

order

Now

UCC28742

参考資料

JAJSF47A - APRIL 2018-REVISED MAY 2018

Reference

Design

UCC28742 オプトカプラ帰還付き高効率フライバック・コントローラ

Technical

Documents

1 特長

- オプトカプラ帰還により最高1%のレギュレーションを実現
- 正確な電流制限と、過負荷タイムアウト保護および遅延ヒカップ応答
- 共振リング・バレー・スイッチング動作により全体効率を最大化
- 最高80kHzのスイッチング周波数
- EMI準拠を容易にする周波数ディザリング
- クランプされたMOSFETゲート駆動出力
- 非常に低いスタートアップ電流および大きなVDD ヒステリシス
 - 値の大きいスタートアップ抵抗
 - 低いバイアス容量
- フォルト保護
 - 入力LOWライン
 - 出力過電圧
 - 過電流
 - 短絡
- SOT23-6パッケージ
- WEBENCH[®] Power Designerにより、UCC28742 を使用するカスタム設計を作成
- 2 アプリケーション
- 工業用および医療用AC/DC電源
- スマート電力メータ
- UPS、サーバーPSUなどのバイアス電源
- ケーブル・モデム、テレビ、セットトップ・ボックス、ワイヤレス・ルータ用の電源
 - 家電製品のAC/DC電源

概略回路図

3 概要

Tools &

Software

UCC28742オフライン・フライバック・コントローラは、高効 率AC/DC電源用の高度に統合された6ピンの2次側レギュ レーションPWMコントローラです。このデバイスは絶縁フラ イバック電源コントローラであり、オプトカプラを使用して定 電圧(CV)を供給し、大きな負荷のステップに対する過渡 応答を改善しています。このデバイスは、オプトカプラによ る帰還と補助フライバック巻線からの情報を処理し、出力 電圧および電流を高性能で制御します。

Support &

Community

2.2

UCC28742は高度な制御アルゴリズムを採用し、高い動 作効率と性能を実現しています。駆動出力は、MOSFET 電力スイッチに接続されます。バレー・スイッチングによる 不連続導通モード(DCM)動作でスイッチング損失が低減 されます。スイッチング周波数の変調(FM)および1次電流 のピーク振幅の変調(AM)により、負荷およびライン範囲の 全体にわたって高い変換効率を保持します。

コントローラの最大スイッチング周波数は80kHzで、変圧 器内でピーク1次側電流の制御が常に維持されます。最 小スイッチング周波数は200Hzで、無負荷時の入力電力 が低く抑えられています。

製品情報⁽¹⁾

型番	パッケージ	本体サイズ(公称)		
UCC28742	SOT23-6	2.90mm×1.60mm		

(1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。

10W、5VのAC/DCコンバータの標準的な効率

目次

1	特長	
2	アプ	リケーション1
3	概要	¹
4	改訂	履歴
5	Pin	Configuration and Functions 3
6	Spe	cifications
-	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics5
	6.6	Typical Characteristics 7
7	Deta	ailed Description
	7.1	Overview
	7.2	Functional Block Diagram 9
	7.3	Feature Description 10
	7.4	Device Functional Modes

8	Appl	ications and Implementation	. 22				
	8.1	Application Information	22				
	8.2	Typical Application	22				
	8.3	8.3 Do's and Don'ts					
9	Pow	er Supply Recommendations	. 32				
10	Layo	out	. 32				
	10.1	Layout Guidelines	32				
	10.2	Layout Example	33				
11	デバ	イスおよびドキュメントのサポート	. 34				
	11.1	デバイス・サポート	34				
	11.2	ドキュメントのサポート	37				
	11.3	ドキュメントの更新通知を受け取る方法	38				
	11.4	コミュニティ・リソース	38				
	11.5	商標	38				
	11.6	静電気放電に関する注意事項	38				
	11.7	Glossary	38				
12	メカニ	ニカル、パッケージ、および注文情報	. 38				

4 改訂履歴

日付	リビジョン	注	
2018年5月	A	初版	

www.ti.com

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION			
NAME	NO.	1/0	DESCRIPTION			
CS	4	I	The current-sense (CS) input connects to a ground-referenced current-sense resistor in series with the power switch. The resulting voltage monitors and controls the peak primary current. A series resistor is added to this pin to compensate for peak switch current levels as the AC-mains input varies.			
DRV	3	0	DRV is an output pin used to drive the gate of an external high voltage MOSFET switching transistor.			
FB	1	I	The feedback (FB) input receives a current signal from the optocoupler output transistor. An internal current mirror divides the feedback current applies it to an internal pullup resistor to generate a corvoltage, VCL. The voltage at this resistor directly drives the control law function, which determines switching frequency and the peak amplitude of the switching current.			
GND	5	G	The ground (GND) pin is both the reference pin for the controller, and the low-side return for the drive output. Special care must be taken to return all AC-decoupling capacitors as close as possible to this pin and avoid any common trace length with analog signal-return paths.			
VDD	2	Ρ	VDD is the bias supply input pin to the device. A carefully placed bypass capacitor to GND is required on this pin. Typical bypass capacitor values are from 0.047 μ F to 10 μ F depending on a design.			
VS	6	I	Voltage sense (VS) is an input used to provide demagnetization timing feedback to the controller to limit frequency, to control constant-current operation, and to provide output-overvoltage detection. VS is also used for AC-mains input-voltage detection for peak primary-current compensation. This pin connects to a voltage divider between an auxiliary winding and GND. The value of the upper resistor of this divider programs the AC-mains run and stop thresholds, and factors into line compensation at the CS pin.			

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
V _{VDD}	Bias supply voltage		38	V
VS	Voltage range	-0.75	7	V
FB	Voltage range	-0.5	7	V
CS	Voltage range	-0.5	5	V
V _{DRV}	Gate-drive voltage at DRV	-0.5	Self-limiting	V
I _{DRV}	DRV continuous sink current		50	mA
I _{DRV}	DRV continuous source current		15	mA
I _{DRV}	DRV peak sourcing current, V _{DRV} = 10 V to 0 V		Self-limiting	mA
I _{DRV}	DRV peak sink current, $V_{DRV} = 0$ V to 10 V		Self-limiting	mA
I _{FB}	FB, peak current		1.0	mA
I _{VS}	VS, peak, 1% duty-cycle, when detecting line voltage		1.2	mA
TJ	Operating junction temperature range	-55	150	°C
T _{STG}	Storage temperature	-65	150	°C
T _{LEAD}	Lead temperature 0.6 mm from case for 10 seconds		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM) ESD stress voltage ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
VDD	Bias supply operating voltage	9	35	V
C _{DD}	VDD bypass capacitor	0.047	no limit	μF
I _{FB}	Feedback current, continuous		50	μA
I _{VS}	VS pin sourcing current when detecting line voltage		1.0	mA
TJ	Operating junction temperature	-40	125	°C

6.4 Thermal Information

		UCC28742	
	THERMAL METRIC	DBV	UNIT
		6 PINS	
θ_{JA}	Junction-to-ambient thermal resistance (1)	150	°C/W
θ_{JCtop}	Junction-to-case (top) thermal resistance ⁽²⁾	55	°C/W
θ_{JB}	Junction-to-board thermal resistance ⁽³⁾	60	°C/W
ΨJT	Junction-to-top characterization parameter ⁽⁴⁾	3	°C/W
ΨЈВ	Junction-to-board characterization parameter ⁽⁵⁾	55	°C/W

(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(4) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(5) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

6.5 Electrical Characteristics

Over operating free-air temperature range, $V_{VDD} = 25 \text{ V}$, $V_{FB} = 0 \text{ V}$, $V_{VS} = 4\text{V}$, $-40^{\circ}\text{C} \le T_A \le 125^{\circ}\text{C}$, $T_J = T_A$ (unless otherwise noted)

,						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BIAS SUP	PLY INPUT				·	
I _{RUN}	Supply current, run	I _{DRV} = 0, run state	1.30	1.80	2.40	mA
I _{WAIT}	Supply current, wait	$I_{DRV} = 0$, $V_{VDD} = 20$ V, wait state	50	80	115	μA
I _{START}	Supply current, start	$I_{DRV} = 0$, $V_{VDD} = 17$ V, start state		1.50	2.75	μA
I _{FAULT}	Supply current, fault	$I_{DRV} = 0$, fault state	1.30	1.80	2.40	mA
UNDER-V	OLTAGE LOCKOUT				·	
V _{VDD(on)}	VDD turn-on threshold	V_{VDD} low to high	17.5	21.6	24.5	V
V _{VDD(off)}	VDD turn-off threshold	V _{VDD} high to low	7.25	7.80	8.30	V
VS INPUT						
V _{VSNC}	Negative clamp level	I _{VS} = -300 μA	-304	-225	-164	mV
I _{VSB}	Input bias current	$V_{VS} = 4 V$	-0.25	0	0.25	μA
FB INPUT						
I _{FBMAX}	Full-range input current	$f_{SW} = f_{SW(min)}$	16	23	30	μA
V _{FBMAX}	Input voltage at full-range	I _{FB} = 26 μA	0.70	0.90	1.10	V
R _{FB}	FB-input resistance	$\Delta I_{FB} = 6$ to 26 μA	10	14	18	kΩ
CS INPUT					·	
V _{CST(max)}	Max CS threshold voltage (1)	I _{FB} = 0 μA	710	770	830	mV
V _{CST(min)}	Min CS threshold voltage ⁽¹⁾	I _{FB} = 35 μA	164	190	216	mV
K _{AM}	AM control ratio	V _{CST(max)} / V _{CST(min)}	3.55	4.00	4.50	V/V
V _{CCR}	Constant-current regulating level		338	363	390	mV
K _{LC}	Line compensating current ratio, I _{VSLS} / (current out of CS pin)	$I_{VSLS} = -300 \ \mu A$	23	25	29	A/A
T _{CSLEB}	Leading-edge blanking time	DRV output duration, $V_{CS} = 1 V$	195	270	350	ns

(1) These threshold voltages represent average levels. This device automatically varies the current sense threshold to improve EMI performance.

