TI Designs リファレンス・デザイン コイン電池で10年間のバッテリ寿命を実現するSub-1GHzワイヤレ ス接続対応の低電力PIRモーション・ディテクタ # TEXAS INSTRUMENTS # TI Designs リファレンス・デザイン このリファレンス・デザインは、テキサス・インスツルメンツの ナノパワー・オペアンプ、コンパレータ、およびSub-1GHz SimpleLink™超低電力ワイヤレス・マイクロコントローラ (MCU)プラットフォームを使用して、バッテリ駆動時間が非 常に長く、ワイヤ配線を必要としない、超低消費電力の モーション・ディテクタを実現します。 #### 設計リソース | TIDA-00489 | デザイン・フォルダ | |------------|------------| | LPV802 | プロダクト・フォルダ | | TLV3691 | プロダクト・フォルダ | | CC1310 | プロダクト・フォルダ | E2Eエキスパートに質問 # デザインの特長 - ナノパワー・アナログを使用した超低消費電力設計によ り、1個のCR2032コイン電池で10年間のバッテリ寿命を 実現 - 低いスタンバイ時電流:1.65μA(スタンバイ中もPIRセン サはアクティブ) - 低いアクティブ・プロセッサ電流と無線送信電流による、 アクティブ状態時の超低消費電流 (104.1msで1.12mA) - 割り込みを使用したSub-1GHzワイヤレス通信による モーション通知で省電力性を向上 - 最大30フィートのモーション感度 #### 主なアプリケーション - ビルディング・オートメーション - 侵入検出 - 占有検出 - モーション検出 - ルーム・モニタ - バッテリ電源システム 使用許可、知的財産、その他免責事項は、最終ページにあるIMPORTANT NOTICE(重要な注意事項)をご参照くださいますようお願いい たします。英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当す る正式な英語版の最新情報は、www.ti.comで閲覧でき、その内容が常に優先されます。TIでは翻訳の正確性および妥当性につきましては 一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。 <u>主なシステム仕様</u> www.tij.co.jp # 1 主なシステム仕様 # 表 1. 主なシステム仕様 | PARAMETER | SPECIFICATIONS | DETAILS | | |---|--|---------|--| | Input power source | CR2032 Lithium-ion coin cell battery (3.0-V nominal voltage) | 2.4 | | | Sensor type | PIR (Pyroelectric or Passive InfraRed) | 2.5 | | | Average active-state current consumption | 1.12 mA | 8.1 | | | Active-state duration | 104.1 ms | 8.1 | | | Average standby-state current consumption | 2.3 μΑ | 8.1 | | | Standby-state duration | 1 minute of no motion detected | 4.4 | | | Sleep-state current consumption | 1.65 μΑ | 8.1 | | | Movements per hour assumed for lifetime calculation | ≥10 per hour average over the battery lifetime (worst case) | 8.2 | | | Estimated battery life | > 10 years | 8.2 | | | Motion sensing range | 30 feet nominal | 8.3.1 | | | Radio transmission range | > 200 meters | 8.3.2 | | | Operating temperature | -30°C to 60°C (limited by CR2032 coin cell operating range) | 2.4 | | | Operating humidity | 20 to 70% | 7.3.1 | | | Vibration | | 8.3.4 | | | RF immunity | 30 V/m from 10 kHz to 1 GHz | 8.3.3 | | | Working environment | Indoor and outdoor | 2.4 | | | Form factor | 35×75-mm rectangular PCB | 9.5 | | | | | | | www.tij.co.jp システム概要 #### 2 システム概要 多くの産業用およびビルディング・オートメーション用システムでは、モーション・ディテクタを使用して、その場に人間がいるかどうかに基づいて照明などの各種機能を制御し、不要なときにはオフにしておくことで効率を高めています。また、これらのシステムでは、設置コストを削減し、配線をなくして将来の拡張の柔軟性を高めるために、より多くのワイヤレス・センサ・ノードが必要となっています。しかし、大規模なワイヤレス・ネットワークでは、消費電力が大きな制限要素となります。これらのシステムはバッテリで駆動されるため、定期的なバッテリ交換に伴う保守コストによって、システムが実現に至らない場合もあります。標準的なバッテリ駆動のPIRモーション・ディテクタは、消費電力とバッテリ構成にもよりますが、4~7年間にわたってバッテリの交換なしで動作できます。 このTIデザイン"コイン電池で10年間のバッテリ寿命を実現するSub-1GHzワイヤレス接続対応の低電力PIRモーション・ディテクタ"は、テキサス・インスツルメンツのナノパワー・アンプ、コンパレータ、およびSimpleLink超低電力ワイヤレス・マイコン・プラットフォームに基づき、バッテリ寿命を最大限に延ばしながら配線を必要としないモーション・ディテクタ回路ソリューションを示します。 全体的には、このTIデザインは1個のCR2032コイン電池、2個のナノパワー・オペアンプ、2個のナノパワー・コンパレータ、1個の超低消費電力ワイヤレス・マイコン、および1個のアナログ信号出力付きPIRセンサで構成されています。2個のオペアンプで1つの高入力インピーダンスの増幅バンドパス・フィルタを形成し、センサに負荷をかけずに直接接続できます。2個のコンパレータは1つのウィンドウ・コンパレータを形成し、増幅されたセンサ出力を固定リファレンス・スレッショルドと比較することで、モーションをノイズから区別できます。ウィンドウ・コンパレータの2つの出力はワイヤレス・マイコンへの割り込みとして機能するため、マイコンはモーション未検出時は最小電力のスリープ・モードで動作しながら、モーションが検出されたときにだけウェイクアップしてリモート・ホストにメッセージを返します。アナログ信号チェーンのナノアンプ動作によって、このTIデザインは1個のCR2032コイン電池で10年のバッテリ寿命を実現します。 このデザイン・ガイドは、このTIデザイン・システムの部品選択、設計理論、テスト結果について記載しています。このデザイン・ガイドの目標は、システム設計者がTIのナノパワー・アナログ・コンポーネントとSimpleLink超低電力ワイヤレス・マイコン・プラットフォームをすばやく統合できるようにすることです。 以降の各節では、TIデザイン・システム内の各種ブロックと、対応する機能を実装するために最も重要となる特性について説明します。 #### 2.1 オペアンプ このTIデザインでは、信号チェーン内の後続のステージに送られる信号の振幅が、有用な情報を提供するのに十分な大きさとなるように、PIRセンサの出力信号を増幅してフィルタリングする必要があります。 PIRセンサから出力される標準信号レベルは、モーション検出対象が離れている場合にはµV単位の値となるため、増幅が必要となります。フィルタリング機能は主に、ウィンドウ・コンパレータへの入力前に信号のノイズ帯域幅を制限するために必要となります。また、フィルタリング機能は、システムがモーションを検出できる最小速度と最大速度の制限を設定する役割も持っています。 非常に長いバッテリ駆動時間を実現するために、このTIデザインでは、アンプあたりの消費電流が320nA (標準)と低い、LPV802を使用しています。LPV802がこのTIデザインに対して理想的である他の理由として、低い入力電圧オフセットと低い入力バイアス電流があり、それによって値の大きな抵抗を使用でき、入力と出力の両方でレール・ツー・レール動作を実現できます。さらに、LPV802は不要なRF信号による影響を低減するEMI保護を内蔵し、高インピーダンス・ノードであるため、低消費電力設計に役立ちます。 システム概要 www.tij.co.jp #### 2.2 コンパレータ このTIデザインでは、センサ出力を増幅してフィルタリングした信号をデジタル信号へと変換し、それをマイコンへの入力として使用します。そのために、ウィンドウ・コンパレータ回路を使用します。 コンパレータ1個あたりの消費電流がわずか75nA(標準)と低いため、TLV3691はこのTIデザインに理想的です。このリファレンス・デザインのコンパレータに対する他の考慮事項には、低い入力電圧オフセットと低い入力バイアス電流があります。また、TLV3691は同相モード範囲入力のレール・ツー・レール入力段を備え、これは電源レールを100mV上回っているため、入力ピンの電圧が電源を超えた場合でも出力位相の反転が防止されます。その結果、電源ノイズに対する堅牢性だけでなく、このデザインのウィンドウ・コンパレータ・スレッショルドを調整する柔軟性が最大限に向上します。 # 2.3 超低電力ワイヤレス・マイコン このTIデザインでは、センサ情報を中央の処理装置へと送信する必要があります。ただし、バッテリ駆動アプリケーションでは常に消費電力が問題となるため、無線およびプロセッサは低消費電力である必要があります。また、最終機器システムで必要とされるワイヤレス・プロトコルが、無線デバイスの選択において重要な考慮事項となります。 TIのSimpleLink超低電力ワイヤレス・マイコン・プラットフォームは、無線とマイコンを合わせた消費電力が低く、センサ・エンドノードで極めて長いバッテリ寿命を可能にします。さらに、CC1310は、wM-BusおよびIEEE 802.15.4gのソフトウェア・スタック・サポートを備えたマルチ標準デバイスです。このTIデザインでは、プロトコルとして汎用のSub-1GHzネットワーク・プロトコルを選択していますが、ハードウェアは他のプロトコルでも同様に動作できます。 #### 2.4 コイン電池 このTIデザインの電源は、CR2032リチウムイオン・コイン電池です。CR2032コイン電池を電源として選択したのは、特にセンサ・エンドノードなどの小サイズのシステムで、この種類の電池が広く使用されているためです。 リチウムイオンCR2032コイン電池は、その電圧特性も理想的です。電池が完全に放電されるまでの放電寿命全体を通じて、出力電圧が比較的平坦に維持されます。電池が完全に放電されると、出力電圧は比較的短時間で降下します。 また、リチウムイオン電池の温度特性は、特に低温時に、アルカリ電池の温度特性よりも優れています。これは、リチウムイオン電池に含まれる非水性電解液が、アルカリ電池に一般に見られる水性電解液よりも高性能であるためです。ただし、CR2032コイン電池は、動作温度範囲に関しては制限要素となります。すべての集積回路および他の電気部品は、この電池よりも広い温度範囲で動作が規定されています。そのため、TIデザイン・システムの仕様動作温度範囲は、-30℃~60℃です。適切な耐候性の筐体を使用することで、このTIデザイン・システムは屋内と屋外両方の使用に適しています。 バッテリの直後には、R_{DS_ON}の低いPチャネルMOSFET、およびバルク・コンデンサが接続されています。このPチャネルMOSFETによって、コイン電池が逆向きに挿入された場合にハードウェアへの損傷を防ぎながら、通常動作時の順方向電圧降下を最小限に抑えています。バルク・コンデンサは、特に無線送信時のマイコンのオン状態への遷移中に、過大な電圧の低下が生じないような大きさを選択しています。 www.tij.co.jp システム概要 #### 2.5 PIRセンサ このTIデザインに対して選択したセンサは、Murata IRS-B210ST01 PIRセンサです。このセンサを選択した理由は、表面実装パッケージで、アナログ出力を備えており、このTIデザインの低消費電力回路を高いスペース効率で実装できるからです。 このTIデザインに対して得られたテスト結果は、特定の製番のPIRセンサに関するものですが、このTIデザインで示される技法や回路設計を適用すれば、入手可能な類似した仕様のPIRセンサのいずれでも同様な結果が得られることが予想されます。 最後に、どのPIRセンサの場合でも、センサの前にレンズを使用する必要があります。それによって、赤外線エネルギーをセンサ素子に集中させ、検出範囲を拡大します。フレネル・レンズを使用すると、視野領域の赤外線画像がすべてのセンサ素子にわたって広がります。したがって、レンズの形状とサイズによって全体の検出角と視野領域が決まります。このTIデザインでは、Murata IML-0669レンズを使用して、最大の視野および検出範囲を示すことができるようにしています。最終的に、レンズの選択は、アプリケーションで必要とされる視野角と検出範囲によって決まります。 Block Diagram www.tij.co.jp # 3 Block Diagram 図 1. Wireless PIR System Block Diagram # 3.1 Highlighted Products The Low-Power PIR Motion Detector reference design features the following devices: - LPV802 (3.1.1): NanoPower, CMOS input, rail-to-rail IO operational amplifier - TLV3691 (3.1.2): NanoPower, CMOS input, rail-to-rail input comparator - CC1310 (3.1.3): SimpleLink multi-standard sub-1GHz ultra-low-power wireless MCU For more information on each of these devices, see their respective product folders at www.ti.com. www.tij.co.jp Block Diagram #### 3.1.1 LPV802 #### Features: • For $V_s = 3.3 \text{ V}$, typical unless otherwise noted Supply current at 320 nA Operating voltage range: 1.6 to 5.5 V Low TCV_{OS} 1 μV/°C V_{OS} 3.5 mV (max) - Input bias current: 100 fA PSRR: 115 dBCMRR: 98 dB Open-loop gain: 120 dB Gain bandwidth product: 8 kHz Slew rate: 2 V/ms Input voltage noise at f = 100 Hz 340 nV/√Hz Temperature range: -40°C to 125°C # Applications: - Gas Detectors (CO and O2) - PIR Motion Detectors - Ionization Smoke Detectors - Thermostats - IoT Remote Sensors - Active RFID readers and Tags - Portable Medical Equipment - Sensor network powered by energy scavenging 図 2. LPV802 Functional Block Diagram The LPV802 is a dual nano-power amplifier designed for ultra-long life battery applications. The operating voltage range of 1.6 V to 5.5 V coupled with typically 320 nA of supply current per channel make it well suited for remote sensor applications. The LPV802 has a carefully designed CMOS input stage that outperforms competitors with typically 100 fA I_{BIAS} currents and CMRR of 98 dB. This low input current significantly reduces I_{BIAS} and I_{OS} errors introduced in megohm resistance, high impedance photodiode, and charge sense situations. The LPV802 is a member of the PowerWiseTM family and has an exceptional power-to-performance ratio. EMI protection was designed into the device to reduce sensitivity to unwanted RF signals. The LPV802 is offered in the 8-pin VSSOP 3.00 mm x 3.00 mm package. Block Diagram www.tij.co.jp #### 3.1.2 TLV3691 #### Features: - Low quiescent current: 75 nA - · Wide supply: - 0.9 to 6.5 V - ±0.45 to ±3.25 V - Micro packages: DFN-6 (1 x 1 mm), 5-pin SC70 - Input common-mode range extends 100 mV beyond both rails - Response time: 24 μs - Low input offset voltage: ±3 mV - · Push-pull output - Industrial temperature range: - -40°C to 125°C #### Applications: - · Overvoltage and undervoltage detection - Window comparators - Overcurrent detection - Zero-crossing detection - System monitoring: - Smart phones - Tablets - Industrial sensors - Portable medical The TLV3691 offers a wide supply range, low quiescent current 150 nA (maximum), and rail-to-rail inputs. All of these features come in industry-standard and extremely small packages, making this device an excellent choice for low-voltage and low-power applications for portable electronics and industrial systems. Available as a single channel, the low-power, wide supply, and temperature range makes this device flexible enough to handle almost any application from consumer to industrial. The TLV3691 is available in SC70-5 and 1×1-mm DFN-6 packages. This device is specified for operation across the expanded industrial temperature range of –40°C to 125°C. www.tij.co.jp Block Diagram #### 3.1.3 CC1310 #### Features: - MCU: - Powerful ARM® Cortex®-M3 - EEMBC CoreMark® score: 142 - EEMBC ULPBench™ score: 158 - Up to 48-MHz clock speed - 128KB of in-system programmable Flash - 8KB of SRAM for cache (or as general-purpose RAM) - 20 KB of ultra-low leakage SRAM - 2-pin cJTAG and JTAG debugging - Supports over-the-air (OTA) upgrade - Ultra-low-power sensor controller: - Can run autonomous from the rest of the system - 16-bit
