

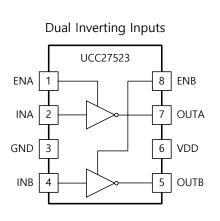
UCC2752x デュアル、5A、高速ローサイド ゲート ドライバ

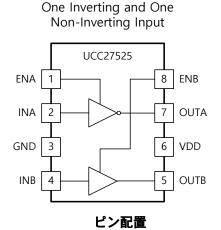
1 特長

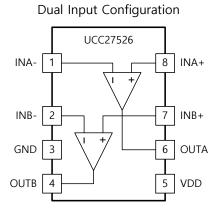
- 業界標準のピン配置
- 2 つの独立したゲート駆動チャネル
- ソースおよびシンク駆動ピーク電流:5A
- 出力ごとに独立したイネーブル機能
- TTL および CMOS 互換のロジック スレッショルド (電 源電圧に無関係)
- ヒステリシス付きのロジックスレッショルドによる高いノイ
- 入力およびイネーブル ピンの電圧レベルが VDD ピン のバイアス電源電圧に制限されない
- 4.5V~18Vの単一電源電圧範囲
- VDD UVLO 時に出力を Low に保持 (パワーアップ / パワーダウン時のグリッチを防止)
- 高速伝搬遅延時間:13ns (標準値)
- 高速立ち上がり/立ち下がり時間:7ns/6ns (標準値)
- 2 チャネル間遅延マッチング: 1ns (代表値)
- 2 つの並列出力による高駆動電流
- 入力フローティング時に出力を Low に固定
- PDIP (8), SOIC (8), MSOP (8) の PowerPAD™、お よび 3mm×3mm の WSON-8 パッケージ オプション
- 動作温度範囲:-40℃~140℃

2 アプリケーション

- スイッチ モード電源
- DC/DC コンバータ
- モータ制御、太陽光発電
- 最新の広バンドギャップ パワー デバイス (GaN など) 用ゲート駆動


3 概要


UCC2752x ファミリのデバイスは、デュアル チャネルの高 速 2 次側ゲートドライバであり、MOSFET および IGBT パワー スイッチを効果的に駆動できます。本質的に貫通 電流を最小限に抑える設計により、UCC2752x は、容量 性負荷に対してソース/シンクともに最大 5A の高いピー ク電流パルスを供給できます。また、レールツーレールの 駆動能力を持ち、伝搬遅延は標準値で 13ns と非常に小 さくなっています。さらに、ドライバは2つのチャネル間の 整合内部伝搬遅延を特長としています。これらの遅延は、 同期整流器など、タイミングが重要なデュアル ゲートドラ イブを必要とするアプリケーションに非常に適しています。 また、2 つのチャネルを並列接続して実質的な電流駆動 能力を高めることも、1 つの入力信号で 2 つのスイッチを 並行して駆動することも可能です。入力ピンのスレッショル ドは、TTL および CMOS 互換の低電圧ロジックに基づ き、VDD 電源電圧に依存しない固定値となっています。 上限と下限のスレッショルド間に幅広いヒステリシスが設け られているため、優れたノイズ耐性が得られます。


製品情報

部品番号	パッケージ ⁽¹⁾	本体サイズ (公称)
UCC27523	D (SOIC 8)	4.90mm × 3.91mm
	DGN (HVSSOP 8)	3.00mm × 3.00mm
	DSD (WSON 8)	3.0011111 ~ 3.0011111
	D (SOIC 8)	4.90mm × 3.91mm
UCC27525	DGN (HVSSOP 8)	3.00mm × 3.00mm
	DSD (WSON 8)	3.0011111 ~ 3.0011111
UCC27526	DSD (WSON 8)	3.00mm × 3.00mm

供給されているすべてのパッケージについては、セクション 13 を 参照してください。

Table of Contents

1 特長	1	8 Application and Implementation	<mark>2</mark> 1
2 アプリケーション		8.1 Application Information	21
3 概要		8.2 Typical Application	<mark>2</mark> 1
- M.C M.C.		9 Power Supply Recommendations	26
5 Pin Configuration and Functions		10 Layout	<mark>2</mark> 7
6 Specifications		10.1 Layout Guidelines	27
6.1 Absolute Maximum Ratings		10.2 Layout Example	28
6.2 ESD Ratings		10.3 Thermal Considerations	28
6.3 Recommended Operating Conditions		11 Device and Documentation Support	30
6.4 Thermal Information		11.1 Device Support	30
6.5 Electrical Characteristics		11.2ドキュメントの更新通知を受け取る方法	30
6.6 Switching Characteristics		11.3 サポート・リソース	30
6.7 Typical Characteristics		11.4 Trademarks	30
7 Detailed Description		11.5 静電気放電に関する注意事項	30
7.1 Overview		11.6 用語集	30
7.2 Functional Block Diagrams		12 Revision History	
7.3 Feature Description		13 Mechanical, Packaging, and Orderable	
7.4 Device Functional Modes		Information	32

English Data Sheet: SLUSAQ3

4 概要 (続き)

UCC2752x ファミリでは、反転×2、非反転×2、または反転×1+非反転×1という3種類の標準的なロジックオプションを使用できます。UCC27526はデュアル入力設計であり、チャネル毎に反転(IN-ピン)と非反転(IN+ピン)の両方の構成を柔軟に実装できます。IN+またはIN-ピンでドライバ出力の状態を制御します。使用しない入力ピンは、イネーブルおよびディスエーブル機能に使用できます。安全な動作のために、UCC2752xファミリのデバイスはすべて、入力ピンに内部プルアップおよびプルダウン抵抗を備え、入力ピンがフローティング状態のときには出力がLowに保持されます。UUCC27523 および UCC27525は、イネーブルピン(ENA およびENB)を搭載し、ドライバアプリケーションの動作をよりきめ細かく制御できます。これらのピンは、アクティブハイロジックでは内部でVDDにプルアップされ、標準動作時にはオープンになります。

UCC2752x デバイス ファミリは、SOIC-8 (D)、露出したパッド (DGN) 付きの MSOP-8、および露出したパッド (DSD) 付きの 3mm × 3mm WSON-8 パッケージで供給されます。UCC27526 は、3mm×3mm WSON (DSD) パッケージのみで供給されます。

5 Pin Configuration and Functions

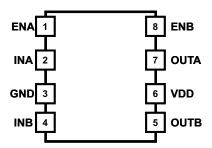


図 5-1. D, DGN, Package UCC2752(3,5) 8-Pin SOIC-8, HVSSOP Top View

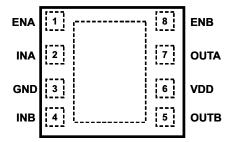


図 5-2. DSD Package UCC2752(3,5) 8-Pin WSON Top View

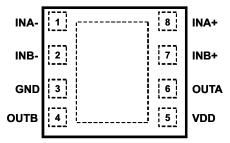


図 5-3. DSD Package UCC27526 8-Pin WSON Top View

表 5-1. Pin Functions (UCC27523 / UCC27525)

	PIN	1/0	DESCRIPTION
NO.	NAME	- 1/0	DESCRIPTION
1	ENA	1	Enable input for Channel A: ENA biased LOW Disables Channel A output regardless of INA state, ENA biased HIGH or floating Enables Channel A output, ENA allowed to float hence the pin-to-pin compatibility with UCC2732X N/C pin.
2	INA	I	Input to Channel A: Inverting Input in UCC27523, Non-Inverting Input in UCC27524, Inverting Input in UCC27525, OUTA held LOW if INA is unbiased or floating.
3	GND	-	Ground: All signals referenced to this pin.
4	INB	I	Input to Channel B: Inverting Input in UCC27523, Non-Inverting Input in UCC27524, Non-Inverting Input in UCC27525, OUTB held LOW if INB is unbiased or floating.
5	OUTB	0	Output of Channel B
6	VDD	I	Bias supply input
7	OUTA	0	Output of Channel A
8	ENB	1	Enable input for Channel B: ENB biased LOW Disables Channel B output regardless of INB state, ENB biased HIGH or floating Enables Channel B output, ENB allowed to float hence the pin-to-pin compatibility with UCC2732X N/C pin.

表 5-2. Pin Functions (UCC27526)

PIN		- I/O	DESCRIPTION
NO.	NAME		DESCRIPTION
1	INA-	ı	Inverting Input to Channel A: When Channel A is used in Non-Inverting configuration, connect INA- to GND in order to Enable Channel A output, OUTA held LOW if INA- is unbiased or floating.
2	INB-	ı	Inverting Input to Channel B: When Channel B is used in Non-Inverting configuration, connect INB— to GND in order to Enable Channel B output, OUTB held LOW if INB— is unbiased or floating.
3	GND	-	Ground: All signals referenced to this pin.
4	OUTB	I	Output of Channel B
5	VDD	0	Bias Supply Input
6	OUTA	I	Output of Channel A
7	INB+	0	Non-Inverting Input to Channel B: When Channel B is used in Inverting configuration, connect INB+ to VDD in order to Enable Channel B output, OUTB held LOW if INB+ is unbiased or floating.
8	INA+	I	Non-Inverting Input to Channel A: When Channel A is used in Inverting configuration, connect INA+ to VDD in order to Enable Channel A output, OUTA held LOW if INA+ is unbiased or floating.

English Data Sheet: SLUSAQ3

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

		MIN	MAX	UNIT
Supply voltage	VDD	-0.3	20	
OUTA, OUTB voltage	DC		VDD + 0.3	V
OOTA, OOTB voilage	Repetitive pulse < 200 ns ⁽⁴⁾	-2	VDD + 0.3	
Output continuous source/sink current	I _{OUT_DC}		0.3	A
Output pulsed source/sink current (0.5 µs)	I _{OUT_pulsed}		5	^
INA, INB, INA+, INA-, INB+, INB-, ENA, ENB voltage ⁽³⁾		-0.3	20	V
Operating virtual junction temperature	e, T _J	-40	150	
Lead temperature	Soldering, 10 s		300	°C
Lead temperature	Reflow		260	
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under セクション 6.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	
V _(ESD)	V _(ESD) Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
Supply voltage, VDD	4.5	12	18	V
Operating junction temperature	-40		140	°C
Input voltage, INA, INB, INA+, INA-, INB+, INB-	0		18	V
Enable voltage, ENA and ENB	0		18	

⁽²⁾ All voltages are with respect to GND unless otherwise noted. Currents are positive into, negative out of the specified terminal. See セクション 13 for thermal limitations and considerations of packages.

⁽³⁾ The maximum voltage on the Input and Enable pins is not restricted by the voltage on the V_{DD} pin.

⁽⁴⁾ Values are verified by characterization on bench.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		UCC2	27523/5	UCC27523/5/6	
	THERMAL METRIC ⁽¹⁾	SOIC (D)	MSOP (DGN)	WSON (DSD)	UNIT
		8 PINS	8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	130.9	71.8	46.7	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	80	65.6	46.7	
$R_{\theta JB}$	Junction-to-board thermal resistance	71.4	7.4	22.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	21.9	7.4	0.7	- C/VV
ΨЈВ	Junction-to-board characterization parameter	70.9	31.5	22.6	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	19.6	9.5	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

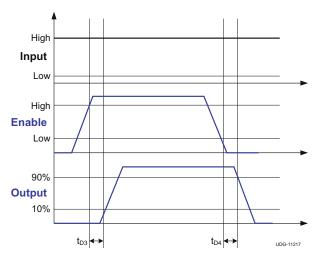
6.5 Electrical Characteristics

 V_{DD} = 12 V, T_A = T_J = -40°C to 140°C, 1- μ F capacitor from V_{DD} to GND. Currents are positive into, negative out of the specified terminal (unless otherwise noted,)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
BIAS CU	RRENTS					
I _{DD(off)} Start-up current,		$V_{DD} = 3.4 \text{ V},$ $INA = V_{DD},$ $INB = V_{DD}$	55	110	175	
	Start-up current,	V _{DD} = 3.4 V, INA = GND, INB = GND	25	75	145	μА
UNDERV	OLTAGE LOCKOUT (UVLO)					
		T _J = 25°C	3.91	4.2	4.5	
V_{ON}	Supply start threshold	T _J = -40°C to 140°C	3.7	4.2	4.65	
V _{OFF}	Minimum operating voltage after supply start		3.4	3.9	4.4	V
VDD_H	Supply voltage hysteresis		0.2	0.3	0.5	
INPUTS (INA, INB, INA+, INA-, INB+, IN	B–)	•			
V _{IN_H}	Input signal high threshold	Output high for non-inverting input pins Output low for inverting input pins	1.9	2.1	2.3	
V _{IN_L}	Input signal low threshold	Output low for non-inverting input pins Output high for inverting input pins	1	1.2	1.4	V
V _{IN_HYS}	Input hysteresis		0.7	0.9	1.1	
ENABLE	(ENA, ENB)					
V _{EN_H}	Enable signal high threshold	Output enabled	1.9	2.1	2.3	
V _{EN_L}	Enable signal low threshold	Output disabled	0.95	1.15	1.35	V
V _{EN_HYS}	Enable hysteresis		0.7	0.95	1.1	
OUTPUT	S (OUTA, OUTB)					
I _{SNK/SRC}	Sink/source peak current(1)	C_{LOAD} = 0.22 µF, F_{SW} = 1 kHz		±5		Α
V_{DD} - V_{OH}	High output voltage	I _{OUT} = -10 mA			0.075	V
V _{OL}	Low output voltage	I _{OUT} = 10 mA			0.01	V
R _{OH}	Output pullup resistance ⁽²⁾	I _{OUT} = -10 mA	2.5	5	7.5	Ω
R _{OL}	Output pulldown resistance	I _{OUT} = 10 mA	0.15	0.5	1	Ω

⁽¹⁾ Ensured by design.

⁽²⁾ R_{OH} represents on-resistance of only the P-Channel MOSFET device in pullup structure of UCC2752X output stage.



6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _R	Rise time (1)	C _{LOAD} = 1.8 nF		7	18	
t _F	Fall time ⁽¹⁾	C _{LOAD} = 1.8 nF		6	10	
t _M	Delay matching between 2 channels	INA = INB, OUTA and OUTB at 50% transition point		1	4	ns
t _{PW}	Minimum input pulse width that changes the output state			15	25	115
t _{D1} , t _{D2}	Input to output propagation delay (1)	C _{LOAD} = 1.8 nF, 5-V input pulse	6	13	23	
t _{D3} , t _{D4}	EN to output propagation delay ⁽¹⁾	C _{LOAD} = 1.8 nF, 5-V enable pulse	6	13	23	

(1) See timing diagrams in ⊠ 6-1, ⊠ 6-2, ⊠ 6-3, and ⊠ 6-4

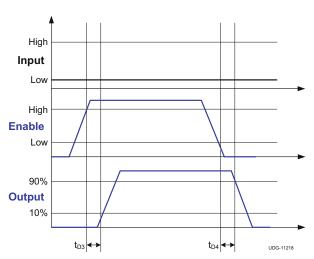
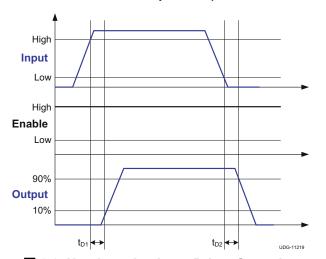


図 6-1. Enable Function (For Non-Inverting Input Driver Operation)

図 6-2. Enable Function (For Inverting Input Driver Operation)



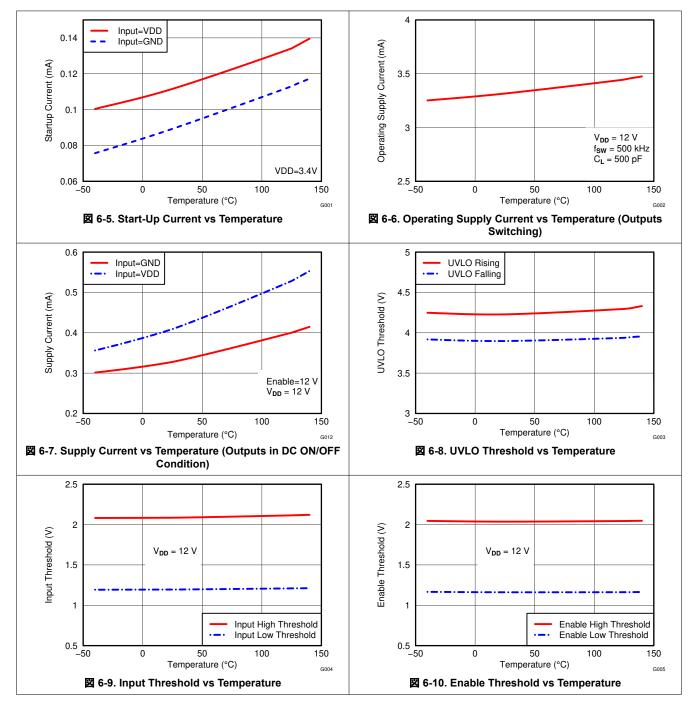
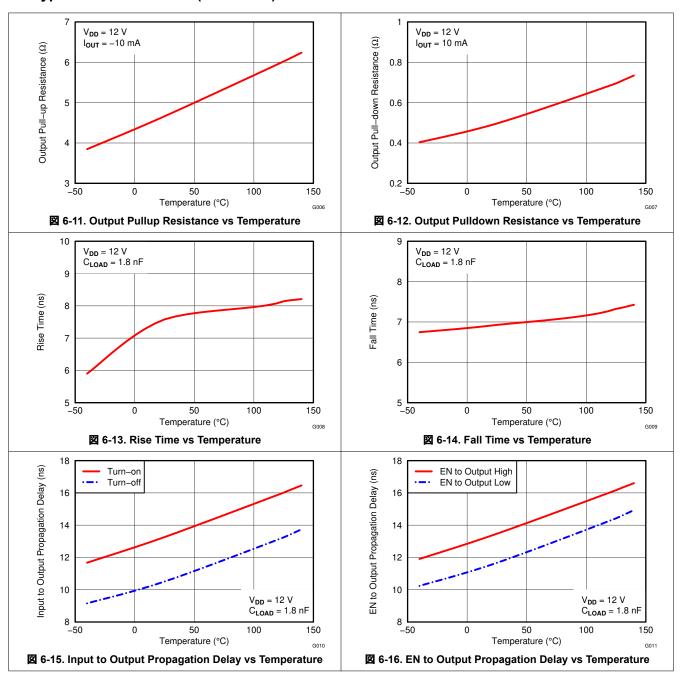
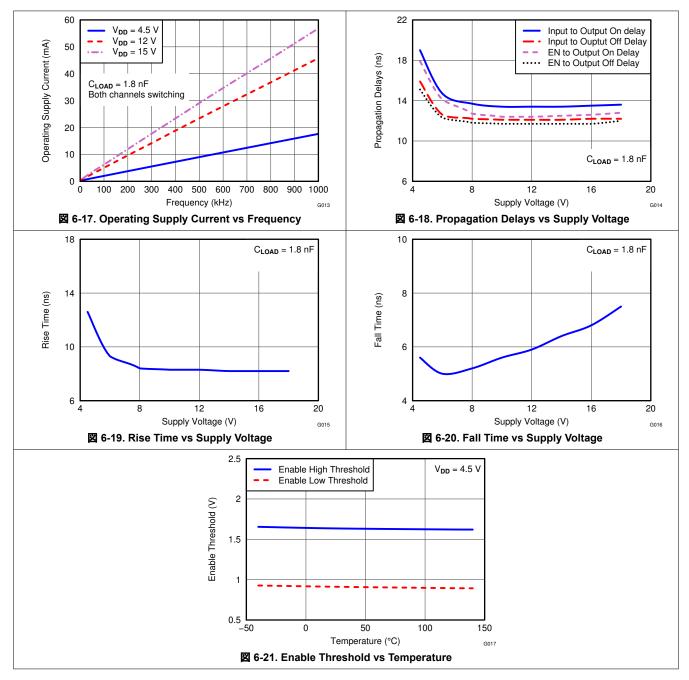


図 6-3. Non-Inverting Input Driver Operation


図 6-4. Inverting Input Driver Operation

6.7 Typical Characteristics



6.7 Typical Characteristics (continued)

6.7 Typical Characteristics (continued)

7 Detailed Description

7.1 Overview

The UCC2752x family of products represent TI's latest generation of dual-channel, low-side, high-speed gate-driver devices featuring 5-A source and sink current capability, industry best-in-class switching characteristics and a host of other features listed in 表 7-1 all of which combine to ensure efficient, robust and reliable operation in high-frequency switching power circuits.

表 7-1. UCC2752x Family of Features and Benefits

FEATURE	BENEFIT
Best-in-class 13-ns (typ) propagation delay	Extremely low-pulse transmission distortion
1-ns (typ) delay matching between channels	Ease of paralleling outputs for higher (2 times) current capability, ease of driving parallel-power switches
Expanded VDD Operating range of 4.5 to 18 V	Flexibility in system design
Expanded operating temperature range of –40°C to 140°C (See セクション 6.5)	
VDD UVLO Protection	Outputs are held Low in UVLO condition, which ensures predictable, glitch-free operation at power-up and power-down
Outputs held Low when input pins (INx) in floating condition	Safety feature, especially useful in passing abnormal condition tests during safety certification
Outputs enable when enable pins (ENx) in floating condition	Pin-to-pin compatibility with UCC2732X family of products from TI, in designs where pin 1 and 8 are in floating condition
CMOS/TTL compatible input and enable threshold with wide hysteresis	Enhanced noise immunity, while retaining compatibility with microcontroller logic level input signals (3.3 V, 5 V) optimized for digital power
Ability of input and enable pins to handle voltage levels not restricted by V_{DD} pin bias voltage	System simplification, especially related to auxiliary bias supply architecture

7.2 Functional Block Diagrams

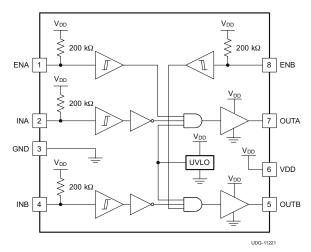


図 7-1. UCC27523 Block Diagram

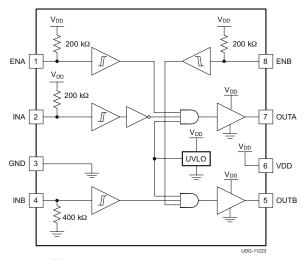


図 7-2. UCC27525 Block Diagram

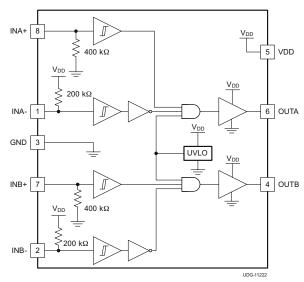
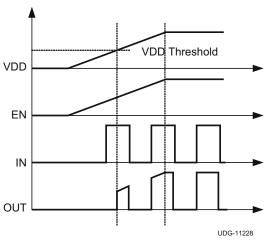


図 7-3. UCC27526 Block Diagram

7.3 Feature Description

7.3.1 V_{DD} and Undervoltage Lockout


The UCC2752x devices have internal undervoltage-lockout (UVLO) protection feature on the V_{DD} pin supply circuit blocks. When V_{DD} is rising and the level is still below UVLO threshold, this circuit holds the output LOW, regardless of the status of the inputs. The UVLO is typically 4.2 V with 300-mV typical hysteresis. This hysteresis prevents chatter when low V_{DD} supply voltages have noise from the power supply and also when there are droops in the V_{DD} bias voltage when the system commences switching and there is a sudden increase in I_{DD} . The capability to operate at low voltage levels such as below 5 V, along with best-in-class switching characteristics, is especially suited for driving emerging GaN power semiconductor devices.

For example, at power up, the UCC2752x driver-device output remains LOW until the V_{DD} voltage reaches the UVLO threshold if Enable pin is active or floating. The magnitude of the OUT signal rises with V_{DD} until steady-state V_{DD} is reached. The non-inverting operation in \boxtimes 7-4 shows that the output remains LOW until the UVLO threshold is reached, and then the output is in-phase with the input. The inverting operation in \boxtimes 7-5 shows that the output remains LOW until the UVLO threshold is reached, and then the output is out-phase with the input. With UCC27526 the output turns to high-state only if INX+ is high and INX- is low after the UVLO threshold is reached.

Because the device draws current from the V_{DD} pin to bias all internal circuits, for the best high-speed circuit performance, TI recommends two V_{DD} bypass capacitors to prevent noise problems. TI highly recommends using surface-mount components. A 0.1- μ F ceramic capacitor must be located as close as possible to the V_{DD} to GND pins of the gate-driver device. In addition, a larger capacitor (such as 1- μ F) with relatively low ESR must be connected in parallel and close proximity, in order to help deliver the high-current peaks required by the load. The parallel combination of capacitors presents a low impedance characteristic for the expected current levels and switching frequencies in the application.

English Data Sheet: SLUSAQ3

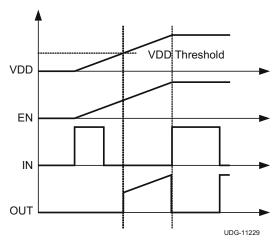


図 7-4. Power up Non-Inverting Driver

図 7-5. Power up Inverting Driver

7.3.2 Operating Supply Current

The UCC2752x products feature very low quiescent I_{DD} currents. The typical operating-supply current in UVLO state and fully on state (under static and switching conditions) are summarized in \boxtimes 6-5, \boxtimes 6-6 and \boxtimes 6-7. The I_{DD} current when the device is fully on and outputs are in a static state (DC high or DC low, refer \boxtimes 6-6) represents lowest quiescent I_{DD} current when all the internal logic circuits of the device are fully operational. The total supply current is the sum of the quiescent I_{DD} current, the average I_{OUT} current due to switching and finally any current related to pullup resistors on the enable pins and inverting input pins. For example when the inverting Input pins are pulled low additional current is drawn from V_{DD} supply through the pullup resistors (refer to \boxtimes 7-1 though \boxtimes 7-3). Knowing the operating frequency (f_{SW}) and the MOSFET gate (Q_{G}) charge at the drive voltage being used, the average I_{OUT} current can be calculated as product of Q_{G} and f_{SW} .

A complete characterization of the I_{DD} current as a function of switching frequency at different V_{DD} bias voltages under 1.8-nF switching load in both channels is provided in \boxtimes 6-17. The strikingly linear variation and close correlation with theoretical value of average I_{OUT} indicates negligible shoot-through inside the gate-driver device attesting to its high-speed characteristics.

7.3.3 Input Stage

The input pins of UCC2752x gate-driver devices are based on a TTL and CMOS compatible input-threshold logic that is independent of the V_{DD} supply voltage. With typically high threshold = 2.1 V and typically low threshold = 1.2 V, the logic level thresholds are conveniently driven with PWM control signals derived from 3.3-V and 5-V digital power-controller devices. Wider hysteresis (typ 0.9 V) offers enhanced noise immunity compared to traditional TTL logic implementations, where the hysteresis is typically less than 0.5 V. UCC2752x devices also feature tight control of the input pin threshold voltage levels which eases system design considerations and ensures stable operation across temperature (refer to \boxtimes 6-9). The very low input capacitance on these pins reduces loading and increases switching speed.

The UCC2752x devices feature an important safety feature wherein, whenever any of the input pins is in a floating condition, the output of the respective channel is held in the low state. This is achieved using V_{DD} pullup resistors on all the Inverting inputs (INA, INB in UCC27523, INA in UCC27525 and INA-, INB- in UCC27526) or GND pulldown resistors on all the non-inverting input pins (INB in UCC27525 and INA+, INB+ in UCC27526), as shown in the device block diagrams.

While UCC27523/5 devices feature one input pin per channel, the UCC27526 features a dual input configuration with two input pins available to control the output state of each channel. With the UCC27526 device the user has the flexibility to drive each channel using either a non-inverting input pin (INx+) or an inverting input pin (INx-). The state of the output pin is dependent on the bias on both the INx+ and INx- pins (where x = A, B). Once an Input pin is chosen to drive a channel, the other input pin of that channel (the unused input pin) must be properly biased in order to enable the output of the channel. The unused input pin cannot remain in a floating condition because, as mentioned earlier, whenever any input pin is left in a floating condition, the output of that channel is disabled using the internal pullup or pulldown resistors for safety purposes. Alternatively, the unused input pin is used effectively to implement an enable/disable function, as explained below.

- In order to drive the channel x (x = A or B) in a non-inverting configuration, apply the PWM control input signal to INx+ pin. In this case, the unused input pin, INx-, must be biased low (for example, tied to GND) in order to enable the output of this channel.
 - Alternately, the INx- pin can be used to implement the enable/disable function using an external logic signal. OUTx is disabled when INx- is biased High and OUTx is enabled when INX- is biased low.
- In order to drive the channel x (x = A or B) in an Inverting configuration, apply the PWM control input signal to INX– pin. In this case, the unused input pin, INX+, must be biased high (for example, tied to VDD) in order to enable the output of the channel.
 - Alternately, the INX+ pin can be used to implement the enable/disable function using an external logic signal. OUTX is disabled when INX+ is biased low and OUTX is enabled when INX+ is biased high.
- Finally, it is worth noting that the UCC27526 output pin can be driven into high state only when INx+ pin is biased high and INx- input is biased low.

Refer to the input/output logic truth table and typical application diagrams, (\boxtimes 8-1, \boxtimes 8-2, and \boxtimes 8-2), for additional clarification.

The input stage of each driver is driven by a signal with a short rise or fall time. This condition is satisfied in typical power supply applications, where the input signals are provided by a PWM controller or logic gates with fast transition times (< 200 ns) with a slow changing input voltage, the output of the driver may switch repeatedly at a high frequency. While the wide hysteresis offered in UCC2752x definitely alleviates this concern over most other TTL input threshold devices, extra care is necessary in these implementations. If limiting the rise or fall times to the power device is the primary goal, then TI highly recommends an external resistance between the output of the driver and the power device. This external resistor has the additional benefit of reducing part of the gate-charge related power dissipation in the gate-driver device package and transferring it into the external resistor itself.

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ) を送信

15

7.3.4 Enable Function

The enable function is an extremely beneficial feature in gate-driver devices especially for certain applications such as synchronous rectification where the driver outputs disable in light-load conditions to prevent negative current circulation and to improve light-load efficiency.

UCC27523/5 devices are provided with independent enable pins ENx for exclusive control of each driver-channel operation. The enable pins are based on a non-inverting configuration (active-high operation). Thus when ENx pins are driven high the drivers are enabled and when ENx pins are driven low the drivers are disabled. Like the input pins, the enable pins are also based on a TTL and CMOS compatible input-threshold logic that is independent of the supply voltage and are effectively controlled using logic signals from 3.3-V and 5-V microcontrollers. The UCC2752X devices also feature tight control of the Enable-function threshold-voltage levels which eases system design considerations and ensures stable operation across temperature (refer to 6-10). The ENx pins are internally pulled up to V_{DD} using pullup resistors as a result of which the outputs of the device are enabled in the default state. Hence the ENx pins are left floating or Not Connected (N/C) for standard operation, where the enable feature is not needed. Essentially, this floating allows the UCC27523/5 devices to be pin-to-pin compatible with TI's previous generation drivers UCC27323/5 respectively, where pins 1, 8 are N/C pins. If the Channel A and Channel B inputs and outputs are connected in parallel to increase the driver current capacity, ENA and ENB are connected and driven together.

The UCC27526 device does not feature dedicated enable pins. However, as mentioned earlier, an enable/ disable function is easily implemented in UCC27526 using the unused input pin. When INx+ is pulled down to GND or INx- is pulled down to VDD, the output is disabled. Thus INx+ pin is used like an enable pin that is based on active high logic, while INx- is used like an enable pin that is based on active low logic. Note that while the ENA, ENB pins in UCC27523/5 are allowed to be in floating condition during standard operation and the outputs will be enabled, the INx+, INx- pins in UCC27526 are not allowed to be floating because this will disable the outputs.

7.3.5 Output Stage

The UCC2752x device output stage features a unique architecture on the pullup structure which delivers the highest peak-source current when it is most needed during the Miller plateau region of the power-switch turnon transition (when the power switch drain or collector voltage experiences dV/dt). The output stage pullup structure features a P-channel MOSFET and an additional N-channel MOSFET in parallel. The function of the N-channel MOSFET is to provide a brief boost in the peak sourcing current enabling fast turnon. This is accomplished by briefly turning-on the N-channel MOSFET during a narrow instant when the output is changing state from Low to High.

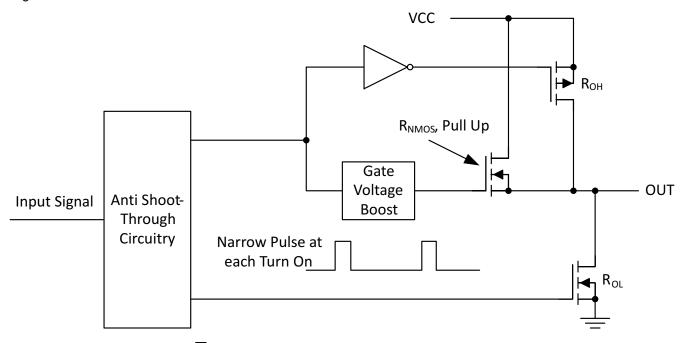


図 7-6. UCC2752x Gate Driver Output Structure

The R_{OH} parameter (see 2992×6.5) is a DC measurement and it is representative of the on-resistance of the P-Channel device only. This is because the N-Channel device is held in the off state in DC condition and is turned-on only for a narrow instant when output changes state from low to high. Note that effective resistance of UCC2752x pullup stage during the turnon instant is much lower than what is represented by R_{OH} parameter.

The pulldown structure in UCC2752x is simply composed of a N-Channel MOSFET. The R_{OL} parameter (see $\stackrel{1}{\sim}$ $\stackrel{1}{\sim}$ 6.5), which is also a DC measurement, is representative of the impedance of the pulldown stage in the device. In UCC2752x, the effective resistance of the hybrid pullup structure during turnon is estimated to be approximately 1.5 × R_{OL} , estimated based on design considerations.

Each output stage in UCC2752x can supply 5-A peak source and 5-A peak sink current pulses. The output voltage swings between V_{DD} and GND providing rail-to-rail operation, thanks to the MOS-output stage which delivers very low drop-out. The presence of the MOSFET-body diodes also offers low impedance to switching overshoots and undershoots which means that in many cases, external Schottky-diode clamps may be eliminated. The outputs of these drivers are designed to withstand 500-mA reverse current without either damage to the device or logic malfunction.

The UCC2752x devices are particularly suited for dual-polarity, symmetrical drive-gate transformer applications where the primary winding of transformer driven by OUTA and OUTB, with inputs INA and INB being driven complementary to each other. This situation is due to the extremely low drop-out offered by the MOS output stage of these devices, both during high (V_{OH}) and low (V_{OL}) states along with the low impedance of the driver output stage, all of which allow alleviate concerns regarding transformer demagnetization and flux imbalance. The low propagation delays also ensure accurate reset for high-frequency applications.

For applications that have zero voltage switching during power MOSFET turnon or turnoff interval, the driver supplies high-peak current for fast switching even though the miller plateau is not present. This situation often occurs in synchronous rectifier applications because the body diode is generally conducting before power MOSFET is switched on.

7.3.6 Low Propagation Delays and Tightly Matched Outputs

The UCC2752x driver devices feature a best in class, 13-ns (typical) propagation delay between input and output which goes to offer the lowest level of pulse-transmission distortion available in the industry for high frequency switching applications. For example in synchronous rectifier applications, the SR MOSFETs are driven with very low distortion when one driver device is used to drive both the SR MOSFETs. Further, the driver devices also feature an extremely accurate, 1-ns (typ) matched internal-propagation delays between the two channels which is beneficial for applications requiring dual gate drives with critical timing. For example in a PFC application, a pair of paralleled MOSFETs may be driven independently using each output channel, which the inputs of both channels are driven by a common control signal from the PFC controller device. In this case the 1ns delay matching ensures that the paralleled MOSFETs are driven in a simultaneous fashion with the minimum of turnon delay difference. Yet another benefit of the tight matching between the two channels is that the two channels are connected together to effectively increase current drive capability, for example A and B channels may be combined into one driver by connecting the INA and INB inputs together and the OUTA and OUTB outputs together. Then, one signal controls the paralleled combination.

Caution must be exercised when directly connecting OUTA and OUTB pins together because there is the possibility that any delay between the two channels during turnon or turnoff may result in shoot-through current conduction as shown in \boxtimes 7-7. While the two channels are inherently very well matched (4-ns Max propagation delay), note that there may be differences in the input threshold voltage level between the two channels which causes the delay between the two outputs especially when slow dV/dt input signals are employed. TI recommends the following guidelines whenever the two driver channels are paralleled using direct connections between OUTA and OUTB along with INA and INB:

- Use very fast dV/dt input signals (20 V/µs or greater) on INA and INB pins to minimize impact of differences in input thresholds causing delays between the channels.
- INA and INB connections must be made as close to the device pins as possible.

Wherever possible, a safe practice would be to add an option in the design to have gate resistors in series with OUTA and OUTB. This allows the option to use $0-\Omega$ resistors for paralleling outputs directly or to add appropriate series resistances to limit shoot-through current, should it become necessary.

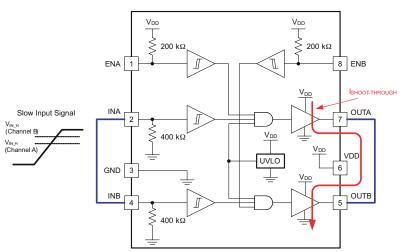
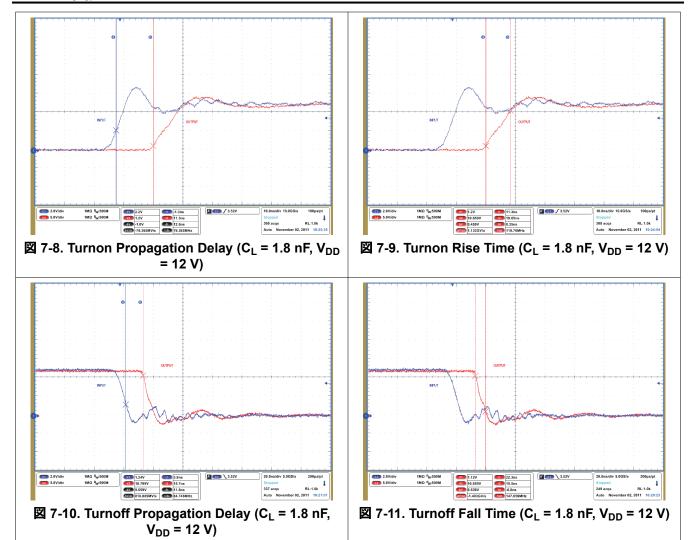



図 7-7. Slow Input Signal May Cause Shoot-Through Between Channels During Paralleling (Recommended dV/dT is 20 V/Ms or Higher)

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLUSAQ3

7.4 Device Functional Modes

表 7-2. Device Logic Table (UCC27523/5)

	UCC2	7523/5		UCC	27523	UCC	27525
ENA	ENB	INA	INB	OUTA	OUTB	OUTA	OUTB
Н	Н	L	L	Н	Н	Н	L
Н	Н	L	Н	Н	L	Н	Н
Н	Н	Н	L	L	Н	L	L
Н	Н	Н	Н	L	L	L	Н
L	L	Any	Any	L	L	L	L
Any	Any	x ⁽¹⁾	x ⁽¹⁾	L	L	L	L
x ⁽¹⁾	x ⁽¹⁾	L	L	Н	Н	Н	L
x ⁽¹⁾	x ⁽¹⁾	L	Н	Н	L	Н	Н
x ⁽¹⁾	x ⁽¹⁾	Н	L	L	Н	L	L
x ⁽¹⁾	x ⁽¹⁾	Н	Н	L	L	Ĺ	Н

(1) Floating condition.

表 7-3. Device Logic Table (UCC27526)

2 (1 0: 201:00 = 29:0 14:01:0 (0 0 0 = 1: 0 = 0)						
INx+(x = A or B)	INx- (x = A or B)	OUTx (x = A or B)				
L	L	L				
L	Н	L				
Н	L	Н				
Н	Н	L				
x ⁽¹⁾	Any	L				
Any	x ⁽¹⁾	L				

(1) x = Floating condition.

8 Application and Implementation

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

High-current gate-driver devices are required in switching power applications for a variety of reasons. In order to effect fast switching of power devices and reduce associated switching-power losses, a powerful gate-driver device employs between the PWM output of control devices and the gates of the power semiconductor devices. Further, gate-driver devices are indispensable when having the PWM controller device directly drive the gates of the switching devices is sometimes not feasible. With advent of digital power, this situation is often encountered because the PWM signal from the digital controller is often a 3.3-V logic signal which cannot effectively turn on a power switch. A level-shifting circuitry is needed to boost the 3.3-V signal to the gate-drive voltage (such as 12 V) in order to fully turn on the power device and minimize conduction losses. Traditional buffer-drive circuits based on NPN/PNP bipolar transistors in totem-pole arrangement, being emitter-follower configurations, prove inadequate with digital power because they lack level-shifting capability. Gate-driver devices effectively combine both the level-shifting and buffer-drive functions. Gate-driver devices also find other needs such as minimizing the effect of high-frequency switching noise by locating the high-current driver physically close to the power switch, driving gate-drive transformers and controlling floating power-device gates, reducing power dissipation and thermal stress in controller devices by moving gate-charge power losses into the controller.

Finally, emerging wide band-gap power-device technologies such as GaN based switches, which can support very high switching frequency operation, are driving special requirements in terms of gate-drive capability. These requirements include operation at low V_{DD} voltages (5 V or lower), low propagation delays, tight delay matching and availability in compact, low-inductance packages with good thermal capability.

In summary gate-driver devices are extremely important components in switching power combining benefits of high-performance, low-cost, component-count, board-space reduction, and simplified system design.

8.2 Typical Application

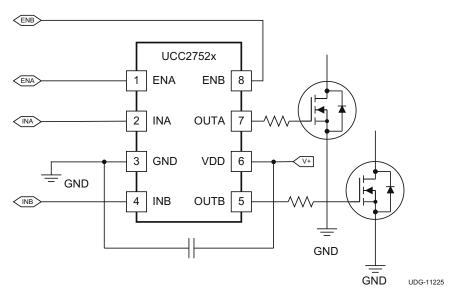


図 8-1. UCC2752x Typical Application Diagram (x = 3, or 5)

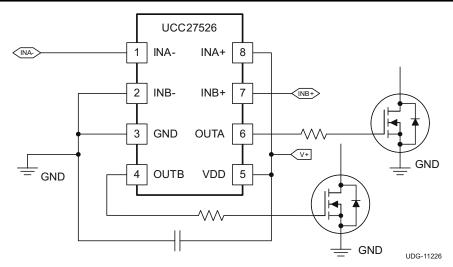


図 8-2. UCC27526 Channel A in Inverting and Channel B in Non-Inverting Configuration (Enable Function Not Used)

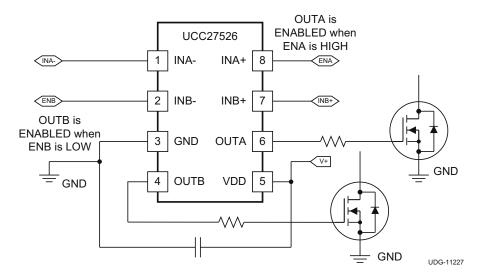


図 8-3. UCC27526 Channel A in Inverting and Channel B in Non-Inverting Configuration (Enable Function Implemented)

8.2.1 Design Requirements

When selecting the proper gate-driver device for an end application, some design considerations must be evaluated first in order to make the most appropriate selection. Among these considerations are input-to-output logic, VDD, UVLO, Drive current and power dissipation.

8.2.2 Detailed Design Procedure

8.2.2.1 Input-to-Output Logic

The design should specify which type of input-to-output configuration should be used. The UCC27523 device can provide dual inverting input to output with enable control. The UCC27525 device can provide one inverting and one non-inverting input to output control. If turning on the power MOSFET or IGBT when the input signal is in high state is preferred, then the non-inverting configuration must be selected. If turning off the power MOSFET or IGBT when the input signal is in high state is preferred, the inverting configuration must be chosen. UCC27526 has dual configuration channel. Each Channel of UCC27526 device can be configured in either an inverting or non-inverting input-to-output configuration using the INx- or INx+ pins respectively like in \boxtimes 8-2 and

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

⊠ 8-3. To configure the channel for use in inverting mode, tie the INx+ pin to VDD and apply the input signal to the INx− pin. For the non-inverting configuration, tie the INx− pin to GND and apply the input signal to the INx+ pin.

8.2.2.2 Enable and Disable Function

Certain applications demand independent control of the output state of the driver. The UCC27523/5 device offers two independent enable pins ENx for exclusive control of each driver channels as listed in $\frac{1}{5}$ 7-2.

The UCC27526 device does not feature dedicated enable pins. However, as mentioned earlier, an enable/ disable function can be easily implemented in UCC27526 using the unused input pin. When INx+ is pulled-down to GND or INx— is pulled-down to VDD, the output is disabled as listed in 表 7-3. Thus INx+ pin can be used like an enable pin that is based on active high logic, while INx— can be used like an enable pin that is based on active low logic. It is important to note that while the ENA, ENB pins in the UCC27523/5 are allowed to be in floating condition during standard operation and the outputs will be enabled, the INx+, INx— pins in UCC27526 are not allowed to be floating because this will disable the outputs.

8.2.2.3 VDD Bias Supply Voltage

The bias supply voltage to be applied to the VDD pin of the device should never exceed the values listed in the $\forall p > \exists > 6.3$. However, different power switches demand different voltage levels to be applied at the gate terminals for effective turnon and turnoff. With certain power switches, a positive gate voltage may be required for turnon and a negative gate voltage may be required for turnoff, in which case the VDD bias supply equals the voltage differential. With a wide operating range from 4.5 V to 18 V, the UCC2752x device can be used to drive a variety of power switches, such as Si MOSFETs (for example, VGS = 4.5 V, 10 V, 12 V), IGBTs (VGE = 15 V, 18 V).

8.2.2.4 Propagation Delay

The acceptable propagation delay from the gate driver is dependent on the switching frequency at which it is used and the acceptable level of pulse distortion to the system. The UCC2752x device features fast 13-ns (typical) propagation delays which ensures very little pulse distortion and allows operation at very high-frequencies. See セクション 6.6 for the propagation and switching characteristics of the UCC2752x device.

8.2.2.5 Drive Current and Power Dissipation

The UCC27523/5/6 family of drivers are capable of delivering 5-A of current to a MOSFET gate for a period of several-hundred nanoseconds at V_{DD} = 12 V. High peak current is required to turn the device ON quickly. Then, to turn the device OFF, the driver is required to sink a similar amount of current to ground which repeats at the operating frequency of the power device. The power dissipated in the gate-driver device package depends on the following factors:

- Gate charge required of the power MOSFET (usually a function of the drive voltage V_{GS}, which is very close to input bias supply voltage V_{DD} due to low V_{OH} drop-out)
- Switching frequency
- · Use of external gate resistors

Because UCC2752x features very low quiescent currents and internal logic to eliminate any shoot-through in the output driver stage, their effect on the power dissipation within the gate driver can be safely assumed to be negligible.

When a driver device is tested with a discrete, capacitive load calculating the power that is required from the bias supply is fairly simple. The energy that must be transferred from the bias supply to charge the capacitor is given by ± 1 .

$$E_{G} = \frac{1}{2}C_{LOAD}V_{DD}^{2} \tag{1}$$

where

- C_{LOAD} is load capacitor
- V_{DD} is bias voltage feeding the driver.

There is an equal amount of energy dissipated when the capacitor is charged. This leads to a total power loss given by ± 2 .

$$P_{G} = C_{LOAD} V_{DD}^{2} f_{SW}$$
 (2)

where

· f_{SW} is the switching frequency

With V_{DD} = 12 V, C_{LOAD} = 10 nF and f_{SW} = 300 kHz the power loss is calculated as (see \pm 3):

$$P_{G} = 10 \text{ nF} \times 12 \text{ V}^{2} \times 300 \text{ kHz} = 0.432 \text{ W}$$
(3)

The switching load presented by a power MOSFET is converted to an equivalent capacitance by examining the gate charge required to switch the device. This gate charge includes the effects of the input capacitance plus the added charge needed to swing the drain voltage of the power device as it switches between the ON and OFF states. Most manufacturers provide specifications that provide the typical and maximum gate charge, in nC, to switch the device under specified conditions. Using the gate charge Q_g , the power that must be dissipated when charging a capacitor is determined which by using the equivalence $Q_g = C_{LOAD}V_{DD}$ to provide $\cancel{\times}$ 4 for power:

$$P_{G} = C_{LOAD}V_{DD}^{2}f_{SW} = Q_{g}V_{DD}f_{SW}$$
(4)

Assuming that UCC2752x is driving power MOSFET with 60 nC of gate charge ($Q_g = 60$ nC at $V_{DD} = 12$ V) on each output, the gate charge related power loss is calculated as (see ± 5):

$$P_G = 2 \times 60 \text{ nC} \times 12 \text{ V} \times 300 \text{ kHz} = 0.432 \text{ W}$$
 (5)

This power PG is dissipated in the resistive elements of the circuit when the MOSFET turns on or turns off. Half of the total power is dissipated when the load capacitor is charged during turnon, and the other half is dissipated when the load capacitor is discharged during turnoff. When no external gate resistor is employed between the driver and MOSFET/IGBT, this power is completely dissipated inside the driver package. With the use of external gate drive resistors, the power dissipation is shared between the internal resistance of driver and external gate resistor in accordance to the ratio of the resistances (more power dissipated in the higher resistance component). Based on this simplified analysis, the driver power dissipation during switching is calculated as follows (see 3 % 6):

$$P_{SW} = 0.5 \times Q_{G} \times VDD \times f_{SW} \times \left(\frac{R_{OFF}}{R_{OFF} + R_{GATE}} + \frac{R_{ON}}{R_{ON} + R_{GATE}}\right)$$
(6)

where

- R_{OFF} = R_{OL}
- R_{ON} (effective resistance of pullup structure) = 1.5 x R_{OL}

In addition to the above gate-charge related power dissipation, additional dissipation in the driver is related to the power associated with the quiescent bias current consumed by the device to bias all internal circuits such as input stage (with pullup and pulldown resistors), enable, and UVLO sections. As shown in 🗵 6-6, the quiescent current is less than 0.6 mA even in the highest case. The quiescent power dissipation is calculated easily with 式 7.

$$P_{Q} = I_{DD}V_{DD} \tag{7}$$

Assuming , I_{DD} = 6 mA, the power loss is:

$$P_Q = 0.6 \text{ mA} \times 12 \text{ V} = 7.2 \text{ mW}$$
 (8)

Clearly, this power loss is insignificant compared to gate charge related power dissipation calculated earlier.

With a 12-V supply, the bias current is estimated as follows, with an additional 0.6-mA overhead for the quiescent consumption:

$$I_{DD} \sim \frac{P_G}{V_{DD}} = \frac{0.432 \text{ W}}{12 \text{ V}} = 0.036 \text{ A}$$
 (9)

8.2.3 Application Curves

🗵 8-4 and 🗵 8-5 show the typical switching characteristics of the non-inverting input driver operation for UCC27523/5/6 device. $C_L = 1.8 \text{ nF}, V_{DD} = 12 \text{ V}.$

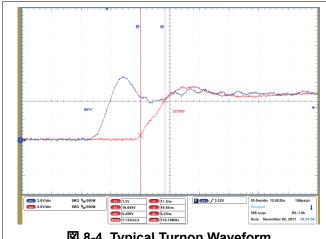


図 8-4. Typical Turnon Waveform

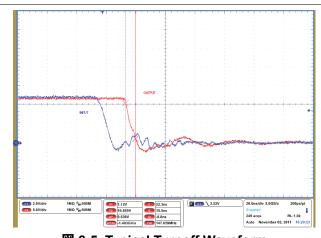


図 8-5. Typical Turnoff Waveform

9 Power Supply Recommendations

The bias supply voltage range for which the UCC2752X device is rated to operate is from 4.5 V to 18 V. The lower end of this range is governed by the internal undervoltage-lockout (UVLO) protection feature on the VDD pin supply circuit blocks. Whenever the driver is in UVLO condition when the VDD pin voltage is below the VON supply start threshold, this feature holds the output low, regardless of the status of the inputs. The upper end of this range is driven by the 20-V absolute maximum voltage rating of the VDD pin of the device (which is a stress rating). Keeping a 2-V margin to allow for transient voltage spikes, the maximum recommended voltage for the VDD pin is 18 V.

The UVLO protection feature also involves a hysteresis function. This means that when the VDD pin bias voltage has exceeded the threshold voltage, device begins to operate, and if the voltage drops, then the device continues to deliver normal functionality unless the voltage drop exceeds the hysteresis specification VDD H. Therefore, ensuring that, while operating at or near the 4.2-V range, the voltage ripple on the auxiliary power supply output is smaller than the hysteresis specification of the device is important to avoid triggering device shutdown. During system shutdown, the device operation continues until the VDD pin voltage has dropped below the VOFF threshold which must be accounted for while evaluating system shutdown timing design requirements. Likewise, at system startup, the device does not begin operation until the VDD pin voltage has exceeded above the VON threshold. The quiescent current consumed by the internal circuit blocks of the device is supplied through the VDD pin. It is important to recognize that the charge for source current pulses delivered by the OUTA/B pin is also supplied through the same VDD pin. As a result, every time a current is sourced out of the output pins, a corresponding current pulse is delivered into the device through the VDD pin. Thus ensuring that local bypass capacitors are provided between the VDD and GND pins and located as close to the device as possible for the purpose of decoupling is important. A low ESR, ceramic surface mount capacitor is a must. TI recommends having two capacitors; a 100-nF ceramic surface-mount capacitor which can be nudged very close to the pins of the device and another surface-mount capacitor of few microfarads added in parallel.

10 Layout

10.1 Layout Guidelines

Proper PCB layout is extremely important in a high-current fast-switching circuit to provide appropriate device operation and design robustness. The UCC27523/5/6 family of gate drivers incorporates short propagation delays and powerful output stages capable of delivering large current peaks with very fast rise and fall times at the gate of power MOSFET to facilitate voltage transitions very quickly. At higher V_{DD} voltages, the peak current capability is even higher (5-A peak current is at V_{DD} = 12 V). Very high di/dt causes unacceptable ringing if the trace lengths and impedances are not well controlled. TI strongly recommends the following circuit layout guidelines when designing with these high-speed drivers.

- Locate the driver device as close as possible to power device in order to minimize the length of high-current traces between the Output pins and the Gate of the power device.
- Locate the V_{DD} bypass capacitors between V_{DD} and GND as close as possible to the driver with minimal
 trace length to improve the noise filtering. These capacitors support high peak current being drawn from V_{DD}
 during turnon of power MOSFET. The use of low inductance SMD components such as chip resistors and
 chip capacitors is highly recommended.
- The turnon and turnoff current loop paths (driver device, power MOSFET and V_{DD} bypass capacitor) should be minimized as much as possible in order to keep the stray inductance to a minimum. High dl/dt is established in these loops at 2 instances during turnon and turnoff transients, which will induce significant voltage transients on the output pin of the driver device and Gate of the power MOSFET.
- Wherever possible, parallel the source and return traces, taking advantage of flux cancellation
- · Separate power traces and signal traces, such as output and input signals.
- Star-point grounding is a good way to minimize noise coupling from one current loop to another. The GND of
 the driver is connected to the other circuit nodes such as source of power MOSFET and ground of PWM
 controller at one, single point. The connected paths must be as short as possible to reduce inductance and
 be as wide as possible to reduce resistance.
- Use a ground plane to provide noise shielding. Fast rise and fall times at OUT may corrupt the input signals
 during transition. The ground plane must not be a conduction path for any current loop. Instead the ground
 plane must be connected to the star-point with one single trace to establish the ground potential. In addition
 to noise shielding, the ground plane can help in power dissipation as well
- In noisy environments, tying inputs of an unused channel of UCC27526 to V_{DD} (in case of INx+) or GND (in case of INX-) using short traces in order to ensure that the output is enabled and to prevent noise from causing malfunction in the output may be necessary.
- Exercise caution when replacing the UCC2732x/UCC2742x devices with the UCC2752x:
 - UCC2752x is a much stronger gate driver (5-A peak current versus 4-A peak current).
 - UCC2752x is a much faster gate driver (13-ns/13-ns rise/fall propagation delay versus 25-ns/35-ns rise/fall propagation delay).

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

27

10.2 Layout Example

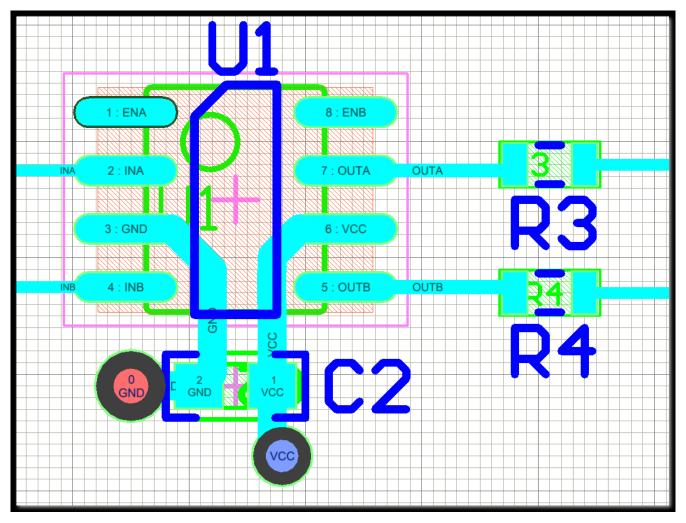


図 10-1. Layout Example for UCC27523/5 (D, DGN)

10.3 Thermal Considerations

The useful range of a driver is greatly affected by the drive power requirements of the load and the thermal characteristics of the device package. In order for a gate-driver device to be useful over a particular temperature range the package must allow for the efficient removal of the heat produced while keeping the junction temperature within rated limits. The UCC27523/5/6 family of drivers is available in four different packages to cover a range of application requirements. The thermal metrics for each of these packages are summarized in the package of the package the package of

Among the different package options available in the UCC2752x family, of particular mention are the DSD and DGN packages when it comes to power dissipation capability. The MSOP PowerPAD-8 (DGN) package and 3-mm × 3-mm WSON (DSD) package offer a means of removing the heat from the semiconductor junction through the bottom of the package. Both these packages offer an exposed thermal pad at the base of the package. This pad is soldered to the copper on the printed-circuit-board directly underneath the device package, reducing the thermal resistance to a very low value. This allows a significant improvement in heat-sinking over that available in the D packages. The printed-circuit-board must be designed with thermal lands and thermal vias to complete the heat removal subsystem. Note that the exposed pads in the MSOP-8 (PowerPAD) and WSON-8 packages are not directly connected to any leads of the package, however, it is electrically and thermally connected to the

substrate of the device which is the ground of the device. TI recommends to externally connect the exposed pads to GND in PCB layout for better EMI immunity.

11 Device and Documentation Support

11.1 Device Support

11.1.1 サード・パーティ製品に関する免責事項

サード・パーティ製品またはサービスに関するテキサス・インスツルメンツの出版物は、単独またはテキサス・インスツルメンツの製品、サービスと一緒に提供される場合に関係なく、サード・パーティ製品またはサービスの適合性に関する是認、サード・パーティ製品またはサービスの是認の表明を意味するものではありません。

11.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

11.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

11.4 Trademarks

PowerPAD™ is a trademark of Texas Instruments.

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

11.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

11.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

12 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

С	Changes from Revision G (April 2015) to Revision H (June 2024)	Page
•	データシート全体にわたって UCC27524 を削除、製品情報の表のパッケージを SOT-23 から SOIC に変す Changed package from SOT-23 to SOIC-8	
_		
С	Changes from Revision F (May, 2013) to Revision G (April, 2015)	Page
•	「ピン構成および機能」セクション、「ESD 定格」表、「機能説明」セクション、「デバイスの機能モード」セクショリケーションと実装」セクション、「電源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよてントのサポート」セクション、「メカニカル、パッケージ、および注文情報」セクションを追加	バキュメ 1
_	Changed 0002732X Gate Driver Output Structure image	
С	changes from Revision E (June 2012) to Revision F (May 2013)	Page
•	Added 0.5 to P _{SW} equation in <i>Drive Current and Power Dissipation</i> section	23
С	Changes from Revision D (April 2012) to Revision E (June 2012)	Page
<u> </u>	Added OUTA, OUTB voltage field and values	
•	Changed table note from "Values are verified by characterization and are not production tested." to " are verified by characterization on bench."	Values
•	Added note, "Values are verified by characterization and are not production tested."	
•	Changed Switching Time t _{PW} values from 10 ns and 25 ns to 15 ns and 25 ns ns	
•	Changed Functional Block Diagrams images	
• _	Changed Slow Input Signal Figure 33	18
С	Changes from Revision C (March 2012) to Revision D (April 2012)	Page
•	DSD) information	
•	Added Inputs (INA, INB, INA+, INA-, INB+, INB-) UCC27524P ONLY section	
•	Changed Enable (ENA, ENB) section to include UCC2752X (D, DGN, DSD) information	
_	Changes from Revision B (December 2011) to Revision C (March 2012)	Page
<u>.</u>	Added R _{OH} note in the Outputs (OUTA, OUTB) section	
	Added an updated Output Stage section	
•	Added UCC2752X Gate Driver Output Structure image	
•	Added an updated Low Propagation Delays and Tightly Matched Outputs section	
•	Added Slow Input Signal Combined with Differences in Input Threshold Voltage image	
•	Added updated Drive Current and Power Dissipation section	
•	Added a PSW equation	23

Changes from Revision A (November 2011) to Revision B (December 2011)	age
Changed Supply start threshold row to include two temperature ranges	7
Changed Minimum operating voltage after supply start min and max values from 3.6 V to 4.2 V to 3.40 V a	and
4.40 V	7
Changed Supply voltage hysteresis typ value from 0.35 to 0.30	7
Changed UCC27526 Block Diagram drawing	
Changed UCC27526 Channel A in Inverting and Channel B in Non-Inverting Configuration drawing	
Changes from Revision * (November 2011) to Revision A (November 2011)	age
データシートのステータスを「量産データ」に変更。	1

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com

8-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
UCC27523D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523D.B	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DGN	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DGN.A	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DGN.B	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DGNR	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DGNR.A	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DGNR.B	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DRG4.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DRG4.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27523
UCC27523DSDR	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27523DSDR.A	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27523DSDR.B	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27523DSDT	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27523DSDT.A	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27523DSDT.B	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27523DSDTG4	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27523DSDTG4.A	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27523DSDTG4.B	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27523
UCC27525D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525D.B	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DG4	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DG4.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525

www.ti.com 8-Nov-2025

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
UCC27525DG4.B	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DGN	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DGN.A	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DGN.B	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DGNR	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DGNR.A	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DGNR.B	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 140	27525
UCC27525DSDR	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27525DSDR.A	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27525DSDR.B	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27525DSDRG4	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27525DSDRG4.A	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27525DSDRG4.B	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27525DSDT	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27525DSDT.A	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27525DSDT.B	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	27525
UCC27526DSDR	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	SCB
UCC27526DSDR.A	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	SCB
UCC27526DSDR.B	Active	Production	SON (DSD) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	SCB
UCC27526DSDT	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	SCB
UCC27526DSDT.A	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	SCB
UCC27526DSDT.B	Active	Production	SON (DSD) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 140	SCB

⁽¹⁾ Status: For more details on status, see our product life cycle.

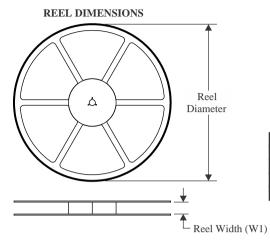
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

PACKAGE OPTION ADDENDUM

www.ti.com 8-Nov-2025

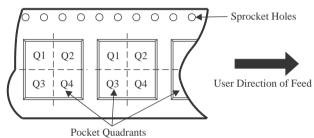
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 23-Jul-2025


TAPE AND REEL INFORMATION

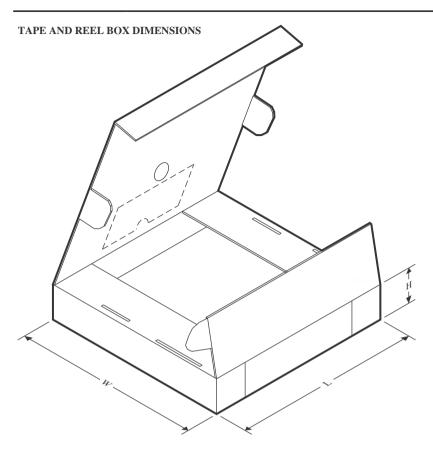
TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

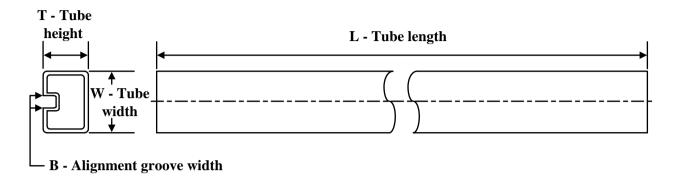
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UCC27523DGNR	HVSSOP	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
UCC27523DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC27523DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC27523DSDR	SON	DSD	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27523DSDR	SON	DSD	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27523DSDT	SON	DSD	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27523DSDT	SON	DSD	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27523DSDTG4	SON	DSD	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27523DSDTG4	SON	DSD	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27525DGNR	HVSSOP	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
UCC27525DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
UCC27525DSDR	SON	DSD	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27525DSDRG4	SON	DSD	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27525DSDT	SON	DSD	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27526DSDR	SON	DSD	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
UCC27526DSDR	SON	DSD	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2


PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025

	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ĺ	UCC27526DSDT	SON	DSD	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
ĺ	UCC27526DSDT	SON	DSD	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 23-Jul-2025

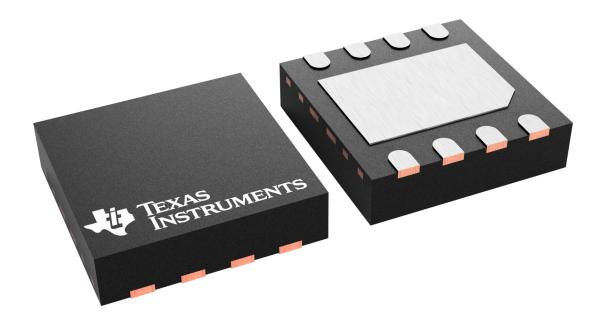

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
UCC27523DGNR	HVSSOP	DGN	8	2500	364.0	364.0	27.0
UCC27523DR	SOIC	D	8	2500	353.0	353.0	32.0
UCC27523DRG4	SOIC	D	8	2500	353.0	353.0	32.0
UCC27523DSDR	SON	DSD	8	3000	367.0	367.0	35.0
UCC27523DSDR	SON	DSD	8	3000	346.0	346.0	33.0
UCC27523DSDT	SON	DSD	8	250	210.0	185.0	35.0
UCC27523DSDT	SON	DSD	8	250	210.0	185.0	35.0
UCC27523DSDTG4	SON	DSD	8	250	210.0	185.0	35.0
UCC27523DSDTG4	SON	DSD	8	250	210.0	185.0	35.0
UCC27525DGNR	HVSSOP	DGN	8	2500	364.0	364.0	27.0
UCC27525DR	SOIC	D	8	2500	353.0	353.0	32.0
UCC27525DSDR	SON	DSD	8	3000	346.0	346.0	33.0
UCC27525DSDRG4	SON	DSD	8	3000	346.0	346.0	33.0
UCC27525DSDT	SON	DSD	8	250	210.0	185.0	35.0
UCC27526DSDR	SON	DSD	8	3000	346.0	346.0	33.0
UCC27526DSDR	SON	DSD	8	3000	367.0	367.0	35.0
UCC27526DSDT	SON	DSD	8	250	210.0	185.0	35.0
UCC27526DSDT	SON	DSD	8	250	210.0	185.0	35.0

PACKAGE MATERIALS INFORMATION

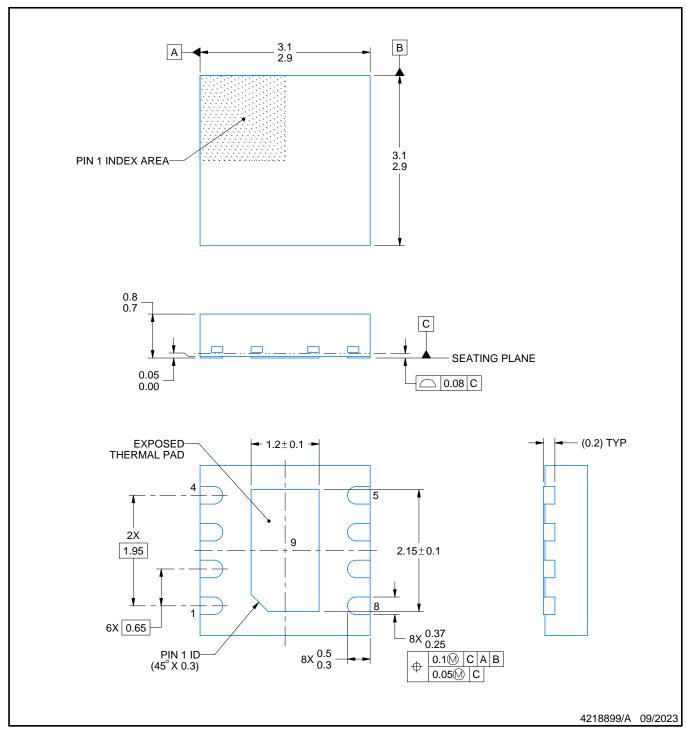
www.ti.com 23-Jul-2025

TUBE


*All dimensions are nominal

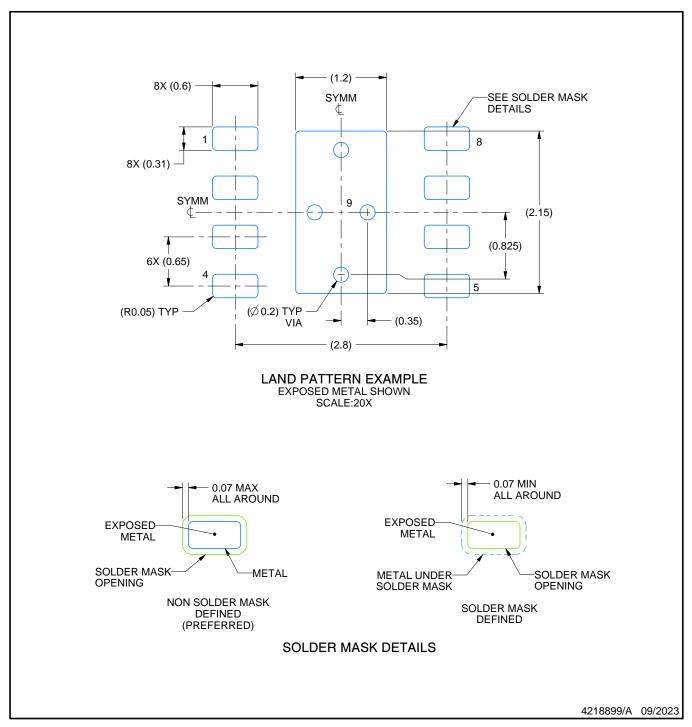
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
UCC27523D	D	SOIC	8	75	506.6	8	3940	4.32
UCC27523D.A	D	SOIC	8	75	506.6	8	3940	4.32
UCC27523D.B	D	SOIC	8	75	506.6	8	3940	4.32
UCC27523DGN	DGN	HVSSOP	8	80	330	6.55	500	2.88
UCC27523DGN.A	DGN	HVSSOP	8	80	330	6.55	500	2.88
UCC27523DGN.B	DGN	HVSSOP	8	80	330	6.55	500	2.88
UCC27525D	D	SOIC	8	75	506.6	8	3940	4.32
UCC27525D.A	D	SOIC	8	75	506.6	8	3940	4.32
UCC27525D.B	D	SOIC	8	75	506.6	8	3940	4.32
UCC27525DG4	D	SOIC	8	75	506.6	8	3940	4.32
UCC27525DG4.A	D	SOIC	8	75	506.6	8	3940	4.32
UCC27525DG4.B	D	SOIC	8	75	506.6	8	3940	4.32
UCC27525DGN	DGN	HVSSOP	8	80	330	6.55	500	2.88
UCC27525DGN.A	DGN	HVSSOP	8	80	330	6.55	500	2.88
UCC27525DGN.B	DGN	HVSSOP	8	80	330	6.55	500	2.88

3 X 3, 0.8 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

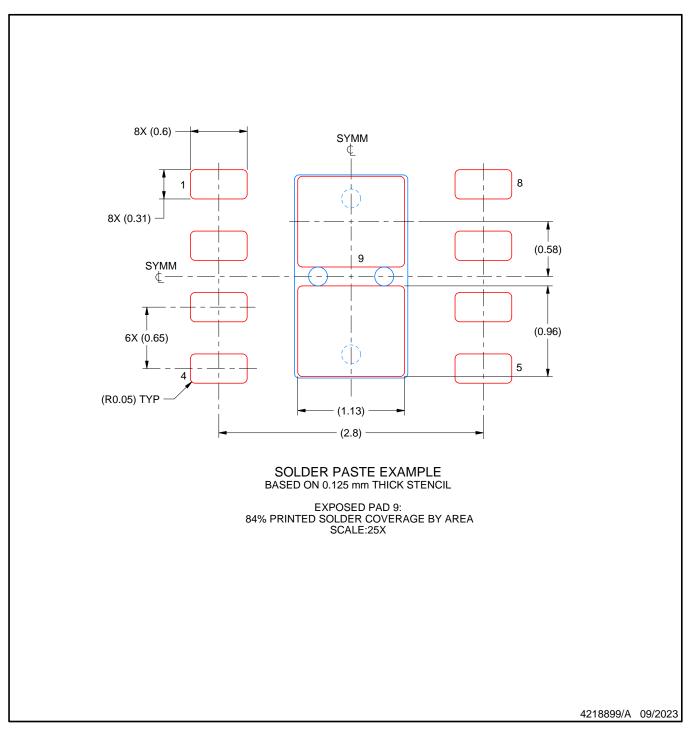
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

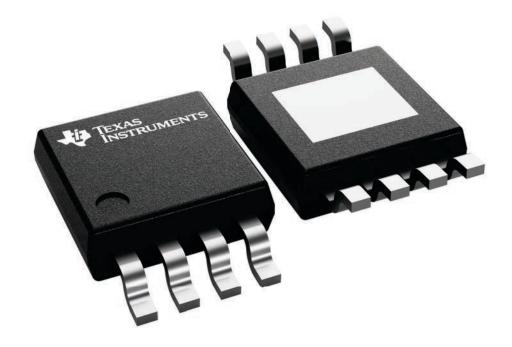
- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.


PLASTIC SMALL OUTLINE - NO LEAD

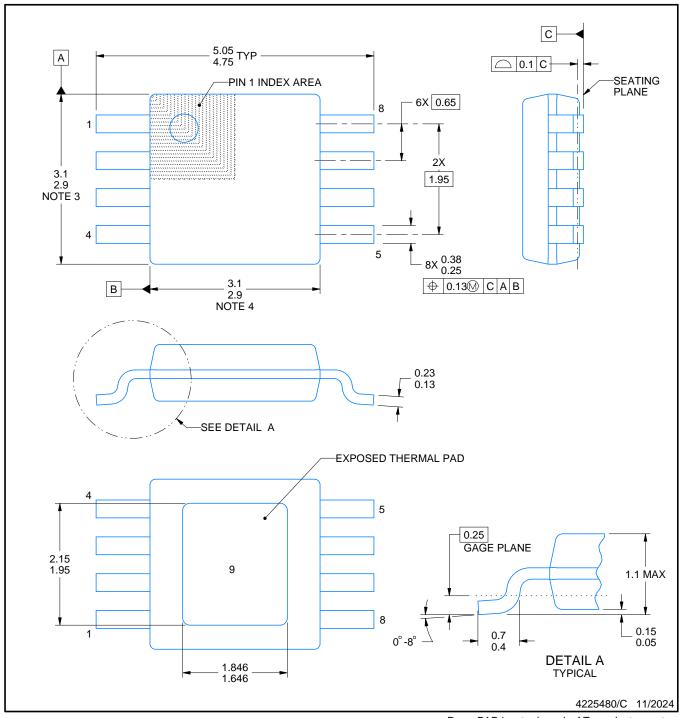
- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)


6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

3 x 3, 0.65 mm pitch


SMALL OUTLINE PACKAGE

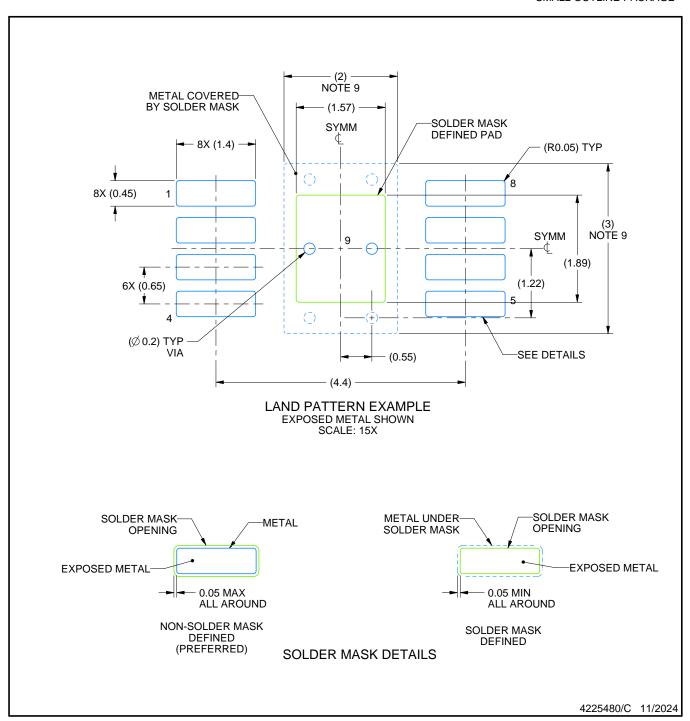
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PowerPAD[™] HVSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

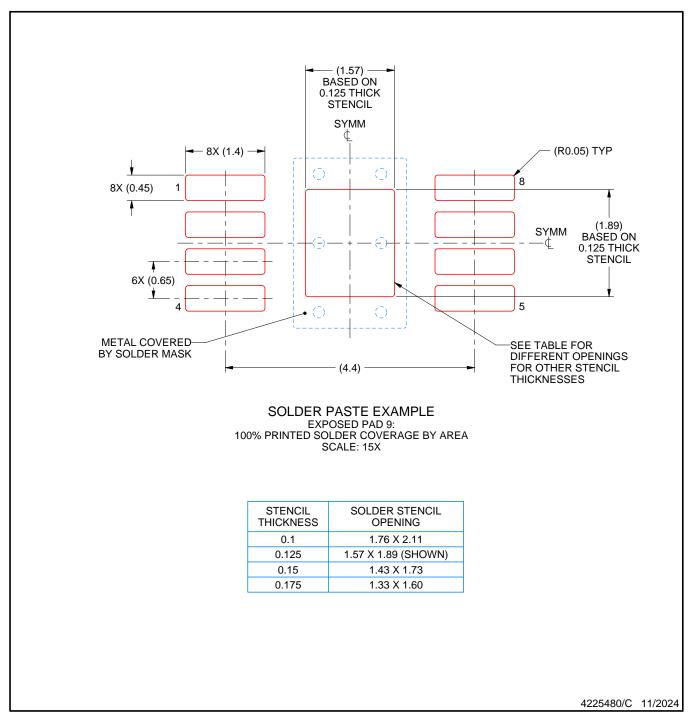
NOTES:

PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

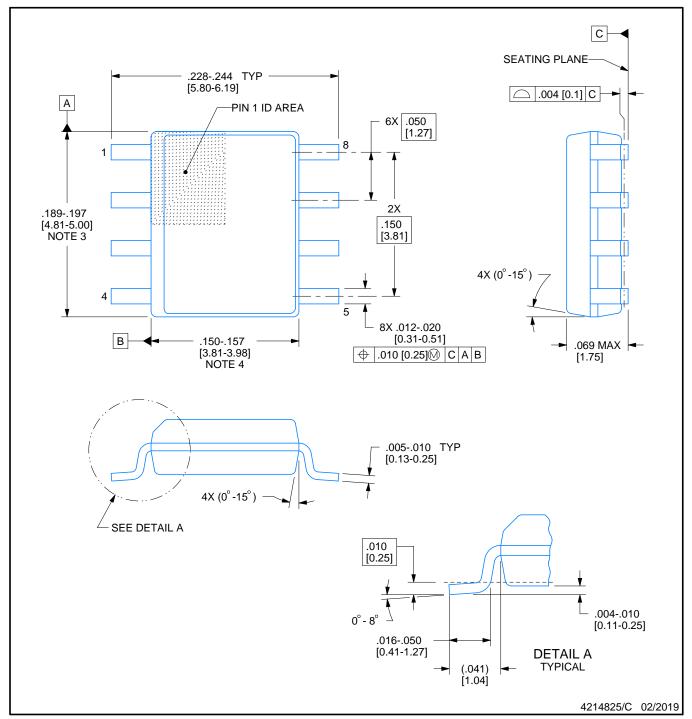
 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.


SMALL OUTLINE PACKAGE

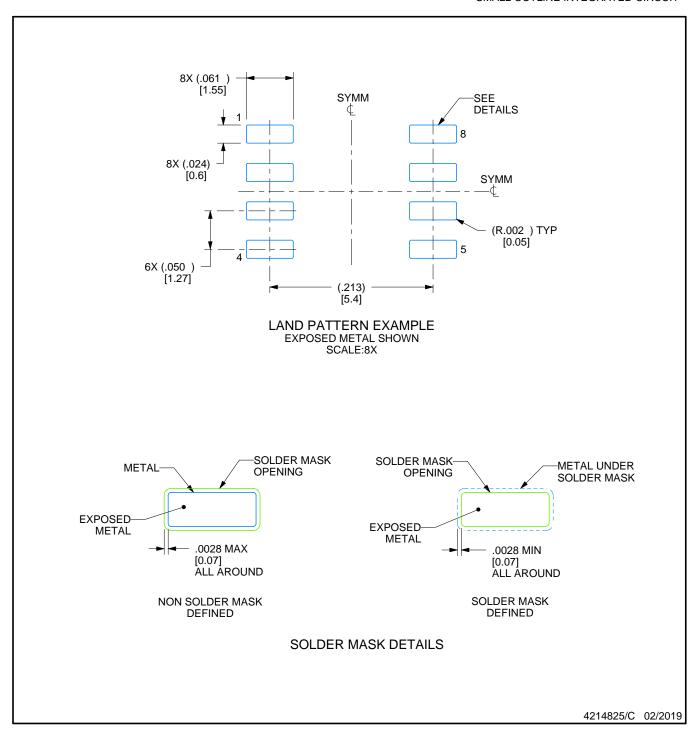
- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE



- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

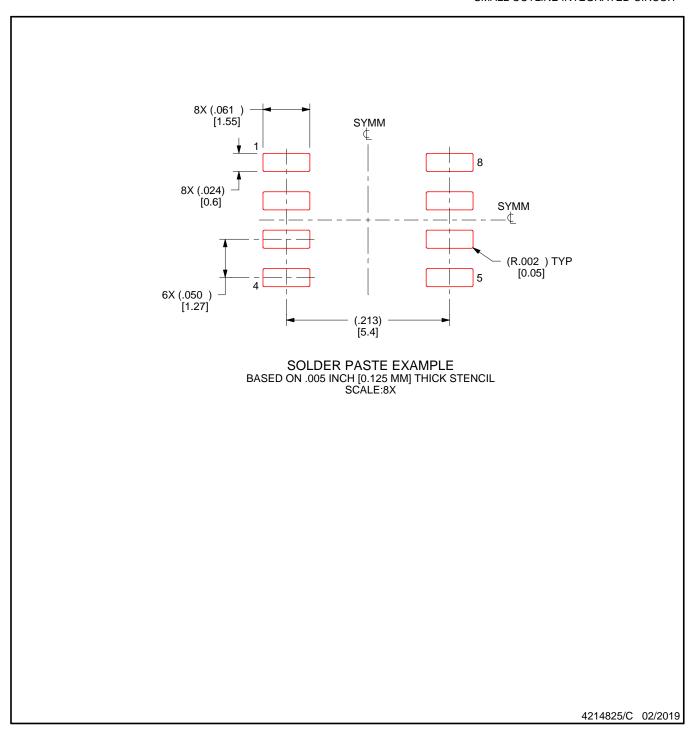
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月