TI Designs: TIDA-01584

負荷スイッチを使用する電源シーケンシングのリファレンス・デザイン

TEXAS INSTRUMENTS

概要

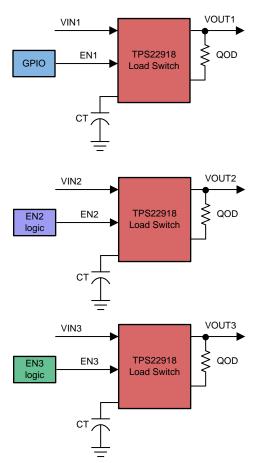
このリファレンス・デザインは、負荷スイッチを使用する各種 の電源シーケンシング構成を示すものです。電源シーケン シングは、動作の安全性と信頼性を保証するため、特定の 順序でオンになることが必要な電圧レールにおいて、極め て重要です。レールのシーケンシングは、電源オン時の突 入電流を弱めるためにも役立ち、これによってシステムへの ストレスが減少し、予期しない逆バイアス状況が防止されま す。内蔵の負荷スイッチを使用することで、それぞれの電圧 レールのタイミングを別々に調整でき、プロセッサの介入を 低減し、外部のデジタル・コンポーネントが不要になります。 負荷スイッチのタイミング・シーケンスは、タイミング・コンデ ンサ(C_T)ピンによって立ち上がり時間を、クイック出力放電 (QOD)ピンによって立ち下がり時間を調整することで制御 できます。このデザインは、マルチファンクション・プリンタ (MFP)やセットトップ・ボックス(STB)など、各種のサブシス テムやプロセッサ・レールの電源をオンにするとき、特定の タイミング・シーケンスが要求されるようなアプリケーションに 有用です。

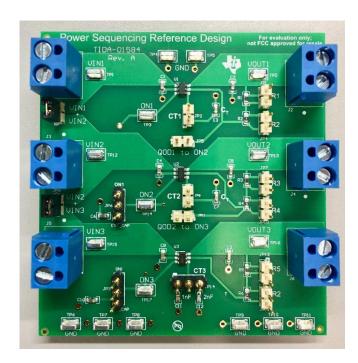
リソース

TIDA-01584	デザイン・フォルダ
TPS22918	プロダクト・フォルダ
TPS22810	プロダクト・フォルダ
TPS22917	プロダクト・フォルダ
TPS22975	プロダクト・フォルダ

E2Eエキスパートに質問

特長


- 3つの異なる電源シーケンシング構成: CT構成、QOD 構成、独立GPIO構成
- タイミング・スレッショルドを調整可能: CTを使用して立ち上がり時間を制御、QODを使用してパワーダウンのタイミングを制御
- ピン互換のフットプリントにより、各種の電圧、電流、R_{ON}の要件に合わせて、複数の負荷スイッチを切り替え可能
- 予期しないシステム電源喪失時の穏やかなシャットダウン・シーケンシング
- 負荷スイッチにより、ディスクリートMOSFETソリューションよりもソリューションを小型化し、部品点数を削減可能


アプリケーション

- マルチファンクション・プリンタ(MFP)
- セットトップ・ボックス(STB)
- リモート無線ユニット
- ベースバンド・ユニット

System Description www.tij.co.jp

Copyright © 2017, Texas Instruments Incorporated

使用許可、知的財産、その他免責事項は、最終ページにあるIMPORTANT NOTICE(重要な注意事項)をご参照くださいますようお願いいたします。 英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。 該当する正式な英語版の最新情報は、www.ti.comで閲覧でき、その内容が常に優先されます。 TIでは翻訳の正確性および妥当性につきましては一切保証いたしません。 実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。

1 System Description

Many applications require controlled power-up and power-down sequences to properly operate subsystems and downstream components. This reference design showcases three different power-sequencing configurations that use integrated load switches. Power sequencing can be achieved by connecting various jumpers, resistors, and capacitors on the board. Because timing constraints vary greatly between different applications and processor-to-processor communications, this design is not limited to specific timing constraints or sequences. Instead, the design allows the user to configure multiple timing configurations to fit their unique system specifications. Using load switches ensures that subsystems will power up and down in a safe and reliable fashion while housing a smaller footprint in comparison to a discrete MOSFET implementation.

www.tij.co.jp

The first power-sequencing configuration routes a single GPIO to the enable (ON) pin of the three load switches. When the GPIO (ON1) is enabled, the three load switches turn on at the same time. By adjusting the capacitance on the timing capacitance pin (CT pin), the voltages on the different channels ramp up at different times. A larger capacitance on the CT pin results in a longer ramp-up time. The ramp-up time is measured by changing the slope of the rise time, called the *slew rate*. An example of this configuration is shown in \boxtimes 1.

The second power-sequencing configuration also contains a single GPIO, but the configuration is only connected to the first load switch. On the output of the first load switch, QOD is connected to the enable pin of the second load switch, effectively *daisy-chaining* the devices together. QOD pulls V_{OUT} to ground whenever the device is turned off, which prevents the output from *floating* or entering an undetermined state. Connecting various resistors to the QOD pin changes the rate that the output is falls to ground. By connecting QOD to the enable pin of the next load switch in parallel to an external capacitor, this connection creates an RC delay. This connection creates a power sequencing configuration that is dependent on the timing of an external RC delay. The CT pins on all three load switches can be connected to the same capacitance value, which ensures that each voltage rail ramps up with the same slew rate. The block diagram in \boxtimes 3 explains the configuration in more detail.

The third power-sequencing configuration leaves the three load switch channels independent, which requires external control signals to control the timing sequence. Some of these external devices can include digital timing ICs, supply voltage supervisors (SVS), or external oscillators. The CT pin can be used alongside the external timing component to further customize timing windows.

In each of the three power-sequencing configurations, power-down sequencing is achieved by adjusting the resistance on the QOD pin. By increasing the external resistance from VOUT to QOD, the current decreases into the QOD pin and increases the time for the rail to power off.

1.1 Key System Specifications

表 1. Key System Specifications Using TPS22918⁽¹⁾

PARAMETER	SPECIFICATIONS	DETAILS
Input voltage range ⁽¹⁾	V _{IN}	1 V to 5.5 V
Output voltage range ⁽¹⁾	V _{OUT}	1 V to 5.5 V
Maximum load current(1)	I _{OUT}	2 A
Number of power rails	_	Three channels
Typical TPS22918 turn-on time	t _{on}	135 µs
Output capacitance	C _{OUT}	10 μF
Internal QOD resistance	R _{PD}	24 Ω
External QOD resistance	R _{QOD}	0 $\Omega,$ 300 $\Omega,$ and 500 Ω
On-resistance	R _{ON}	52 mΩ

⁽¹⁾ Input voltage range, output voltage range, maximum load current, and R_{ON} can be adjusted by using a different load switch.

System Overview www.tij.co.jp

2 System Overview

2.1 Block Diagram

☑ 1 describes the CT configuration. Power-sequencing timing is achieved by changing the capacitance value on the CT pin. A larger capacitance on the CT pin results in a slower slew rate and rise time. Power-down Sequencing is achieved with the QOD pin; adjusting the QOD resistance will vary the rate at which the output decays. ☑ 2 shows the expected behavior of this configuration.

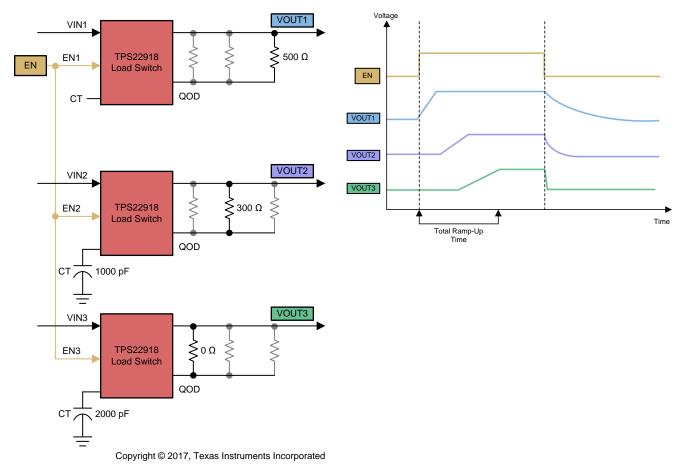


図 1. TIDA-01584 CT Configuration Block Diagram

図 2. CT Configuration Expected Behavior

www.tij.co.jp System Overview

 \boxtimes 3 describes the QOD configuration. Power-up timing is achieved by connecting QOD of the previous switch to the enable pin of the next switch. The timing delay is created by changing an external RC delay capacitor (10 μ F on \boxtimes 3). A larger external capacitor increases the delay between voltage rails. The slew rate of the rails can remain the same by using the same capacitance on the CT pin, but different capacitances across the switches can be used for different slew rates, similar to the CT configuration. Power-down sequencing is achieved with the QOD pin. \boxtimes 4 shows the expected behavior of this configuration.

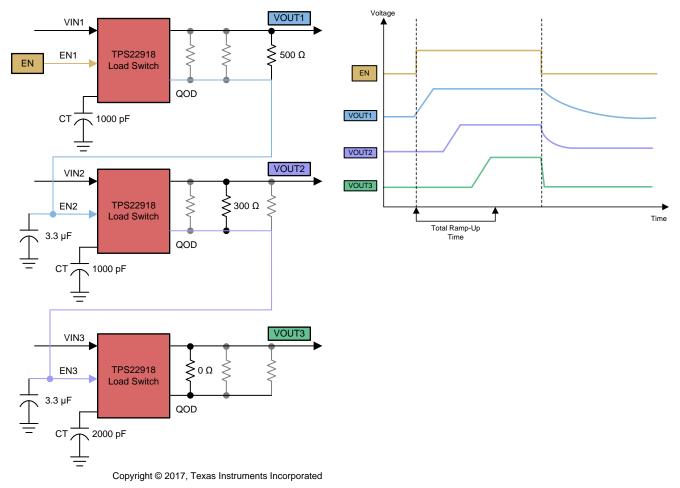


図 3. TIDA-01584 QOD Configuration Block Diagram

☑ 4. QOD Configuration Expected Behavior

System Overview www.tij.co.jp

☑ 5 shows the independent GPIO configuration. All three voltage channels are kept separated, and power-up timing is achieved by using separate control signals for each switch.

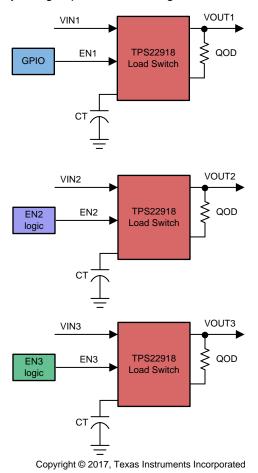


図 5. TIDA-01584 Independent GPIO Configuration Block Diagram

2.2 Design Considerations

2.2.1 Configurable Timing Adjustments

This section gives general calculations for determining timing parameters. Note that the specific timing parameters of load switches can vary depending on the *operating conditions* of the system and load specifications. To learn more about other timing considerations and specifications, refer to *Timing of Load Switches Application Report*[2].

For the CT configuration, the start-up sequencing can be changed by adjusting the CT capacitance of each load switch. The CT capacitor charges up shortly after the switch is turned on and remains high until V_{OUT} becomes stable. Once V_{OUT} reaches a stable value, the capacitor discharges to ground. Using the TPS22918, the approximate formula for the relationship between C_T and the slew rate is shown in \pm 1. $SR = 0.55 \times CT + 30$

Where:

- SR = slew rate (in μs/V)
- CT = the capacitance value on the CT pin (in pF)

www.tij.co.jp System Overview

- The units for the constant 30 are µs/V.
- The units for the constant 0.55 are $\mu s/(V \times pF)$.

Rise time can be calculated by multiplying the input voltage by the slew rate. Rise time is defined as the total time it takes for the output voltage to rise from 10% to 90% of its final value. The slew rate equation accounts for this percentage, so no additional calculations are necessary. 表 2 contains test data measured on a TPS22918.

表 2. Rise	Time	Table for	TPS22918 ⁽¹⁾

СТ	RISE TIME (μ s) 10% to 90%, C_L = 0.1 μ F, C_{IN} = 1 μ F, R_L = 10 Ω						
(pF)	VIN = 5 V	VIN = 3.3 V	VIN = 2.5 V	VIN = 1.8 V	VIN = 1.5 V	VIN = 1.2 V	VIN = 1 V
0	135	95	75	60	50	45	40
220	650	455	350	260	220	185	160
470	1260	850	655	480	415	340	300
1000	2540	1680	1300	960	810	660	560
2200	5435	3580	2760	2020	1715	1390	1220
4700	12050	7980	6135	4485	3790	3120	2735
10000	26550	17505	13460	9790	8320	6815	5950

⁽¹⁾ Typical values at 25°C with a 25-V X7R 10% ceramic capacitor on C_T.

The QOD configuration highlights another way to change the ramp-up time. Introducing an external RC delay between each of the load switches allows each voltage rail to ramp up with the same slew rate though delayed. The reference uses 10-μF external capacitors to control the RC delay, but these capacitors can be changed to fit different timing parameters. The voltage on the external RC capacitor, and in turn, the voltage on the enable pin of the next load switch can be calculated by ≾ 2.

$$V_{ON_2} = V_{OUT_1} \times e^{\frac{-t}{T}}$$
(2)

Where:

- V_{ON 2} is the voltage across the enable pin of the next load switch (V)
- V_{OUT 1} is the voltage on the output of the first load switch (V)
- t = time since previous output rail reached 90%
- T = time constant equal to R_{QOD 1} x C_{external(3.3µ)}

The power down timing is controlled by adjusting the QOD resistor. The QOD pin contains an internal resistor that connects to ground whenever the switch is disabled. If an external resistor is connected between the QOD pin and V_{OUT} , the discharge rate becomes based upon the added resistance. The fall times of the device depend on many factors, including the total QOD resistance, V_{IN} voltage, and the output capacitance. The approximate fall time of V_{OUT} can be calculated by using \vec{x} 3.

$$V_{OUT} = V_{IN} \times e^{\frac{-t}{T}}$$
(3)

Where:

- V_{OUT} is the output voltage of the load switch (V)
- t = time since enable disconnect
- T = time constant equal to R_{QOD} x C_{LOAD}

System Overview www.tij.co.jp

表 3. QOD Fall Times for TPS22918⁽¹⁾

V (\(\O \)	FALL TIME (µs) 90%	FALL TIME (µs) 90% to 10%, C_{IN} = 1 µF, I_{OUT} = 0 A , V_{ON} = 0 V, T_A = 25°C			
V _{IN} (V)	C _L = 1 μF	C _L = 10 μF	C _L = 100 µF		
5.5	42	190	1880		
5	43	200	1905		
3.3	47	230	2150		
2.5	58	300	2790		
1.8	75	430	4165		
1.2	135	955	9910		
1	230	1830	19625		

⁽¹⁾ Typical values with QOD shorted to V_{OUT}.

During unexpected system power loss, load switches can maintain graceful power down sequencing. QOD dissipates power when Vin is unexpectedly grounded. If ON is also disabled when Vin is removed, the body diode in the load switch dissipates power. When selecting the appropriate C_{OUT} and R_{QOD} values for the sequence, be sure to check if there are voltage or timing margins that must be maintained during power down. Refer to UV— \times data sheets for more information about power sequencing timing parameters.

2.2.2 Design Flexibility

Although the reference design testing was completed using the TPS22918, power sequencing can still be achieved by using other pin-to-pin load switches. Timing constraints are different for each load switch due to input voltage, internal resistance, current range, internal QOD, and other factors.

If the application requires higher voltage rails up to 18 V, the TPS22918 can be swapped for the TPS22810. Because both devices are pin-to-pin compatible, the device can easily be swapped out to achieve higher voltage application.

If the power sequencing application requires higher current power rails, the TPS22975 can be used. Although the TPS22975 does not contain an adjustable QOD pin, power-down sequencing can still be achieved with the internal $230-\Omega$ resistor. The TPS22975 can support higher current up to 6 A.

The TPS22917 contains similar features as the TPS22918 with the added benefit of reverse current protection. Current protection ensures that no current can flow from the load back to the power supply during a short or fault event. The TPS22917 also contains a PMOS architecture and low leakage current (quiescent current). This makes the TPS22917 ideal for power sequencing solutions with battery operation or for applications with a goal of power loss reduction.

表 4. Load Switches for Power Sequencing

DEVICE	RECOMMENDED VOLTAGE RANGE	MAXIMUM CURRENT	R _{on}	ADJUSTABLE QUICK OUTPUT DISCHARGE	REVERSE CURRENT BLOCKING
TPS22918	1 V to 5.5 V	2 A	52 mΩ at 5 V	✓	_
TPS22810	2.7 V to 18 V	2 A	79 mΩ at 12 V	✓	_
TPS22975	0.6 V to 5.7 V	6 A	16 mΩ at 5 V	_	_
TPS22917	1 V to 5.5 V	2 A	80 mΩ at 5 V	'	~

www.tij.co.jp System Overview

2.2.3 Total Solution Size and GPIO Control

As designs are continually getting smaller and sleeker, designs require a more space-conscious layout. By using integrated load switches for power sequencing, the system remains as compact and space efficient as possible. Selecting a Load Switch to Replace a Discrete Solution Application Report[3] provides a comparison between discrete and integrated load switches and highlights differences in size comparison and protection features.

Power sequencing traditionally requires processor intervention to control multiple enable pins or external oscillators to sequence multiple power rails. Some designs also contain external SVSs or digital clocks to enable each power rail. This reference design can sequence power rails with a single enable pin and a few resistors and capacitors, which reduces the solution size, cost, and number of GPIO inputs.

2.3 Highlighted Products

2.3.1 TPS22918

The TPS22918 is a 5.5-V, 2-A load switch in a 6-pin SOT-23 package. To reduce voltage drop for low voltage and high-current rails, the device implements a low-resistance N-channel MOSFET, which reduces the dropout voltage across the device. The device has a configurable slew rate that reduces or eliminates power supply droop due to large inrush currents. The device also features a QOD pin, which allows for the configuration of the discharge rate of VOUT. QOD occurs when the switch is disabled. The device has very-low leakage currents during shutdown, which also helps mitigate leakage for downstream modules during standby. The integrated control logic, driver, charge pump, and output discharge field-effect transistor (FET) eliminates the requirement for any external components, which reduces solution size and bill of materials (BOM) count.

2.3.2 TPS22810

The TPS22918 is a 5.5-V, 2-A load switch in a 6-pin SOT-23 package. To reduce voltage drop for low voltage and high current rails, the device implements a low resistance N-channel MOSFET which reduces the drop out voltage across the device. The device has a configurable slew rate which helps reduce or eliminate power supply droop because of large inrush currents. Furthermore, the device features a QOD pin, which allows the configuration of the discharge rate of VOUT once the switch is disabled. During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the requirement for any external components, which reduces solution size and BOM count.

2.3.3 TPS22975

The TPS22975 device is a single-channel, 6-A load switch in an 8-pin SON package. To reduce the voltage drop in high current rails, the device implements an N-channel MOSFET. The device has a configurable slew rate for applications that require a specific rise-time. The device prevents downstream circuits from pulling high standby current from the supply by limiting the leakage current of the device when it is disabled. The integrated control logic, driver, power supply, and output discharge FET eliminates the requirement for any external components, which reduces solution size and BOM count.

System Overview www.tij.co.jp

2.3.4 TPS22917

The TPS22917 is a 5.5-V, 2-A load switch in a 6-pin SOT-23 package. To reduce voltage drop for low voltage and high current rails, the device implements a low resistance P-channel MOSFET which reduces the drop out voltage across the device. The device has a configurable slew rate which helps reduce or eliminate power supply droop because of large inrush currents. Furthermore, the device features a QOD pin, which allows the configuration of the discharge rate of VOUT once the switch is disabled. During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the requirement for any external components, which reduces solution size and BOM count.

3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Hardware and Software

3.1.1 Hardware

3.1.1.1 System Overview

The different modes of operation in the power sequencing reference design can accommodate different system requirements. The CT configuration is a space-conscious layout that only uses external CT and QOD components to achieve power sequencing. The QOD configuration enables faster switching configurations. The external RC delay can be adjusted across a large range of values without impacting the slew rate of the voltage rail. This is useful in applications where one power rail needs to be fully on before the second rail starts turning on.

The terminal connectors on the left side of the board serve as input voltage connections for the three load switches. Test points TP1, TP12, and TP15 can also be used to supply voltage to each load switch. Jumpers JP3 and JP9 can be inserted to enable the same voltage level across all three load switches. The TPS22918 can support input voltages from 1 V to 5.5V, but the switches can be swapped out for the TPS22810 to support higher voltage applications.

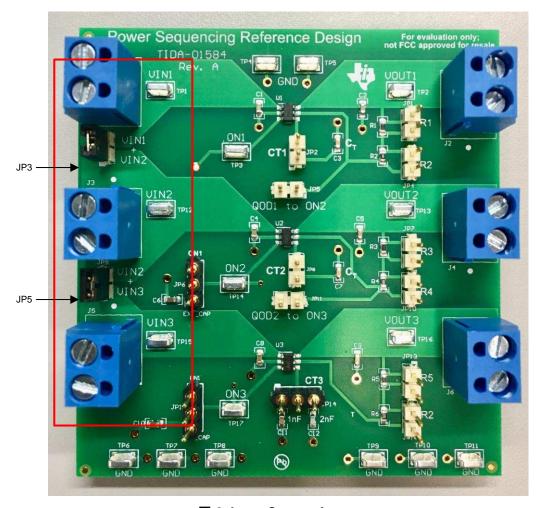


図 6. Input Connections

The terminal connectors on the right side of the board serve as output load connections for the three load switches. \boxtimes 7 the test points TP2, TP13, and TP16 that can also be used as VOUT connections. An external 10- μ F capacitor was connected to each output during testing to replicate load capacitance.

Test points TP3, TP14, and TP17 are connected to the ON pins of the load switches. ON is an active high enable for each load switch that activates with standard GPIO logic thresholds. The pin can be driven with input above 1 V for the TPS22918 and TPS22917 or 1.2 V for the TPS22975 and TPS22810.

図 7. Output Connections and Enables

The CT jumpers, located at JP2, JP8, and JP14, control the CT capacitance of the three load switches. The top two load switches can be connected to 1000-pF capacitors, and the bottom load switch can be connected to 1000-pF or 2000-pF capacitors, which are useful for the CT configuration of power sequencing. These values can be changed by re-soldering different capacitors onto the board.

QOD pulls the output to ground whenever the device is turned off. The TPS22918, TPS22810, and TPS22917 contain adjustable QOD resistance by connecting an external resistor to VOUT. The total QOD resistance is the external value plus the internal QOD resistance. In \boxtimes 8, the external QOD resistance is 500 Ω if the top jumper is connected. If the bottom jumper is connected, the external QOD resistance is 300 Ω . If both jumpers are connected, neither external resistor is used, and the overall QOD resistance is the internal QOD resistance.

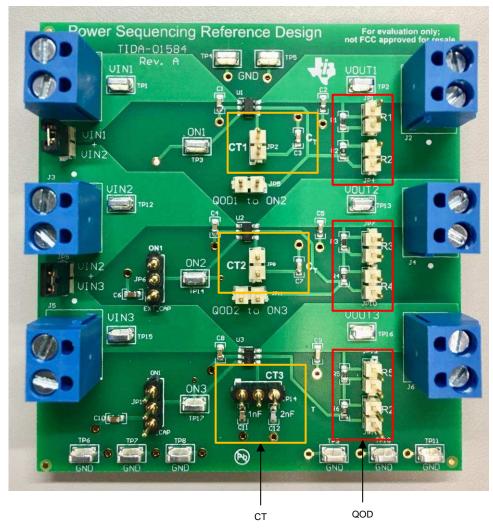


図 8. CT and External QOD Pins

JP5 and JP11 on 🗵 9 can be used to enable the QOD configuration. Connecting these jumpers routes the QOD output of the previous load switch into the ON pin of the next load switch.

JP6 and JP12 are 3-pin connectors. By connecting jumpers in the top position in the CT configuration, the ON pins of the load switches connect together. By connecting jumpers in the bottom position in the QOD configuration, the ON pin routes to an external capacitor.

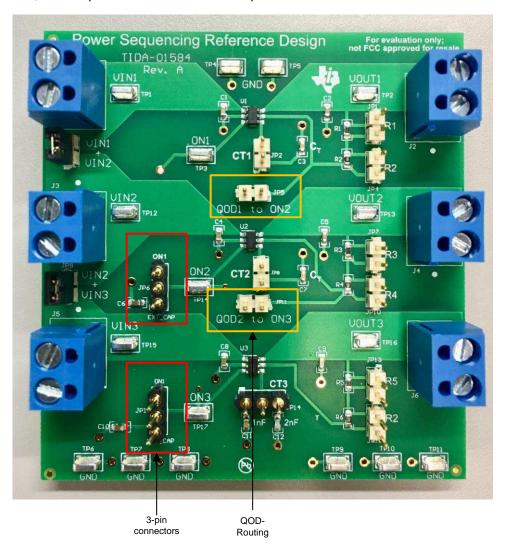


図 9. QOD Routing and External Cap Jumpers

3.1.1.2 Configuration Setup

3.1.1.2.1 CT Configuration

To configure the reference in the CT configuration, connect the jumpers as shown in \boxtimes 10. Make sure that the jumpers on the 3-pin headers are in the top position to connect the enables together and that the CT jumpers are configured as shown to achieve different rise times.

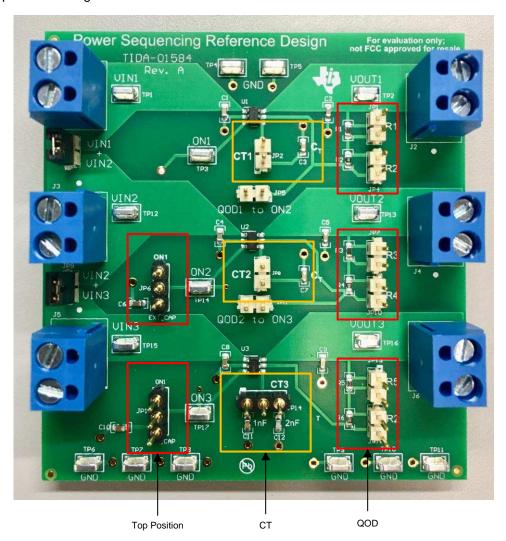


図 10. CT Jumper Configuration

3.1.1.2.2 QOD Configuration

To configure the reference design in the QOD configuration, connect the jumpers as shown in 🗵 11. Make sure that the jumpers on the 3-pin headers are in the bottom position to connect the ON pins to the external charging capacitors. Connect the QOD-routing jumpers to enable the RC delay between the load switches. Finally, connect the CT pins to the correct jumpers to enable the same rise time across all three load switches.

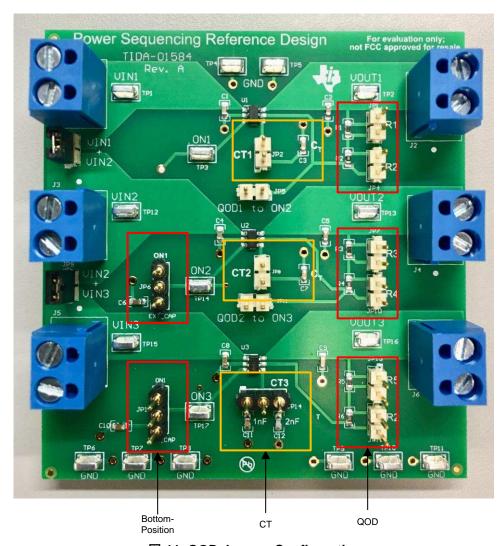
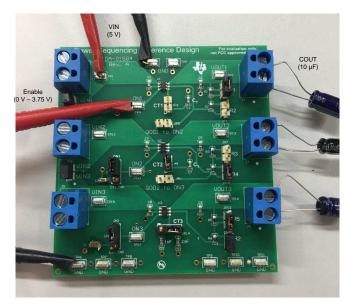


図 11. QOD Jumper Configuration

表 5. Jumpers or Connectors Summary⁽¹⁾

DESCRIPTION	JUMPER OR CONNECTOR	CT CONFIGURATION	QOD CONFIGURATION
CT capacitors	JP2, JP8, JP14	OFF, ON, ON (right Position)	ON, ON, ON (left position)
QOD routing jumpers	JP5, JP11	OFF	ON
External three-pin jumper	JP6, JP12	ON (top position)	ON (bottom position)
QOD resistors	R1, R2, R3, R4, R5, R6	_	_
VIN voltage bridge jumpers	J3, J9	_	_


^{(1) —} is not dependent on configuration

3.2 Testing and Results

3.2.1 Test Setup

Testing was completed in a lab using a power supply and oscilloscope. The ON pin was toggled using a function generator pulse, and 10- μ F capacitors were used as output load capacitance. The rise time of the voltage rail was taken by measuring the time between 10% to 90% of the final value. Fall time was measured in the same manner. For power-down sequencing, external resistors were connected to the QOD pins. The first load switch contained 524 Ω (500- Ω external + 24- Ω internal pulldown), the second load switch contained 324 Ω , and last load switch only used the internal 24- Ω pulldown.

図 12. Input Connections for CT Configuration

図 13. Oscilloscope Connections for CT Configuration

表 6. Test Conditions

TEST CONDITION	PARAMETER VALUE	
Input voltage	5 V	
ON pin voltage	0 V to 3.75 V square pulse	
Ambient temperature	20°C	
C _{OUT}	10 μF per channel	
Output QOD resistance	524 Ω, 324 Ω, 24 Ω	
Oscilloscope channel one	ON (yellow)	
Oscilloscope channel two	VOUT1 (blue)	
Oscilloscope channel three	VOUT2 (purple)	
Oscilloscope channel four	VOUT3 (green)	

3.2.2 Test Results

3.2.2.1 CT Configuration Results

In the CT configuration, the first load switch uses no CT capacitor, the second load switch uses a 1-nF capacitor, and the third load switch uses a 4.7-nF capacitor. The first load switch, without the CT pin, turned on in around 160 μ s. The second load switch turned on in 3 ms, and the last load switch ramped up in 14 ms. Although all three of the load switches were enabled at the same time, the difference in slew rates created the differentiation in rise times.

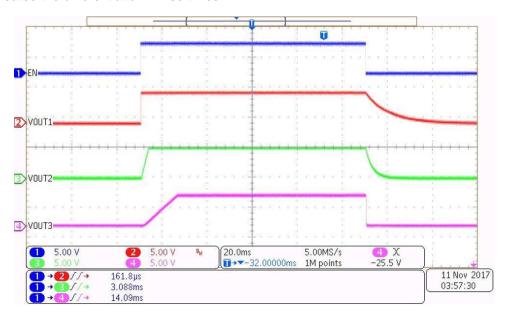


図 14. CT Configuration Sequencing Event

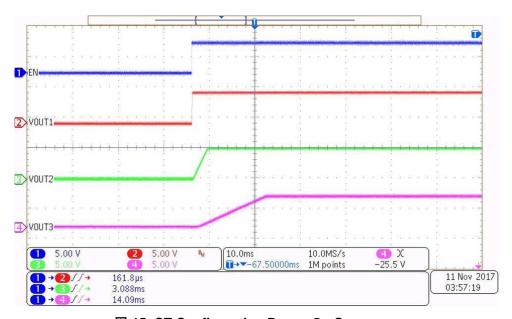


図 15. CT Configuration Power-On Sequence

3.2.2.2 CT Configuration Analysis

For space-constrained power sequencing applications, this configuration offers a compact sequencing design that does not require external ICs. By connecting the enable pins of the load switches together, this configuration offers a simple and smaller footprint. The linear slew rate control prevents inrush current from damaging downstream components. The slew rate equation is also easier to calculate; the timing delay increases linearly as the CT capacitance increases. By also controlling the timing with the CT capacitance, this keeps the timing parameters independent on the output load resistance and capacitance.

3.2.2.3 QOD Configuration Results

In the QOD configuration, all three load switches use a 1-nF capacitor on the CT pin, which keeps the slew rates the same. For the external RC delay, the first RC delay uses a 3.3-µF capacitor, and the second RC delay uses a 10-µF capacitor.

The first load switch, without any external RC delay, turned on in around 2.9 ms. The second load switch, with the 3.3-µF delay, turned on in 6.7 ms. The third load switch, with the external 10-µF capacitor, turned on in 9.1 ms.

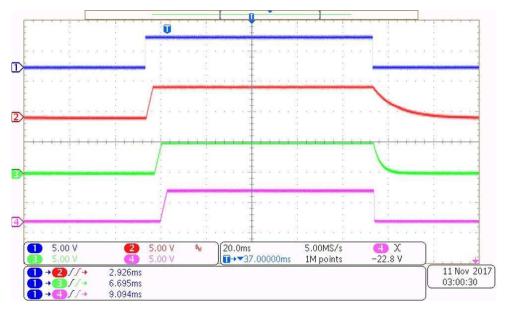


図 16. QOD Configuration Sequencing Event

図 17. QOD Configuration Power-On Sequence

3.2.2.4 QOD Configuration Analysis

The external RC delay can be fine-tuned for precise timing adjustments or be configured to allow one voltage rail to turn on fully before the next voltage rail starts ramping up. These times can be critical in devices where one subsystem must fully turn on before the second subsystem can be turned on. The external RC delay also frees the C_T pin, which allows greater range on slew rate control. The configuration does not require an external IC or supervisor and only requires a single GPIO from the processor to sequence the power rails.

20

3.2.2.5 Power-Down Sequencing Results

Power-down sequences are not dependent on either turn-on sequence. By staying independent, the voltage rails and downstream subsystems can turn off in a different sequence than the turn-on sequence. This indepence allows for unique power sequencing arrangements. For example in ☑ 16, the QOD configuration is configured so VOUT3 voltage rail (green trace) turns on last but also turns off first.

 \boxtimes 18 shows a scope shot of a power-down sequence. The first load switch (VOUT1) connects a 500- Ω external resistor to the QOD pin, which contains an internal 24- Ω resistor. The second load switch (VOUT2) contains 324 Ω overall, and the third load switch, VOUT3, uses the internal 24- Ω resistor. As the resistance on the QOD pin increases, the time it takes for the voltage rail to power down increases.

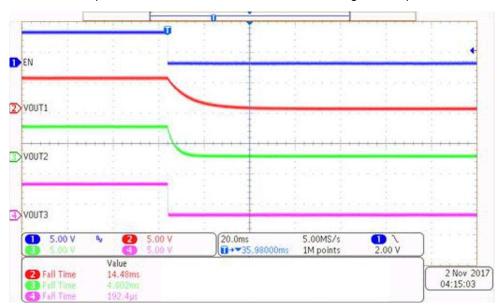


図 18. Power Down Sequencing

3.2.2.6 Further Tests

This design allows users to configure multiple power sequencing configurations that are not limited to just the CT configuration and QOD configuration. The jumpers can be configured to sequence rails in other configurations, such as the ones shown in \boxtimes 19 and \boxtimes 20.

In 🗵 19 the first rail is sequenced using the QOD configuration, and the last two load switches are sequenced using the CT configuration. All three load switches contain the same CT value, but the switches are sequenced so the first load switch turns on before the second and third load switches turn on in parallel. This configuration only requires one GPIO and can be expanded to incorporate more load switches.

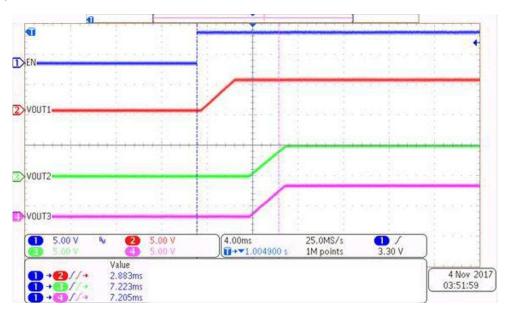


図 19. Parallel Configuration One

In 20 the first two load switches are connected with the CT configuration, and the third load switch is connected with the QOD configuration. Putting both designs together makes it possible to sequence load switches in many combinations depending on design specifications. Some voltage rails can turn on in parallel with each another while other rails turns on before or afterwards. This sequence can all be achieved by using a single GPIO, which frees up board space, processor intervention, and external ICs.

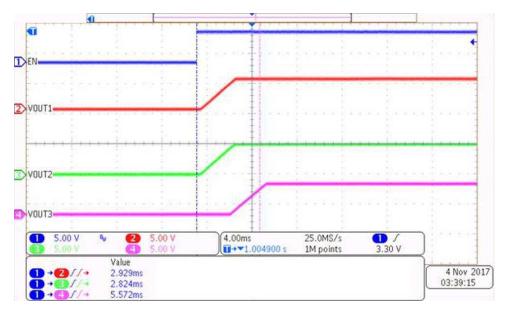


図 20. Parallel Configuration Two

Although most of the lab testing was completed using the TPS22918, power sequencing can still be achieved using other load switches. The reference design allows other pin-to-pin load switches to be used instead of the TPS22918. In \boxtimes 21 the testing was completed using the TPS22810 load switch. Timing will be different for the TPS22810, consult the device's data sheet for more specific information about timing requirements.

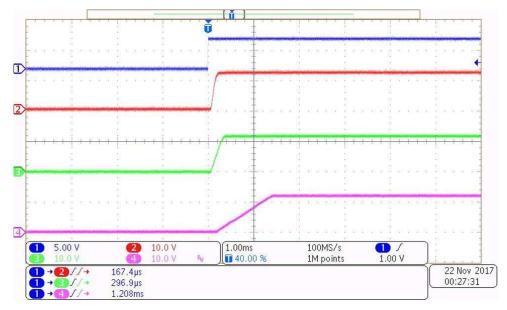


図 21. Power Sequencing Using TPS22810

Design Files www.tij.co.jp

4 Design Files

4.1 Schematics

To download the schematics, see the design files at TIDA-01584.

4.2 Bill of Materials

To download the bill of materials (BOM), see the design files at TIDA-01584.

4.3 PCB Layout Recommendations

4.3.1 Layout Prints

To download the layer plots, see the design files at TIDA-01584.

4.4 Altium Project

To download the Altium project files, see the design files at TIDA-01584.

4.5 Gerber Files

To download the Gerber files, see the design files at TIDA-01584.

4.6 Assembly Drawings

To download the assembly drawings, see the design files at TIDA-01584.

5 Software Files

To download the software files, see the design files at TIDA-01584.

6 Related Documentation

- 1. Texas Instruments, Simple power-rail sequencing solutions for complex multi-rail systems
- 2. Texas Instruments, Timing of Load Switches Application Report
- 3. Texas Instruments, Selecting a Load Switch to Replace a Discrete Solution Application Report

6.1 商標

All trademarks are the property of their respective owners.

TIの設計情報およびリソースに関する重要な注意事項

Texas Instruments Incorporated ("TI")の技術、アプリケーションその他設計に関する助言、サービスまたは情報は、TI製品を組み込んだアプリケーションを開発する設計者に役立つことを目的として提供するものです。これにはリファレンス設計や、評価モジュールに関係する資料が含まれますが、これらに限られません。以下、これらを総称して「TIリソース」と呼びます。いかなる方法であっても、TIリソースのいずれかをダウンロード、アクセス、または使用した場合、お客様(個人、または会社を代表している場合にはお客様の会社)は、これらのリソースをここに記載された目的にのみ使用し、この注意事項の条項に従うことに合意したものとします。

TIによるTIリソースの提供は、TI製品に対する該当の発行済み保証事項または免責事項を拡張またはいかなる形でも変更するものではなく、これらのTIリソースを提供することによって、TIにはいかなる追加義務も責任も発生しないものとします。TIは、自社のTIリソースに訂正、拡張、改良、およびその他の変更を加える権利を留保します。

お客様は、自らのアプリケーションの設計において、ご自身が独自に分析、評価、判断を行う責任がお客様にあり、お客様のアプリケーション(および、お客様のアプリケーションに使用されるすべてのTI製品)の安全性、および該当するすべての規制、法、その他適用される要件への遵守を保証するすべての責任をお客様のみが負うことを理解し、合意するものとします。お客様は、自身のアプリケーションに関して、(1) 故障による危険な結果を予測し、(2) 障害とその結果を監視し、および、(3) 損害を引き起こす障害の可能性を減らし、適切な対策を行う目的での、安全策を開発し実装するために必要な、すべての技術を保持していることを表明するものとします。お客様は、TI製品を含むアプリケーションを使用または配布する前に、それらのアプリケーション、およびアプリケーションに使用されているTI製品の機能性を完全にテストすることに合意するものとします。TIは、特定のTIリソース用に発行されたドキュメントで明示的に記載されているもの以外のテストを実行していません。

お客様は、個別のTIリソースにつき、当該TIリソースに記載されているTI製品を含むアプリケーションの開発に関連する目的でのみ、使用、コピー、変更することが許可されています。明示的または黙示的を問わず、禁反言の法理その他どのような理由でも、他のTIの知的所有権に対するその他のライセンスは付与されません。また、TIまたは他のいかなる第三者のテクノロジまたは知的所有権についても、いかなるライセンスも付与されるものではありません。付与されないものには、TI製品またはサービスが使用される組み合わせ、機械、プロセスに関連する特許権、著作権、回路配置利用権、その他の知的所有権が含まれますが、これらに限られません。第三者の製品やサービスに関する、またはそれらを参照する情報は、そのような製品またはサービスを利用するライセンスを構成するものではなく、それらに対する関係証または推奨を意味するものでもありません。TIリソースを使用するため、第三者の特許または他の知的所有権に基づく第三者からのライセンス、もしくは、TIの特許または他の知的所有権に基づくTIからのライセンスが必要な場合があります。

TIのリソースは、それに含まれるあらゆる欠陥も含めて、「現状のまま」提供されます。TIは、TIリソースまたはその仕様に関して、明示 的か暗黙的かにかかわらず、他のいかなる保証または表明も行いません。これには、正確性または完全性、権原、続発性の障害に関する保 証、および商品性、特定目的への適合性、第三者の知的所有権の非侵害に対する黙示の保証が含まれますが、これらに限られません。

TIは、いかなる苦情に対しても、お客様への弁護または補償を行う義務はなく、行わないものとします。これには、任意の製品の組み合わせに関連する、またはそれらに基づく侵害の請求も含まれますが、これらに限られず、またその事実についてTIリソースまたは他の場所に記載されているか否かを問わないものとします。いかなる場合も、TIリソースまたはその使用に関連して、またはそれらにより発生した、実際的、直接的、特別、付随的、間接的、懲罰的、偶発的、または、結果的な損害について、そのような損害の可能性についてTIが知らされていたかどうかにかかわらず、TIは責任を負わないものとします。

お客様は、この注意事項の条件および条項に従わなかったために発生した、いかなる損害、コスト、損失、責任からも、TIおよびその代表者を完全に免責するものとします。

この注意事項はTIリソースに適用されます。特定の種類の資料、TI製品、およびサービスの使用および購入については、追加条項が適用されます。これには、半導体製品(http://www.ti.com/sc/docs/stdterms.htm)、評価モジュール、およびサンプル(http://www.ti.com/sc/docs/sampterms.htm)についてのTIの標準条項が含まれますが、これらに限られません。

Copyright © 2018, Texas Instruments Incorporated 日本語版 日本テキサス・インスツルメンツ株式会社