architecture - 2KB of ultra-low leakage SRAM for code and data - Efficient code-size architecture, placing TI-RTOS, drivers, Bluetooth® Low Energy Controller, IEEE 802.15.4 MAC, and Bootloader in ROM - · RoHS-compliant package: - 7×7-mm RGZ VQFN48 (30 GPIOs) - 5x5-mm RHB VQFN48 (15 GPIOs) - 4x4-mm RSM VQFN48 (10 GPIOs) - Peripherals: - All digital peripheral pins can be routed to any GPIO - Four general-purpose timer modules (Eight 16-bit or four 32-bit timers, PWM each) - 12-bit ADC, 200 ksps, 8-channel analog MUX - Continuous time comparator - Ultra-low-power clocked comparator - Programmable current source - UART - 2x SSI (SPI, MICROWIRE, TI) - I²C - I²S - Real-time clock (RTC) - AES-128 security module - True random number generator (TRNG) - Support for eight capacitive sensing buttons Block Diagram www.tij.co.jp - Integrated temperature sensor - · External system: - On-chip internal DC-DC converter - Very few external components - Seamless integration with the SimpleLink CC1190 range extender www.tij.co.jp Block Diagram #### Low power: - Wide supply voltage range: 1.8 to 3.8 V - Active-Mode RX: 5.5 mA - Active-Mode TX at 10 dBm: 12.9 mA - Active-mode MCU 48 MHz running CoreMark: 2.5 mA (51 μA/MHz) - Active-mode MCU: 48.5 CoreMark/mA - Active-mode sensor controller at 24 MHz: 0.4 mA + 8.2 µA/MHz - Sensor controller, one wake up every second performing one 12-bit ADC sampling: 0.85 μA - Standby: 0.6 μA (RTC running and RAM and CPU retention) - Shutdown: 185 nA (wakeup on external events) #### RF section: - 2.4-GHz RF transceiver compatible with *Bluetooth* Low Energy (BLE) 4.1 specification and IEEE 802.15.4 PHY and MAC - Excellent receiver sensitivity –124 dBm using long-range mode, –110 dBm at 50 kbps, –89 dBm at BLE - Excellent selectivity: 52 dB - Excellent blocking performance: 90 dB - Programmable output power up to 14 dBm - Single-ended or differential RF interface - Suitable for systems targeting compliance with worldwide radio frequency regulations: - ETSI EN 300 220, EN 303 131, EN 303 204 (Europe) - EN 300 440 Class 2 (Europe) - FCC CFR47 Part 15 (US) - ARIB STD-T108 (Japan) - Wireless M-Bus and IEEE 802.15.4g PHY - Tools and development environment: - Full-feature and low-cost development kits - Multiple Reference Designs for Different RF Configurations - Packet sniffer PC software - Sensor Controller Studio - SmartRF™ Studio - SmartRF Flash Programmer 2 - IAR Embedded Workbench® for ARM - Code Composer Studio™ Block Diagram www.tij.co.jp 図 3. CC1310 Functional Block Diagram This device is a member of the CC26xx and CC13xx family of cost-effective, ultra-low-power, 2.4-GHz and sub-1GHz RF devices. Very low active RF, MCU current, and low-power mode current consumption provide excellent battery lifetime and allow operation on small coin-cell batteries and in energy-harvesting applications. The CC1310 is the first part in a Sub-1GHz family of cost-effective, ultra-low-power wireless MCUs. The CC1310 device combines a flexible, very low-power RF transceiver with a powerful 48-MHz Cortex-M3 MCU in a platform supporting multiple physical layers and RF standards. A dedicated radio controller (Cortex-M0) handles low-level RF protocol commands that are stored in ROM or RAM, thus ensuring ultra-low power and flexibility. The low-power consumption of the CC1310 does not come at the expense of RF performance; the CC1310 has excellent sensitivity and robustness (selectivity and blocking) performance. The CC1310 is a highly integrated, true single-chip solution incorporating a complete RF system and an on-chip DC-DC converter. Sensors can be handled in a very low-power manner by a dedicated autonomous ultra-low-power MCU that can be configured to handle analog and digital sensors; thus the main MCU (Cortex-M3) is able to maximize sleep time. www.tij.co.jp Block Diagram The CC1310 power and clock management and radio systems require specific configuration and handling by software to operate correctly. This has been implemented in the TI RTOS, and it is therefore recommended that this software framework is used for all application development on the device. The complete TI-RTOS and device drivers are offered in source code free of charge. System Design Theory www.tij.co.jp # 4 System Design Theory The Low-Power PIR Motion Detector With Sub-1GHz Wireless Connectivity Reference Design senses motion by detecting differences in infrared (IR) energy in the field of view of the sensor. Because the sensor output is a very small signal, amplification and filtering are necessary to boost the signal and at the same time filter noise so that a representation of the sensor output at a reasonable signal level is obtained while also minimizing false trigger events. The scaled analog output is then converted to digital signals by a window comparator function whose outputs can be used as interrupts to the wireless MCU to save power by only waking up the MCU when it is needed. The following sections discuss the details of the design for these different circuit sections that make up the design's overall sub-system. #### 4.1 PIR Sensor To better understand the circuit, the user must understand how the PIR motion sensor operates. The PIR motion sensor consists of two or more elements that output a voltage proportional to the amount of incident infrared radiation. Each pair of pyroelectric elements are connected in series such that if the voltage generated by each element is equal, as in the case of IR due to ambient room temperature or no motion, then the overall voltage of the sensor elements is 0 V. \boxtimes 4 shows an illustration of the PIR motion sensor construction. 図 4. PIR Motion Sensor Illustration The lower part of 🗵 4 shows the output voltage signal resulting from movement of a body with a different temperature than the ambient parallel to the surface of the sensor and through the field of view of both sensor elements. The amplitude of this signal is proportional to the speed and distance of the object relative to the sensor and is in a range of low millivolts peak to peak to a few hundred microvolts peak to peak or less. A JFET transistor is used as a voltage buffer and provides a DC offset at the sensor output. Because of the small physical size of the sensor elements, a Fresnel lens is typically placed in front of the PIR sensor to extend the range as well as expanding the field of view by multiplying and focusing the IR energy onto the small sensor elements. In this manner, the shape and size of the lens determine the overall detection angle and viewing area. The style of lens is typically chosen based on the application and choice of sensor placement in the environment. Based on this information, for best results, the sensor should be placed so that movement is across the sensor instead of straight into the sensor and away from sources of high or variable heat such as AC vents and lamps. www.tij.co.jp System Design Theory Also note that on initial power up of the sensor, it takes up to 30 s or more for the sensor output to stabilize. During this "warm up" time, the sensor elements are adjusting themselves to the ambient background conditions. This is a key realization in designing this subsystem for maximum battery life in that the sensor itself must be continuously powered for proper operation, which means power cycling techniques applied to either the sensor or the analog signal path itself cannot be applied for proper operation and reliable detection of motion. # 4.2 Analog Signal Path The analog signal conditioning section is shown in the schematic in \boxtimes 5. The first two stages in \boxtimes 5 implement the amplified filter function whereas stage 3 implements the window comparator design. Components R10 and C5 serve as a low pass filter to stabilize the supply voltage at the input to the sensor and are discussed further in 4.3. 図 5. PIR Motion Sensor Analog Signal Path Schematic Resistor R5 sets the bias current in the JFET output transistor of the PIR motion sensor. To save power, R5 is larger than recommended and essentially current starves the sensor. This comes at the expense of decreased sensitivity and higher output noise at the sensor output, which is a fair tradeoff for increased battery lifetime. Some of the loss in sensitivity at the sensor output can be compensated by a gain increase in the filter stages. Due to the higher gain in the filter stages and higher output noise from the sensor, carefully optimize the placement of the high frequency filter pole and the window comparator thresholds to avoid false detection. # 4.2.1 Amplified Filter Design Composed of stages 1 and 2 in 🗵 5, the filter section implements a fourth order bandpass filter using simple poles. Each stage implements identical second order bandpass filter characteristics. The chosen cutoff frequencies for the bandpass filter are set to 0.7 and 10.6 Hz. The passband gain of each stage is 220 for an overall signal gain of ~90 dB and was chosen to maximize the motion sensitivity range for the sensor bias point being used. The data collected for motion sensitivity range at different sensor bias and gain settings is shown in 8.3.1. System Design Theory www.tij.co.jp Generally, the filter bandwidth should be wide enough to detect a person walking or running by the sensor. At the same time, the filter bandwidth should be narrow to limit the peak-to-peak noise at the output of the filter. In most cases, a bandwidth between 0.3 to 2 Hz is acceptable for this application; however, the use of simple poles means the filter Q is low, which leads to a large filter transition region. With the poles placed this close, the overall passband gain is reduced, which reduces sensitivity and increases the noise floor. The low frequency cutoff is critical because it has a major effect on the system noise floor by limiting the overall impact of 1/f noise from the analog front end as well as setting the minimum speed of motion that the system
can detect. The practical lower limit on the low frequency cutoff is due to capacitor sizing at 0.1 Hz. Due to the low bias current being used in the sensor for this design, the low frequency noise will be worse than a normal higher current design, which means the low frequency cutoff should be higher than 0.3 Hz. Given a practical range of the low frequency cutoff to be between 0.3 to 1 Hz, this design used a low frequency cutoff in the middle of this range. The high frequency cutoff is mostly for reducing broadband noise. The range for its placement will be a decade higher than the low frequency cutoff up to the bandwidth limit set by the open loop bandwidth of the op amp being used. In this case, the LPV802 has a unity gain bandwidth (UGBW) of 8 kHz, which means for a maximum stage gain of 220, the bandwidth is limited to 36 Hz. Allowing for component tolerances and variation in the UGBW of the LPV802, a practical range for the high frequency cutoff is between 7 and 14 Hz. Again, the choice was made to use a high frequency cutoff in the middle of this range. The first stage of the filter is arranged as a non-inverting gain stage. This provides a high impedance load to the sensor so its bias point remains fixed. Because this stage has an effective DC gain of one due to C2, the sensor output bias voltage provides the DC bias for the first filter stage. Feedback diodes, D1 and D2 provide clamping so that the op amps in both filter stages stay out of saturation for motion events which are close to the sensor. ± 1 to ± 3 show the gain and cutoff frequencies for this stage: $$f_{Low1} = \frac{1}{2\pi \times R2 \times C2} = \frac{1}{2\pi \times 6.81 \, k\Omega \times 33 \, \mu F} = 0.71 \, Hz \tag{1}$$ $$f_{High1} = \frac{1}{2\pi \times R1 \times C1} = \frac{1}{2\pi \times 1.5 \text{ M}\Omega \times 0.01 \,\mu\text{F}} = 10.6 \text{ Hz}$$ (2) $$|G_1| = 1 + \frac{R1}{R2} = 1 + \frac{1.5 \text{ M}\Omega}{6.81 \text{ k}\Omega} = 221.26$$ (3) Since the second stage is AC coupled to the first stage, it is arranged as an inverting gain stage. This allows the DC bias to be set to $V_{\rm CC}/2$ easily by connecting the center point of the divider string in the window comparator to the non-inverting input of the op amp in this filter stage. Because the peak-to-peak noise is present at the output of this stage, R3 is made as large as possible to minimize the dynamic current of the system. \pm 4 to \pm 6 show the gain and cutoff frequencies for this stage: $$f_{Low2} = \frac{1}{2\pi \times R4 \times C4} = \frac{1}{2\pi \times 68.1 \, k\Omega \times 3.3 \, \mu F} = 0.71 \, Hz$$ (4) $$f_{High2} = \frac{1}{2\pi \times R3 \times C3} = \frac{1}{2\pi \times 15 \text{ M}\Omega \times 1000 \text{ pF}} = 10.6 \text{ Hz}$$ (5) $$|G_2| = \left| -\frac{R3}{R4} \right| = \left| -\frac{15 \text{ M}\Omega}{68.1 \text{ k}\Omega} \right| = 220.26$$ (6) www.tij.co.jp System Design Theory The total circuit gain (not including any gain reduction due to pole placement), is given by $G1 \times G2 = 221.26 \times 220.26 = 48810 = 93.77$ dB. \boxtimes 6 and \boxtimes 7 show simulation results for these two filter stages. ☑ 6. Amplified Filter Simulation Results (Ideal) 図 7. Amplified Filter Simulation Results (Nonideal) The responses shown in \boxtimes 6 and \boxtimes 7 illustrate the effect of finite unity gain bandwidth for the amplifiers in the circuit. Note that not only is the high frequency response altered, but also the attenuation at the high frequency cutoff is increased and the peak gain frequency is shifted slightly. #### 4.2.2 Window Comparator Design The window comparator circuit shown in stage 3 of ⊠ 5 converts the analog output of the filter to digital signals, which are used as interrupts to the MCU to tell it when motion has been detected. Composed of resistors R6 through R9, the resistor divider sets up the thresholds that determine a valid motion detection from the sensor. To save power, this resistor divider also provides the bias voltage for the second stage of the filter. Capacitors C6, C7, and C8 are necessary to stabilize the threshold voltages to prevent chatter at the output of the comparators. These capacitors do not need to be a large value due to the large resistors being used in the resistor divider, but they should be low ESR and low leakage, with ceramic being preferred. The comparator chosen for this reference design is the TLV3691 due to its ultra-low supply current requirements. The TLV3691 comparator also has rail-to-rail input capability with an input common mode range that exceeds the supply rails by 100 mV. This is not required for this design, but it does allow the ability to maximize the adjustment range of the window comparator thresholds. The comparator outputs will be low when there is no motion detected. Typically, motion across the sensor will generate a high pulse on one comparator output followed by a high pulse on the other comparator, which corresponds to the amplification of the S-curve waveform shown in the lower part of ☒ 4. Which comparator triggers first will depend on the direction of the motion being detected. \pm 7 and \pm 8 are used to adjust the window comparator thresholds: $$V_{REF_High} = V_{CC} \frac{R7 + R8 + R9}{R6 + R7 + R8 + R9} = 0.75 \times V_{CC}$$ (7) $$V_{REF_Low} = V_{CC} \frac{R9}{R6 + R7 + R8 + R9} = 0.25 \times V_{CC}$$ (8) There is also a constraint that R6 + R7 = R8 + R9 so that the $V_{\rm CC}/2$ bias level is maintained at the center tap of the divider for use as the bias for the second stage of the filter. System Design Theory www.tij.co.jp The thresholds chosen for this design are a balance between sensitivity and noise immunity. Widening of the window improves noise immunity but reduces sensitivity. Making the window too small can lead to false triggers due to the peak-to-peak noise seen at the input to the window comparator. # 4.3 Power Supply Design Because of the increasing battery impedance over the life of the battery supply and the low power supply rejection of the PIR sensor, it is important to design the power supply network to prevent current spikes generated by the MCU from causing false triggers through the analog signal path. While the algorithm implemented in firmware helps to filter such problems, this unwanted power supply feedback loop can become an issue. Ideally, the sensor supply would be regulated to break this loop; however, in this design the extra quiescent current of a regulator would reduce battery life, so other methods were explored. ⊠ 8 shows a simplified schematic of the power supply network. The PMOS transistor is used in place of the traditional Schottky diode for reversed battery protection. Because the peak currents are in the 30-mA range when the radio transmits, using a low R_{DS_ON} PMOS provides a much lower voltage drop compared to a Schottky diode, which helps to maximize battery life by allowing the battery to decay to a lower voltage before the circuit is no longer able to function (for more on this technique, see SLVA139). 図 8. PIR Motion Sensor Simplified Power Supply Network Schematic Capacitor C1 supplies the circuit during periods of high and fast peak current demand, which helps to maximize the battery capacity and minimize voltage droop on the power supply rail, especially as the battery approaches its end of life and its internal impedance increases (represented by Rint in 🗵 8). The calculation for C1 is provided in 式 9. For more details on this calculation and the effects of high current peaks on battery life and capacity, see White Paper SWRA349. $$C1 = \frac{\Delta Q}{V_{MAX} - V_{MIN}} \tag{9}$$ where $$\Delta Q = Q_{dis} - \frac{V_{MIN}}{Rint} t_{tot}$$ $$\bullet \quad Q_{dis} = \sum i_n \times t_n$$ V_{MAX} is the voltage across the capacitor at the start of the current pulse at the end of the battery's life, and V_{MIN} is the circuit operating minimum, which is the sensor minimum plus the voltage drop across R10 due to the sensor bias current (2 V + 0.6 μ A × 619 k Ω ~ 2.4 V). V_{MAX} is taken to be 2.698 V assuming an unloaded end of life battery voltage of 2.7 V (V_{P}). Based on the measured current profile during a radio transmission, shown in \boxtimes 22 and \boxtimes 23: $$Q_{dis} = 23.2 \text{ mA} \times 100 \text{ } \mu\text{s} + 4 \text{ mA} \times 3.5 \text{ ms} + 8.8 \text{ mA} \times 2.5 \text{ ms} = 38.32 \text{ } \mu\text{C}$$ (10) For C1: www.tij.co.jp System Design Theory $$C1 = \frac{38.32 \ \mu C \ - \ \frac{2.4 \ V}{1 \ k\Omega} \times 6.1 \, ms}{2.698 \ V - 2.4 \ V} = 79.5 \ \mu F \tag{11} \label{eq:11}$$ This design uses C1 = 100 μ F and additional decades of capacitors in parallel for improved impedance at higher frequencies. The time required to recharge the composite C1 capacitor after the high current event is given in \pm 12 and is sufficiently low compared to the active and standby states of the device where current consumption is in the low microamp range. $$t \ = \ Rint \times C1 \times \ In \Biggl(\frac{V_p - V_{MIN}}{V_p - V_{MAX}} \Biggr) \ = \ 1 \ k\Omega \times 111.514 \ \mu F \times In \Biggl(\frac{2.7 \ V - 2.4 \ V}{2.7 \ V - 2.698 \ V} \Biggr) \ = \ 0.56 \ s \ (12)$$ With the value of C1 determined, R10 and C5 can be sized to prevent false triggers from occurring during high current events on the power supply. With R10 chosen based on the acceptable amount of voltage drop due to the sensor bias, C5 was determined experimentally. If desired, R10 can be reduced in value to be able to operate at slightly lower voltage; however, the time constant for R10 and C5 shown in \boxtimes 8 needs to be maintained. This means C5 becomes larger and would require a different dielectric, which in all likelihood would be more leaky or more costly and negate some of the advantage to reducing R10. Similar to what was done for C1, C5 has additional decades of capacitors in parallel to maintain a low impedance at higher frequencies.
System Design Theory www.tij.co.jp #### 4.4 Firmware Control 図 9. Wireless PIR Firmware Flowchart The flowchart shown in \boxtimes 9 describes the CC1310 operation in this TI Design. The CC1310 first starts by checking the source of wake up. If the device is woken up by reset, the system is powered on for the first time. The CC1310 will wait in standby mode for two minutes to allow the PIR sensor and analog signal chain to power on and allow the operating point to settle. After two minutes, the firmware will look at the outputs of the window comparator. By default, the output of both comparators should be low. If either comparator output is high, the CC1310 will send an ERROR message and will wait an additional amount of time for the sensor to settle. Once the PIR sensor and analog signal chain are functioning correctly, the CC1310 will enter shutdown mode. The CC1310 will stay in shutdown mode until the PIR sensor signals the MCU that motion is detected by means of the window comparator outputs serving as interrupts. When the CC1310 is woken up by the PIR sensor, it will send an ON packet to notify the host controller that motion has been detected. The CC1310 will wait until the PIR sensor is silent for one minute before sending an OFF packet to the host controller and returning to shutdown mode. # 5 Getting Started: Hardware ☑ 10 shows the hardware for the Low-Power PIR Motion Detector With Sub-1GHz Wireless Connectivity Enabling 10-Year Coin Cell Battery Life TI Design. The printed circuit board (PCB) is in a 35×75-mm rectangular form factor and comes with 0.5-in nylon standoffs to ensure ease of use while performing lab measurements. 図 10. Low-Power Wireless PIR Motion Detector Reference Design Hardware Description All the integrated circuits (CC1310, LPV802, and TLV3691), several test points, and jumpers are located on the top side of the PCB. The antenna is also located on the top side of the PCB. The bottom side of the PCB contains the CR2032 coin cell battery holder, jumper J6, and the bottom half of the antenna. There are four unused GPIOs that have been brought out from the CC1310 to an unpopulated header to facilitate future prototyping and debugging. # 5.1 Jumper Configuration To facilitate measuring critical parameters and debugging in this reference design, there are several jumpers included. However, to properly operate the design, these jumpers must be installed correctly. The jumper configuration for normal operation is as follows: J1 = Shorted, J2 = Open, J3 = Open, J6 = Shorted. The jumper configuration to program the CC1310 is as follows: J1 = Open (power applied to Pin 2), J2 = Connected through ribbon cable to the SmartRF06 Evaluation Board (EVM), J3 = Open, J6 = Don't care. See 🗵 10 for a brief description of the intended function of these different jumpers. # 5.2 Test Point Description This design includes several test points to monitor critical signals. The following is a brief description of these test points: - TP1, TP2: Ground points for probes or common points for voltage measurements - TP6, TP7: Window comparator high threshold and low threshold outputs, respectively - TP8: Filtered battery supply forming input to the DC-DC converter in the CC1310 - TP9: Filtered DC-DC converter output from the CC1310 - TP13: Output of analog filter stage, which is also the input to the window comparator stage # 5.3 Miscellaneous Note that due to the number of sensitive high impedance nodes in this design, probing points aside from the ones with dedicated test points should be done so with the probe impedance in mind. An example of this would be the probing of the reference inputs to the window comparator. Because these reference thresholds are generated from a resistor divider composed of four 15-M Ω resistors, using a standard oscilloscope probe or voltmeter with a 10-M Ω input impedance will effectively load the circuit being measured and provide a false measurement. # 6 Getting Started: Firmware # 6.1 Loading Firmware The firmware used on this TI Design was developed using TI's Code Composer Studio software (version 6.1.0). The IAR Embedded Workbench for ARM also supports the CC13xx line of SimpleLink products. Powering the board from 3.0 V is also necessary and is supplied at pin 2 of Jumper J1. Connecting the external power source at this location bypasses the reversed battery protection. The TI Design hardware is programmed by connecting the 10-pin mini ribbon cable from J2 to the SmartRF06 EVM (10-pin ARM Cortex Debug Connector, P410). See 🗵 11 for a photo of the correct setup for connecting the TI Designs hardware to the SmartRF06 EVM. 図 11. Connection of SmartRF06 Evaluation Board and TI Designs Hardware for Programming and Debugging #### 6.2 Receiving Data Packets As this reference guide previously describes, this TI Design is programmed to detect a person's presence by using the PIR sensor (see 2.5 and 4.1). The CC1310 will broadcast three possible action values: - 0xEE: Error during startup of the sensor - 0xAA: ON packet when the first motion is detected - 0xFF: OFF packet one minute after the last motion is detected To verify the proper operation of the radio transmission, two methods to view the transmitted packet are described in the following subsections. # 6.2.1 Building Automation Sub-1GHz Sniffer GUI The first method is a Sniffer GUI firmware running on the SmartRF06 EVM with the CC13xxEM radio. The Sniffer GUI firmware will process the received packet and display the calculated data on the LCD screen. As shown in 🗵 12, the LCD screen will show the six most current received data. If more data is needed for testing or characterization purposes, 6.2.2 describes how to log more data samples for post analysis. 図 12. Building Automation Sub-1GHz Sniffer GUI For more information about the Sniffer GUI, download and install the Building Automation Sub-1GHz Sniffer GUI software package that is available in 10. www.tij.co.jp Getting Started: Firmware # 6.2.2 CC1111 USB Dongle and SmartRF Protocol Packet The second method uses the CC1111 USB dongle, CC1111 USB EVM Kit 868/915 MHz, to "sniff" packets using the SmartRF™ Protocol Packet Sniffer software. The data is displayed as raw data stream. This data stream can be post processed and be used for testing and characterization. After installing the packet sniffer software (v2.18.1 at the time of this writing), the procedure to detect the data transmissions is as follows: - Plug the CC1111 USB dongle into an unused USB port on the computer with the packet sniffer software installed. - 2. Open the packet sniffer software. Choose Generic as the protocol, and click the Start button (see ☑ 13). 図 13. Packet Sniffer Software 3. Configure the CC1111 correctly to see the packets. Select the Radio Configuration tab. Under the Register settings sub tab, click on the "Browse..." button. Open the TIDA-00489_CC1111.prs file. Highlight and double-click on "TIDA-00489_CC1111" to apply the register settings (see 214). 図 14. Packet Sniffer Software, Register Setting - 注: If long data acquisition periods are expected, increase the Cache Buffer size in the packet sniffer software to prevent possible crashes. Take this action by opening the Settings menu and clicking "Cache buffer size...". - 4. Press the Play button on the top toolbar to initiate the packet capture process. www.tij.co.jp Getting Started: Firmware 5. The packet sniffer software is likely to detect many other packets. To view only the valid data packets, apply a display filter. 15 shows a sample display of what records without a filter applied. The highlighted row shows an undesired data packet. 図 15. Packet Sniffer Software, Filterless Recording 6. To add the appropriate filter checks for only valid packets, select the Display filter tab. In the Field Name field, select "FCS" from the drop-down options. Click the button labeled First. Modify the filter condition to only show "OK" packets by typing "FCS=OK" in the Filter condition field, click the Add button, and then click the Apply filter button. 2 16 shows an example of the filtered view. 図 16. Packet Sniffer Software, Filtered Recording - 7. To export the captured, filtered packets, click the "Save the current session" button on the toolbar (appears as a floppy disk), or pause the packet capture and click File → Save data... from the file context menu; either of these choices prompts to save the displayed data as a packet sniffer data (.psd) file. - 8. Convert the .psd file to readable hex values with HexEdit software (http://www.hexedit.com/). A different hex editor can perform this function as well; however, the authors of this document have not verified any other options. - 9. Open the .psd file in the HexEdit software. Click on Tools → Options. In the HexEdit Options window, click on Document → Display and change the Columns value to "2066". Click Edit → Select All and Edit → Copy As Hex Text. Open a text editor program (for example, Notepad), paste the hex text, and save the text file. This text file can then be imported into Microsoft Excel® spreadsheet software for further analysis. For more information on the sniffer data packet format, click Help → User Manual on the packet sniffer software. www.tij.co.jp # 7 Test Setup #### 7.1 Overview The Low-Power PIR Motion Detector With Sub-1GHz Wireless Connectivity Enabling 10-Year Coin Cell Battery Life reference design has been characterized to support all of the critical specifications for this sub-system. The following sections describe the test setups for these measurements including the equipment used and the test conditions unless otherwise noted. # 7.2 Power Consumption The power consumption measurements for this reference design were critical in balancing battery lifetime with sensor bias current and motion sensitivity. An initial prototype was built that allowed measurement of the different current paths in the design as a preliminary analysis. The results from
that prototype are shown in 8.1. Measurements of supply current were then performed on the reference design hardware, which confirmed the prototype measurements. Further characterization was done on the reference design hardware over the voltage range of the design. The test setup for the supply current measurements is illustrated in \bowtie 17. 図 17. Test Circuit Used for Measuring Supply Current To compute the battery life, the radio transmission intervals also need to be characterized as these intervals have brief periods of high peak currents before settling to the low microamp current levels measured using the setup above. The measurement of the radio transmission interval involves using a current probe that interfaces to an oscilloscope, which can then be used to trigger on the high current events. Data from this interval is then exported to Microsoft Excel where analysis of the data can be performed. This setup is illustrated in \boxtimes 18. 図 18. Test Circuit Used for Measuring Supply Current During Radio Transmission Intervals Test Setup www.tij.co.jp #### 7.3 Functional The following subsections describe the tests for functionality under various environmental conditions. These tests generally verify the limits of operation for the subsystem. #### 7.3.1 Temperature and Humidity Range This TI Design was stressed under temperature and humidity bias to ensure the design operates and does not produce false triggers under extremes of the targeted environment. The typical extended building environment temperature range is assumed to be 0° C to 50° C while additional testing was performed to test the limits of the design down to -30° C and up to 60° C. Similarly, the typical humidity range for a building environment is assumed to be 20% to 70%. The chamber used for the temperature and humidity stress was the CSZ ZH322-H/AC Temperature/Humidity Chamber and a Vaisala HMP235 Humidity Probe to monitor humidity. A Watlow F-4 Controller was used to automate the testing. The reference design PCB was placed in the chamber with a new Energizer CR2032 lithium-ion coin cell battery installed. The CC1111 USB dongle was placed near the TI Design hardware inside the chamber and connected to a laptop outside of the chamber with a USB cable to monitor for false triggers during the test. \boxtimes 19 shows a picture of the setup. 図 19. Wireless PIR Motion Detector Temperature and Humidity Test Setup To prevent false detection due to rapid changes in ambient temperature and subsequent sensor settling, the temperature was slowly ramped during the test as would be expected in a typical operating environment. The test was started with a 10-minute soak at 25°C followed by a 1°C per minute ramp up to 50°C with a 5-minute soak, followed by a 5°C per minute ramp to 60°C, and back down to 50°C with a 5-minute soak at 50°C, followed by a 1°C per minute ramp down to 0°C with a 5-minute soak. At 0°C, a similar 5°C per minute ramp was applied down to -30°C and back up to 0°C with a 5-minute soak at 0°C, followed by a 1°C per minute ramp back up to 25°C. www.tij.co.jp Because of the physical construction of the chamber and its use of fans for air flow within the chamber, false triggers were observed during the temperature ramping periods. During the soaking periods, false triggering subsided over the entire temperature range tested, which proves the functionality of the design over the temperature extremes. This observation is common for PIR-based motion detectors and for this reason are generally not recommended for installation near ventilation. The only known way to prevent the false triggering during this test is to cover the sensor so it could not be affected by thermal gradients due to forced air flow and reflections off the walls of the chamber; however, this was not done as part of this measurement. To prevent false detection due to rapid changes in humidity, the humidity was slowly ramped during the test as would be expected in a typical operating environment. The test consisted of applying a 1% per minute ramp from 20% to 70% and then back down to 20% with a 30-minute initial soak. The temperature was held at 45°C to prevent condensation; however, condensation was observed at 68% and higher humidity points. The only anomaly observed during this test was at the point where condensation formed on the PCB, which produced false triggering. As the humidity dropped to a point where the PCB dried, the false triggering stopped and was not observed for the remainder of the test. # 7.3.2 Motion Sensitivity The motion sensitivity range was measured by connecting a dual pulse stretcher design built on a generic prototyping PCB with LED outputs on each channel for visual indication. The inputs to the pulse stretcher are connected to the window comparator output test points of the reference design. Using this method, the PIR sensor was allowed to remain stationary at a fixed location while the LED's indicate when motion is being detected. The pulse stretcher was powered using its own coin cell battery so that it does not interfere with or modify the operation of the PIR sensor being tested. The farthest distance at which reliable detection of motion was indicated was then measured and reported as the motion sensitivity. Pictures of this setup are shown in \boxtimes 20. Test Setup www.tij.co.jp 図 20. Motion Sensitivity Test Setup (Top: No Motion; Bottom: Motion Detected) #### 7.3.3 Wireless RF Range The range of the Wireless Sub-1GHz RF was measured using the CC1111 USB dongle described in 6.2.2. For this test, the PIR PCB remained at a stationary location as a laptop with the CC1111 USB dongle attached and listening was moved away from the PIR PCB. While the CC1111 was on the move, the PIR design was being reset at regular short intervals to make sure there were radio packets constantly being transmitted. The distance at which packets were no longer received was then measured. Different orientations of the PCB and the CC1111 USB dongle with respect to one another were used during the test. No discernable change in the Wireless RF range was observed. www.tij.co.jp Test Setup # 7.3.4 RF Immunity The immunity of this TI Design with respect to radiated RF disturbances was measured according to IEC61000-4-3 with an extended low frequency range. The IEC standard is specified for a frequency range of 80 MHz to 1 GHz; however, this testing was extended down to 10 kHz to look for susceptibility in the design for disturbances closer to the pass band of the circuit. The setup consisted of connecting the pulse stretcher board used in 7.3.2 to the window comparator outputs and monitoring the LEDs for activity with a camera inside the anechoic chamber. Additionally, a field strength probe was placed near the board under test for control and monitoring of the RF field strength level being tested. This test setup is shown in \boxtimes 21. 図 21. RF Immunity Test Setup The biconical antenna shown in \boxtimes 21 was used for the frequency range from 30 MHz to 1 GHz in both the horizontal and vertical orientation (vertical orientation shown). For frequencies lower than 30 MHz, it was necessary to use a rod antenna in a single orientation. Test Data www.tij.co.jp #### 8 Test Data 注: Unless otherwise noted, the test data in the following sections were measured with the system at room temperature. All of the measurements in this section were measured with calibrated lab equipment. #### 8.1 Power Characterization The supply current for the different circuit paths in this design was measured using an initial prototype design. This information was used early in the design process to balance the battery lifetime with motion sensitivity specifications and the sensor bias. This data was also compared to measurements made on the reference design hardware to make sure there was a good correlation between initial results and final results. Additionally, the reference design hardware was measured versus supply voltage to look at the supply current variation with respect to that variable. The supply current data is shown in the following tables. 表 2. Low-Power PIR Motion Detector Motion Sensitivity Results | CIRCUIT PATH | SUPPLY CURRENT (IDLE) | | | |----------------|-----------------------|----------|--| | CIRCUIT FATH | NOMINAL | MEASURED | | | Sensor | 600 nA | 594 nA | | | Comparators ×2 | 150 nA | 150 nA | | | Divider | 50 nA | 50 nA | | | Opamp1 | 374 nA | 360 nA | | | Opamp2 | 409 nA | 380 nA | | | CC1310 | 100 nA | 120 nA | | | Total | 1.683 µA | 1.654 µA | | 表 3. Low-Power PIR Motion Detector Motion Sensitivity Results | V | SUPPLY CURRENT | | | | |-----------------|----------------|---------|---------|--| | V _{cc} | SHUTDOWN | ACTIVE | DELTA | | | 3.8 V | 1.75 μΑ | 2.46 μΑ | 0.71 μΑ | | | 3.6 V | 1.73 μΑ | 2.45 μΑ | 0.72 μΑ | | | 3.3 V | 1.69 µA | 2.36 μΑ | 0.67 μΑ | | | 3.0 V | 1.65 μΑ | 2.30 μΑ | 0.65 μΑ | | | 2.7 V | 1.64 µA | 2.28 μΑ | 0.64 μΑ | | | 2.4 V | 1.60 μΑ | 2.22 μΑ | 0.62 μΑ | | | 2.2 V | 1.59 µA | N/A | N/A | | As can be seen, there is a good correlation between the reference design hardware, the initial prototype measurements, and nominal calculated supply current values. Another observation from $\frac{1}{2}$ 3 is that there is a slight positive dependence of supply current on supply voltage, which is expected. However, this also suggests that battery life calculations based on average values will be conservative because the supply current decreases as the battery ages. www.tij.co.jp Test Data The two modes shown in $\gtrsim 3$ relate to the modes described in $\boxtimes 9$. The Delta column is used to determine the supply current increase between these two modes as this is the value that will be used in the battery life calculations. The highlighted row in $\gtrsim 3$ was included for informational purposes only. At this voltage, the sensor becomes too noisy and starts to generate false
triggers. The current in shutdown mode was only measured by programming the user mode to keep the MCU in shutdown and ignore interrupts, which is also why there is no data reported for the Active mode at this supply voltage level. The values to be used in the battery life calculations from $\frac{1}{8}$ 3 are the average current over the range of battery voltages from 3.3 V to 2.4 V. For Shutdown mode, the average current is $1.65 \,\mu$ A while the average Delta current between Shutdown and Active mode is $0.645 \,\mu$ A. The final part of the power characterization was to measure the high current interval during radio transmissions when changing modes. The oscilloscope picture of this event is shown in № 22 and № 23. 図 22. Radio Transmission Event Supply Current (Zoomed in) 図 23. Radio Transmission Event Supply Current (Full Picture) Test Data www.tij.co.jp The results for the average current calculation during the radio transmission interval from Excel is 1.12 mA over a total duration of 104.1 ms. The data values highlighted in this section are used in the following section to calculate the expected battery life for different expected use conditions. www.tij.co.jp Test Data ## 8.2 Battery Life Calculations The computation of battery life for this reference design is complicated by the myriad of different applications and use conditions possible for this type of sensor node. The approach taken here computes the average between two different expected likely use conditions and the worst case use condition. These use conditions are described as follows: - Case 1: Worst case: 10 motion events per hour for every hour for the life of the battery. Each of these motion events is a walk through event meaning that an interrupt is generated by a body moving through the field of view once, allowing the active timer to expire and re-enter Shutdown mode before the next event occurs. - Case 2: Busy room in an office environment case: 14 hours in Shutdown, 10 hours with constant motion such that the active timer does not expire once activated. - Case 3: Room with intermittent motion during business hours case: 14 hours in Shutdown, 10 hours with 10 motion events per hour every hour. Similar to Case 1, each of these events is a walk through event. Another available knob in the optimization of battery life for this reference design is the active timer value. The default value in firmware is 1 minute. Since this value can be modified, the battery life for Case 1 and Case 3 are recalculated using a value of 30 seconds to show the expected improvement. The equations for the expected battery life for the three cases in consideration are as follows. General lifetime equation: $$Lifetime = \frac{Battery\ Capacity}{Shutdown\ Current\ +\ Event\ Current\ } \times \frac{1}{8760 hr\ /\ yr} \times Derating\ Factor \tag{13}$$ where Event Current = [(Delta Current × Active Mode Duty Cycle) + (Radio Transmission Current × Duty Cycle)] × Number of Events #### Case 1 $$\label{eq:Lifetime} \text{Lifetime} = \frac{240 \text{ mAH}}{\left\{1.65 \text{ } \mu\text{A} + \left[\left(\!\left(\!645 \text{ nA} \times 60 \text{ s / event}\right)\! + \left(\!1.12 \text{ mA} \times 104.1 \text{ ms / event} \times 2\right)\!\right)\! \times \frac{10 \text{ events / hr}}{3600 \text{ s / hr}}\right]\!\right\}} \times \frac{1}{8760 \text{ hr / yr}} \times 0.85 = 9.68 \text{ years} \times 1.00 \times 10^{-10} 10^{-10$$ #### Case 2 $$Lifetime = \frac{240 \text{ mAH}}{1.65 \mu\text{A} + 645 \text{ nA} \left(\frac{10 \text{ hours}}{24 \text{ hours}}\right) + \left[\frac{(1.12 \text{ mA} \times 104.1 \text{ ms/event}) \times \frac{2 \text{ events/day}}{(3600 \text{ s/hr})(24 \text{ hr/day})}\right]}{(3600 \text{ s/hr})(24 \text{ hr/day})} \times \frac{1}{8760 \text{ hr/yr}} \times 0.85 = 12.12 \text{ years}$$ #### Case 3 $$Lifetime = \frac{240 \, mAH}{\left\{1.65 \, \mu A + \left\lceil \left(\!\left(645 \, nA \times 60 \, s \, / \, event\right)\! + \left(1.12 \, mA \times 104.1 \, ms \, / \, event \times 2\right)\!\right)\! \times \frac{10 \, events \, / \, hr}{3600 \, s \, / \, hr} \times \frac{10 \, hours}{24 \, hours}\right]} \times \frac{1}{8760 \, hr \, / \, yr} \times 0.85 = 11.85 \, years$$ Test Data www.tij.co.jp The derating factor in these equations accounts for self aging of the battery. Based on these equations, the average expected battery lifetime for this reference design with the active timer set to 1 minute is 11.22 years. Re-calculating Case 1 and Case 3 with an active timer set to 30 seconds is 9.9 years and 11.99 years, respectively. The average expected battery life with an active timer value of 30 seconds is therefore 11.34 years. By inspection, decreasing the active timer to 17 seconds or less will yield a worst case estimated battery lifetime of at least 10 years. www.tij.co.jp Test Data ### 8.3 Functional ### 8.3.1 Motion Sensitivity The motion sensitivity was measured for multiple sensors with different bias conditions and two different gain settings. 表 4 summarize these measurement results. 表 4. Low-Power PIR Motion Detector Motion Sensitivity Results | SENSOR | SUPPLY CURRENT
(IDLE) | V _{OUT} (DC) | MAX. DISTANCE
(Av = 90 dB) | MAX. DISTANCE
(Av = 70 dB) | |----------------------------------|--------------------------|-----------------------|-------------------------------|-------------------------------| | $RS = 2.2 M\Omega$, $RD = 1 Ms$ | Ω | | • | | | IRS-B210ST01 | 365 nA | 0.78 V | 20 ft | 6 ft | | IRS-B340ST02 | 355 nA | 0.764 V | 25 ft | 8 ft | | IRA-E700ST0 | 500 nA | 1.093 V | 12 ft | 4.5 ft | | IRA-E712ST3 | 555 nA | 1.204 V | 13 ft | 5 ft | | $RS = 1.3\;M\Omega,RD = 620$ | ΚΩ | | • | | | IRS-B210ST01 | 594 nA | 0.77 V | > 30 ft | 6.5 ft | | IRS-B340ST02 | 572 nA | 0.744 V | 27 ft | 8 ft | | IRA-E700ST0 | 838 nA | 1.085 V | 15 ft | 5 ft | | IRA-E712ST3 | 920 nA | 1.178 V | 17 ft | 7.5 ft | The highlighted cell in $\frac{1}{2}$ 4 illustrates the motion sensitivity of the circuit configuration implemented in this TI Design. ### 8.3.2 Wireless RF Range The wireless RF range was measured to be 220 meters in a typical office environment with partial line of sight. The measured signal strength at this distance was less than –100 dBm as measured by the CC1111 packet sniffer dongle. While this distance is outstanding considering the small footprint of the PCB antenna, there are ways to increase this distance even further. Use of a whip antenna with gain instead of the passive PCB antenna could offer improvements in the wireless RF range. Another option would be to increase the transmit power of the CC1310 to its maximum level at the expense of increased supply current during the radio transmission intervals. Test Data www.tij.co.jp ### 8.3.3 RF Immunity The RF immunity of this design was measured to be 30 V/m over the entire 10-kHz to 1-GHz frequency range. Immunity at field strengths higher than this were not tested due to equipment limitations in the frequency range around 30 MHz. This level also corresponds to Class 3 in the IEC61000-4-3 standard. The only anomaly observed during this test was at the singular frequency step of 728.5 MHz, where the passing immunity level dropped to 29.8 V/m in the horizontal antenna orientation. This drop was due to the wiring connection between the PIR PCB and the pulse stretcher board used for monitoring. ### 8.3.4 Vibration Vibration was not tested on this reference design in any official capacity. Part of the reasoning for this is that finding vibration specifications on commercially available PIR motion detectors is difficult to find. Rudimentary vibration testing was performed in the lab by beating on the desk on which the PIR was also resting and looking for false trigger events at the output of the window comparator. Based on this test, no false triggers were observed as long as the PCB did not physically move. While crude, this test does show that there is nothing systematic in the design itself that would cause false triggers in a normal application aside from the sensor construction itself. A more informative test would include control over vibration frequency and amplitude with both of these being varied. The results of such a test would illustrate potential harmonic sensitivities to vibration. PCB orientation could also be varied as part of this test for a complete picture of the sensitivity to vibration for a given design in different installations. Because such an elaborate test would yield different results based on the physical enclosure that would finally house the PCB design, it was determined that this was beyond the scope of this reference design. All PIR-based motion sensors are sensitive to vibration in some capacity due to the physical construction of the sensor as well as the way it naturally operates. Because the PIR sensor is built using thermopiles, these elements have a crystal structure, which exhibits a piezo-electric effect if the amplitude and frequency of vibration is such that the thermopiles themselves vibrate. A more prevalent effect is due to the entire sensor itself moving. Because a Fresnel lens enlarges the effective field of view of the sensor at substantial distances away from the sensor by focusing IR energy onto the small area of the sensor elements, any small movement of the sensor will result in large movements in the field of view. Due to background IR energy, the sensor output will not be able to distinguish between changes in IR energy due to motion with a static background or the background itself changing rapidly due to movements of the field of view. In other words, the detection of motion is relative. If the sensor is assumed to be perfectly static, motion detected will be relative to the sensor, however, motion will also be detected if the background is static but the sensor is moving. In both cases, the output is valid because there is motion, but the task of narrowing the output to what is desired falls upon the installation and
enclosure design. www.tij.co.jp ## 9 Design Files ### 9.1 Schematics To download the schematics, see the design files at TIDA-00489. 図 24. Power and PIR Sensor Schematic Copyright © 2016, Texas Instruments Incorporated 図 25. Wireless MCU Schematic www.tij.co.jp Design Files #### 9.2 Bill of Materials To download the bill of materials (BOM), see the design files at TIDA-00489. ## 表 5. Low-Power PIR Motion Detector With Sub-1GHz Wireless Connectivity Enabling 10-Year Coin Cell Battery Life BOM | ITEM | DESIGNATOR | QTY | VALUE | PARTNUMBER | MANUFACTURER | DESCRIPTION | PACKAGE
REFERENCE | |------|--------------------------------------|-----|----------|---------------------|---------------------------|---|----------------------| | 1 | !PCB1 | 1 | | ISE4042 | Any | Printed Circuit Board | | | 2 | A1 | 1 | 3.6mVp-p | IRS-B210ST01-R1 | MuRata | Pyroelectric Infrared Sensors for Reflow Soldering, 3.6mVp-p, SMD | 4.7x4.7mm | | 3 | BT1 | 1 | | BS-7 | Memory Protection Devices | Battery Holder, CR2032, Retainer clip, TH | CR2032 holder | | 4 | C1, C55 | 2 | 100uF | C3216X5R1A107M160AC | TDK | CAP, CERM, 100 μF, 10 V, +/- 20%, X5R, 1206_190 | 1206_190 | | 5 | C2 | 1 | 10uF | C1608X5R0J106M | TDK | CAP, CERM, 10 µF, 6.3 V, +/- 20%, X5R, 0603 | 0603 | | 6 | С3 | 1 | 10uF | GRM155R60J106ME44D | MuRata | CAP, CERM, 10 µF, 6.3 V, +/- 20%, X5R, 0402 | 0402 | | 7 | C4, C25 | 2 | 1uF | C1608X7R1C105K | TDK | CAP, CERM, 1 μF, 16 V, +/- 10%, X7R, 0603 | 0603 | | 8 | C5 | 1 | 1uF | C1005X5R1A105K050BB | TDK | CAP, CERM, 1 μF, 10 V, +/- 10%, X5R, 0402 | 0402 | | 9 | C6, C7 | 2 | 0.1uF | C1005X7R1H104K050BB | TDK | CAP, CERM, 0.1 µF, 50 V, +/- 10%, X7R, 0402 | 0402 | | 10 | C8, C9, C26 | 3 | 0.01uF | C1005X7R1C103K | TDK | CAP, CERM, 0.01 µF, 16 V, +/- 10%,
X7R, 0402 | 0402 | | 11 | C10, C11, C27, C53,
C56, C57 | 6 | 1000pF | C1005X7R1H102K | TDK | CAP, CERM, 1000 pF, 50 V, +/- 10%,
X7R, 0402 | 0402 | | 12 | C12, C28 | 2 | 100pF | C0402C101J3GACTU | Kemet | CAP, CERM, 100 pF, 25 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 13 | C13 | 1 | 33uF | C2012X5R1A336M125AC | TDK | CAP, CERM, 33 μF, 10 V, +/- 20%, X5R, 0805 | 0805 | | 14 | C14, C16, C18, C19,
C20, C22, C23 | 7 | 0.1uF | C1005X7R1H104K | TDK | CAP, CERM, 0.1 µF, 50 V, +/- 10%, X7R, 0402 | 0402 | | 15 | C15 | 1 | 0.01uF | C1005X7R1E103K | TDK | CAP, CERM, 0.01 μF, 25 V, +/- 10%,
X7R, 0402 | 0402 | | 16 | C17 | 1 | 3.3uF | C1005X5R1A335K050BC | TDK | CAP, CERM, 3.3 µF, 10 V, +/- 10%, X5R, 0402 | 0402 | | 17 | C21 | 1 | 1000pF | C1005C0G1E102J | TDK | CAP, CERM, 1000 pF, 25 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 18 | C24, C30 | 2 | 2200pF | C1005X7R1H222K | TDK | CAP, CERM, 2200 pF, 50 V, +/- 10%,
X7R, 0402 | 0402 | ## 表 5. Low-Power PIR Motion Detector With Sub-1GHz Wireless Connectivity Enabling 10-Year Coin Cell Battery Life BOM (continued) | ITEM | DESIGNATOR | QTY | VALUE | PARTNUMBER | MANUFACTURER | DESCRIPTION | PACKAGE
REFERENCE | |------|---------------------------------|-----|----------|---------------------|--------------------------------|--|-----------------------------------| | 19 | C31, C33, C34, C35,
C36, C39 | 6 | 0.1uF | GRM155R70J104KA01D | MuRata | CAP, CERM, 0.1 μF, 6.3 V, +/- 10%, X7R, 0402 | 0402 | | 20 | C32, C37 | 2 | 22uF | C1608X5R0J226M080AC | TDK | CAP, CERM, 22 μF, 6.3 V, +/- 20%, X5R, 0603 | 0603 | | 21 | C40 | 1 | 1uF | GRM188R70J105KA01D | MuRata | CAP, CERM, 1 μF, 6.3 V, +/- 10%, X7R, 0603 | 0603 | | 22 | C41, C42 | 2 | 12pF | GRM1555C1E120JA01D | MuRata | CAP, CERM, 12 pF, 25 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 23 | C43, C47 | 2 | 3.6pF | GRM1555C1H3R6CA01D | MuRata | CAP, CERM, 3.6 pF, 50 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 24 | C44, C51 | 2 | 100pF | GRM1555C1H101JA01D | MuRata | CAP, CERM, 100 pF, 50 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 25 | C48 | 1 | 2.7pF | GRM1555C1H2R7CA01D | MuRata | CAP, CERM, 2.7 pF, 50 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 26 | C49 | 1 | 6.2pF | GRM1555C1H6R2CA01D | MuRata | CAP, CERM, 6.2 pF, 50 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 27 | C50 | 1 | 3.3pF | GRM1555C1H3R3CA01D | MuRata | CAP, CERM, 3.3 pF, 50 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 28 | C52 | 1 | 0.6pF | GJM1555C1HR60BB01D | Murata | CAP, CERM, 0.6pF, 50V, NP0/C0G, +-
0.1pF, 0402 | 0402 | | 29 | D2, D3 | 2 | 75V | 1N4148X-TP | Micro Commercial
Components | Diode, Switching, 75 V, 0.3 A, SOD-523 | SOD-523 | | 30 | E1 | 1 | | ANTENNA_HELICAL | N/A | PCB Antenna. There is nothing to buy or mount. | Antenna | | 31 | H1, H4, H6, H8 | 4 | | NY PMS 440 0025 PH | B&F Fastener Supply | Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead | Screw | | 32 | H2, H3, H5, H7 | 4 | | 1902C | Keystone | Standoff, Hex, 0.5"L #4-40 Nylon | Standoff | | 33 | H9 | 1 | | IML-0669 | MuRata | Lens, Ceiling Mount, TH | D12xH8.508mm | | 34 | J1, J6 | 2 | | 87898-0204 | Molex | Header, 2.54 mm, 2x1, Gold, R/A, SMT | Header, 2.54 mm,
2x1, R/A, SMT | | 35 | J2 | 1 | | GRPB052VWVN-RC | Sullins Connector Solutions | Header, 50mil, 5x2, Gold, TH | Header, 5x2, 50mil | | 36 | J3 | 1 | | TSW-102-07-G-S | Samtec | Header, 100mil, 2x1, Gold, TH | 2x1 Header | | 37 | L1 | 1 | 1500 ohm | BLM18HE152SN1D | MuRata | Ferrite Bead, 1500 ohm @ 100 MHz, 0.5 A, 0603 | 0603 | | 38 | L2 | 1 | 6.8uH | MLZ2012N6R8LT000 | TDK | Inductor, Multilayer, Ferrite, 6.8 µH, 0.11 A, 0.25 ohm, SMD | 0805 | | 39 | L3, L5 | 2 | 7.5nH | LQW15AN7N5G00D | MuRata | Inductor, Wirewound, 7.5 nH, 0.57 A, 0.13 ohm, SMD | 1x.5x.5mm | ⁴⁴ コイン電池で10年間のバッテリ寿命を実現するSub-1GHzワイヤレス接続対応の低電力PIRモーション・ディテクタ ## 表 5. Low-Power PIR Motion Detector With Sub-1GHz Wireless Connectivity Enabling 10-Year Coin Cell Battery Life BOM (continued) | ITEM | DESIGNATOR | QTY | VALUE | PARTNUMBER | MANUFACTURER | DESCRIPTION | PACKAGE
REFERENCE | |------|----------------------------|-----|---------|------------------|-----------------------------|--|----------------------------------| | 40 | L4 | 1 | 18nH | LQW15AN18NJ00D | MuRata | Inductor, Wirewound, 18 nH, 0.37 A, 0.27 ohm, SMD | 1x.5x.5mm | | 41 | L6, L7 | 2 | 6.8nH | LQW15AN6N8G00D | MuRata | Inductor, Wirewound, 6.8 nH, 0.7 A, 0.09 ohm, SMD | 1x.5x.5mm | | 42 | L8 | 1 | 11nH | LQW15AN11NG00D | MuRata | Inductor, Wirewound, 11 nH, 0.5 A, 0.14 ohm, SMD | 1x.5x.5mm | | 43 | Q1 | 1 | -20V | SI2323DS | Vishay-Siliconix | MOSFET, P-CH, -20 V, -3.7 A, SOT-23 | SOT-23 | | 44 | R1 | 1 | 0 | CRCW08050000Z0EA | Vishay-Dale | RES, 0, 5%, 0.125 W, 0805 | 0805 | | 45 | R2 | 1 | 619k | CRCW0402619KFKED | Vishay-Dale | RES, 619 k, 1%, 0.063 W, 0402 | 0402 | | 46 | R3 | 1 | 6.81k | CRCW04026K81FKED | Vishay-Dale | RES, 6.81 k, 1%, 0.063 W, 0402 | 0402 | | 47 | R4 | 1 | 1.30Meg | CRCW04021M30FKED | Vishay-Dale | RES, 1.30 M, 1%, 0.063 W, 0402 | 0402 | | 48 | R5 | 1 | 1.50Meg | CRCW04021M50FKED | Vishay-Dale | RES, 1.50 M, 1%, 0.063 W, 0402 | 0402 | | 49 | R6 | 1 | 68.1k | CRCW040268K1FKED | Vishay-Dale | RES, 68.1 k, 1%, 0.063 W, 0402 | 0402 | | 50 | R7, R8, R9, R10, R11 | 5 | 15Meg | RMCF0805JT15M0 | Stackpole Electronics Inc | RES, 15 M, 5%, 0.125 W, AEC-Q200
Grade 0, 0805 | 0805 | | 51 | R12, R13 | 2 | 47.5k | CRCW040247K5FKED | Vishay-Dale | RES, 47.5 k, 1%, 0.063 W, 0402 | 0402 | | 52 | R14, R16, R18, R19,
R20 | 5 | 0 | CRCW04020000Z0ED | Vishay-Dale | RES, 0, 5%, 0.063 W, 0402 | 0402 | | 53 | R15 | 1 | 100k | CRCW0402100KFKED | Vishay-Dale | RES, 100 k, 1%, 0.063 W, 0402 | 0402 | | 54 | S1, S2 | 2 | | B3U-1000P | Omron Electronic Components | SWITCH TACTILE SPST-NO 0.05A 12V | 3x1.6x2.5mm | | 55 | SH-J1, SH-J3, SH-J6 | 3 | 1x2 | 969102-0000-DA | 3M | Shunt, 100mil, Gold plated, Black | Shunt | | 56 | TP1, TP2 | 2 | Black | 5001 | Keystone | Test Point, Miniature, Black, TH | Black Miniature
Testpoint | | 57 | TP6, TP7 | 2 | Yellow | 5004 | Keystone | Test Point, Miniature, Yellow, TH | Yellow Miniature
Testpoint | | 58 | TP8, TP9, TP13 | 3 | SMT | 5015 | Keystone | Test Point, Miniature, SMT | Testpoint_Keystone_
Miniature | | 59 | U2A, U2B | 2 | | LPV802DGKR | Texas Instruments | 350 nA Rail-to-Rail I/O Nanopower
Operational Amplifier Family, DGK0008A | DCK0005A | | 60 | U3, U4 | 2 | | TLV3691IDCK | Texas Instruments | 0.9-V to 6.5-V, Nanopower Comparator, DCK0005A | DCK0005A | | 61 | U5, U6, U7, U8 | 4 | | TPD1E10B06DPYR | Texas Instruments | ESD in 0402 Package with 10 pF
Capacitance and 6 V Breakdown, 1
Channel, -40 to +125 degC, 2-pin X2SON
(DPY), Green (RoHS & no Sb/Br) | DPY0002A | | 62 | U9 | 1 | | CC1310F128RGZR | Texas Instruments | Sub-1 GHz and 2.4 GHz Multi-standard RF IC Family, RGZ0048A | RGZ0048A | ## 表 5. Low-Power PIR Motion Detector With Sub-1GHz Wireless Connectivity Enabling 10-Year Coin Cell Battery Life BOM (continued) | ITEM | DESIGNATOR | QTY | VALUE | PARTNUMBER | MANUFACTURER | DESCRIPTION | PACKAGE
REFERENCE | |------|---------------------------------------|-----|-------|-------------------------------|-------------------|--|--| | 63 | Y1 | 1 | | FC-12M 32.7680KA-A3 | Epson | Crystal, 32.768kHz, 12.5pF, SMD | Crystal
2.05x.6x1.2mm | | 64 | Y2 | 1 | | TSX-3225 24.0000MF20G-
AC3 | Epson | Crystal, 24 MHz, 9 pF, SMD | SMD, 4-Leads, Body
2.65x3.35mm,
Height 0.6mm | | 65 | C29 | 0 | 22uF | C1608X5R0J226M080AC | TDK | CAP, CERM, 22 μF, 6.3 V, +/- 20%, X5R, 0603 | 0603 | | 66 | C38 | 0 | 0.1uF | GRM155R70J104KA01D | MuRata | CAP, CERM, 0.1 μF, 6.3 V, +/- 10%, X7R, 0402 | 0402 | | 67 | C45, C46 | 0 | 12pF | GRM1555C1E120JA01D | MuRata | CAP, CERM, 12 pF, 25 V, +/- 5%, C0G/NP0, 0402 | 0402 | | 68 | C54 | 0 | 1pF | GRM1555C1H1R0CA01D | MuRata | CAP, CERM, 1 pF, 50 V, +/- 5%,
C0G/NP0, 0402 | 0402 | | 69 | FID1, FID2, FID3,
FID4, FID5, FID6 | 0 | | N/A | N/A |
Fiducial mark. There is nothing to buy or mount. | N/A | | 70 | J4 | 0 | | TSW-106-07-G-S | Samtec | Header, 100mil, 6x1, Gold, TH | 6x1 Header | | 71 | J5 | 0 | | CONSMA001-SMD-G | Linx Technologies | Jack, SMA, PCB, Gold, SMT | SMA Jack | | 72 | R17 | 0 | 0 | CRCW04020000Z0ED | Vishay-Dale | RES, 0, 5%, 0.063 W, 0402 | 0402 | www.tij.co.jp Design Files ### 9.3 PCB Layout Recommendations To ensure high performance, the Low-Power PIR Motion Detector With Sub-1GHz Wireless Connectivity Enabling 10-Year Coin Cell Battery Life TI Design was laid out using a four-layer PCB. The second layer is a solid GND pour, and the third layer is used for power rail routing with GND fills in unused areas. The top and bottom layers are used for general signal routing and also have GND fills in unused areas. For all of the TI products used in this TI Design, adhere to the layout guidelines detailed in their respective datasheets. Additionally, because of the low-power design and the resulting high-impedance paths present in the design, keep the signal routes in the analog sensor path between the PIR sensor output and the window comparator input as short as possible with adequate GND fill around these signals. If this design is to be used in an environment where dust or moisture accumulation is possible, be aware that it may be necessary to include a conformal coating to eliminate additional leakage paths due to the operating environment over time. The antenna on this TI Design is the miniature helical PCB antenna for 868 MHz or 915 MHz. See the application note DN038 (SWRA416) for more details about layout and performance. ### 9.3.1 Layout Prints To download the layout prints, see the design files at TIDA-00489. 図 26. Top Silkscreen 図 27. Top Solder Mask 図 28. Top Layer 図 29. GND Layer 図 30. Power Layer 図 31. Bottom Layer 図 32. Bottom Solder Mask 図 33. Bottom Silkscreen 図 34. Board Dimensions ## 9.4 Altium Project To download the Altium project files, see the design files at TIDA-00489. www.tij.co.jp Design Files ## 9.5 Layout Guidelines For the integrated DC-DC converter in the CC1310, the input capacitors C37 and C39, inductor L2, and output capacitor C32 are placed such that the current loop area formed by these components is minimized. 図 35. Low-Power PIR Motion Detector Reference Design Layout Guidelines #### 9.6 Gerber Files To download the Gerber files, see the design files at TIDA-00489. 図 36. Fabrication Drawing www.tij.co.jp Design Files ## 9.7 Assembly Drawings To download the assembly drawings, see the design files at TIDA-00489. 図 37. Top Assembly Drawing 図 38. Bottom Assembly Drawing Software Files www.tij.co.jp ### 10 Software Files To download the software files, see the design files at TIDA-00489. ### 11 References - 1. Texas Instruments, Reverse Current/Battery Protection Circuits, Application Report (SLVA139) - 2. Texas Instruments, Coin Cells and Peak Current Draw, WP001 White Paper (SWRA349) - 3. Texas Instruments, *Miniature Helical PCB Antenna for 868 MHz or 915/920 MHz*, DN038 Application Report (SWRA416) - 4. Texas Instruments WEBENCH® Design Center (http://www.ti.com/webench) #### 11.1 商標 All trademarks are the property of their respective owners. ### 12 About the Authors **DAVID STOUT** is a systems designer at Texas Instruments, where he is responsible for developing reference designs in the industrial segment. David has over 18 years of experience designing Analog, Mixed-Signal, and RF ICs with more than 14 years focused on products for the industrial semiconductor market. David earned his bachelor of science in electrical engineering (BSEE) degree from Louisiana State University, Baton Rouge, Louisiana and a master of science in electrical engineering (MSEE) degree from the University of Texas at Dallas, Richardson, Texas. **CHRISTINA S. LAM** is a systems architect at Texas Instruments, where she is responsible for developing firmware for reference design solutions in the industrial segment. Christina has broad experience with applications processors, microcontrollers, and digital-signal processors with specialties in embedded firmware. Christina earned her bachelor of science (BS) in electrical and computer engineering from the University of Texas at Austin. www.tij.co.jp # リビジョンBの改訂履歴 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Re | evision A (December 2015) から Revision B に変更 Po | age | |----|---|-----| | • | 設計リソースでLPV521をLPV802に 変更 | . 1 | | • | 増幅バンドパスフィルタをLPV521からLPV802に 変更 | . 1 | | • | LPV521についての記載をすべてLPV802に 変更 | . 3 | | • | amplified bandpass filter in 図 1 from LPV521 to LPV802 変更 | . 6 | | • | Ax in 図 5 from LPV521 to LPV802 変更 | 15 | | • | 図 24 to reflect LPV802 変更 | | | • | 図 25 to reflect LPV802 変更 | | | • | 図 26 to reflect LPV802 変更 | 47 | | • | 図 27 to reflect LPV802 変更 | 47 | | • | 図 28 to reflect LPV802 変更 | 47 | | • | 図 29 to reflect LPV802 変更 | | | • | 図 30 to reflect LPV802 変更 | | | • | 図 31 to reflect LPV802 変更 | | | • | 図 32 to reflect LPV802 変更 | | | • | 図 33 to reflect LPV802 変更 | | | • | 図 35 to reflect LPV802 変更 | | | • | 図 37 to reflect LPV802 変更 | | | • | 図 38 to reflect LPV802 変更 | | | | リビジョンAの改訂履歴 | | | 20 | P 215年10月発行のものから更新 | age | | • | プレビュー・ページから 変更 | . 1 | ### TIの設計情報およびリソースに関する重要な注意事項 Texas Instruments Incorporated ("TI")の技術、アプリケーションその他設計に関する助言、サービスまたは情報は、TI製品を組み込んだアプリケーションを開発する設計者に役立つことを目的として提供するものです。これにはリファレンス設計や、評価モジュールに関係する資料が含まれますが、これらに限られません。以下、これらを総称して「TIリソース」と呼びます。いかなる方法であっても、TIリソースのいずれかをダウンロード、アクセス、または使用した場合、お客様(個人、または会社を代表している場合にはお客様の会社)は、これらのリソースをここに記載された目的にのみ使用し、この注意事項の条項に従うことに合意したものとします。 TIによるTIリソースの提供は、TI製品に対する該当の発行済み保証事項または免責事項を拡張またはいかなる形でも変更するものではなく、これらのTIリソースを提供することによって、TIにはいかなる追加義務も責任も発生しないものとします。TIは、自社のTIリソースに訂正、拡張、改良、およびその他の変更を加える権利を留保します。 お客様は、自らのアプリケーションの設計において、ご自身が独自に分析、評価、判断を行う責任がお客様にあり、お客様のアプリケーション(および、お客様のアプリケーションに使用されるすべてのTI製品)の安全性、および該当するすべての規制、法、その他適用される要件への遵守を保証するすべての責任をお客様のみが負うことを理解し、合意するものとします。お客様は、自身のアプリケーションに関して、(1) 故障による危険な結果を予測し、(2) 障害とその結果を監視し、および、(3) 損害を引き起こす障害の可能性を減らし、適切な対策を行う目的での、安全策を開発し実装するために必要な、すべての技術を保持していることを表明するものとします。お客様は、TI製品を含むアプリケーションを使用または配布する前に、それらのアプリケーション、およびアプリケーションに使用されているTI製品の機能性を完全にテストすることに合意するものとします。TIは、特定のTIリソース用に発行されたドキュメントで明示的に記載されているもの以外のテストを実行していません。 お客様は、個別のTIリソースにつき、当該TIリソースに記載されているTI製品を含むアプリケーションの開発に関連する目的でのみ、使用、コピー、変更することが許可されています。明示的または黙示的を問わず、禁反言の法理その他どのような理由でも、他のTIの知的所有権に対するその他のライセンスは付与されません。また、TIまたは他のいかなる第三者のテクノロジまたは知的所有権についても、いかなるライセンスも付与されるものではありません。付与されないものには、TI製品またはサービスが使用される組み合わせ、機械、プロセスに関連する特許権、著作権、回路配置利用権、その他の知的所有権が含まれますが、これらに限られません。第三者の製品やサービスに関する、またはそれらを参照する情報は、そのような製品またはサービスを利用するライセンスを構成するものではなく、それらに対する保証または推奨を意味するものでもありません。TIリソースを使用するため、第三者の特許または他の知的所有権に基づく第三者からのライセンス、あるいはTIの特許または他の知的所有権に基づくTIからのライセンス、あるいはTIの特許または他の知的所有権に基づくTIからのライセンスが必要な場合があります。 TIのリソースは、それに含まれるあらゆる欠陥も含めて、「現状のまま」提供されます。TIは、TIリソースまたはその仕様に関して、明示 的か暗黙的かにかかわらず、他のいかなる保証または表明も行いません。これには、正確性または完全性、権原、続発性の障害に関する保 証、および商品性、特定目的への適合性、第三者の知的所有権の非侵害に対する黙示の保証が含まれますが、これらに限られません。 TIは、いかなる苦情に対しても、お客様への弁護または補償を行う義務はなく、行わないものとします。これには、任意の製品の組み合わせに関連する、またはそれらに基づく侵害の請求も含まれますが、これらに限られず、またその事実についてTIリソースまたは他の場所に記載されているか否かを問わないものとします。いかなる場合も、TIリソースまたはその使用に関連して、またはそれらにより発生した、実際的、直接的、特別、付随的、間接的、懲罰的、偶発的、または、結果的な損害について、そのような損害の可能性についてTIが知らされていたかどうかにかかわらず、TIは責任を負わないものとします。 お客様は、この注意事項の条件および条項に従わなかったために発生した、いかなる損害、コスト、損失、責任からも、TIおよびその代表 者を完全に免責するものとします。 この注意事項はTIリソースに適用されます。特定の種類の資料、TI製品、およびサービスの使用および購入については、追加条項が適用されます。これには、半導体製品(http://www.ti.com/sc/docs/stdterms.htm)、評価モジュール、およびサンプル(http://www.ti.com/sc/docs/sampterms.htm)についてのTIの標準条項が含まれますが、これらに限られません。 Copyright © 2017, Texas Instruments Incorporated 日本語版 日本テキサス・インスツルメンツ株式会社