEN を有効にし、復帰後に SWUEN をクリアします。このシナリオでも、I2C ターゲットが低消費電力のときにバグ説明 1 および 2 が発生するおそれがあります。バス上の他のデバイスによって連続的なクロックストレッチングまたはタイムアウトが発生すると、SCL ラインが無期限にストレッチされます。この状況から回復するには、I2C ターゲットデバイスで Low タイムアウト割り込みを有効にし、低タイムアウト ISR 内で I2C モジュールをリセットして再初期化します。

12C_ERR_05

I2C モジュール

カテゴリ

機能

I2C_ERR_05 (続き) I2C モジュール

機能

進行中のトランザクション中に ACTIVE ビットをトグルすると、I2C SDA が 0 に固定化されるおそれがあります。

概要

進行中の転送中に ACTIVE ビットがトグルされると、ステート マシンはリセットされます。ただし、I2C コントローラによって駆動される SDA と SCL 出力はリセットされません。 SDA が 0 の状態で I2C コントローラが IDLE 状態に遷移すると、I2C コントローラは IDLE 状態から先へ進めず、 SDA の値も更新できなくなります。 I2C ターゲットの BUSBUSY が設定され (ACTIVE ビットのトグルによってライン上で開始が検出されます)、 BUSBUSY はクリアされません。 これは、I2C コントローラが STOP 条件を生成せず、停止を駆動してクリアできないためです。

回避方法

進行中のトランザクション中は、ACTIVE ビットをトグルしないでください。

12C_ERR_06

I2C モジュール

カテゴリ

機能

機能

SMBus の High タイムアウト機能は、I2C クロックが 24KHz 未満になると動作しません。

説明

SMBus の High タイムアウト機能は、I2C クロックレートが 24 kHz 未満(20 kHz、10 kHz など)では正常に動作しません。SMBus 仕様から、アクティブトランザクション中の SCL High 時間の上限は 50μs です。I2C START ビットの書き込みから SCL Low までに要する合計時間は 60μsで、50μs 以上です。これにより、タイムアウト イベントをトリガし、転送開始時にトランザクションを完了することなく I2C コントローラを IDLE に移行できます。以下は詳細な説明です。

SCL が 20 kHz に構成されている場合、SCL の Low 期間と High 期間はそれぞれ 30 μ s および 20 μ s です。まず、High タイムアウトカウンタでデクリメントが開始し、同時に I2C START ビットの書き込みが開始します。その後、START ビットの書き込みから SDA が Low (スタート条件) になるまでに、1 SCL Low 期間 (30 μ s) かかります。次に、SDA が Low (スタート条件) になってから SCL が Low になる(データ転送が開始)までにさらに別の SCL Low 期間 (30 μ s) がかかり、この時点で High タイムアウトカウンタが停止します。合計で、カウンターの開始から終了まで60 μ s かかります。ただし、高タイムアウトカウンタには上限 (50 μ s) により、I2C トランザクションは問題なく正常に動作しますが、タイムアウトイベントがトリガされます。

回避方法

I2C クロックが 24KHz 未満の場合は、SMBus High タイムアウト機能を使用しないでください。

12C ERR 07

I2C モジュール

カテゴリ

機能

機能

コントローラの制御レジスタへの連続書き込みを行うと、I2C 通信が開始されない可能性があります。

説明

CTR レジスタへの連続書き込みを行うと、次の CTR.START によって正しく開始条件が発生しない可能性があります。

I2C ERR 07 (続き) I2C モジュール

回避方法

CTR.START を含むすべての CTR ビットは、1 回の書き込みでまとめて設定するか、CTR ビットの書き込み後に十分な待機時間を挟んでから CTR.START を書き込む必要があります。