Electrical Characteristics (continued)

Over operating free-air temperature range, $V_{VDD} = 25 \text{ V}$, $V_{FB} = 0 \text{ V}$, $V_{VS} = 4\text{V}$, $-40^{\circ}\text{C} \le T_A \le 125^{\circ}\text{C}$, $T_J = T_A$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DRV						
I _{DRS}	DRV source current	$V_{DRV} = 5 V, V_{VDD} = 9 V$	24	30	36	mA
R _{DRVLS}	DRV low-side drive resistance	I _{DRV} = 10 mA		6.5	12	Ω
V _{DRCL}	DRV clamp voltage	V _{VDD} = 35 V	8.8	10.6	13	V
R _{DRVSS}	DRV pull-down in start state		135	175	250	kΩ
TIMING					·	
f _{SW(max)}	Maximum switching frequency ⁽²⁾	$I_{FB} = 0 \ \mu A$	80	105	130	kHz
f _{SW(min)}	Minimum switching frequency	I _{FB} = 35 μA	140	200	255	Hz
t _{ZTO}	Zero-crossing timeout delay		1.45	2.45	3.30	μs
t _{OVL_TIME}	Delay time before shutdown	Demag_Duty = V _{CCR} / V _{CST(max)}	85	120	160	ms
PROTECT	ON					
V _{OVP}	Over-voltage threshold ⁽³⁾	At VS input, T _J = 25 °C	4.45	4.65	4.85	V
V _{OCP}	Over-current threshold ⁽³⁾	At CS input	1.41	1.50	1.59	V
I _{VSL(run)}	VS line-sense run current	Current out of VS pin - increasing	170	210	250	μA
I _{VSL(stop)}	VS line-sense stop current	Current out of VS pin - decreasing	60	75	90	μA
K _{VSL}	VS pin, line-sense current ratio, I _{VSL(run)} / I _{VSL(stop)}		2.50	2.80	3.05	A/A
T _{J(stop)}	Thermal shut-down temperature ⁽⁴⁾	Internal junction temperature		165		°C

These frequency limits represent average levels. This device automatically varies the switching frequency to improve EMI performance. The OVP threshold at VS decrease with increasing temperature by 1 mV/°C. This compensation over temperature is included to reduce (2) (3) the variances in power supply over-voltage detection with respect to the external output rectifier. Ensured by design. Not tested in production.

(4)

6.6 Typical Characteristics

VDD = 25 V, unless otherwise noted.

Typical Characteristics (continued)

VDD = 25 V, unless otherwise noted.

7 Detailed Description

7.1 Overview

The UCC28742 is a flyback power-supply controller which provides high-performance voltage regulation using an optically coupled feedback signal from a secondary-side voltage regulator. The device provides accurate constant-current regulation using primary-side feedback. The controller operates in discontinuous-conduction mode (DCM) with valley-switching to minimize switching losses and allow for the use of low cost output rectifiers. The control law scheme combines frequency with primary peak-current amplitude modulation to provide high conversion efficiency across the load range. The control law provides a wide dynamic operating range of output power which allows the power-supply designer to achieve low standby power dissipation.

During low-power operating conditions, the power-management features of the controller reduce the deviceoperating current at switching frequencies below 25 kHz. At and above this frequency, the UCC28742 includes features in the modulator to reduce the EMI peak energy of the fundamental switching frequency and harmonics. A complete low-cost and low component-count solution is realized using a straight-forward design process.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Detailed Pin Description

7.3.1.1 VDD (Device Bias Voltage Supply)

The VDD pin is typically powered from a rectified auxiliary transformer winding, the same winding that is used to capture the output voltage level. A bypass capacitor, with minimum value 0.047 μ F, on the VDD pin is used for initially biasing the device to start-up along with a resistive or active source of start-up charging current. UVLO start / stop levels of 21.6 V / 7.8 V accommodate lower values of VDD capacitance that in turns keeps the start-up current low, which for resistive start-up has an impact on both stand-by power and power-on delay. A high, 35-V, maximum operating level on VDD alleviates concerns with leakage energy charging of VDD and gives added flexibility to when varying power supply output voltage must be supported.

7.3.1.2 GND (Ground)

This is an external return pin, and provides the reference point for both external signal and the gate drive of the device. The VDD bypass capacitor should be placed close to this pin. Critical component GND connections from the VS, FB and CS pins should have dedicated and short paths to this pin.

Feature Description (continued)

7.3.1.3 VS (Voltage-Sense)

The VS pin connects to a resistor-divider from the auxiliary winding to ground. The auxiliary voltage waveform is sampled at the end of the transformer secondary-current demagnetization time. The waveform on the VS pin determines (1) the timing information to achieve valley-switching, (2) the timing to control the duty-cycle of the transformer secondary current, and (3) the output voltage over-voltage. Avoid placing a filter capacitor on this input which interferes with accurate sensing of this waveform.

Besides, the VS pin also has these two functions: (4) senses the bulk capacitor input voltage to provide for acinput run and stop thresholds, and (5) to compensate the current-sense threshold across the AC-input range. This information is sensed by monitoring the current pulled out of the VS pin during the MOSFET on-time. During this time the voltage on the VS pin is clamped to about 250 mV below GND. As a result, the current out of the pin is determined by the upper VS divider resistor, the auxiliary to primary turns-ratio and the bulk input voltage level. For the AC-input run/stop function, the run threshold on VS is $I_{VSL(run)}$ (typical 210 μ A) and the stop threshold is $I_{VSL(stop)}$ (typical 75 μ A). The values for the auxiliary voltage divider upper-resistor R_{S1} and lowerresistor R_{S2} can be determined by the equations below.

$$R_{S1} = \frac{\sqrt{2 \times V_{IN(run)}}}{N_{PA} \times I_{VSL(run)}} \approx \frac{V_{BULK(run)}}{N_{PA} \times I_{VSL(run)}}$$

where

- N_{PA} is the transformer primary-to-auxiliary turns ratio,
- V_{IN(run)} is the AC rms voltage to enable turn-on of the flyback converter (run),
- V_{BULK(run)} is the DC bulk voltage to enable turn-on of the flyback converter (run),
- I_{VSL(run)} is the run-threshold for the current pulled out of the VS pin during the primary MOSFET on-time. (see the *Electrical Characteristics* table). (1)

$$R_{S2} = \frac{R_{S1} \times V_{OVP}}{N_{AS} \times (V_{OV} + V_F) - V_{OVP}}$$

where

- V_{OV} is the maximum allowable peak voltage at the converter output,
- V_F is the output rectifier forward voltage drop at near-zero current,
- N_{AS} is the transformer auxiliary to secondary turns ratio,
- R_{S1} is the VS divider upper-resistor resistance,
- V_{OVP} is the overvoltage detection threshold at the VS input (see the *Electrical Characteristics* table). (2)

Notice that VS pin absolute maximum current I_{VS} in its negative clamping is 1.2 mA. After determined R_{S1} it is required to check if VS pin current stays \leq 1.2 mA. The check is to determine the input voltage ratio in this design and make $V_{IN(max)} / V_{IN(run)} \leq I_{VS} / I_{VSL(run)} = 1.2 \text{ mA} / 0.25 \text{ mA} = 4.8$, *i.e.*, $V_{IN(max)} / V_{IN(run)} \leq 4.8$. If the design cannot meet this criterion, external circuit is needed to add in to make sure VS pin current \leq 1.2 mA, for example, to use a zener type of device to clamp the transformer aux-winding negative voltage to achieve $V_{IN(max)} / V_{IN(run)} \leq 4.8$.

7.3.1.4 DRV (Gate Drive)

The DRV pin is connected to the MOSFET gate pin, usually through a series resistor. The DRV provides a gate drive signal which is clamped to 10-V internally. During turn-on the driver applies a typical 30-mA current source out of the DRV pin. When the DRV voltage rises to above 9 V the output current is reduced to about 100 μ A. This current brings the DRV voltage to the 10-V clamp level, or to VDD, whichever is less. The 30-mA current provides adequate turn-on speed while automatically limiting noise generated at turn-on by the MOSFET drain dv/dt and by the leading edge turn-on current spike. The gate drive turn-off current is internally limited to about 400 mA when DRV is above about 4 V. At lower DRV voltages the current will reduce, eventually being limited by the low-side on resistance, $R_{DS(on)}$. The drain turn-on and turn-off dv/dt can be further impacted by adding external resistor in series with DRV pin. The drain current resonances can be damped with a small series gate resistor, generally less than a 1 Ω .

7.3.1.5 CS (Current Sense)

The current sense pin is connected through a series resistor (R_{LC}) to the current-sense resistor (R_{CS}). The controller varies the internal current sense threshold between 190 mV and 770 mV, setting a corresponding control range for the peak-primary winding current to a 4-to-1 range. The series resistor R_{LC} provides an input voltage feed-forward function. The voltage drop across this resistor reduces primary-side peak current as the line voltage increases, compensating for the increased di/dt and delays in the MOSFET turn-off. There is an internal leading-edge blanking time of 270 ns to eliminate sensitivity to the MOSFET turn-on leading edge current spike. If additional blanking time is needed, a small bypass capacitor, up to 30 pF, can be placed on between CS pin and GND pin. The value of R_{CS} is determined by the target output current in constant current (CC) regulation. The values of R_{CS} and R_{LC} can be determined by the equations below. The term η_{XFMR} is intended to account for the energy stored in the transformer but not delivered to the secondary. This includes transformer core and copper losses, bias power, and primary leakage inductance losses.

Example: With a transformer core and copper losses of 3%, leakage inductance caused power losses 2%, and bias power to output power ratio of 0.5%. The transformer power transfer efficiency is estimated as $\eta_{XFMR} = 100\% - 3\% - 2\% - 0.5\% = 94.5\%$

$$R_{CS} = \frac{V_{CCR} \times N_{PS}}{2 \times I_{OCC}} \times \sqrt{\eta_{XFMR}}$$

where

- V_{CCR} is a current regulation constant (see the *Electrical Characteristics* table),
- N_{PS} is the transformer primary-to-secondary turns ratio (a typical turns-ratio of 12 to 15 is recommended for 5-V output as an example),
- I_{OCC} is the target output current in constant-current limit (refer to Constant Current Limit and Delayed Shutdown for more detail),
- η_{XFMR} is the transformer efficiency.

$$R_{LC} = \frac{K_{LC} \times R_{S1} \times R_{CS} \times (t_D + t_{GATE_OFF}) \times N_{PA}}{L_P}$$

where

- R_{S1} is the VS pin high-side resistor value,
- R_{cs} is the current-sense resistor value,
- t_D is the current-sense delay (typical 50 ns) plus MOSFET turn-off delay,
- t_{GATE OFF} is the primary-side main MOSFET turn-off time,
- N_{PA} is the transformer primary-to-auxiliary turns-ratio,
- L_P is the transformer primary inductance,
- K_{LC} is a current-scaling constant (see the *Electrical Characteristics* table).

(4)

(3)

7.3.1.6 FB (Feedback)

The FB pin connects to the emitter of an analog optocoupler output transistor which usually has the collector connected to VDD. The current supplied to FB by the optocoupler is reduced internally by a factor of 2.5 and the resulting current is applied to an internal 480-k Ω resistor to generate the control law voltage (V_{CL}). This V_{CL} directly determines the converter switching frequency and peak primary current required for regulation per the control-law for any given line and load condition.

Typical circuit connection between FB and optocoupler along with typical values of resistors and capacitors should be made as shown in \boxtimes 9. The resistors and capacitors in the connections help to stabilize operation during control mode transition.

7.3.2 Secondary-Side Optically Coupled Constant-Voltage (CV) Regulation

☑ 9 shows a simplified flyback convertor with the main output-regulation blocks of the device shown, along with typical implementation of secondary-side-derived regulation. The power-train operation is the same as any DCM-flyback circuit. A feedback current is optically coupled to the controller from a shunt-regulator sensing the output voltage.

図 9. Simplified Flyback Converter (with the Main Voltage Regulation Blocks)

In this configuration, a secondary-side shunt-regulator, such as the TL431 (or ATL431), generates a current through the input photo-diode of an optocoupler. The photo-transistor delivers a proportional current that is dependent on the current-transfer ratio (CTR) of the optocoupler to the FB input of the UCC28742 controller. This FB current then converts into the V_{CL} by the input-mirror network, detailed in the device block diagram (see Functional Block Diagram). Output-voltage variations convert to FB-current variations. The FB-current variations modify the V_{CL} which dictates the appropriate I_{PP} and f_{SW} necessary to maintain CV regulation. At the same time, the VS input senses the auxiliary winding voltage during the transfer of transformer energy to the secondary output to monitor for an output overvoltage condition. When f_{SW} reaches the converter target maximum frequency (i.e., corresponding de-mag time duty reaches 0.475), Constant Current Limit is triggered and further increases in V_{CL} cannot increase f_{SW} anymore. (see \boxtimes 10, Control Law and Constant Current Limit and Delayed Shutdown)

図 10. Auxiliary Winding Voltage

The UCC28742 samples the VS input voltage at the end of demagnetization time for output overvoltage detection and to determine the total demagnetization time for output current control in Constant Current Limit operation.

In order to maintain best performance of these functions the reset time and ringing of the auxiliary winding voltage should meet certain guidelines. Referring to \boxtimes 11, the width of the leakage spike at the VS input should be less than t_{DM_BLANK} . Minimum t_{DM_BLANK} is 3 µs at maximum peak priamry current levels and proportionally less at lower peak primary current levels (the lowest 0.75 µs should be observed at high line and no load condition). In addition, any ringing following the spike should be reduced to < 160 mVpp (scaled to the VS pin) 200 ns before the end of the demagnetization time.

As mentioned in Device Functional Modes, when $I_{PP} < I_{PP(max)}$, the device operation enters a "Wait" state during each switching cycle of its non-switching portion as shown in 🛛 11. In the *Wait* state, the device bias current changes to I_{WAIT} (typical 80 µA) from I_{RUN} (typical 1.8 mA), reducing its bias power to help boost efficiency at light load and to reduce no-load input power.

図 11. Auxiliary Waveform Details

Feature Description (continued)

7.3.3 Control Law

During voltage regulation (CV mode), the controller operates in frequency modulation mode and peak current amplitude modulation mode as illustrated in 🛛 12 below. In CV mode operation, the control consists of four regions, namely, region FM 1, 2, AM and FM 3. The device internal V_{CL} sets a particular region of operation. Refer to 🖾 12 for V_{CL} .

The device internally limits its operating frequency between $f_{SW(min)}$ and $f_{SW(max)}$, typically between 200 Hz and 105 kHz. The choice of transformer primary inductance and primary-peak current sets the maximum operating frequency of the converter, which must be equal to or lower than $f_{SW(max)}$. Conversely, the choice of maximum target operating frequency and primary-peak current determines the transformer primary-inductance value. The actual minimum switching frequency for any particular converter depends on several factors, including minimum loading level, leakage inductance losses, switch-node capacitance losses, other switching and conduction losses, and bias-supply requirements. In any case, the minimum steady-state frequency of the converter must always exceed $f_{SW(min)}$ or the output voltage may rise to the over-voltage protection level (OVP) and the controller responds as described in Fault Protection.

To achieve a regulated output voltage in the CV mode operation, energy balance has to be maintained. As the UCC28742 has a minimum switching frequency typical 200 Hz, together with the energy per switching cycle determined by converter parameters, such as the transformer primary inductance Lp and the selected R_{CS} resistor, the converter has a minimum input power. A proper pre-load needs to be selected to ensure that this minimum energy is balanced during the no-load condition. The selection of the line compensation resistor value (R_{LC}) connected to the CS pin can impact the energy per switching cycle based on low-line and high-line conditions. Typical Application section provides a design example to show how to implement these considerations.

quency and Amplitude Modulatic (during CV mode)

N I

The steady-state control-law voltage, V_{CL} , ranges between 0.75 V to 4.90 V. Heavy load operation is usually in Region FM 3 where frequency modulation to output regulation is used and primary-peak current is controlled at its maximum. The AM region is usually for medium-load range typically from 10% load and above. In this region switching frequency is fixed at nominal 25 kHz along with primary-peak current varying from 25% to 100% of its maximum. The low operating frequency ranges are for lighter loads to achieve stable regulation at low frequencies. In regions FM 1 and 2, peak-primary current is always maintained at $I_{PP(max)}/4$. Transitions between levels are automatically accomplished by the controller depending on the internal control-law voltage, V_{CL} and its corresponding FB pin current I_{FB} . An internal frequency-dithering mechanism is enabled in Region FM 3 to reduce conducted EMI, and is disabled otherwise. The *Wait* state is enabled in regions FM 1, 2, and AM, refer to X = 11.

7.3.4 Constant Current Limit and Delayed Shutdown

Timing information at the VS pin and current information at the CS pin allow accurate regulation of the secondary constant current limit, CCL, thus to achieve load over-current protection. The control law dictates that as power is increased in CV regulation and approaching CCL the primary-peak current is at $I_{PP(max)}$. Referring to \boxtimes 13 below, the primary peak current (I_{PP}), turns-ratio (N_S/N_P), secondary demagnetization time (t_{DMAG}), and switching period (t_{SW}) determine the secondary average output current. Ignoring leakage inductance effects, the average output current is given by \pm 5. By regulating the secondary rectifier conduction duty cycle, the output current limit is achieved for given I_{PP} and transformer turns-ratio. When the load increases, the secondary-side rectifier conduction duty cycle keep increasing. Once this duty cycle reaches preset value of 0.475, the converter switching frequency stops increasing and starts adjusting to reduce and maintain 0.475 secondary-side duty cycle. Therefore, the output constant current limit is achieved. Because the current is kept constant, the increasing load results in lower output voltage.

$$I_{OUT} = \frac{I_{PP}}{2} \times \frac{I_{DMAG}}{N_S} \times \frac{I_{DMAG}}{I_{SW}}$$
(5)

図 13. Transformer Currents

As shown in 🖾 14 below, CV mode operation is from $I_0 = 0$ to $< I_{OCC}$; at $I_0 = I_{OCC}$, the operation enters constant current limit mode and V_0 starts to drop as the load resistance becomes further lower while I_0 is maintained at I_{OCC} for a time interval specified by t_{OVL_TIME} typically 120 ms then DRV stops to achieve converter output delayed shutdown. During the 120-ms timing interval, if load I_0 reduces to $< I_{OCC}$, the timer will be reset and no shutdown will occur. The V-I curve corresponding to the operation is shown in 🖾 14, and the delayed shutdown timing diagram is shown in 🖾 15. Note (1) The timer t_{OVL_TIME} is triggered whenever I_0 reaches I_{OCC} and reset when I_0 drops to $< I_{OCC}$ before 120ms-time-out. (2) during 120-ms time interval, when load resistance becomes so low during constant current interval that causes the device VDD to reach its $V_{VDD(off)}$ and then the shutdown will be through VDD undervoltage lockout instead of through Constant Current Limit and Delayed Shutdown. In such a case, the shutdown can happen before 120ms timer out.

Feature Description (continued)

図 15. Output Delayed Shutdown Timing

7.3.5 Valley-Switching and Valley-Skipping

The UCC28742 utilizes valley switching to reduce switching losses in the MOSFET, reduce induced-EMI, and minimize the turn-on current spike at the sense resistor. The controller operates in valley-switching in all load conditions unless the V_{DS} ringing diminished.

Referring to \boxtimes 16 below, the UCC28742 operates in a valley-skipping mode in most load conditions to maintain an accurate voltage or current regulation point and still switch on the lowest available V_{DS} voltage.

The UCC28742 forces a controlled minimum switching period corresponding to the power supply operating frequency. In each switching cycle, after the minimum period is expired, the UCC28742 looks for the next resonant valley on the auxiliary winding. The controller initiates a new power cycle at this valley point which corresponds to a reduced voltage level on the power MOSFET. If at the point in time when the minimum period expires ringing on the transformer winding has decayed such that no further resonant valleys can be detected a new power cycle is initiated following a fixed time, t_{ZTO} . This also applies when primary inductance L_P is designed with a high value that causes de-mag end ringing cycle longer than t_{ZTO} . When either happens, the valley switching is lost but the converter output voltage will still be in regulation.

Feature Description (continued)

7.3.6 Start-Up Operation

Upon application of input voltage to the converter, the start up resistance connected to VDD from the bulk capacitor voltage (V_{BULK}) charges the VDD capacitor. During charging of the VDD capacitor, the device supply current is typical 1.5 µA. When VDD reaches the 21.6-V UVLO turn-on threshold, the controller is enabled and the converter starts switching. The peak-primary currents with initial three cycles are limited to $I_{PP(min)}$. This allows sensing any initial input or output faults with minimal power delivery. When confirmed that the input voltage is above the programmed converter turn-on voltage and with no faults detected, the start-up process proceeds and normal power conversion follows. The converter remains in discontinuous conduction mode operation during charging of the output capacitor(s), maintaining a constant output current until the output voltage is in regulation.

A commonly used initial power-on approach for UCC28742 is to use a start-up resistor, R_{STR} , to tie VDD to V_{BULK} , as show in 🛛 17. With this approach, the VDD pin is connected to a bypass capacitor to ground and a start-up resistance to the input bulk capacitor (+) terminal. The VDD turn-on UVLO threshold is 21.6 V ($V_{VDD(on)}$) and turn-off UVLO threshold is 7.8 V ($V_{VDD(off)}$), with an available operating range up to 35 V. The additional VDD headroom up to 35 V allows for VDD to rise due to the leakage energy delivered to the VDD capacitor in heavy-load conditions. Also, the wide VDD range provides the advantage of selecting a relatively small VDD capacitor and high-value startup resistance to minimize no-load standby power loss in the startup resistor.

The R_{STR} value has an effect to power-on delay time and no-load standby power losses. Both are usually part of the design specifications. Increasing R_{STR} reduces standby power losses while also increasing power-on delay time. A typical range of R_{STR} is between 1 M Ω and 10 M Ω as a good initial design point for off-line AC-to-DC adapters. Due to the limited voltage rating, R_{STR} is normally implemented by two or three resistors in series.

図 17. Power-On with Start-Up Resistor

Feature Description (continued)

7.3.7 Fault Protection

There is comprehensive fault protection incorporated into the UCC28742. Protection functions include:

- Output Over-Voltage
- Input Under-Voltage
- Primary Over-Current Fault
- CS Pin Open Fault
- CS Pin Short-to-GND Fault
- VS Pin Fault
- Device Internal Over-Temperature
- Constant Current Limit and Delayed Output Shutdown Output Over-Current Protection

Output Over-Voltage: The output over-voltage function is determined by the voltage feedback on the VS pin. If the voltage sample on VS exceeds 4.65 V (V_{OVP}), for three consecutive switching cycles an OV fault is asserted. Once asserted the device stops switching, initiating a UVLO reset and re-start fault cycle. During the fault, the VDD bias current remains at the run current level, discharging the VDD pin to the UVLO turn-off threshold, $V_{VDD(off)}$. After that, the device returns to the start state, VDD now charging to $V_{VDD(on)}$ where switching is initiated. The UVLO sequence repeats as long as the fault condition persists.

Input Under-Voltage: The line input run and stop thresholds are determined by current information at the VS pin during the MOSFET on-time. While the VS pin is clamped close to GND during the MOSFET on-time, the current through R_{S1} , out of the VS pin, is monitored to determine a sample of the bulk capacitor voltage. A wide separation of run and stop thresholds allows clean start-up and shut-down of the power supply with the line voltage. From the start state, the sensed VS current, I_{VSL} , must exceed the run current threshold, $I_{VSL(run)}$ (typical 211 µA), within the first three cycles after switching starts as VDD reaches $V_{VDD(on)}$. If it does not, then switching stops and the UVLO reset and re-start fault cycle is initiated. Once running, I_{VSL} must drop below the stop level, $I_{VSL(stop)}$ (typically 75 µA), for three consecutive cycles to initiate the fault response.

Primary Over-Current: The UCC28742 always operates with cycle-by-cycle primary-peak current control. The normal operating range of the CS pin is 190 mV to 770 mV. If the voltage on CS exceeds the 1.5-V over-current level, any time after the internal leading edge blanking time and before the end of the transformer demagnetization, for three consecutive cycles, the device shuts down and the UVLO reset and re-start fault cycle begins.

CS Pin Open: The CS pin has a 2-µA minimum pull-up that brings the CS pin above the 1.5-V OC fault level if the CS pin is open. This causes the primary over-current fault after three cycles.

CS Pin Short to GND: On the first, and only the first, cycle at start-up during power on, the device checks to verify that the $V_{CST(min)}$ threshold is reached at the CS pin within 5 µs of DRV going high. If the CS voltage fails to reach this level then the device terminates the current cycle and immediately enters the UVLO reset and re-start fault sequence.

VS Pin: Protection is included in the event of component failures on the VS pin. If the high-side VS divider resistor opens the controller stops switching. VDD collapses to its $V_{VDD(off)}$ threshold, a start-up attempt follows with a single DRV on-time when VDD reaches $V_{VDD(on)}$. The UVLO cycle will repeat. If the low-side VS divider resistor is open then an output over-voltage fault occurs.

Device Internal OTP: The internal over-temperature protection threshold is 165 °C. If the junction temperature of the device reaches this threshold the device initiates the UVLO reset and re-start fault cycle. If the temperature is still high at the end of the UVLO cycle, the protection cycle repeats.

Constant Current Limit and Delayed Output Shutdown - Output Over-Current Protection: The load overcurrent protection is made precisely using constant current limit and delayed output shutdown as described in section Constant Current Limit and Delayed Shutdown

7.4 Device Functional Modes

The UCC28742 operates in different modes according to input voltage, VDD voltage, and output load conditions:

- At start-up, when VDD is less than the turn-on threshold, V_{VDD(on)}, the device is simply waiting for VDD to reach this threshold while the VDD capacitor is getting charged.
- When VDD exceeds V_{VDD(on)}, the device starts switching to deliver power to the converter output. The initial 3 switching cycles control the primary-peak current to I_{PP(min)}. This allows sensing any initial input or output faults with minimal power delivery. When confirmed with input voltage above predetermined level and no fault conditions, start up process proceeds and normal power conversion follows. The converter will remain in discontinuous current mode operation during charging of the output capacitor(s), maintaining a constant output current, I_{OCC}, until the output voltage reaches its regulation point. The maximum time duration when I_O stays on I_{OCC} can only last 120 ms, and when 120-ms timer out, the device will initiate shutdown. Therefore, a design needs to make sure the maximum time when output current reaches and stays on I_{OCC} does not exceed 120 ms during start. For more details refer to Constant Current Limit and Delayed Shutdown
- When operating with I_{PP} = I_{PP(max)}, the UCC28742 operates continuously in the *run* state. In this state, the VDD bias current is always at I_{RUN} plus the average gate-drive current.
- When operating with I_{PP} < I_{PP(max)}, the UCC28742 operates in the *wait* state between switching cycles and in the *run* state during a switching cycle. In the *wait* state, the VDD bias current is reduced to I_{WAIT} after demagnetizing time of each switching cycle to improve efficiency at light loads. This helps reduce no-load to medium-load power losses, particularly for achieving higher efficiency at 10%, 25% load conditions, and possible at < 50% load conditions, depending on a design.
- The device operation will stop if any events occur as listed below:
 - If VDD drops below the V_{VDD(off)} threshold, the device stops switching, its bias current consumption is lowered to I_{START} until VDD rises above the V_{VDD(on)} threshold. The device then resumes operation through start-up.
 - If a fault condition is detected, the device stops switching and its bias current consumption becomes I_{FAULT}. This current level discharges VDD to V_{VDD(off)} where the bias current changes from I_{FAULT} to I_{START} until VDD rises above the V_{VDD(on)} threshold.
- If a fault condition persists, the operation sequence described above in repeats until the fault condition or the input voltage is removed. Refer to Fault Protection for fault conditions and post-fault operation.

8 Applications and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The UCC28742 device is an SSR controller optimized for isolated-flyback AC-to-DC power supply applications, typically in the range from 5 W to 50 W, providing constant-voltage (CV) mode control using optocoupler based feedback. Its advanced control provides high performance operation. The device uses the information obtained from auxiliary winding sensing (VS) to make an accurate output current limit with time delayed output voltage shutdown and auto-start retry.

8.2 Typical Application

▶ 18 illustrates a typical circuit diagram for AC-to-DC power conversion applications. It is a flyback converter with secondary-side regulation (SSR) controlled by UCC28742. Such applications widely exist in industrial and medical AC/DC power supplies, and also in ac-dc adapters, etc. The following sub-sections provide critical design formulas.

図 18. Typical Application Circuit

Typical Application (continued)

8.2.1 Design Requirements

The following table illustrates a typical subset of high-level design requirements for a particular converter of which many of the parameter values are used in the various design equations in this section. Other necessary design parameters, $V_{\text{BULK(min)}}$ for example, may not be listed in such a table. These values may be selected based on design experience or other considerations, and may be iterated to obtain optimal results.

表	1.	UCC28742	Design	Parameters
---	----	----------	--------	------------

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
INPUT CHARACTERISTICS							
V _{IN}	AC-line input voltage		85	265	V _{RMS}		
f _{LINE}	Line frequency		47	50/60	63	Hz	
P _{STBY}	No-load input power	$V_{IN} = typ, I_O = 0A$		65		mW	
OUTPUT CHARACTERISTICS							
Vo	DC output voltage	$V_{IN} = typ$, $I_O = 0$ to I_{OR}		5		V	
V _{RIPPLE}	Output voltage ripple	$V_{IN} = typ, I_O = I_{OR}$		50		mV	
I _{OR}	Output rated current	V _{IN} = min to max		2.0		А	
I _{OVL}	Overload current Limit	V _{IN} = typ		2.05		А	
OVL delay	Overload shutdown delay	V_{IN} = typ, $I_O = I_{OCC}$		120		ms	
η _{AVG}	Average efficiency	V _{IN} = typ, average of 25%, 50%, 75%, and 100% Load		82		%	
SYSTEMS CHARACTERISTICS							
f _{sw}	Switching frequency		0.2		65	kHz	

8.2.2 Detailed Design Procedure

This procedure outlines the steps to design a constant output voltage (V_{OCV}) flyback converter using the UCC28742 controller. Please refer to the 🗵 18 for circuit details and section for variable definitions used in the applications equations below.

8.2.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the UCC28742 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- · Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.2.2 VDD Capacitance, C_{DD}

The capacitance on VDD needs to supply the device operating current until the output of the converter reaches the target minimum operating voltage. At this time the auxiliary winding can sustain the voltage to the UCC28742. The total output current available to the load and to charge the output capacitors is the constant-current regulation target. The equation below assumes the output current of the flyback is available to charge the output capacitance until the minimum output voltage is achieved to maintain VDD above its $V_{VDD(on)}$. The gate-drive current depends on particular MOSFET to be used. If with an estimated average 1.0 mA of gate-drive current, C_{DD} is determined by $\vec{\pm}$ 6, and at I_{OCC}, $V_{OCC} = V_{OCV}$.

$$C_{DD} = \frac{(I_{RUN} + 1.0mA) \times \frac{C_{OUT} \times V_{OCV}}{I_{OCC}}}{(V_{DD(on),min} - V_{DD(off),max})}$$

(6)

8.2.2.3 VDD Start-Up Resistance, R_{STR}

Once the VDD capacitance is known, the start-up resistance from V_{BULK} to achieve the power-on delay time (t_{STR}) target can be determined.

$$R_{STR} = \frac{\sqrt{2 \times V_{IN(min)}}}{I_{START} + \frac{V_{DD(on)} \times C_{DD}}{t_{STR}}}$$

(7)

8.2.2.4 Input Bulk Capacitance and Minimum Bulk Voltage

Determine the minimum voltage on the input capacitance, C_{B1} and C_{B2} total, in order to determine the maximum Np to Ns turns ratio of the transformer. The input power of the converter based on target full-load efficiency, minimum input rms voltage, and minimum AC input frequency are used to determine the input capacitance requirement.

Maximum input power is determined based on V_{OCV} , load current over load I_{OVL} = I_{OCC} , and the full-load efficiency target. An initial estimate of efficiency can be assumed for full-load efficiency, for example 89% for a converter of rated power 48 W and output voltage 24 V.

$$\mathsf{P}_{\mathsf{IN}} = \frac{\mathsf{V}_{\mathsf{OCV}} \times \mathsf{I}_{\mathsf{OCC}}}{\eta} \tag{8}$$

 \pm 9 provides an accurate solution for input capacitance based on a target minimum bulk capacitor voltage. To target a given input capacitance value, iterate the minimum capacitor voltage to achieve the target capacitance.

$$C_{BULK} = \frac{P_{IN} \times \left(0.5 + \frac{1}{\pi} \times \arcsin\left(\frac{V_{BULK(min)}}{\sqrt{2} \times V_{IN(min)}}\right)\right)}{\left(2V_{IN(min)}^2 - V_{BULK(min)}^2\right) \times f_{LINE}}$$

(9)

8.2.2.5 Transformer Turns Ratio, Inductance, Primary-Peak Current

The maximum primary-to-secondary turns ratio can be determined by the target maximum switching frequency at full load, the minimum input capacitor bulk voltage, and the estimated DCM resonant time.

Initially determine the maximum available total duty cycle of the on time and secondary conduction time based on target switching frequency and DCM resonant time. For DCM resonant time, assume 500 kHz if you do not have an estimate from previous designs. For the transition mode operation limit, the period required from the end of secondary current conduction to the first valley of the V_{DS} voltage is $\frac{1}{2}$ of the DCM resonant period, or 1 µs assuming 500-kHz resonant frequency. D_{MAX} can be determined using $\frac{1}{2}$ 10.

$$D_{MAX} = 1 - \left(\frac{t_R}{2} \times f_{MAX}\right) - D_{MAGCC}$$
(10)

Once D_{MAX} is known, the maximum turns ratio of the primary to secondary can be determined with the equation below. D_{MAGCC} is defined as the secondary diode conduction duty cycle when load current reaches a specified limit operation. It is set internally by the UCC28742 at 0.475. The total voltage on the secondary winding needs to be determined; which is the sum of V_{OCV} and the secondary rectifier V_F .

$$N_{PS(max)} = \frac{D_{MAX} \times V_{BULK(min)}}{D_{MAGCC} \times (V_{OCV} + V_F)}$$
(11)

N_{PS} is determined also with other design factors such as voltage and current ratings of primary MOSFET, secondary rectifier diode, as well as secondary MOSFET if synchronous rectifier is used. Once an optimum turns-ratio is determined from a detailed transformer design, use this ratio for the following parameters.

The UCC28742 controller constant current limit is achieved by maintaining $D_{MAGCC} = 0.475$ at the maximum primary current setting. The transformer turns ratio and current limit determine the current sense resistor for a target constant current limit.

Since not all of the energy stored in the transformer is transferred to the secondary, a transformer efficiency term is included. This efficiency number includes the core and winding losses, leakage inductance ratio, and bias power ratio to rated output power. A bias power can be initially estimated at 0.1% to 0.5% rated power depending on power rating. An overall transformer efficiency of 94.5% is a good estimation of assuming 2% leakage inductance, 3% core and winding loss, and 0.5% bias power.

 R_{CS} is used to program the primary-peak current with \pm 12:

$$\mathsf{R}_{\mathsf{CS}} = \frac{\mathsf{V}_{\mathsf{CCR}} \times \mathsf{N}_{\mathsf{PS}}}{2 \times \mathsf{I}_{\mathsf{OCC}}} \times \sqrt{\eta_{\mathsf{XFMR}}}$$

(12)

UCC28742 JAJSF47A-APRIL 2018-REVISED MAY 2018 INSTRUMENTS

www.tij.co.jp

The primary transformer inductance can be calculated using the standard energy storage equation for flyback transformers. Primary current, maximum switching frequency, output and transformer efficiency are included in \vec{x} 14.

Initially the transformer primary current should be determined. Primary current is simply the maximum current sense threshold divided by the current sense resistance.

$$I_{PP(max)} = \frac{V_{CST(max)}}{R_{CS}}$$

$$L_{P} = \frac{2 \times (V_{OCV} + V_{F}) \times I_{OCC}}{\eta_{XFMR} \times I_{PP(max)}^{2} \times f_{MAX}}$$
(13)
(14)

The primary inductance L_P in \exists 14 also needs to consider primary MOSFET minimum turn on time as described in Transformer Parameter Verification.

The auxiliary winding to secondary winding transformer turns-ratio (N_{AS}) is determined by the lowest target operating output voltage V_{OVL} at current limit and above the VDD_(off) of the UCC28742. The output voltage reaches V_{OVL} when output current reaches its limit I_{OCC} ; V_{OVL} is determined by I_{OCC} and the expected minimum load resistance R_{LOAD} at I_{OCC} , *i.e.*, $V_{OVL} = I_{OCC} \times R_{LOAD}$. Note that V_{OVL} can only be maintained within typical 120ms, and after that time, the output voltage will enter the cycle of shutdown and auto-start retry, as described in Constant Current Limit and Delayed Shutdown, and shown in 🛛 14 and 🖾 15. There is additional energy supplied to VDD from the transformer leakage inductance energy which may allow a slightly lower turns-ratio to be used in a design. The N_{AS} is then determined by the below equation.

$$N_{AS} = \frac{V_{DD(off)} + V_{FA}}{V_{OCC} + V_{F}}$$
(15)

8.2.2.6 Transformer Parameter Verification

The transformer turns-ratio selected affects the MOSFET V_{DS} and secondary rectifier reverse voltage so these should be reviewed. The UCC28742 controller requires a minimum on time of the MOSFET (t_{ON}) and minimum D_{MAG} time ($t_{DMAG(min)}$) of the secondary rectifier in the high line, under minimum-load condition. The selection of f_{MAX} , L_P and R_{CS} affects the minimum t_{ON} and t_{DMAG} .

The secondary rectifier and MOSFET voltage stress can be determined by the equations below.

$$V_{\text{REV}} = \frac{V_{\text{IN}(\text{max})} \times \sqrt{2}}{N_{\text{PS}}} + V_{\text{OCV}}$$
(16)

For the MOSFET V_{DS} voltage stress, an estimated leakage inductance voltage spike (V_{LK}) needs to be included.

$$V_{\text{DSPK}} = \left(V_{\text{IN}(\text{max})} \times \sqrt{2}\right) + \left(V_{\text{OCV}} + V_{\text{F}}\right) \times N_{\text{PS}} + V_{\text{LK}}$$
(17)

The following equations are used to determine for the minimum t_{ON} target of 0.35 µs and minimum de-mag time, $t_{DMAG(min)}$, target of 1.7 µs. Notice that the minimum t_{ON} target of 0.35 µs is determined by CS pin **Leading-edge blanking time**, T_{CSLEB} in Electrical Characteristics. The target is to design L_P and make $t_{ON(min)} \ge T_{CSLEB}$. But in very worst normal operation condition, during the $t_{ON(min)}$, the CS pin OCP should not be triggered, *i.e.*, the CS pin should not reach near 1.41 V defined by V_{OCP} in Electrical Characteristics.

$$t_{ON(min)} = \frac{L_P}{V_{IN(max)} \times \sqrt{2}} \times \frac{I_{PP(max)}}{K_{AM}}$$
(18)

$$t_{\text{DMAG(min)}} = \frac{t_{\text{ON(min)}} \times v_{\text{IN(max)}} \times \sqrt{2}}{N_{\text{PS}} \times (V_{\text{OCV}} + V_{\text{F}})}$$
(19)

8.2.2.7 VS Resistor Divider and Line Compensation

The VS divider resistors determine the output voltage regulation point of the flyback converter, also the high-side divider resistor (R_{S1}) determines the line voltage at which the controller enables continuous DRV operation. R_{S1} is initially determined based on the transformer auxiliary to primary turns-ratio and the desired input voltage operating threshold.

$$R_{S1} = \frac{V_{IN(run)} \times \sqrt{2}}{N_{PA} \times I_{VSL(run)}}$$
(20)

 $I_{VSL(run)}$ is VS pin run current with a typical value 210 μA for a design. The low-side VS pin resistor is selected based on desired output over voltage $V_{OV}.$

$$R_{S2} = \frac{R_{S1} \times V_{OVP}}{N_{AS} \times (V_{OV} + V_F) - V_{OVP}}$$
(21)

The UCC28742 can maintain tight output current limit over input line by utilizing the line compensation feature. The line compensation resistor (R_{LC}) value is determined by current flowing in R_{S1} and expected gate drive and MOSFET turn-off delay. Assume a 50-ns internal delay in the UCC28742.

$$R_{LC} = \frac{K_{LC} \times R_{S1} \times R_{CS} \times (t_D + t_{GATE_OFF}) \times N_{PA}}{L_P}$$
(22)

UCC28742 JAJSF47A – APRIL 2018 – REVISED MAY 2018

8.2.2.8 Standby Power Estimate

Assuming no-load standby power is a required design parameter, determine the estimated no-load power based on target converter maximum switching frequency and output power rating. The following equation estimates the stand-by power of the converter.

$$\mathsf{P}_{\mathsf{SB}_{\mathsf{CONV}}} \cong \frac{\mathsf{P}_{\mathsf{OUT}} \times \mathsf{f}_{\mathsf{MIN}}}{\eta \times \mathsf{K}_{\mathsf{AM}}^2 \times \mathsf{f}_{\mathsf{MAX}}}$$
(23)

The output preload resistor can be estimated by V_{OCV} and the difference between the converter stand-by power and the no-load bias power P_{NL_BIAS} (that can be set as zero initially and adjust it later, particularly through the bench test), then the preload resistor value is estimated in \vec{x} 24 :

$$\mathsf{R}_{\mathsf{PL}} = \frac{\mathsf{V}_{\mathsf{OCV}}^2}{\mathsf{P}_{\mathsf{SB}_\mathsf{CONV}} - \mathsf{P}_{\mathsf{NL}_\mathsf{BIAS}}}$$
(24)

A physical resistor component R_{PL} may not be needed as other components on the secondary-side such as TL431 can already provide enough preload.

The capacitor bulk voltage for the loss estimation is based on the highest voltage for the standby power measurement, typically as 325 V_{DC} (or AC input of 230 Vrms). Power loss of R_{STR} is estimated in \pm 25:

$$\mathsf{P}_{\mathsf{RSTR}} = \frac{(\mathsf{V}_{\mathsf{BULK}} - \mathsf{V}_{\mathsf{DD}})^2}{\mathsf{R}_{\mathsf{STR}}}$$
(25)

The total standby power, including the converter standby power loss, the start-up resistance power, and the snubber power loss, is estimated in ± 26 :

$$P_{SB} = P_{SB CONV} + P_{RSTR} + P_{SNBR}$$

8.2.2.9 Output Capacitance

The output capacitance value is typically determined by the transient response requirement. \pm 27 assumes that the switching frequency can be at the UCC28742 minimum of f_{SW(min)}.

$$C_{OUT} = \frac{I_{TRAN} \left(\frac{1}{f_{SW(min)}} + 50 \mu s \right)}{\Delta V_{O}}$$
(27)

Another consideration of the output capacitor(s) is the ripple voltage requirement. The output capacitors and their total ESR are the main factors to determine the output voltage ripple. $\vec{\pm}$ 28 provides a formula to determine required ESR value R_{ESR}, and $\vec{\pm}$ 28 provides a formula to determine required capacitance. The total output ripple is the sum of these two parts with scale factors and 10mV to consider other noise as shown in $\vec{\pm}$ 30,

$$R_{ESR} = \frac{I}{I_{PP(max)} \times N_{PS}} \times V_{RIPPLE_R}$$
(28)

$$COUT = \frac{LP \times I_{PP(max)}^{2}}{4 \times (V_{OCV})} \times \frac{1}{V_{RIPPLE_{C}}}$$
(29)

$$V_{\text{RIPPLE}} = 0.81 \times V_{\text{RIPPLE}_R} + 1.15 \times V_{\text{RIPPLE}_C} + 10 \text{mV}$$
(30)

Example: if require $V_{RIPPLE} = 70 \text{ mV}$, assume 0.81 × $V_{RIPPLE_R} = 1.15 \times V_{RIPPLE_C} = 30 \text{ mV}$, then $R_{ESR} = 4.05 \text{ m}\Omega$, and $C_{OUT} = 643 \mu$ F, with assumption of $L_P = 700 \mu$ H, $I_{PP(max)} = 0.713 \text{ A}$, $N_{PS} = 13$, $V_{OCV} = 5.3 \text{ V}$.

TEXAS INSTRUMENTS

(26)

8.2.2.10 Feedback Loop Design Consideration

Refer to 🖾 18, the UCC28742 converter feedback network is composed of TL431, optocoupler and several resistors and capacitors. R_{FB1} and R_{FB2} set up the converter output regulation point. A series-resistor R_{FB3} is necessary to limit the current into FB and to avoid excess draining of C_{VDD} during this type of transient situation, although connecting the emitter directly to the FB input of the UCC28742 is possible. However, an unload-step response may unavoidably drive the optocoupler into saturation which will overload the FB input with full VDD applied. The value of R_{FB3} is to limit the excess I_{FB} to an acceptable level when the optocoupler is saturated. The R_{FB3} value is chosen to allow the current into the FB pin to reach the 30 μ A. the maximum I_{FB} control level. This will be met if the voltage at I_{FB} can reach 1V at no load conditions. To improve transient response R_{FB3} can be bypassed with C_{FB3} .

 R_{FB4} can be used to set a nominal operating current of the optocoupler to improve the current transfer ratio and bandwidth of the optocoupler. For low standby power this operating current level should be kept small since it must be supplied from VDD operating voltage. The value of R_{FB4} is determined empirically due to the variable nature of the specific optocoupler chosen for the design. The ratio of R_{FB4} to R_{FB3} is typically in a range of 1/10 to 1/4 with typical value of R_{FB4} in 4 k Ω to 25 k Ω , and R_{FB3} in 25 k Ω to 200 k Ω . A good starting point is to select R_{FB4} around 4 k Ω and R_{FB3} around 30 k Ω for a design.

The shunt-regulator compensation network, Z_{FB} , is determined using well-established design techniques for control-loop stability. Typically, a Type-II compensation network is used. An effective approach is to set Z_{FB} to be a capacitor, $Z_{FB} = C_{FB}$ to form an integrator, and adding a bypass capacitor R_{FB3} will extend the frequency response of the optocoupler CTR.

Referring again to 🖾 18, the shunt-regulator (typically a TL431) current is at about 1 mA even when almost no optocoupler diode current flows. Since even a near-zero diode current establishes a forward voltage, R_{OPT} is selected to provide regulator bias current such as for TL431. The optocoupler input diode must be characterized by the designer to obtain the actual forward voltage versus forward current at the low currents expected. At the full-load condition of the converter, I_{FB} is around 0.5 μ A, I_{CE} may be around (0.4 V / R_{FB4}), and CTR at this level is about 10%, so the diode current typically falls in the range of 25 μ A to 100 μ A. Typical opto-diode forward voltage at this level is about 0.97 V which is applied across R_{OPT}. If R_{OPT} is set equal to 1 k Ω , this provides 970 μ A plus the diode current for I_{OPT}.

As output load decreases, the voltage across the shunt-regulator also decreases to increase the current through the optocoupler diode. This increases the diode forward voltage across R_{OPT} . CTR at no-load (when I_{CE} is higher) is generally a few percent higher than CTR at full-load (when I_{CE} is lower). At steady-state no-load condition, the shunt-regulator current is maximized and can be estimated by and \vec{x} 31. I_{OPTNL} , plus the sum of the leakage currents of all the components on the output of the converter, constitute the total current required for use in to estimate secondary-side standby loss.

$$I_{OPTNL} = \frac{I_{CENL}}{CTR_{NL}} + \frac{V_{OPTNL}}{R_{OPT}}$$
(31)

The shunt-regulator voltage can decrease to a minimum, saturated level of about 2 V. To prevent excessive diode current, a series resistor, R_{TL} , is added to limit I_{OPT} to the maximum value necessary for regulation. ± 32 provides an estimated initial value for R_{TL} , which may be adjusted for optimal limiting later during the prototype evaluation process.

$$R_{TL} = \frac{V_{OUTNL} - V_{OPTNL} - 2 V}{I_{OPTNL}}$$

(32)

UCC28742 JAJSF47A-APRIL 2018-REVISED MAY 2018

www.tij.co.jp

8.2.3 Application Curves

8.3 Do's and Don'ts

- During no-load operation, do allow sufficient margin for variations in VDD level to avoid the UVLO shutdown threshold. Also, at no-load, keep the average switching frequency greater than 1.5 x f_{SW(min)} typical to avoid a rise in output voltage. R_{LC} needs to be adjusted based on no-load operation accounting for both low-line and high-line operation..
- Do clean flux residue and contaminants from the PCB after assembly. Uncontrolled leakage current from VS to GND causes the output voltage to increase, while leakage current from VDD to VS can cause output voltage to increase.
- If ceramic capacitors are used for VDD, do use quality parts with X7R or X5R dielectric rated 50 V or higher to minimize reduction of capacitance due to DC-bias voltage and temperature variation.
- Do not use leaky components if low stand-by input power consumption is a design requirement.
- Do not probe the VS node with an ordinary oscilloscope probe; the probe capacitance can alter the signal and disrupt regulation.
- Do observe VS indirectly by probing the auxiliary winding voltage at R_{S1} and scaling the waveform by the VS divider ratio.
- Do follow $\vec{\pm}$ 27 to $\vec{\pm}$ 30 for C_{OUT}.

9 Power Supply Recommendations

The UCC28742 is intended for AC-to-DC adapters and chargers with universal input voltage range of 85 V_{RMS} to 265 V_{RMS} , 47 Hz to 63 Hz, using flyback topology. It can also be used in other applications and converter topologies with different input voltages. Be sure that all voltages and currents are within the recommended operating conditions and absolute maximum ratings of the device.

10 Layout

10.1 Layout Guidelines

In general, try to keep all high current loop areas as small as possible. Keep all traces with high current and high frequency away from other traces in the design. If necessary, high frequency/high current traces should be perpendicular to signal traces, not parallel to them. Shielding signal traces with ground traces can help reduce noise pick up. Always consider appropriate clearances between the high-voltage connections and any low-voltage nets.

In order to increase the reliability and feasibility of the project it is recommended to adhere to the following guidelines for PCB layout. 25 shows a typical 10-W, 5-V/2-A converter design schematics.

- Minimize stray capacitance on the VS node. Place the voltage sense resistors (R_{S1} and R_{S2} in) close to the VS pin.
- Arrange the components to minimize the loop areas of the switching currents as much as possible. These areas include such loops as the transformer primary winding current loop (a), the MOSFET gate-drive loop (b), the primary snubber loop (c), the auxiliary winding loop (d) and the secondary output current loop (e). In practice, trade-offs may have to be made. Loops with higher current should be minimized with higher priority. As a rule of thumb, the priority goes from high to low as (a) (e) (c) (d) (b).
- The R_{LC} resistor location is critical. To avoid any dv/dt induced noise (for example MOSFET drain dv/dt) coupled onto this resistor, it is better to place R_{LC} closer to the controller and avoid nearby the MOSFET.
- Using Kelvin connection for long distance connection such as for connection between optocoupler and FB pin.
- To improve thermal performance increase the copper area connected to GND pins.

10.2 Layout Example

☑ 26 demonstrates a layout of 10-W, 5-V/2-A converter with trade-offs to minimize the loops while effectively placing components and tracks for low noise operation on a single-layer printed circuit board. In addition to the consideration of minimal loops, one another layout guideline is always to use the device GND as reference point. This applies to both power and signal to return to the device GND pin (pin 5).

図 26. Layout Example

11 デバイスおよびドキュメントのサポート

11.1 デバイス・サポート

11.1.1 開発サポート

11.1.1.1 WEBENCH®ツールによるカスタム設計

ここをクリックすると、WEBENCH® Power Designerにより、UCC28742デバイスを使用するカスタム設計を作成できます。

- 1. 最初に、入力電圧(V_{IN})、出力電圧(V_{OUT})、出力電流(I_{OUT})の要件を入力します。
- 2. オプティマイザのダイヤルを使用して、効率、占有面積、コストなどの主要なパラメータについて設計を最適化します。
- 3. 生成された設計を、テキサス・インスツルメンツが提供する他の方式と比較します。

WEBENCH Power Designerでは、カスタマイズされた回路図と部品リストを、リアルタイムの価格と部品の在庫情報と併せて参照できます。

通常、次の操作を実行可能です。

- 電気的なシミュレーションを実行し、重要な波形と回路の性能を確認する。
- 熱シミュレーションを実行し、基板の熱特性を把握する。
- カスタマイズされた回路図やレイアウトを、一般的なCADフォーマットで出力する。
- 設計のレポートをPDFで印刷し、設計を共有する。

WEBENCHツールの詳細は、www.ti.com/WEBENCHでご覧になれます。

11.1.2 デバイスの項目表記

11.1.2.1 容量項(ファラッド単位)

- C_{BULK} C_{B1}とC_{B2}の合計入力容量
- **C_{DD}** VDDピンに必要な最小容量

Cout 必要な最小出力容量

11.1.2.2 デューティ・サイクル項

D_{MAGCC} CCでの2次側ダイオードの導通デューティ・サイクル、0.475

DMAX MOSFETオン時間の最大デューティ・サイクル

11.1.2.3 周波数項(ヘルツ単位)

f_{LINE} 最小ライン周波数

f_{MAX} コンバータの目標全負荷最高スイッチング周波数

f_{MIN} コンバータの最小スイッチング周波数で、デバイスのf_{SW(min)}制限に15%のマージンを加算

f_{SW(lim)} 負荷のステップダウン変化後の過渡状態中のスイッチング周波数

f_{SW(min)} 最小スイッチング周波数(「Electrical Characteristics」表を参照)

f_{SW(max)} 最大スイッチング周波数(「Electrical Characteristics」表を参照)

f_{SW(standby)} 軽負荷条件で負荷が変化する前のスイッチング周波数

11.1.2.4 電流項(アンペア単位)

locc	コンバータの出力定電流目標
I _{OR}	コンバータの定格出力電流
I _{PP(max)}	変圧器の最大1次側電流
I _{START}	スタートアップ・バイアス電源電流(「Electrical Characteristics」
I _{TRAN}	必要な正の負荷ステップ電流

表を参照)

UCC28742 JAJSF47A – APRIL 2018 – REVISED MAY 2018

www.tij.co.jp

デバイス・サポート (continued)

- **IvsL(run)** VSピンの実行電流(「*Electrical Characteristics*」表を参照)
- **Iwalt** ウェイト状態時のVDDバイアス電流(「*Electrical Characteristics*」表を参照)

11.1.2.5 電流および電圧のスケーリング項

- KAM ピーク1次側電流の最大値と最小値の比率(「Electrical Characteristics」表を参照)
- **K_{co} C**_{OUT}の計算に使用する安定性係数 = 100
- K_{LC} 電流のスケーリング定数(「Electrical Characteristics」表を参照)

UCC28742

JAJSF47A-APRIL 2018-REVISED MAY 2018

www.tij.co.jp

デバイス・サポート (continued)

11.1.2.6 変圧器の項

- Lp 変圧器の1次側インダクタンス
- Ls 変圧器の2次側インダクタンス
- N_{AS}変圧器の補助/2次巻線比
- NPA 変圧器の1次/補助巻線比
- N_{PS} 変圧器の1次/2次巻線比
- N_A変圧器の補助巻線の巻数
- N_P変圧器の1次巻線の巻数
- Ns 変圧器の2次巻線の巻数

11.1.2.7 電力項(ワット単位)

- PIN コンバータの最大入力電力
- **Pout** コンバータの全負荷出力電力
- **P_{RSTR}** VDDスタートアップ抵抗での消費電力
- **P_{SB}** 合計スタンバイ電力
- PSB_CONV PSBからスタートアップ抵抗とスナバ損失を減算した値

11.1.2.8 抵抗項(オーム単位)

- Rcs 1次側電流のプログラミング抵抗
- **R_{ESR}** 出力コンデンサの合計ESR
- **R_{PL}** コンバータの出力のプリロード抵抗
- R_{S1} ハイサイドVSピンの抵抗
- R_{S2} ローサイドVSピンの抵抗
- R_{STR}バルク電圧とVDDとの間に接続されたスタートアップ抵抗

11.1.2.9 タイミング項(秒単位)

- t_D 電流検出の遅延
- t_{DMAG(min)} 2次側整流器の最小導通時間
- t_{GATE OFF} 1次側メインMOSFETのターンオフ時間
- t_{ON(min)} MOSFETの最小オン時間
- t_R t_{DMAG}後の共振リンギング期間
- t_{STR} VDD容量C_{DD}に必要なチャージアップ時間によるパワーオン遅延時間
- tzto: VSで検出されるゼロクロスなしでのゼロクロス・タイムアウト遅延(「Electrical Characteristics」表を参照)

UCC28742 JAJSF47A - APRIL 2018 - REVISED MAY 2018

www.tij.co.jp

デバイス・	サポート (continued)					
11.1.2.10 電圧項(ボルト単位)						
V _{BLK} またはV _{BULK} バルク・コンデンサ電圧						
V _{BULK(max)}	スタンバイ電力測定用の最大バルク・コンデンサ電圧					
V _{BULK(min)}	最大電力時のC _{B1} およびC _{B2} の最小電圧					
V _{BULK(run)}	コンバータのスタートアップ(実行)バルク電圧					
V _{CBC}	全負荷時の基板終端の出力におけるケーブル補償電圧					
V _{CCR}	定電流レギュレーション電圧(「Electrical Characteristics」表を参照)					
V _{CCUV}	定電流出力電圧シャットダウンのVSスレッショルド(「Electrical Characteristics」表を参照)					
V _{CST(max)}	CSピンの最大電流検出スレッショルド(「Electrical Characteristics」表を参照)					
V _{CST(min)}	CSピンの最小電流検出スレッショルド(「 <i>Electrical Characteristics</i> 」表を参照)					
V _{DD(off)} または	✔ _{VDD(off)} UVLOターンオフ電圧(「 <i>Electrical Characteristics</i> 」表を参照)					
V _{VDD(on)} またに	はV _{DD(on)} UVLOターンオン電圧(「 <i>Electrical Characteristics</i> 」表を参照)					
V _F	ゼロに近い電流での2次側整流器の順方向電圧降下					
V _{FA}	補助整流器の順方向電圧降下					
V _{LK}	リーク・インダクタンス・エネルギーのリセット電圧の推定値					
V _{ocv}	コンバータのレギュレーション出力電圧					
V _{occ}	定電流レギュレーション時のコンバータの目標最小出力電圧					
V _{OVL}	出力電圧は、出力電流が制限値loccに達するとき、VovLに達します。VovLはloccにより決定され、予測され る最小負荷抵抗RLOADはlocc時のものです。 すなわち、VovL = locc x RLOADです。					
V _{RIPPLE}	全負荷時の出力ピーク・ツー・ピーク・リップル電圧					
V _{VSR}	VS入力でのCVレギュレーション・レベル(「Electrical Characteristics」を参照)					

11.1.2.11 AC電圧項(V_{RMS}単位)

V _{IN(max)}	コンバータへの最大入力電圧
----------------------	---------------

V_{IN(min)} コンバータへの最小入力電圧

コンバータの入力スタートアップ(実行)電圧 V_{IN(run)}

11.1.2.12 効率項

コンバータの総効率 η

10%負荷時の効率 η_{10}

負荷レベル25%、50%、75%、100%での効率の算術平均 ηανς

変圧器の1次側から2次側への電力伝達効率 η_{XFMR}

11.2 ドキュメントのサポート

11.2.1 関連資料

関連資料については、以下を参照してください。

- 『UCC28742-1EVM-724の使用法、評価モジュール』、SLUUBF1
- 『UCC28742設計用カリキュレータ』、SLUC652

UCC28742 JAJSF47A – APRIL 2018 – REVISED MAY 2018

www.tij.co.jp

11.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通 知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の 詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.4 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™オンライン・コミュニティ *TIのE2E(Engineer-to-Engineer)コミュニティ。*エンジニア間の共同作 業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有 し、アイディアを検討して、問題解決に役立てることができます。

設計サポート TIの設計サポート 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることが できます。技術サポート用の連絡先情報も参照できます。

11.5 商標

E2E is a trademark of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments.

11.6 静電気放電に関する注意事項

すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感 であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。 本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
UCC28742DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	U742
UCC28742DBVR.A	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	U742
UCC28742DBVR.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	U742
UCC28742DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	U742
UCC28742DBVT.A	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	U742
UCC28742DBVT.B	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	U742

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

23-May-2025

DBV0006A

PACKAGE OUTLINE

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.

DBV0006A

EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DBV0006A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みま す)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある 「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証 も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様 のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様の アプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任 を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツル メンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらの リソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権の ライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、 費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは 一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ ースを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated