

TPS61175

JAJS467F - DECEMBER 2008-REVISED APRIL 2019

TPS61175 ソフトスタート搭載、スイッチング周波数をプログラム可能な 3A、高電圧昇圧コンバータ

特長

- 入力電圧範囲: 2.9V~18V 3A、40V の内部スイッチ
- 高効率の電力変換:最大 93%
- 外付け抵抗により周波数を設定: 200kHz~2.2MHz
- 外部同期スイッチング周波数
- 最大負荷までのソフトスタートをユーザー定義
- スキップ・スイッチング・サイクルによる軽負荷 時の出力レギュレーション
- 14ピンHTSSOPパッケージ: PowerPAD™
- WEBENCH Power Designer で、TPS61175 を使 用するカスタム設計を作成

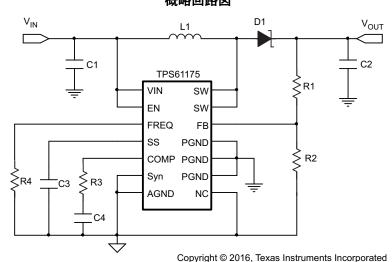
2 アプリケーション

- 5Vから12V、24V の電力変換
- SEPIC およびフライバックのトポロジをサポート
- ADSL モデム
- TV チューナー

3 概要

TPS61175 はモノリシックなスイッチング・レギュレータで、 3A、40V の電力スイッチが内蔵されています。このデバイ スは、昇圧、SEPIC、フライバックなど、複数の標準的なス イッチング・レギュレータのトポロジに構成できます。このデ バイスは広い入力電圧範囲に対応しているため、複数の セルによるバッテリや、レギュレートされた 5V または 12V 電力レールからの入力電圧を使用するアプリケーションを サポートできます。

TPS61175 は、電流モードのパルス幅変調 (PWM) 制御 を使用して、出力電圧をレギュレートします。 PWM のス イッチング周波数は、外付け抵抗、または外部クロック信 号により設定されます。ユーザーは、スイッチング周波数 を 200kHz~2.2MHz の範囲でプログラムできます。

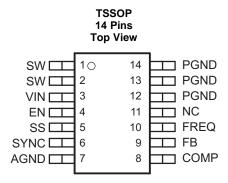

デバイスは、プログラム可能なソフト・スタート機能によっ て、スタートアップ時の突入電流を制限し、パルス単位の 過電流制限やサーマル·シャットダウンなど他の保護機能 も内蔵しています。TPS61175 は、PowerPAD 付きの 14 ピン HTSSOP パッケージで供給されます。

製品情報⁽¹⁾

型番	パッケージ	本体サイズ(公称)
TPS61175	HTSSOP (14)	5.00mm×4.40mm

(1) 提供されているすべてのパッケージについては、データシートの末 尾にある注文情報を参照してください。

概略回路図



Ħ	次
—	~

	特長 1	8	Application and Implementation	12
2	アプリケーション1		8.1 Application Information	
3	概要1		8.2 Typical Application	
4	改訂履歴	9	Power Supply Recommendations	
_	Pin Configuration and Functions		Layout	
5			10.1 Layout Guidelines	
6	Specifications4		10.2 Layout Example	
	6.1 Absolute Maximum Ratings		10.3 Thermal Considerations	
	6.2 ESD Ratings	11	デバイスおよびドキュメントのサポート	
	6.3 Recommended Operating Conditions 4	• • • • • • • • • • • • • • • • • • • •	11.1 デバイス・サポート	
	6.4 Thermal Information5			
	6.5 Electrical Characteristics 5		11.2 開発サポート	
	6.6 Typical Characteristics		11.3 ドキュメントの更新通知を受け取る方法	
7	Detailed Description 8		11.4 コミュニティ・リソース	
	7.1 Overview 8		11.5 商標	
	7.2 Functional Block Diagram 8		11.6 静電気放電に関する注意事項	
	7.3 Feature Description9		11.7 Glossary	
	7.4 Device Functional Modes	12	メカニカル、パッケージ、および注文情報	23
	女訂履歴 sion E (February 2019) から Revision F に変更			Page
	更 Soft Start figure reference to point to the correct soft sta			
変	E更 "≤" sign in 式 7 to "≥"			14
evis	sion D (April 2016) から Revision E に変更			Page
	hanged Handing Ratings table to ESD Ratings; moved Stor	-	· ·	
	pdated symbols in <i>Thermal Information</i>			
追	肋 the $I_{\text{IN(MAX)}}$ for the $I_{\text{OUT(max)}}$ calculation equation			
				14
	1O(A			
evis	sion C (August 2014) から Revision D に変更			Page
evis	sion C (August 2014) から Revision D に変更 evised second paragraph of <i>Minimum ON Time and Pulse</i> 3			Page
evis R	evised second paragraph of Minimum ON Time and Pulse S			Page 11
evis R				Page
evis R evis	evised second paragraph of <i>Minimum ON Time and Pulse</i> sion B (February 2012) から Revision C に変更 取り扱い定格」表、「機能説明」セクション、「デバイスの機能モール 関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよ	Skipping ド」セクシ ナびドキ=	y section or clarity y section or clarity y section or clarity y section or clarity まン、「アプリケーションと実装」セクション、「電源 ない、「メカニカル、パック	Page 11 Page ⊱
evis R evis	evised second paragraph of <i>Minimum ON Time and Pulse</i> sion B (February 2012) から Revision C に変更 取り扱い定格」表、「機能説明」セクション、「デバイスの機能モート	Skipping ド」セクシ ナびドキ=	y section or clarity y section or clarity y section or clarity y section or clarity まン、「アプリケーションと実装」セクション、「電源 ない、「メカニカル、パック	Page 11 Page ⊱
evis R evis	evised second paragraph of <i>Minimum ON Time and Pulse</i> sion B (February 2012) から Revision C に変更 取り扱い定格」表、「機能説明」セクション、「デバイスの機能モール 関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよ	Skipping ド」セクシ ナびドキ=	y section or clarity y section or clarity y section or clarity y section or clarity まン、「アプリケーションと実装」セクション、「電源 ない、「メカニカル、パック	Page 11 Page ⊱
evis	evised second paragraph of <i>Minimum ON Time and Pulse</i> Sion B (February 2012) から Revision C に変更 取り扱い定格」表、「機能説明」セクション、「デバイスの機能モール 関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよ 、および注文情報」セクション 追加	Skipping ド」セクシ けびドキ=	y section or clarity /ョン、「アプリケーションと実装」セクション、「電源 ュメントのサポート」セクション、「メカニカル、パック	Page11 Page / / Page / Page
evis R evis 「 及 evis	evised second paragraph of <i>Minimum ON Time and Pulse</i> Sion B (February 2012) から Revision C に変更 取り扱い定格」表、「機能説明」セクション、「デバイスの機能モール 関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよう、および注文情報」セクション 追加	Skipping ド」セクシ けびドキ=	y section or clarity /ョン、「アプリケーションと実装」セクション、「電源 ュメントのサポート」セクション、「メカニカル、パック	Page 11 Page 1 Page 1
evis R evis 「 及 evis	evised second paragraph of <i>Minimum ON Time and Pulse</i> sion B (February 2012) から Revision C に変更 取り扱い定格」表、「機能説明」セクション、「デバイスの機能モール 関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよ 、および注文情報」セクション 追加	Skipping ド」セクシ けびドキ=	y section or clarity /ョン、「アプリケーションと実装」セクション、「電源 ュメントのサポート」セクション、「メカニカル、パック	Page11 Page / / Page / Page

5 Pin Configuration and Functions

Pin Functions

PIN			DESCRIPTION
		I/O	DESCRIPTION
NAME	NO.		
AGND	7	ı	Signal ground of the IC
COMP	8	0	Output of the internal transconductance error amplifier. An external RC network is connected to this pin to compensate the regulator.
EN	4	I	Enable pin. When the voltage of this pin falls below the enable threshold for more than 10ms, the IC turns off.
FB	9	I	Feedback pin for positive voltage regulation. Connect to the center tap of a resistor divider to program the output voltage.
FREQ	10	0	Switch frequency program pin. An external resistor is connected to this pin to set switch frequency. See application section for information on how to size the FREQ resistor.
NC	11	I	Reserved pin. Must connect this pin to ground.
PGND	12,13,14	I	Power ground of the IC. It is connected to the source of the PWM switch.
SS	5	0	Soft start programming pin. A capacitor between the SS pin and GND pin programs soft start timing. See Application and Implementation for information on how to size the SS capacitor.
SW	1,2	I	This is the switching node of the IC. Connect SW to the switched side of the inductor.
SYNC	6	I	Switch frequency synchronous pin. Customers can use an external signal to set the IC switch frequency between 200-kHz and 2.2-MHz. If not used, this pin should be tied to AGND as short as possible to avoid noise coupling.
Thermal Pad			The thermal pad should be soldered to the analog ground. If possible, use thermal via to connect to top and internal ground plane layers for ideal power dissipation.
VIN	3	I	The input supply pin for the IC. Connect VIN to a supply voltage between 2.9 V and 18 V. It is acceptable for the voltage on the pin to be different from the boost power stage input for applications requiring voltage beyond VIN range.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply voltages on pin VIN ⁽²⁾	-0.3	20	V
Voltages on pins EN ⁽²⁾	-0.3	20	V
Voltage on pin FB, FREQ and COMP (2)	-0.3	3	V
Voltage on pin SYNC, SS ⁽²⁾	-0.3	7	V
Voltage on pin SW ⁽²⁾	-0.3	40	V
Continuous power dissipation	See T	nermal Informatio	n
Operating junction temperature range	-40	150	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{IN}	Input voltage	2.9	18	V
Vo	Output voltage	V _{IN}	38	V
L	Inductor ⁽¹⁾	4.7	47	μН
f_{SW}	Switching frequency	200	2200	kHz
CI	Input capacitor	4.7		μF
Co	Output capacitor	4.7		μF
V_{SYN}	External switching frequency logic		5	V
T _A	Operating ambient temperature	-40	85	°C
T_{J}	Operating junction temperature	-40	125	°C

⁽¹⁾ The inductance value depends on the switching frequency and end application. While larger values may be used, values between 4.7- µH and 47-µH have been successfully tested in various applications. Refer to Selecting the Inductor for detail.

⁽²⁾ All voltage values are with respect to network ground terminal.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		TPS61175	
	THERMAL METRIC ⁽¹⁾	PWP (HTSSOP)	UNIT
		14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	45.2	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	34.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	30.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	29.9	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	5.8	°C/W

⁽¹⁾ 従来および新しい熱測定値の詳細については、『Semiconductor and IC Package Thermal Metrics』アプリケーション・レポート (SPRA953)を参照してください。

6.5 Electrical Characteristics

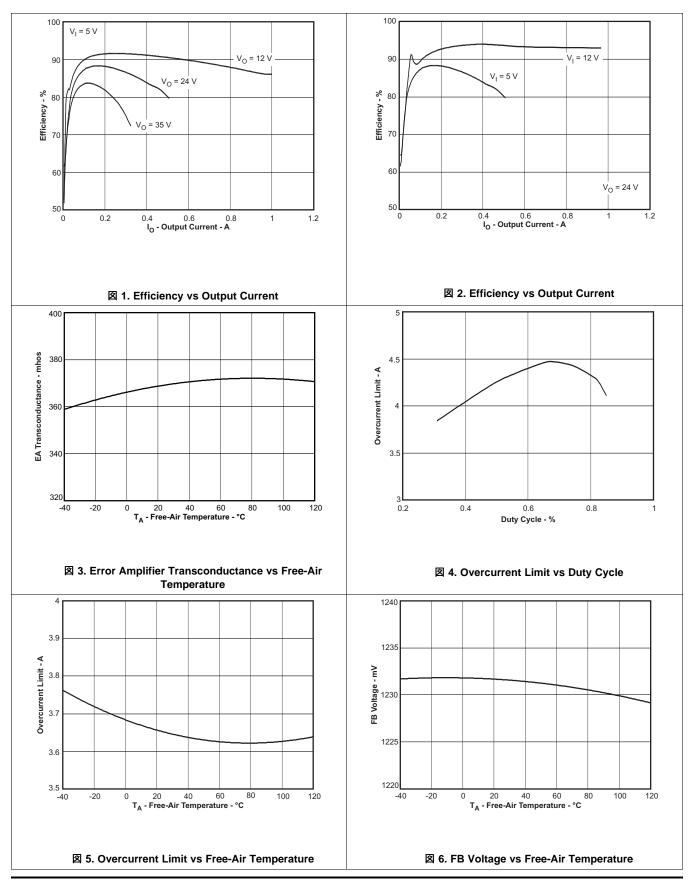
FSW = 1.2 MHz (R_{freq} = 80 k Ω), V_{IN} = 3.6 V, T_A = -40°C to +85°C, typical values are at T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY	CURRENT		<u>'</u>		•	
V _{IN}	Input voltage range		2.9		18	V
IQ	Operating quiescent current into Vin	Device PWM switching without load			3.5	mA
I _{SD}	Shutdown current	EN=GND			1.5	μΑ
V _{UVLO}	Under-voltage lockout threshold			2.5	2.7	V
V _{hys}	Under-voltage lockout hysteresis			130		mV
ENABLE	AND REFERENCE CONTROL	•	*		•	
V _{enh}	EN logic high voltage	V _{IN} = 2.9 V to 18 V	1.2			V
V _{enl}	EN logic low voltage	V _{IN} = 2.9 V to 18 V			0.4	V
V _{SYNh}	SYN logic high voltage		1.2			
V _{SYNI}	SYN logic low voltage				0.4	V
R _{en}	EN pull down resistor		400	800	1600	kΩ
T _{off}	Shutdown delay, SS discharge	EN high to low	10			ms
VOLTAG	E AND CURRENT CONTROL					
V _{REF}	Voltage feedback regulation voltage		1.204	1.229	1.254	V
I _{FB}	Voltage feedback input bias current				200	nA
l _{sink}	Comp pin sink current	$V_{FB} = V_{REF} + 200 \text{ mV}, V_{COMP} = 1 \text{ V}$		50		μΑ
I _{source}	Comp pin source current	$V_{FB} = V_{REF} -200 \text{ mV}, V_{COMP} = 1 \text{ V}$		130		μΑ
V_{CCLP}	Comp pin clamp voltage	High Clamp, $V_{FB} = 1 \text{ V}$ Low Clamp, $V_{FB} = 1.5 \text{ V}$		3 0.75		V
V _{CTH}	Comp pin threshold	Duty cycle = 0%		0.95		V
G _{ea}	Error amplifier transconductance		240	340	440	μmho
R _{ea}	Error amplifier output resistance			10		МΩ
f _{ea}	Error amplifier crossover frequency			500		KHz

Electrical Characteristics (continued)

FSW = 1.2 MHz (R_{freq} = 80 k Ω), V_{IN} = 3.6 V, T_A = -40°C to +85°C, typical values are at T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FREQUE	NCY					
		Rfreq = $480 \text{ k}\Omega$	0.16	0.21	0.26	
f_S	Oscillator frequency	Rfreq = $80 \text{ k}\Omega$	1.0	1.2	1.4	MHz
		Rfreq = $40 \text{ k}\Omega$	1.76	2.2	2.64	
D _{max}	Maximum duty cycle	$V_{FB} = 1 \text{ V, Rfreq} = 80 \text{ k}\Omega$	89%	93%		
V _{FREQ}	FREQ pin voltage			1.229		V
T _{min_on}	Minimum on pulse width	Rfreq = 80 kΩ		60		ns
POWER S	SWITCH	•	•			
R _{DS(ON)}	N-channel MOSFET on-resistance	$V_{IN} = V_{GS} = 3.6 \text{ V}$ $V_{IN} = V_{GS} = 3.0 \text{ V}$		0.13 0.13	0.25 0.3	Ω
I _{LN_NFET}	N-channel leakage current	V _{DS} = 40 V, T _A = 25°C			1	μА
OC, OVP	AND SS					
I _{LIM}	N-Channel MOSFET current limit	$D = D_{max}$	3	3.8	5	Α
I _{SS}	Soft start bias current	Vss = 0 V		6		μА
THERMAI	SHUTDOWN					
T _{shutdown}	Thermal shutdown threshold			160		°C
T _{hysteresis}	Thermal shutdown threshold hysteresis			15		°C

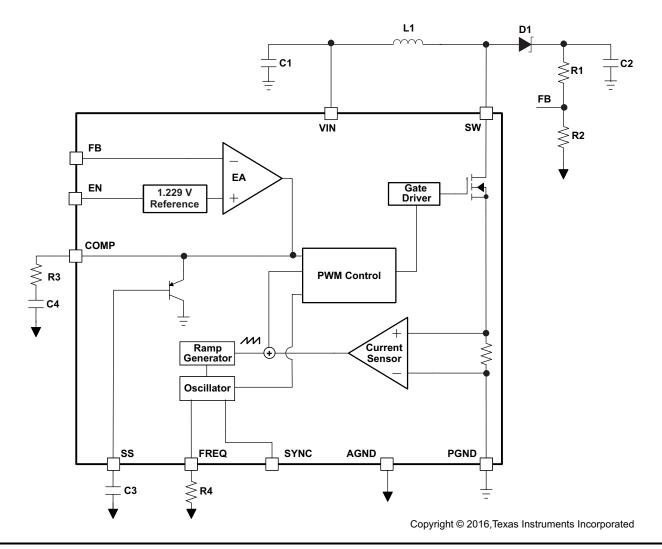

6.6 Typical Characteristics

Circuit of \boxtimes 1; L1 = D104C2-10 μ H; D1 = SS3P6L-E3/86A, R4 = 80k Ω , R3 = 10k Ω , C4 = 22nF, C2 = 10 μ F; V_{IN} = 5V, V_{OUT} = 24V, I_{OUT} = 200mA (unless otherwise noted)

表 1. Table Of Graphs

		FIGURE
Efficiency	V _{IN} = 5 V, V _{OUT} = 12 V, 24 V, 35 V	図 1
Efficiency	V _{IN} = 5 V, 12 V; V _{OUT} = 24 V	図 2
Error amplifier transconductance	vs Temperature	図 3
Switch current limit	vs Temperature	☑ 4
Switch current limit	vs Duty cycle	図 5
FB accuracy	vs Temperature	⊠ 6
Line transient response	VIN = 4.5 V to 5 V	図 12
Load transient response	IOUT = 100 mA to 300 mA; refer to 'compensating the control loop' for optimization	図 13
PWM Operation		☑ 14
Pulse skipping	No load	図 15
Start-up	C3 = 47 nF	図 16

7 Detailed Description


7.1 Overview

The TPS61175 integrates a 40-V low-side switch FET for up to 38-V output. The device regulates the output with current mode pulse width modulation (PWM) control. The PWM control circuitry turns on the switch at the beginning of each switching cycle. The input voltage is applied across the inductor and stores the energy as inductor current ramps up. During this portion of the switching cycle, the load current is provided by the output capacitor. When the inductor current rises to the threshold set by the error amplifier output, the power switch turns off and the external Schottky diode is forward biased. The inductor transfers stored energy to replenish the output capacitor and supply the load current. This operation repeats each every switching cycle. As shown in Functional Block Diagram, the duty cycle of the converter is determined by the PWM control comparator which compares the error amplifier output and the current signal. The switching frequency is programmed by the external resistor or synchronized to an external clock signal.

A ramp signal from the oscillator is added to the current ramp to provide slope compensation. Slope compensation is necessary to avoid subharmonic oscillation that is intrinsic to the current mode control at duty cycle higher than 50%. If the inductor value is lower than $4.7~\mu H$, the slope compensation may not be adequate.

The feedback loop regulates the FB pin to a reference voltage through a transconductance error amplifier. The output of the error amplifier is connected to the COMP pin. An external RC compensation network is connected to the COMP pin to optimize the feedback loop for stability and transient response.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Switching Frequency

The switch frequency is set by a resistor (R4) connected to the FREQ pin of the TPS61175. Do not leave this pin open. A resistor must always be connected for proper operation. See 表 2 and 図 7 for resistor values and corresponding frequencies.

表 2. Switching	Frequency vs	External Resistor
----------------	--------------	--------------------------

R4 (kΩ)	f _{SW} (kHz)
443	240
256	400
176	600
80	1200
51	2000

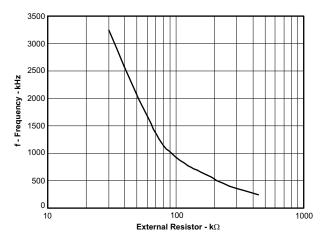


図 7. Switching Frequency vs External Resistor

Alternatively, the TPS61175 switching frequency will synchronize to an external clock signal that is applied to the SYNC pin. The logic level of the external clock is shown in the specification table. The duty cycle of the clock is recommended in the range of 10% to 90%. The resistor also must be connected to the FREQ pin when IC is switching by the external clock. The external clock frequency must be within ±20% of the corresponding frequency set by the resistor. For example, if the corresponding frequency as set by a resistor on the FREQ pin is 1.2-MHz, the external clock signal should be in the range of 0.96 MHz to 1.44 MHz.

If the external clock signal is higher than the frequency per the resistor on the FREQ pin, the maximum duty cycle specification (D_{MAX}) should be lowered by 2%. For instance, if the resistor set value is 2.5 MHz, and the external clock is 3 MHz, D_{MAX} is 87% instead of 89%.

7.3.2 Soft Start

The TPS61175 has a built-in soft start circuit which significantly reduces the start-up current spike and output voltage overshoot. When the IC is enabled, an internal bias current (6 μ A typically) charges a capacitor (C3) on the SS pin. The voltage at the capacitor clamps the output of the internal error amplifier that determines the duty cycle of PWM control, thereby the input inrush current is eliminated. Once the capacitor reaches 1.8 V, the soft start cycle is completed and the soft-start voltage no longer clamps the error amplifier output. Refer to \boxtimes 16 for the soft start waveform. See \gtrless 3 for C3 and corresponding soft start time. A 47-nF capacitor eliminates the output overshoot and reduces the peak inductor current for most applications.

表 3. Soft-Start Time vs C3

V _{IN} (V)	V _{OUT} (V)	LOAD (A)	C _{OUT} (μF)	f _{SW} (MHz)	C3 (nF)	t _{SS} (ms)	OVERSHOT (mV)	
E	24	0.4	10	1.0	47	4	none	
5	5 24	0.4	10	1.2	10	0.8	210	
10	25	0.6	40	10	2	100	6.5	none
12 35	35	0.6	10	2	10	0.4	300	

When the EN is pulled low for 10 ms, the IC enters shutdown and the SS capacitor discharges through a $5-k\Omega$ resistor for the next soft start.

7.3.3 Overcurrent Protection

The TPS61175 has a cycle-by-cycle overcurrent limit protection that turns off the power switch once the inductor current reaches the overcurrent limit threshold. The PWM circuitry resets itself at the beginning of the next switch cycle. During an overcurrent event, the output voltage begins to droop as a function of the load on the output. When the FB voltage drops lower than 0.9 V, the switching frequency is automatically reduced to 1/4 of the set value. The switching frequency does not reset until the overcurrent condition is removed. This feature is disabled during soft start.

7.3.4 Enable and Thermal Shutdown

The TPS61175 enters shutdown when the EN voltage is less than 0.4 V for more than 10 ms. In shutdown, the input supply current for the device is less than 1.5 μ A (maximum). The EN pin has an internal 800-k Ω pulldown resistor to disable the device when it is floating.

An internal thermal shutdown turns off the device when the typical junction temperature of 160°C is exceeded. The IC restarts when the junction temperature drops by 15°C.

7.3.5 Undervoltage Lockout (UVLO)

An undervoltage lockout circuit prevents mis-operation of the device at input voltages below 2.5-V (typical). When the input voltage is below the undervoltage threshold, the device remains off, and the internal switch FET is turned off. The UVLO threshold is set below minimum operating voltage of 2.9 V to avoid any transient VIN dip triggering the UVLO and causing the device to reset. For the input voltages between UVLO threshold and 2.9 V, the device attempts to operate, but the specifications are not ensured.

7.4 Device Functional Modes

7.4.1 Minimum ON Time and Pulse Skipping

Once the PWM switch is turned on, the TPS61175 has minimum ON pulse width of 60 ns. This sets the limit of the minimum duty cycle of the PWM switch, and it is independent of the set switching frequency. When operating conditions result in the TPS61175 having a minimum ON pulse width less than 60 ns, the IC enters pulse-skipping mode. In this mode, the device keeps the power switch off for several switching cycles to keep the output voltage from rising above the regulated voltage. This operation typically occurs in light load condition when the PWM operates in discontinuous mode. Pulse skipping increases the output voltage ripple, see $\boxed{3}$ 15.

When setting switching frequency higher than 1.2 MHz, TI recommends using an external synchronous clock as switching frequency to ensure pulse-skipping function works at light load. When using the internal switching frequency above 1.2 MHz, the pulse-skipping operation may not function. When the pulse-skipping function does not work at light load, the TPS61175 always runs in PWM mode with minimum ON pulse width. To keep the output voltage in regulation, a minimum load is required. The minimum load is related to the input voltage, output voltage, switching frequency, external inductor value and the maximum value of the minimum ON pulse width. Use \pm 1 and \pm 2 to calculate the required minimum load at the worst case. The maximum t_{min_ON} could be estimated to 80 ns. c_{SW} is the total parasite capacitance at the switching node SW pin. It could be estimated to 100 pF.

$$I_{(min_load)} = \frac{1}{2} \times \frac{\left(V_{lN} \times t_{min_ON} + (V_{OUT} + V_{D} - V_{lN}) \times \sqrt{L \times C_{SW}}\right)^{2} \times f_{SW}}{L \times \left(V_{OUT} + V_{D} - V_{lN}\right)} \quad \text{When } V_{OUT} + V_{D} - V_{lN} < V_{lN}$$
(1)

$$I_{(min_load)} = \frac{1}{2} \times \frac{\left(V_{IN} \times t_{min_ON} + V_{IN} \times \sqrt{L \times C_{SW}}\right)^{2} \times f_{SW}}{L \times \left(V_{OUT} + V_{D} - V_{IN}\right)} \quad \text{When } V_{OUT} + V_{D} - V_{IN} > V_{IN}$$
(2)

8 Application and Implementation

8.1 Application Information

The following section provides a step-by-step design approach for configuring the TPS61175 as a voltage regulating boost converter, as shown in 🗵 8. When configured as SEPIC or flyback converter, a different design approach is required.

8.2 Typical Application

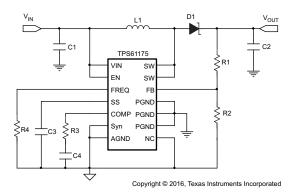


図 8. Boost Converter Configuration

8.2.1 Design Requirements

表 4. Design Parameters

PARAMETERS	VALUES
Input voltage	5 V
Output voltage	24 V
Operating frequency	1.2 MHz

8.2.2 Detailed Design Procedure

8.2.2.1 Custom Design with WEBENCH Tools

Click here to create a custom design using the TPS61175 device with the WEBENCH® Power Designer.

- 1. Start by entering your V_{IN}, V_{OUT} and I_{OUT} requirements.
- 2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and compare this design with other possible solutions from Texas Instruments.
- 3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real time pricing and component availability.
- 4. In most cases, you will also be able to:
 - Run electrical simulations to see important waveforms and circuit performance,
 - Run thermal simulations to understand the thermal performance of your board,
 - Export your customized schematic and layout into popular CAD formats,
 - Print PDF reports for the design, and share your design with colleagues.
- 5. Get more information about WEBENCH tools at www.ti.com/webench.

8.2.2.2 Determining the Duty Cycle

The TPS61175 has a maximum worst case duty cycle of 89% and a minimum on time of 60 ns. These two constraints place limitations on the operating frequency that can be used for a given input to output conversion ratio. The duty cycle at which the converter operates is dependent on the mode in which the converter is running. If the converter is running in discontinuous conduction mode (DCM), where the inductor current ramps to zero at the end of each cycle, the duty cycle varies with changes to the load much more than it does when running in continuous conduction mode (CCM). In continuous conduction mode, where the inductor maintains a dc current, the duty cycle is related primarily to the input and output voltages as computed in 式 3:

$$D = \frac{V_{OUT} + V_D - V_{IN}}{V_{OUT} + V_D}$$
(3)

In discontinuous mode the duty cycle is a function of the load, input and output voltages, inductance and switching frequency as computed in ± 4 :

$$D = \frac{2 \times (V_{OUT} + V_D) \times I_{OUT} \times L \times f_{SW}}{V_{IN}^2}$$
(4)

All converters using a diode as the freewheeling or catch component have a load current level at which they transition from discontinuous conduction to continuous conduction. This is the point where the inductor current just falls to zero. At higher load currents, the inductor current does not fall to zero but remains flowing in a positive direction and assumes a trapezoidal wave shape as opposed to a triangular wave shape. This load boundary between discontinuous conduction and continuous conduction can be found for a set of converter parameters in \vec{x} 5:

$$I_{OUT(crit)} = \frac{(V_{OUT} + V_D - V_{IN}) \times V_{IN}^2}{2 \times (V_{OUT} + V_D)^2 \times f_{SW} \times L}$$
(5)

For loads higher than the result of ± 5 , the duty cycle is given by ± 3 and for loads less that the results of ± 4 , the duty cycle is given ± 5 . For ± 3 through ± 5 , the variable definitions are as follows:

- V_{OUT} is the output voltage of the converter in V
- V_D is the forward conduction voltage drop across the rectifier or catch diode in V
- V_{IN} is the input voltage to the converter in V
- I_{OUT} is the output current of the converter in A
- . L is the inductor value in H
- f_{SW} is the switching frequency in Hz

Unless otherwise stated, the design equations that follow assume that the converter is running in continuous mode.

8.2.2.3 Selecting the Inductor

The selection of the inductor affects steady state operation as well as transient behavior and loop stability. These factors make it the most important component in power regulator design. There are three important inductor specifications, inductor value, DC resistance and saturation current. Considering inductor value alone is not enough.

Inductor values can have $\pm 20\%$ tolerance with no current bias. When the inductor current approaches saturation level, its inductance can fall to some percentage of its 0-A value depending on how the inductor vendor defines saturation current. For CCM operation, the rule of thumb is to choose the inductor so that its inductor ripple current (ΔI_{l}) is no more than a certain percentage (RPL% = 20–40%) of its average DC value ($I_{lN(AVG)} = I_{L(AVG)}$).

ent (
$$\Delta I_L$$
) is no more than a certain percentage (RPL% = 20–40%) of its average DC value ($I_{IN(AVG)} = I_{L(AVG)}$).

$$\Delta I_L = \frac{V_{IN} \times D}{L \times f_{SW}} = \frac{(V_{OUT} + V_D - V_{IN}) \times (1 - D)}{L \times f_{SW}} = \frac{1}{\left[L \times f_{SW} \times \left(\frac{1}{V_{OUT} + V_D - V_{IN}} + \frac{1}{V_{IN}}\right)\right]}$$

$$\leq RPL\% \times \frac{P_{OUT}}{V_{IN} \times \eta_{est}}$$
(6)

Rearranging and solving for L gives:

(8)

$$L \geq \frac{\eta_{\text{est}} \times V_{\text{IN}}}{\left[f_{\text{SW}} \left(\frac{1}{V_{\text{OUT}} + V_{\text{D}} - V_{\text{IN}}} + \frac{1}{V_{\text{IN}}}\right)\right] \times \text{RPL\% P}_{\text{OUT}}}$$
(7)

Choosing the inductor ripple current to closer to 20% of the average inductor current results in a larger inductance value, maximizes the converter's potential output current and minimizes EMI. Choosing the inductor ripple current closer to 40% of $I_{L(AVG)}$ results in a smaller inductance value, and a physically smaller inductor, improves transient response but results in potentially higher EMI and lower efficiency if the DCR of the smaller packaged inductor is significantly higher. Using an inductor with a smaller inductance value than computed above may result in the converter operating in DCM. This reduces the maximum output current of the boost converter, causes larger input voltage and output ripple, and typically reduces efficiency. $\frac{1}{100}$ $\frac{1}{100$

表 5. Recommended Inductors for TPS61175

PART NUMBER	L (μΗ)	DCR MAX (mΩ)	SATURATION CURRENT (A)	SIZE (L × W × H mm)	VENDOR
D104C2	10	44	3.6	10.4 × 10.4 × 4.8	TOKO
VLF10040	15	42	3.1	10 × 9.7 × 4	TDK
CDRH105RNP	22	61	2.9	10.5 × 10.3 × 5.1	Sumida
MSS1038	15	50	3.8	10 × 10.2 × 3.8	Coilcraft

The device has built-in slope compensation to avoid subharmonic oscillation associated with current mode control. If the inductor value is lower than 4.7 μ H, the slope compensation may not be adequate, and the loop can be unstable. Applications requiring inductors above 47 μ H have not been evaluated. Therefore, the user is responsible for verifying operation if they select an inductor that is outside the 4.7- μ H to 47- μ H recommended range.

8.2.2.4 Computing the Maximum Output Current

The over-current limit for the integrated power FET limits the maximum input current and thus the maximum input power for a given input voltage. Maximum output power is less than maximum input power due to power conversion losses. Therefore, the current limit setting, input voltage, output voltage and efficiency can all change the maximum current output $(I_{OUT(MAX)})$. The current limit clamps the peak inductor current, therefore the ripple has to be subtracted to derive maximum DC current.

$$I_{OUT(max)} = \frac{V_{IN(max)} \times I_{IN(max)} \times \eta_{est}}{V_{OUT}} = \frac{V_{IN(max)} \times I_{LIM} \times (1 - \%RPL/2) \times \eta_{est}}{V_{OUT}}$$

where

- I_{LIM} = overcurrent limit
- η_{est}= efficiency estimate based on similar applications or computed above

For instance, when V_{IN} = 12 V is boosted to V_{OUT} = 24 V, the inductor is 10 μ H, the Schottky forward voltage is 0.4 V, and the switching frequency is 1.2 MHz; then the maximum output current is 1.2 A in typical condition, assuming 90% efficiency and a %RPL = 20%.

8.2.2.5 Setting Output Voltage

To set the output voltage in either DCM or CCM, select the values of R1 and R2 according to 式 9:

Vout = 1.229 V ×
$$\left(\frac{R1}{R2} + 1\right)$$

R1 = R2 × $\left(\frac{Vout}{1.229V} - 1\right)$

Considering the leakage current through the resistor divider and noise decoupling into FB pin, an optimum value for R2 is around 10 k. The output voltage tolerance depends on the V_{FB} accuracy and the tolerance of R1 and R2.

8.2.2.6 Setting the Switching Frequency

Choose the appropriate resistor from the resistance versus frequency table 表 2 or graph 図 7. A resistor must be placed from the FREQ pin to ground, even if an external oscillation is applied for synchronization.

Increasing switching frequency reduces the value of external capacitors and inductors, but also reduces the power conversion efficiency. The user should set the frequency for the minimum tolerable efficiency.

8.2.2.7 Setting the Soft-Start Time

Choose the appropriate capacitor from the soft-start table, 表 3. Increasing the soft-start time reduces the overshoot during start-up.

8.2.2.8 Selecting the Schottky Diode

The high switching frequency of the TPS61175 demands a high-speed rectification for optimum efficiency. Ensure that the diode's average and peak current rating exceed the average output current and peak inductor current. In addition, the diode's reverse breakdown voltage must exceed the switch FET rating voltage of 40 V. So, the VISHAY SS3P6L-E3/86A is recommended for TPS61175. The power dissipation of the diode's package must be larger than $I_{OUT(max)} \times V_D$.

8.2.2.9 Selecting the Input and Output Capacitors

The output capacitor is mainly selected to meet the requirements for the output ripple and load transient. Then the loop is compensated for the output capacitor selected. The output ripple voltage is related to the capacitor's capacitance and its equivalent series resistance (ESR). Assuming a capacitor with zero ESR, the minimum capacitance needed for a given ripple can be calculated using 式 10:

$$C_{out} = \frac{(V_{OUT} - V_{IN})I_{out}}{V_{OUT} \times Fs \times V_{ripple}}$$
(10)

where V_{ripple} = peak to peak output ripple. The additional output ripple component caused by ESR is calculated using:

$$V_{ripple ESR} = I \times R_{ESR}$$

Due to its low ESR, V_{ripple_ESR} can be neglected for ceramic capacitors, but must be considered if tantalum or electrolytic capacitors are used.

The minimum ceramic output capacitance needed to meet a load transient requirement can be estimated using 式 11:

$$C_{OUT} = \frac{\Delta I_{TRAN}}{2 \times \pi \times f_{LOOP\text{-BW}} \times \Delta V_{TRAN}}$$

where

- ΔI_{TRAN} is the transient load current step
- ΔV_{TRAN} is the allowed voltage dip for the load current step
- f_{LOOP-BW} is the control loop bandwidth (that is, the frequency where the control loop gain crosses zero).

Care must be taken when evaluating a ceramic capacitor's derating under DC bias, aging and AC signal. For example, larger form factor capacitors (in 1206 size) have their self resonant frequencies in the range of the switching frequency. So the effective capacitance is significantly lower. The DC bias can also significantly reduce capacitance. Ceramic capacitors can loss as much as 50% of its capacitance at its rated voltage. Therefore, one must add margin on the voltage rating to ensure adequate capacitance at the required output voltage.

For a typical boost converter implementation, at least 4.7 μ F of ceramic input and output capacitance is recommended. Additional input and output capacitance may be required to meet ripple and/or transient requirements.

The popular vendors for high value ceramic capacitors are:

TDK (http://www.component.tdk.com/components.php)

Murata (http://www.murata.com/cap/index.html)

8.2.2.10 Compensating the Small Signal Control Loop

All continuous mode boost converters have a right half plane zero ($f_{\rm RHPZ}$) due to the inductor being removed from the output during charging. In a traditional voltage mode controlled boost converter, the inductor and output capacitor form a small signal double pole. For a negative feedback system to be stable, the fed back signal must have a gain less than 1 before having 180 degrees of phase shift. With its double pole and RHPZ all providing phase shift, voltage mode boost converters are a challenge to compensate. In a converter with current mode control, there are essentially two loops, an inner current feedback loop created by the inductor current information sensed across $R_{\rm SENSE}$ ($40 m\Omega$) and the output voltage feedback loop. The inner current loop allows the switch, inductor and modulator to be lumped together into a small signal variable current source controlled by the error amplifier, as shown in 2 9.

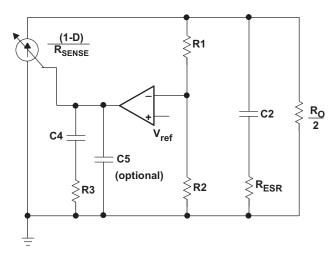


図 9. Small Signal Model of a Current Mode Boost in CCM

The new power stage, including the slope compensation, small signal model becomes:

$$G_{PS}(s) = \frac{R_{OUT} \times (1-D)}{2 \times R_{SENSE}} \times \frac{\left(1 + \frac{s}{2 \times \pi \times f_{ESR}}\right) \left(1 - \frac{s}{2 \times \pi \times f_{RHPZ}}\right)}{1 + \frac{s}{2 \times \pi \times f_{P}}} \times He(s)$$
(12)

Where

$$f_{\mathsf{P}} = \frac{2}{2\pi \times \mathsf{R}_{\mathsf{O}} \times \mathsf{C2}} \tag{13}$$

$$f_{\rm ESR} \approx \frac{1}{2\pi \times R_{\rm ESR} \times C2}$$
 (14)

$$f_{\text{RHPZ}} = \frac{R_{\text{O}}}{2\pi \times L} \times \left(\frac{V_{\text{IN}}}{V_{\text{OUT}}}\right)^{2}$$
(15)

And

He(s) =
$$\frac{1}{1 + \frac{s \times \left[\left(1 + \frac{Se}{Sn} \right) \times (1 - D) - 0.5 \right]}{f_{SW}} + \frac{s^2}{\left(\pi \times f_{SW} \right)^2}}$$
(16)

He(s) models the inductor current sampling effect as well as the slope compensation effect on the small signal response. Note that if Sn > Se, for example, when L is smaller than recommended, the converter operates as a voltage mode converter and the above model no longer holds.

The slope compensation in TPS61175 is shown as follows:

$$Sn = \frac{V_{OUT} + V_{D} - V_{IN}}{L} \times R_{SENSE}$$

$$Se = \frac{0.32 \text{ V/R4}}{16 \times (1-D) \times 6pF} + \frac{0.5 \text{ } \mu\text{A}}{6 \text{ } pF}$$
(17)

Where R4 is the frequency setting resistor

(18)

■ 10 shows a Bode plot of a typical CCM boost converter power stage.

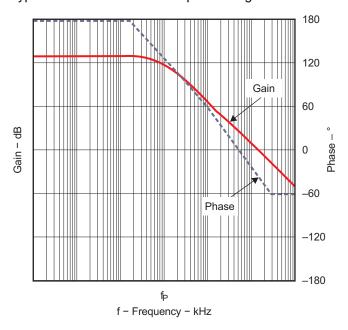


図 10. Bode Plot of Power Stage Gain and Phase

The TPS61175 COMP pin is the output of the internal trans-conductance amplifier. 式 19 shows the equation for feedback resistor network and the error amplifier.

$$H_{EA} = G_{EA} \times R_{EA} \times \frac{R2}{R2 + R1} \times \frac{1 + \frac{s}{2 \times \pi \times f_Z}}{\left(1 + \frac{s}{2 \times \pi \times f_{P1}}\right) \times \left(1 + \frac{s}{2 \times \pi \times f_{P2}}\right)}$$

where

G_{EA} and R_{EA} are the amplifier's trans-conductance and output resistance located in the *Electrical Characteristics* table.

$$f_{P1} = \frac{1}{2\pi \times R_{EA} \times C4}$$

$$f_{P2} = \frac{1}{2\pi \times R3 \times C5} \text{ (optional)}$$
(20)

C5 is optional and can be modeled as 10 pF stray capacitance. (21)

and

$$f_{\rm Z} = \frac{1}{2\pi \times R3 \times C4} \tag{22}$$

■ 11 shows a typical bode plot for transfer function H(s).

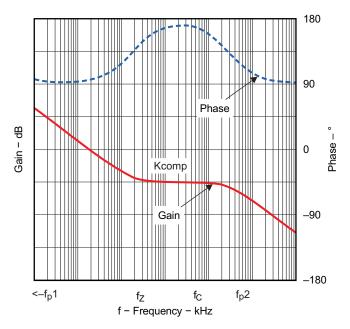
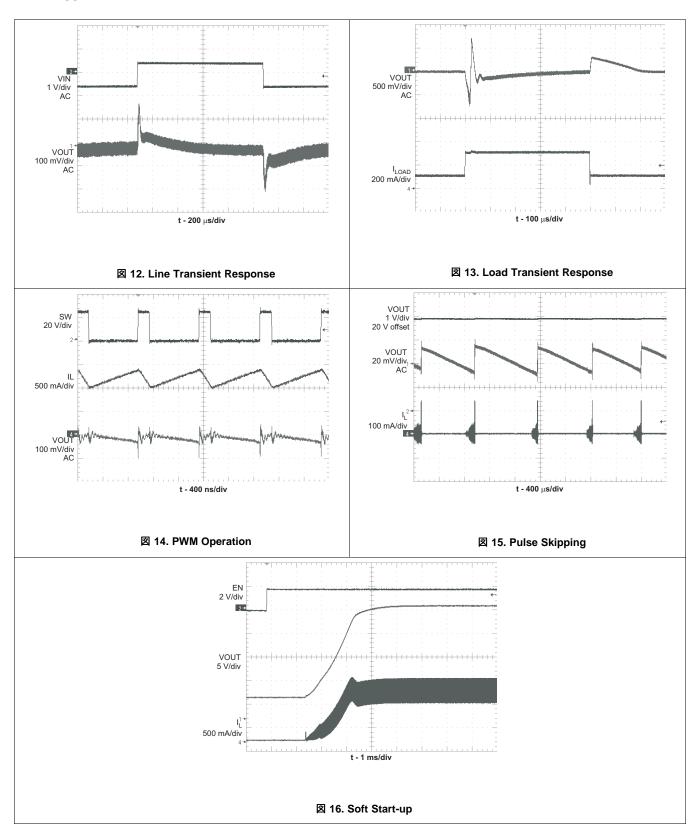


図 11. Bode Plot of Feedback Resistors and Compensated Amplifier Gain and Phase

The next step is to choose the loop crossover frequency, f_C . The higher in frequency that the loop gain stays above zero before crossing over, the faster the loop response will be and therefore the lower the output voltage will droop during a step load. It is generally accepted that the loop gain cross over no higher than the lower of either 1/5 of the switching frequency, f_{SW} , or 1/3 of the RHPZ frequency, f_{RHPZ} . To approximate a single pole roll-off up to f_{P2} , select R3 so that the compensation gain, K_{COMP} , at f_C on 2 11 is the reciprocal of the gain, K_{PW} , read at frequency f_C from the 2 10 bode plot, or more simply:


$$K_{COMP}(f_C) = 20 \times log(G_{EA} \times R3 \times R2/(R2+R1)) = 1/K_{PW}(f_C)$$

This makes the total loop gain, $T(s) = G_{PS}(s) \times H_{EA}(s)$, zero at the f_C . Then, select C4 so that $f_Z \cong f_C/10$ and optional $f_{P2} > f_C \times 10$. Following this method should lead to a loop with a phase margin near 45 degrees. Lowering R3 while keeping $f_Z \cong f_C/10$ increases the phase margin and therefore increases the time it takes for the output voltage to settle following a step load.

In the TPS61175, if the FB pin voltage changes suddenly due to a load step on the output voltage, the error amplifier increases its transconductance for 8-ms in an effort to speed up the IC's transient response and reduce output voltage droop due to the load step. For example, if the FB voltage decreases 10 mV due to load change, the error amplifier increases its source current through COMP by 5 times; if FB voltage increases 11 mV, the sink current through COMP is increased to 3.5 times normal value. This feature often results in saw tooth ringing on the output voltage, shown as 2 13. Designing the loop for greater than 45 degrees of phase margin and greater than 10-db gain margin minimizes the amplitude of this ringing. This feature is disabled during soft start.

8.2.3 Application Curves

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 2.9 V and 18 V. The input power supply's output current must be rated according to the supply voltage, output voltage and output current of the TPS61175.

10 Layout

10.1 Layout Guidelines

- As for all switching power supplies, especially those running at high switching frequency and high currents, layout is an important design step. If layout is not carefully done, the regulator could suffer from instability as well as noise problems. To maximize efficiency, switch rise and fall times are very fast. To prevent radiation of high frequency noise (for example, EMI), proper layout of the high frequency switching path is essential.
- Minimize the length and area of all traces connected to the SW pin and always use a ground plane under the switching regulator to minimize interplane coupling.
- The high current path including the switch, Schottky diode, and output capacitor, contains nanosecond rise and fall times and must be kept as short as possible.
- The input capacitor must not only to be close to the VIN pin, but also to the GND pin in order to reduce the linput supply ripple.

10.2 Layout Example

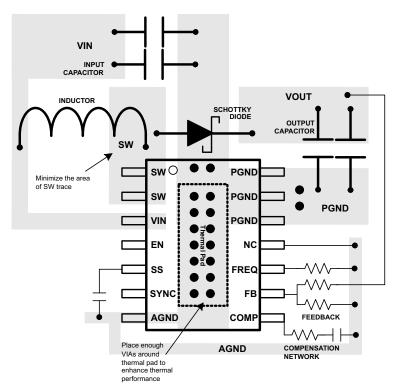


図 17. TPS61175 Layout

(23)

10.3 Thermal Considerations

Restrict the maximum IC junction temperature to 125°C under normal operating conditions. This restriction limits the power dissipation of the TPS61175. Calculate the maximum allowable dissipation, $P_D(maximum)$, and keep the actual dissipation less than or equal to $P_D(maximum)$. The maximum-power-dissipation limit is determined using \vec{x} 23:

$$P_{D(max)} = \frac{125^{\circ}C - T_{A}}{R_{\theta,JA}}$$

where

- T_A is the maximum ambient temperature for the application
- R_{θJA} is the thermal resistance junction-to-ambient given in *Thermal Information*.

The TPS61175 comes in a thermally enhanced TSSOP package. This package includes a thermal pad that improves the thermal capabilities of the package. The $R_{\theta JA}$ of the TSSOP package greatly depends on the PCB layout and thermal pad connection. The thermal pad must be soldered to the analog ground on the PCB. Using thermal vias underneath the thermal pad.

11 デバイスおよびドキュメントのサポート

11.1 デバイス・サポート

11.1.1 デベロッパー・ネットワークの製品に関する免責事項

デベロッパー・ネットワークの製品またはサービスに関するTIの出版物は、単独またはTIの製品、サービスと一緒に提供さ れる場合に関係なく、デベロッパー・ネットワークの製品またはサービスの適合性に関する是認、デベロッパー・ネットワーク の製品またはサービスの是認の表明を意味するものではありません。

11.2 開発サポート

11.2.1 WEBENCHツールによるカスタム設計の作成

ここをクリックすると、WEBENCH® Power Designer により、LM5176 デバイスを使用するカスタム設計を作成できます。

- 1. 最初に、V_{IN}、V_{OLIT}、I_{OLIT}の要件を入力します。
- 2. オプティマイザのダイヤルを使用して、効率、占有面積、コストなどの主要なパラメータについて設計を最適化し、この 設計と、テキサス・インスツルメンツによる他の可能なソリューションとを比較します。
- 3. WEBENCH Power Designerでは、カスタマイズされた回路図と部品リストを、リアルタイムの価格や部品の在庫情報 と併せて参照できます。
- 4. ほとんどの場合、次の操作も実行できます。
 - 電気的なシミュレーションを実行し、重要な波形と回路の性能を確認する。
 - 熱シミュレーションを実行し、基板の熱特性を把握する。
 - カスタマイズされた回路図やレイアウトを、一般的なCADフォーマットでエクスポートする。
 - 設計のレポートをPDFで印刷し、同僚と設計を共有する。
- 5. WEBENCHツールの詳細は、www.ti.com/webenchでご覧になれます。

11.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の「アラートを受 け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細に ついては、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.4 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 商標

PowerPAD, E2E are trademarks of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.6 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内 蔵しています。保存時または取り扱い時は、MOSゲートに対す る静電破壊を防 ▲ ルするために、リード線同士をショートさせて おくか、デバイスを導電フォームに入れる必要があります。

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

10-Nov-2025

www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS61175PWP	Active	Production	HTSSOP (PWP) 14	90 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	61175
TPS61175PWP.B	Active	Production	HTSSOP (PWP) 14	90 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	61175
TPS61175PWPR	Active	Production	HTSSOP (PWP) 14	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	61175
TPS61175PWPR.B	Active	Production	HTSSOP (PWP) 14	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	61175
TPS61175PWPRG4	Active	Production	HTSSOP (PWP) 14	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	61175
TPS61175PWPRG4.B	Active	Production	HTSSOP (PWP) 14	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	61175

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

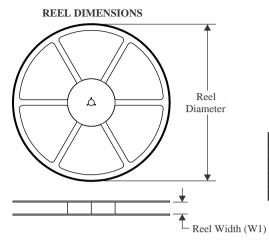
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

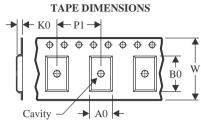
PACKAGE OPTION ADDENDUM

www.ti.com 10-Nov-2025

OTHER QUALIFIED VERSIONS OF TPS61175:

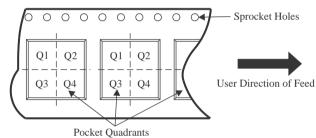
Automotive: TPS61175-Q1


NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

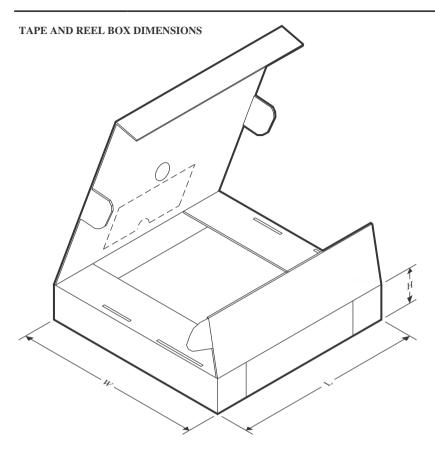
PACKAGE MATERIALS INFORMATION

www.ti.com 15-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

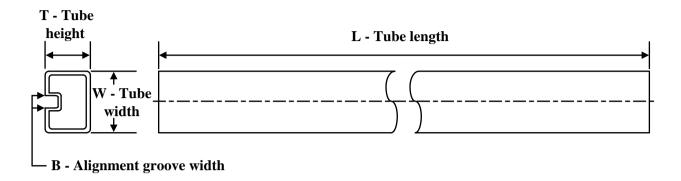


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS61175PWPR	HTSSOP	PWP	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TPS61175PWPRG4	HTSSOP	PWP	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Jul-2025

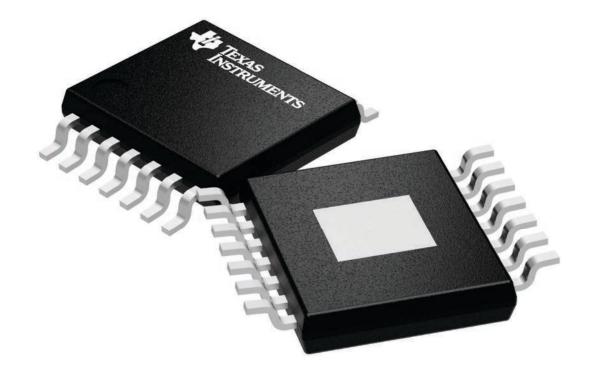

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS61175PWPR	HTSSOP	PWP	14	2000	350.0	350.0	43.0
TPS61175PWPRG4	HTSSOP	PWP	14	2000	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Jul-2025

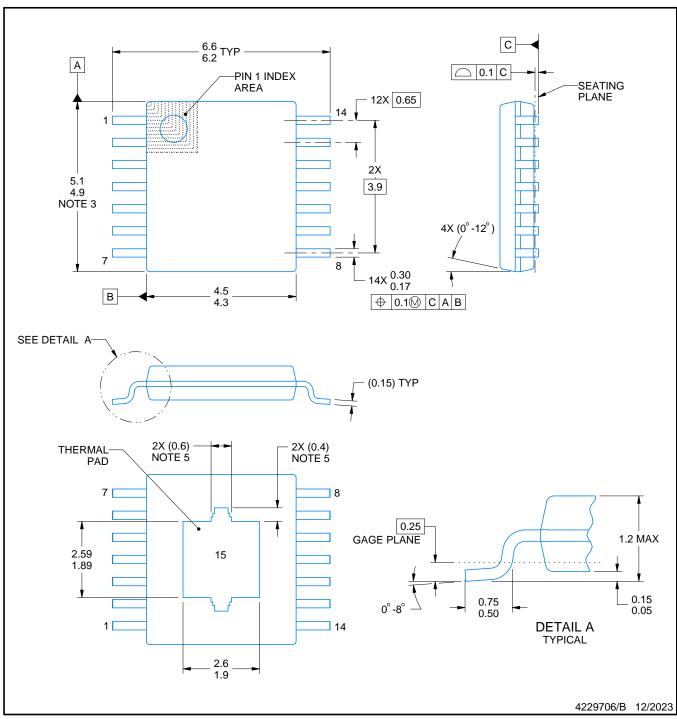
TUBE


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TPS61175PWP	PWP	HTSSOP	14	90	530	10.2	3600	3.5
TPS61175PWP.B	PWP	HTSSOP	14	90	530	10.2	3600	3.5

4.4 x 5.0, 0.65 mm pitch

PLASTIC SMALL OUTLINE


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

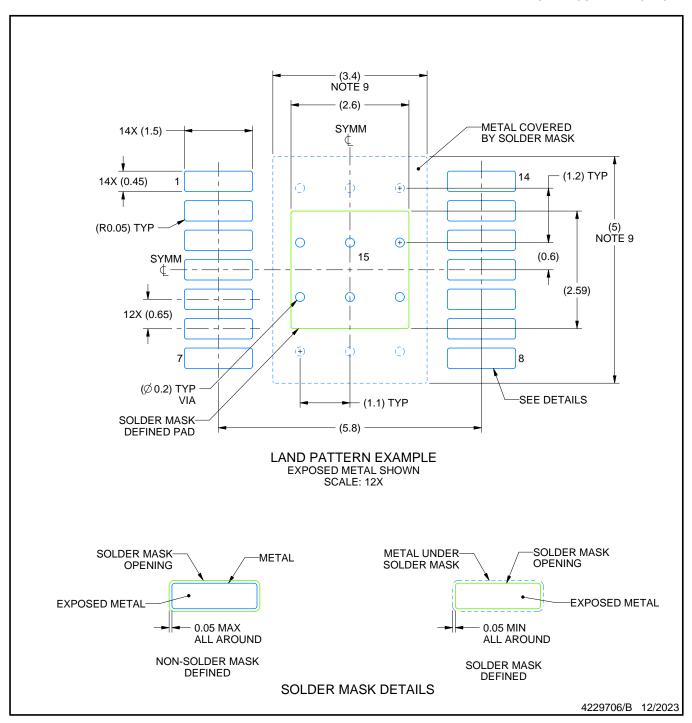
INSTRUMENTS www.ti.com

PowerPAD[™] TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

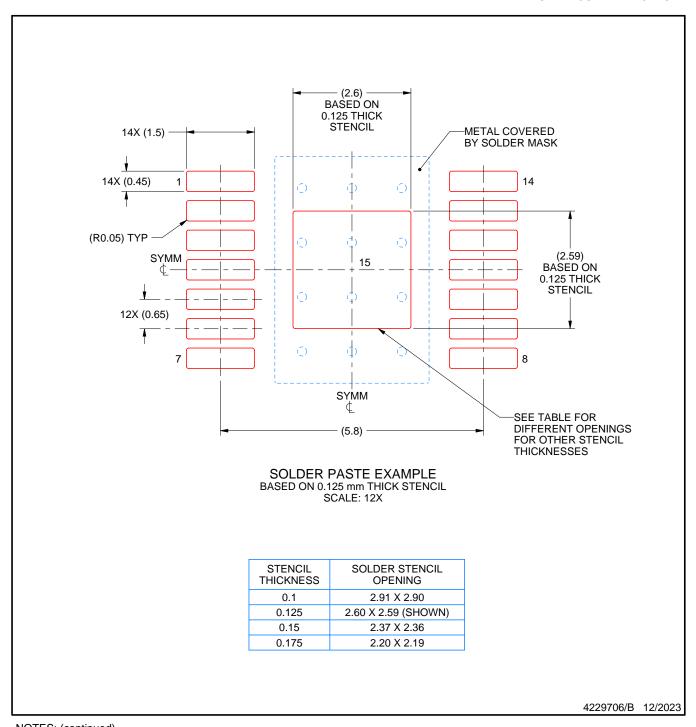
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.
- 5. Features may differ or may not be present.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月