カテゴリ

機能

機能 RXDONE 割り込みの直後に FIFO を読み出すと、誤ったデータが取得されます。

説明 RXDONE 割り込みが発生したとき、FIFO は最新のデータに対して更新されない場合がありま

す。

回避方法 最新のデータが FIFO に確実に反映されるように、2 つの I2C クロックサイクル分待機してくださ

い。I2C CLK は、I2C レジスタの CLKSEL レジスタに基づいています。

カテゴリ

機能

機能 I2C を低速で動作させている場合、割り込みサービスルーチン (ISR) 内での読み取り時に、開始

アドレス一致ステータスがタイミング的に更新されていない可能性があります。

説明 標準的な I2C 速度 (100kHz 未満) で動作している場合、割り込みを通過する読み出しの時間

内に ADDRMATCH ビット (TSR レジスタのアドレス一致) が設定されないおそれがあります。

回避方法 非標準的な I2C 速度で動作する場合、ADDRMATCH ビットを読み取る前に、少なくとも 1 つの

I2C クロックサイクル分の遅延を入れてください。

機能

カテゴリ

機能 低消費電力に移行しないよう、I2C ビジー ステータスは有効になっています。

説明 I2C ターゲットモードでは、STOP ビットがない場合、トランザクションの後、I2C ビジーステータス

は High のままです。

回避方法 STOP ビットを送信するように I2C コントローラをプログラムします。 最後のバイトに対して NACK

を送信しないでください。任意の I2C 転送を必ず STOP 条件で終了し、適切な BUSY ステータスと非同期クロック要求の動作にしてください (低消費電力モードへの再移行に備えるため)。

PMCU_ERR_13 PMCU モジュール

カテゴリ

機能

機能

特定のシナリオにおいて、STOP2 または STANDBY0 からのウェークアップ時に MCU がスタッ

クする可能性があります

概要 デバイスが STOP2 および STANDBY0 に遷移する前に、保留中のプリフェッチアクセスがある

場合。タイマなどの保留中のプリフェッチアクセスが完了し、DMA が GPIO からのイベントを受信した直後のシナリオでは、DMA 転送もタイマの ISR 実行も行われず、CPU がスタック状態になります。この問題は、WFI 命令がハーフワードアライメント、デバイスのウェイト状態が 2 であり、デバイスが LPM に遷移する前に保留中のプリフェッチアクセスが存在するときに発生します。

回避方法

LPM に移行する前に、プリフェッチを無効にして、シャットダウンレジスタ読み取りまたはペリフェラル読み取りなどのいくつかのダミー命令を実行することができます。これにより、プリフェッチアクセスが無効になり、LPM からのウェークアップ時にデバイスがハングすることを防止できます。

RST_ERR_01 RST モジュール

カテゴリ

機能

機能 LFCLK IN が LFCLK のソースとして選択されており、かつ LFCLK IN が無効になっている場

合、NRST リリースは検出されません

説明LFCLK = LFCLK_IN で、LFCLK_IN を無効にすると、NRST パルスエッジ検出を見逃されし、

デバイスがリセットから復帰しないコーナーシナリオが発生します。この問題は、NRST パルス幅が 608µs 未満のときに見られます。NRST パルスが 608µs を超える場合は、リセットは通常どお

り表示されます。

回避方法 この問題を回避するため、608µsよりも高い NRST パルス幅を維持します。

RTC_ERR_01 RTC モジュール

カテゴリ

機能

機能 一部の RTC 割り込みは、STANDBY1 では使用できません

説明 STANDBY1 のとき合、RTCRDY 割り込みと RTC PRESCALER1 割り込みではデバイスをウェ

ークアップできません。

回避方法 RTC で STANDBY1 からデバイスをウェークアップするときは、RTC ALARM や

RTC_PRESCALERO などの利用可能な他の割り込みを使用します。

SPI_ERR_04 SPI モジュール

カテゴリ

機能

機能 SPI ペリフェラルが受信モードのみの場合、各フレーム受信後の IDLE/BUSY ステータストグル。

概要 SPI ペリフェラルが受信モードのみの場合、SPI がデータを連続的に受信している間に、各フレ

ーム受信の後で、IDLE 割り込みおよび BUSY ステータスがトグルされます (SPI PHASE = 1)。

ここでは、ペリフェラルの TXFIFO にロードされるデータはなく、TXFIFO は空です。

回避方法 SPI ペリフェラルのみの受信モードを使用しないでください。 SPI ペリフェラルを送受信モードに

設定します。TX FIFO のデータを SPI 用に設定する必要はありません。

SPI_ERR_05 SPI モジュール

カテゴリ

機能

機能 SPI ペリフェラルの受信タイムアウト割り込みは、RXFIFO のデータの有無にかかわらず発生しま

す

概要 SPI タイムアウト割り込みを使用すると、最終的な SPI CLK を受信した後でも RXTIMEOUT で

デクリメントが継続するため、誤った RXTIMEOUT が発生するおそれがあります。

回避方法 最後のパケットを受信した後は、RXTIMEOUT を無効にします(これは ISR 内で実行可能で

す)。その後、SPI 通信が再開されるときに、RXTIMEOUT を再度有効にしてください。

SPI_ERR_06 SPI モジュール

カテゴリ

機能

機能 デバッグ HALT がアサートされている場合、IDLE/BUSY ステータスは SPI IP の正しい状態を反

映しません

概要 IDLE/BUSY は HALT とは無関係で、RXFIFO/TXFIFO の書き込み/読み取りストローブのみを

ゲーティングします。 つまり、コントローラがデータ送信中であっても、そのデータが FIFO にラッチされていない状態で BUSY ステータスが設定されてしまいます。 POCI 回線は、停止中に以前

に送信されたデータを回線上で送信します

回避方法 SPI IP が停止しているときは、IDLE/BUSY ステータスを使用しないでください。

SPI ERR 07 SPI モジュール

カテゴリ 機能

SPI_ERR_07 (続き) SPI モジュール

機能

SPI ペリフェラルで TXFIFO への読み取り/書き込みが同時に発生した場合、SPI アンダーフロ

ーイベントは生成できません

概要 SPh = 0 で、デバイスが SPI ペリフェラルとして構成されている場合:読み取り要求の発行中に

TXFIFO への書き込みが発生すると、読み取り/書き込み要求が同時に発生するため、アンダー

フローイベントを生成できません。

回避方法 コントローラでペリフェラルがアドレス指定されているとき、ペリフェラルの TXFIFO が空にならな

いことを確認する必要があります。さらに、CRC などのデータチェック戦略で、パケットが正しく送

信されたことを確認できます。

SYSOSC_ERR_02 SYSOSC モジュール

カテゴリ

機能

機能 SYSOSC が FCL モードで無効化されている LPM 中に非同期クロック要求を受信しても、

MFCLK は動作しません

説明

以下のシナリオでは、MFCLK はトグルを開始しません:

1.FCL モードを有効にした後、MFCLK を有効にします 2.SYSOSC が無効になる低消費電力

モードに移行します(SLEEP2/STOP2/STANDBY0/STANDBY1)。

3.MFCLK を機能クロックとして使用する一部のペリフェラルから非同期要求が受信されます。 ASYNC 要求を受信すると、SYSOSC は有効になり、ulpclk は 32MHz になります。 ただし、デバイスが依然として LPM に設定されているため、MFCLK はゲートオフの状態となり、一切トグル

しません。

回避方法

SYSOSC が FCL モードを使用している場合は、通常 SYSOSC がオフになる LPM モードへ移

行する際に、ペリフェラル用の MFCLK を有効にしないでください。

TIMER_ERR_04 TIMG モジュール

カテゴリ

機能

機能 TIMER をゼロイベントの直前に再有効化すると、再有効化が失われる可能性があります

概要 GP TIMER をワンショット モードで使用し、CLKDIV.RATIO が 0 でない場合、ゼロ イベント直前

に TIMER を再有効化すると、再有効化が失われることがあります。

回避方法 タイマは、最初に再度イネーブルにする前に無効にできます。

TIMER ERR 06 TIMA とTIMG モジュール

カテゴリ

機能

機能

CLKEN ビットに 0 を書き込んでも、カウンタは無効化されません

概要

カウンタ クロック制御レジスタ (CCLKCTL) のクロック イネーブル ビット (CLKEN) に 0 を書き込

んでも、タイマは停止しません。

回避方法

カウンタ制御 (CTRCTL) イネーブル (EN) ビットに 0 を書き込むことで、タイマを停止します。

UART_ERR_01

UART モジュール

カテゴリ

機能

機能

STANDBY1 モードへの遷移時に、UART のスタート条件が検出されないことがあります

概要

デバイスが STANDBY1 モードのときに、UART 送信によって開始された非同期高速クロック要 求を処理した後、デバイスは STANDBY1 モードに戻ります。 STANDBY1 モードへの復帰中に 別の UART 送信が開始されると、デバイスはそのデータを正しく検出および受信できません。

回避方法

UART のスタート条件が繰り返し発生することが想定される場合は、STANDBYO モードまたはそ れ以上の低消費電力モードを使用してください。

UART ERR 02

UART モジュール

カテゴリ

機能

機能

TXE のみが有効な場合、UART 送信終了の割り込みは設定されません

概要

デバイスを送信のみに設定すると(CTL0.TXE = 1、CTL0.RXE = 0)、UART 送信終了(EOT) 割り込みのトリガはかかりません。デバイスが送受信に設定されている場合(CTL0.TXE = 1、

CTLO.RXE = 1)、EOT は正常にトリガされます

回避方法

UART 送信終了割り込みを使用するときは、CTLO.TXE ビットおよび CTLO.RXE ビットの両方を 設定します。ピンを UART 受信として割り当てる必要はないので注意意してください。

UART_ERR_04

UART モジュール

カテゴリ

機能

機能

クロックが SYSOSC から LFOSC に遷移する際、高速クロック要求が無効になっていると、

UART データが誤って受信される可能性があります

UART_ERR_04 (続

き)

UART モジュール

概要

シナリオ:

1.UART の機能クロックとして LFCLK が選択されます 2.3 倍オーバーサンプリングで構成された 9600 のボーレート 3.UART 高速クロック要求が無効になっている状態で、UART 受信転送中に ULPCLK が SYSOSC から LFOSC に切り替わると、1 ビットが誤って読み取られることがありませ

す

回避方法

LPM モードで UART を使用する場合は、UART 高速クロック要求を有効にしてください。

UART_ERR_05

UART モジュール

カテゴリ

機能

機能

UART モジュールのデバッグ停止機能の制限

概要

本来は既存のフレームを完了して停止することが期待されますが、すべての Tx FIFO 要素が送信されてから通信が停止します。

回避方法

デバッグ停止がアサートされた後は、データが TX FIFO に書き込まれないようにしてください。

UART_ERR_06

UART モジュール

カテゴリ

機能

機能

UART 9 ビットモードでの予期しない RTOUT/Busy/Async の動作

説明

UART 受信タイムアウト(RTOUT)は、マルチノード構成では正しく動作しません。この構成では、1 つの UART がコントローラとして動作し、他の UART ノードはペリフェラルとして機能し、各ペリフェラルは 9 ビット UART モードで異なるアドレスに設定されます。

最初の UART コントローラが UART ペリフェラル 1 と通信し、ペリフェラル 1 のアドレスを最初の バイトとして送信してからデータを送信することで、ペリフェラル 1 がアドレスの一致を確認してデータを受信しました。コントローラがペリフェラル 1 との通信を終了した後、バス上で異なるアドレスに構成された別の UART ペリフェラル (ペリフェラル 2) との通信を直ちに開始すると、ペリフェラル 1 は設定されたタイムアウト期間が経過しても RTOUT を設定しません。ペリフェラル 2 との通信中もペリフェラル 1 の RTOUT カウンタはリセットされ続け、RTOUT が設定されるのは、コントローラがペリフェラル 2 との通信を完了した後になります。

BUSY 要求と Async 要求で同様の動作が確認観察されました。コントローラがバス上の別のペリフェラルと通信中で、アドレスが一致しない場合でも、Busy および Async 要求が設定されます。

回避方法

1 つのコントローラが複数のペリフェラルに接続されたマルチノード UART 通信では、RTOUT/BUSY/非同期クロック要求の動作は使用しないでください。

UART_ERR_07 UART モジュール

カテゴリ

機能

機能

IDLE LINE モードにおいて、RTOUT カウンタが期待どおりにカウントされません

概要

UART のアイドルラインモードでは、ラインがアイドル状態で、FIFO に何らかの要素がある場合でも、RTOUT カウンタはスタックします。 つまり、IDLE LINE モードでは RTOUT 割り込みは動

作しません。

アドレスが一致しない場合、Rx ラインでトグルの発生を検出すると RTOUT カウンタがリロードさ

れます。

マルチレスポンダ構成の場合、コマンダと他のレスポンダ間で通信が行われていると、RTOUT イ

ベントの取得に不定の遅延が発生するおそれがあります。

回避方法

UART モジュールを IDLLINE モード/マルチノード UART アプリケーションのいずれかで使用す

る場合、RTOUT機能を有効にしないでください。

UART_ERR_08 UART モジュール

カテゴリ

機能

機能

STAT BUSY は、UART モジュールの正しいステータスを表していません

概要

UART モジュールが無効で TXFIFO でデータが利用可能である場合でも、STAT BUSY は

High のままです。

回避方法

TXFIFO ステータスと CTL0.ENABLE レジスタビットをポーリングして、ビジーステータスを識別し

ます。

7 商標

すべての商標は、それぞれの所有者に帰属します。

8 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision * (July 2025) to Revision A (August 2025)

Page

• 機能アドバイザリを Rev B に更新......1

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated