UCC21320-Q1 # UCC21320 -Q1 4A、6A、3.75kV_{RMS} の 車載用絶縁型デュアル チャネル ゲート ドライバ ## 1 特長 - ピークソース 4A、ピークシンク 6A の出力 - 3V~18V の入力 VCCI 範囲により、デジタルとアナロ グの両方のコントローラと接続可能 - 最大 25V の VDD 出力駆動電源 - スイッチング パラメータ: - 伝搬遅延時間:33ns (代表値) - 最小パルス幅:20ns - 最大パルス幅歪み:6ns - 125V/ns を超える同相過渡耐性 (CMTI) - 汎用:デュアルローサイド、デュアルハイサイド、また はハーフ ブリッジドライバ - オーバーラップおよびデッドタイムをプログラム可能 - 幅広の SOIC-14 (DWK) パッケージ - ドライバ チャネル間の間隔 3.3mm - 接合部温度範囲:-40~+150℃ - TTL および CMOS 互換の入力 - 高速なディセーブルによる電源シーケンス - 車載アプリケーション認定済み - 下記結果で AEC-Q100 認定済み - デバイス温度グレード 1 ## 2 アプリケーション - HEV および BEV バッテリ充電器 - DC-DC および AC-DC 電源の絶縁コンバータ - モータードライブおよび DC/AC ソーラー インバータ - 無停電電源 (UPS) #### 3 概要 UCC21320-Q1 は、絶縁されたデュアル チャネルのゲー トドライバで、ピーク電流はソース 4A、シンク 6A です。パ ワー MOSFET、IGBT、SiC MOSFET (最大 5MHz)を駆 動するように設計されています。 入力側は、3.75kV_{RMS} の基本絶縁バリアによって 2 つの 出力ドライバと分離されており、同相過渡耐性 (CMTI) は 125V/ns 以上です。2 つの 2 次側ドライバ間は、内部的 に機能絶縁されているため、1500V_{DC} までの電圧で動作 します。 すべてのドライバは、2つのローサイドドライバ、2つのハ イサイド ドライバ、またはデッドタイム (DT) をプログラム可 能な1つのハーフブリッジドライバとして構成可能です。 ディセーブル ピンによって、両方の出力が同時にシャット ダウンし、オープンまたは接地したときには通常動作しま す。フェイルセーフ手法として、1次側のロジック障害が発 生すると、両方の出力が強制的に Low になります。 各デバイスは、最大 25V の VDD 電源電圧に対応できま す。VCCI 入力範囲が 3V~18V と広いため、このドライバ はアナログとデジタル両方のコントローラとの接続に適して います。すべての電源電圧ピンには、低電圧誤動作防止 (UVLO) 保護機能が搭載されています。 これらの高度な機能により、UCC21320-Q1 は、高効率、 高電力密度、優れた堅牢性を実現します。 ## 製品情報(1) | 部品番号 | パッケージ | 本体サイズ (公称) | |----------------|---------------|-------------------| | UCC21320DWK-Q1 | DWK (SOIC 14) | 10.30mm × 7.50 mm | 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。 機能ブロック図 ## **Table of Contents** | 1 特長1 | 6.6 CMTI Testing | |--|-----------------------------| | 2 アプリケーション1 | 7 Detailed Description | | 3 概要1 | 7.1 Overview | | 4 Pin Configuration and Functions3 | 7.2 Functional Block Diagra | | 5 Specifications4 | 7.3 Feature Description | | 5.1 Absolute Maximum Ratings4 | 7.4 Device Functional Mode | | 5.2 ESD Ratings (Automotive)4 | 8 Application and Implemen | | 5.3 Recommended Operating Conditions4 | 8.1 Application Information | | 5.4 Thermal Information4 | 8.2 Typical Application | | 5.5 Power Ratings5 | 9 Power Supply Recommen | | 5.6 Insulation Specifications6 | 10 Layout | | 5.7 Safety Limiting Values7 | 10.1 Layout Guidelines | | 5.8 Electrical Characteristics7 | 10.2 Layout Example | | 5.9 Timing Requirements8 | 11 Device and Documentati | | 5.10 Switching Characteristics8 | 11.1 Documentation Suppo | | 5.11 Insulation Characteristics Curves9 | 11.2ドキュメントの更新通知を | | 5.12 Typical Characteristics10 | 11.3 サポート・リソース | | 6 Parameter Measurement Information14 | 11.4 Trademarks | | 6.1 Propagation Delay and Pulse Width Distortion14 | 11.5 静電気放電に関する注 | | 6.2 Rising and Falling Time14 | 11.6 用語集 | | 6.3 Input and Disable Response Time14 | 12 Revision History | | 6.4 Programable Dead Time15 | 13 Mechanical, Packaging, | | 6.5 Power-up UVLO Delay to OUTPUT15 | Information | | | | | 6.6 CMTI Testing | 17 | |---|----| | 7 Detailed Description | 18 | | 7.1 Overview | | | 7.2 Functional Block Diagram | | | 7.3 Feature Description | | | 7.4 Device Functional Modes | | | 8 Application and Implementation | 26 | | 8.1 Application Information | | | 8.2 Typical Application | | | 9 Power Supply Recommendations | 38 | | 10 Layout | 39 | | 10.1 Layout Guidelines | | | 10.2 Layout Example | 40 | | 11 Device and Documentation Support | 42 | | 11.1 Documentation Support | 42 | | 11.2ドキュメントの更新通知を受け取る方法 | 42 | | 11.3 サポート・リソース | 42 | | 11.4 Trademarks | | | 11.5 静電気放電に関する注意事項 | | | 11.6 用語集 | | | 12 Revision History | | | 13 Mechanical, Packaging, and Orderable | | | Information | 43 | # 4 Pin Configuration and Functions 図 4-1. DWK Package 14-Pin SOIC Top View 表 4-1. Pin Functions | P | IN | I/O ⁽¹⁾ | DESCRIPTION | | | | |--|---|---|--|--|--|--| | NAME NO. | | 1/0(1/ | DESCRIPTION | | | | | DISABLE | 5 | I | Disables both driver outputs if asserted high, enables if set low or left open. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity. Bypass using a ≈1nF low ESR/ESL capacitor close to DIS pin when connecting to a micro controller with distance. | | | | | DT | 6 | I | Programmable dead time function. Tying DT to VCCI allows the outputs to overlap. Placing a 500- Ω to 500-k Ω resistor (RDT) between DT and GND adjusts dead time according to: DT (in ns) = 10 x R _{DT} (in k Ω). It is recommended to parallel a ceramic capacitor, ≤1nF, close to the DT pin with R _{DT} to achieve better noise immunity. It is not recommended to leave DT floating. | | | | | GND 4 Primary-side ground reference. All signals in the primary side are referenced to this ground | | Primary-side ground reference. All signals in the primary side are referenced to this ground. | | | | | | INA | Input signal for A channel. INA input has a TTL/CMOS compatible input threshold. This pi NA 1 I is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity. | | | | | | | INB | 2 | I | Input signal for B channel. INB input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity. | | | | | NC | 7 | _ | No Internal connection. | | | | | OUTA | 15 | 0 | Output of driver A. Connect to the gate of the A channel FET or IGBT. | | | | | OUTB | 10 | 0 | Output of driver B. Connect to the gate of the B channel FET or IGBT. | | | | | VCCI | 3 | Р | Primary-side supply voltage. Locally decoupled to GND using a low ESR/ESL capacitor located as close to the device as possible. | | | | | VCCI | 8 | Р | Primary-side supply voltage. This pin is internally shorted to pin 3. | | | | | VDDA | 16 | Р | Secondary-side power for driver A. Locally decoupled to VSSA using a low ESR/ESL capacitor located as close to the device as possible. | | | | | VDDB | 11 | Р | P Secondary-side power for driver B. Locally decoupled to VSSB using low ESR/ESL capacitor located as close to the device as possible. | | | | | VSSA | 14 | Р | Ground for secondary-side driver A. Ground reference for secondary side A channel. | | | | | VSSB | 9 | Р | Ground for secondary-side driver B. Ground reference for secondary side B channel. | | | | ⁽¹⁾ P =Power, G= Ground, I= Input, O= Output ## **5 Specifications** ## 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |---|--|------|--------------|------| | Input bias pin supply voltage | VCCI to GND | -0.3 | 20 | V | | Driver bias supply | VDDA-VSSA, VDDB-VSSB | -0.3 | 30 | V | | Output signal voltage | OUTA to VSSA, OUTB to VSSB | -0.3 | VDDA/B + 0.3 | V | | Output signal voltage | OUTA to VSSA, OUTB to VSSB, Transient for 200 ns | -2 | VDDA/B + 0.3 | V | | Input signal voltage | INA, INB, DIS, DT to GND | -0.3 | VCCI + 0.3 | V | | Input signal voltage | INA, INB Transient for 50ns | -5 | VCCI + 0.3 | V | | Channel to channel internal isolation voltage | VSSA-VSSB in DWK package | | 1850 | V | | Junction temperature, T _J ⁽²⁾ | | -40 | 150 | °C | | Storage temperature, T _{stg} | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## **5.2 ESD Ratings (Automotive)** | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V _(ESD) | Electrostatic discharge | Human body model (HBM), per AEC Q100-002 ⁽¹⁾ | ±2000 | V | | ` ′ | Liectiostatic discharge | Charged device model (CDM), per AEC Q100-011 | ±1000 | ' | ⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. ### **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |------------------|---------------------------|-----|-----|------| | V _{CCI} | VCCI Input supply voltage | 3 | 18 | V | | VDDA,
VDDB | Driver output bias supply | 9.2 | 25 | V | | T _J | Junction temperature | -40 | 150 | °C | ### 5.4 Thermal Information | | THERMAL METRIC ⁽¹⁾ | UCC21320-Q1
DWK-14 (SOIC)
14 PINS | UNIT | | |----------------------|--|---|------|--| | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 74.1 | °C/W | | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 34.1 | °C/W | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 32.8 | °C/W | | | Ψ_{JT} | Junction-to-top(center) characterization parameter | 23.7 | °C/W | | | Ψ_{JB} | Junction-to-board characterization parameter |
32.1 | °C/W | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Product Folder Links: UCC21320-Q1 English Data Sheet: SLUSDU7 ⁽²⁾ To maintain the recommended operating conditions for TJ, see the Section 6.4 ## **5.5 Power Ratings** | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------|---|--|-----|-----|-----|------| | P _D | Maximum power dissipation (both sides) | | | | 950 | mW | | IPS. | Maximum power dissipation by transmitter side | VCCI = 5V, VDDA/VDDB = 20V, INA/B = 3.3V, 460kHz 50% duty cycle square | | | 50 | mW | | IPDA PDD | | wave, CL=2.2nF, T _J =150°C, T _A =25°C | | | 450 | mW | 5 Product Folder Links: UCC21320-Q1 English Data Sheet: SLUSDU7 ## 5.6 Insulation Specifications | | PARAMETER | TEST CONDITIONS | SPECIFIC ATION | UNIT | |---|---|--|-------------------|-----------| | General | | | | | | CLR | External clearance ⁽¹⁾ | Shortest terminal-to-terminal distance through air | >8 | mm | | CPG | External Creepage ⁽¹⁾ | Shortest terminal-to-terminal distance across the package surface | >8 | mm | | DTI | Distance through the insulation | Minimum internal gap (internal clearance) | >17 | μm | | СТІ | Comparative tracking index | DIN EN 60112 (VDE 0303-11); IEC 60112 | > 600 | V | | | Material Group | According to IEC 60664-1 | I | | | | Overveltage estageny IEC 60664 1 | Rated mains voltage ≤ 600 V _{RMS} | I-IV | | | | Overvoltage category IEC 60664-1 | Rated mains voltage ≤ 1000 V _{RMS} | I-III | | | DIN EN II | EC 60747-17 (VDE 0884-17) (2) | | | | | V _{IORM} | Maximum repetitive peak isolation voltage | AC voltage (bipolar) | 2121 | V_{PK} | | AC voltage (sine wave): time-dependent dielectric | | 1500 | V_{RMS} | | | 1011111 | | DC voltage | 2121 | V_{DC} | | V _{IMP} | Maximum inpulse voltage | Tested in air, 1.2/50-µs waveform per IEC 62368-1 | 5000 | V_{PK} | | V _{IOTM} | Maximum transient isolation voltage | $V_{TEST} = V_{IOTM}$, t = 60 s (qualification)
$V_{TEST} = 1.2 \times V_{IOTM}$, t = 1 s (100% production) | 5303 | V_{PK} | | V _{IOSM} | Maximum surge isolation voltage ⁽³⁾ | V _{IOSM} ≥ 1.3 x V _{IMP} ; Tested in oil (qualification test), 1.2/50-µs waveform per IEC 62368-1 | 6500 | V_{PK} | | | | Method a: After I/O safety test subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10$ s | ≤5 | | | q _{pd} | Apparent charge ⁽⁴⁾ | Method a: After environmental tests subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10 \text{ s}$ | ≤5 | рС | | | | Method b1: At routine test (100% production) and preconditioning (type test), V_{ini} = 1.2 × V_{IOTM} , t_{ini} = 1 s; $V_{pd(m)}$ = 1.875 × V_{IORM} , t_m = 1 s | ≤5 | | | C _{IO} | Barrier capacitance, input to output ⁽⁵⁾ | $V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$ | ~1.2 | pF | | | | V _{IO} = 500 V, T _A = 25°C | >10 ¹² | | | R _{IO} | Insulation resistance, input to output ⁽⁵⁾ | V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C | >10 ¹¹ | Ω | | | | V _{IO} = 500 V at T _S = 150°C | >109 | | | | Pollution degree | | 2 | | | | Climatic category | | 40/125/21 | | | UL 1577 | | | | | | V _{ISO} | Withstand isolation voltage | $\begin{split} &V_{TEST}=V_{ISO}=5700~V_{RMS},~t=60~s~(qualification),\\ &V_{TEST}=1.2~\times~V_{ISO}=6840~V_{RMS},~t=1~s~(100\%\\ &production) \end{split}$ | 3750 | V_{RMS} | | | | | | | - (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed-circuit board are used to help increase these specifications. - (2) This coupler is suitable for *safe electrical insulation* only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. - (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. - (4) Apparent charge is electrical discharge caused by a partial discharge (pd). - (5) All pins on each side of the barrier tied together creating a two-pin device. ## 5.7 Safety Limiting Values | | PARAMETER | TEST CONDITIONS | SIDE | MIN | TYP | MAX | UNIT | |----------------|---|--|---------------|-----|-----|------|-------| | 1- | | R _{θ JA} = 74.1°C/W, V _{DDA/B} = 15 V, T _J = 150°C, T _A = 25°C | DRIVER
A, | | | 53 | mA | | I _S | Safety output supply current | R _{θ JA} = 74.1°C/W, V _{DDA/B} = 25 V, T _J = 150°C, T _A = 25°C | DRIVER
B | | | 32 | IIIA | | | | | INPUT | | | 50 | | | Ps | Safety supply power | R _{θ JA} = 74.1°C/W, T _J = 150°C, T _A = | DRIVER
A | | | 800 | mW | | FS | Salety supply power | 25°C | DRIVER
B | | | 800 | IIIVV | | | | | TOTAL | | | 1650 | | | T _S | Maximum safety temperature ⁽¹⁾ | | | | | 150 | °C | ⁽¹⁾ The maximum safety temperature, T_S, has the same value as the maximum junction temperature, T_J, specified for the device. The I_S and P_S parameters represent the safety current and safety power respectively. The maximum limits of I_S and P_S should not be exceeded. These limits vary with the ambient temperature, T_A. The junction-to-air thermal resistance, R_{qJA}, in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter: T_J = T_A + R_{qJA} 'P, where P is the power dissipated in the device. T_{J(max)} = T_S = T_A + R_{qJA} 'P_S, where T_{J(max)} is the maximum allowed junction temperature. P_S = I_S 'V_I, where VI is the maximum supply voltage. ### 5.8 Electrical Characteristics V_{VCCI} = 3.3 V or 5 V, 0.1- μ F capacitor from VCCI to GND, V_{VDDA} = V_{VDDB} = 15 V, 1- μ F capacitor from VDDA and VDDB to VSSA and VSSB, T_J = -40° C to +150°C, unless otherwise noted | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---|--|--|------------|-----|------|------| | SUPPLY CURRENT | s | | | | 1 | | | I _{VCCI} | VCCI quiescent current | V _{INA} = 0 V, V _{INB} = 0 V | | 1.4 | 2.0 | mA | | I _{VDDA} , I _{VDDB} | VDDA and VDDB quiescent current | V _{INA} = 0 V, V _{INB} = 0 V | | 1.0 | 2.5 | mA | | I _{VCCI} | VCCI operating current | (f = 500 kHz) current per channel | | 3 | 3.5 | mA | | I _{VDDA} , I _{VDDB} | VDDA and VDDB operating current | (f = 500 kHz) current per channel, C _{OUT} = 100 pF | | 2.5 | 4.2 | mA | | VCC SUPPLY VOLT | AGE UNDERVOLTAGE THRESHOLD | S | | | | | | V _{VCCI_ON} | UVLO Rising threshold | | 2.55 | 2.7 | 2.85 | V | | V _{VCCI_OFF} | UVLO Falling threshold | | 2.35 | 2.5 | 2.65 | V | | V _{VCCI_HYS} | UVLO Threshold hysteresis | | | 0.2 | | V | | VDD SUPPLY VOLT | AGE UNDERVOLTAGE THRESHOLD | S | | | ' | | | V _{VDDA_ON} ,
V _{VDDB_ON} | UVLO Rising threshold | 8-V UVLO | 7.7 | 8.5 | 8.9 | V | | V _{VDDA_OFF} ,
V _{VDDB_OFF} | UVLO Falling threshold | 8-V UVLO | 7.2 | 7.9 | 8.4 | V | | V _{VDDA_HYS} ,
V _{VDDB_HYS} | UVLO Threshold hysteresis | 8-V UVLO | | 0.6 | | V | | INA, INB AND DISA | BLE | | | | ' | | | V _{INAH} , V _{INBH} , V _{DISH} | Input high threshold voltage | | 1.2 | 1.8 | 2 | V | | V _{INAL} , V _{INBL} , V _{DISL} | Input low threshold voltage | | 0.8 | 1 | 1.2 | V | | V _{INA_HYS} , V _{INB_HYS} ,
V _{DIS_HYS} | Input threshold hysteresis | | | 0.8 | | V | | V _{INA} , V _{INB} | Negative transient, ref to GND, 100 ns pulse | Not production tested, bench test only | – 5 | | | V | | OUTPUT | • | | | | · · | | | I _{OA+} , I _{OB+} | Peak output source current | C_{VDD} = 10 μ F, C_{LOAD} = 0.18 μ F, f = 1 kHz, bench measurement | | 4 | | Α | | I _{OA-} , I _{OB-} | Peak output sink current | C _{VDD} = 10 μF, C _{LOAD} = 0.18 μF, f = 1
kHz, bench measurement | | 6 | | Α | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 1 ## 5.8 Electrical Characteristics (続き) V_{VCCI} = 3.3 V or 5 V, 0.1- μ F capacitor from VCCI to GND, V_{VDDA} = V_{VDDB} = 15 V, 1- μ F capacitor from VDDA and VDDB to VSSA and VSSB, T_J = -40° C to +150°C, unless otherwise noted | | PARAMETER | TEST CONDITIONS | MIN | TYP MAX | UNIT | |-------------------------------------|---------------------------------|---|-----|---------|------| | R _{OHA} , R _{OHB} | Output resistance at high state | I_{OUT} = -10 mA, T_A = 25°C, R_{OHA} , R_{OHB} do not represent drive pull-up performance. See t_{RISE} in セクション 5.10 and セクション 7.3.4 for details. | | 5 | Ω | | R _{OLA} , R _{OLB} | Output resistance at low state | I _{OUT} = 10 mA, T _A = 25°C | | 0.55 | Ω | | V _{OHA} , V _{OHB} | Output voltage at high state | V _{VDDA} , V _{VDDB} = 15 V, I _{OUT} = -10 mA, T _A = 25°C | 1 | 4.95 | V | | V _{OLA} , V _{OLB} | Output voltage at low
state | V_{VDDA} , V_{VDDB} = 15 V, I_{OUT} = 10 mA, T_A = 25°C | | 5.5 | mV | ## 5.9 Timing Requirements | | DEADTIME AND OVERLAP PROGRAMMING | MIN | NOM | MAX | UNIT | |----|--|-------------------------------------|-----|-------------------------------------|------| | DT | DT pin tied to VCCI | Ovelap
determined
by INA, INB | | Ovelap
determined
by INA, INB | ns | | DT | Dead time, R_{DT} = 10 k Ω | 80 | 100 | 120 | ns | | DT | Dead time, $R_{DT} = 20 \text{ k}\Omega$ | 160 | 200 | 240 | ns | | DT | Dead time, $R_{DT} = 50 \text{ k}\Omega$ | 400 | 500 | 600 | ns | ## 5.10 Switching Characteristics V_{VCCI} = 3.3 V or 5 V, 0.1- μ F capacitor from VCCI to GND, V_{VDDA} = V_{VDDB} = 15 V, 1- μ F capacitor from VDDA and VDDB to VSSA and VSSB, load capacitance C_{OUT} = 0 pF, T_J = -40°C to +150°C. (over recommended operating conditions unless otherwise noted) | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------|---|--|-----|-----|-----|------| | t _{RISE} | Output rise time, 20% to 80% measured points | C _{OUT} = 1.8 nF | | 6 | 16 | ns | | t _{FALL} | Output fall time, 90% to 10% measured points | C _{OUT} = 1.8 nF | | 7 | 12 | ns | | t _{PWmin} | Minimum pulse width | Output off for less than minimum, C _{OUT} = 0pF | | | 20 | ns | | t _{PDHL} | Propagation delay from INx to OUTx falling edges | | 26 | 33 | 45 | ns | | t _{PDLH} | Propagation delay from INx to OUTx rising edges | | 26 | 33 | 45 | ns | | t _{PWD} | Pulse width distortion t _{PDLH} - t _{PDHL} | | | | 6 | ns | | | Propagation Delay Matching for Dual | Input Pulse Width = 100ns, 500kHz, T _J = -40°C to -10°C tpDLHA - tpDLHB , tpDHLA - tpDHLB | | | 6.5 | ns | | t _{DM} | Channel Driver | Input Pulse Width = 100ns, 500kHz, T _J = -10°C to +150°C t _{PDLHA} - t _{PDLHB} , t _{PDHLA} - t _{PDHLB} | | | 5 | ns | | t _{VCCI+} to OUT | VCCI Power-up Delay Time: UVLO
Rise to OUTA, OUTB | INA or INB tied to VCCI | | | 50 | μs | | t _{VDD+} to OUT | VDDA. VDDB Power-up Delay Time: UVLO Rise to OUTA, OUTB | INA or INB tied to VCCI | | | 10 | μs | | CM _H | High-level common-mode transient immunity (See セクション 6.6) | Slew rate of GND versus VSSA/B, INA and INB both are tied to GND or VCCI; V _{CM} = 1500V | 125 | | | V/ns | | CM _L | Low-level common-mode transient immunity (See セクション 6.6) | Slew rate of GND versus VSSA/B, INA and INB both are tied to GND or VCCI; $V_{\rm CM}$ = 1500V | 125 | | | V/ns | Product Folder Links: UCC21320-Q1 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated ## 5.11 Insulation Characteristics Curves 図 5-1. Thermal Derating Curve for Safety-Related Limiting Current (Current in Each Channel with Both Channels Running Simultaneously) 図 5-2. Thermal Derating Curve for Safety-Related Limiting Power 図 5-3. Reinforced Isolation Capacitor Life Time Projection 9 ## 5.12 Typical Characteristics VDDA = VDDB= 15 V, VCCI = 3.3 V, T_A = 25°C, No load unless otherwise noted. ## **5.12 Typical Characteristics (continued)** VDDA = VDDB= 15 V, VCCI = 3.3 V, T_A = 25°C, No load unless otherwise noted. ## **5.12 Typical Characteristics (continued)** VDDA = VDDB= 15 V, VCCI = 3.3 V, T_A = 25°C, No load unless otherwise noted. ## **5.12 Typical Characteristics (continued)** VDDA = VDDB= 15 V, VCCI = 3.3 V, T_A = 25°C, No load unless otherwise noted. 図 5-23. Dead Time Matching vs. Temperature (with R_{DT} = 20 kΩ and 100 kΩ) 13 Product Folder Links: UCC21320-Q1 ## **6 Parameter Measurement Information** ## 6.1 Propagation Delay and Pulse Width Distortion \boxtimes 6-1 shows how one calculates pulse width distortion (t_{PWD}) and delay matching (t_{DM}) from the propagation delays of channels A and B. It can be measured by ensuring that both inputs are in phase and disabling the dead time function by shorting the DT Pin to VCC. 図 6-1. Overlapping Inputs, Dead Time Disabled ## 6.2 Rising and Falling Time 図 6-2 shows the criteria for measuring rising (t_{RISE}) and falling (t_{FALL}) times. For more information on how short rising and falling times are achieved see セクション 7.3.4 図 6-2. Rising and Falling Time Criteria ### 6.3 Input and Disable Response Time 図 6-3 shows the response time of the disable function. It is recommended to bypass using a ≈1nF low ESR/ESL capacitor close to DIS pin when connecting DIS pin to a micro controller with distance. For more information, see セクション 7.4.1. 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated 図 6-3. Disable Pin Timing ## 6.4 Programable Dead Time 図 6-4. Dead-Time Switching Parameters ## 6.5 Power-up UVLO Delay to OUTPUT Before the driver is ready to deliver a proper output state, there is a power-up delay from the UVLO rising edge to output and it is defined as $t_{VCCI+ to OUT}$ for VCCI UVLO (maximum 50us) and $t_{VDD+ to OUT}$ for VDD UVLO (maximum 10us). It is recommended to consider proper margin before launching PWM signal after the driver's VCCI and VDD bias supply is ready. \boxtimes 6-5 and \boxtimes 6-6 show the power-up UVLO delay timing diagram for VCCI and VDD. If INA or INB are active before VCCI or VDD have crossed above their respective on thresholds, the output will not update until $t_{VCCI+ to\ OUT}$ or $t_{VDD+ to\ OUT}$ after VCCI or VDD crossing its UVLO rising threshold. However, when either VCCI or VDD receive a voltage less than their respective off thresholds, there is <2 μ s delay, depending on the voltage slew rate on the supply pins, before the outputs are held low. This asymmetric delay is designed to ensure safe operation during VCCI or VDD brownouts. English Data Sheet: SLUSDU7 ## 6.6 CMTI Testing ☑ 6-7 is a simplified diagram of the CMTI testing configuration. 図 6-7. Simplified CMTI Testing Setup ## 7 Detailed Description #### 7.1 Overview In order to switch power transistors rapidly and reduce switching power losses, high-current gate drivers are often placed between the output of control devices and the gates of power transistors. There are several instances where controllers are not capable of delivering sufficient current to drive the gates of power transistors. This is especially the case with digital controllers, since the input signal from the digital controller is often a 3.3-V logic signal capable of only delivering a few mA. The UCC21320-Q1 is a flexible dual gate driver which can be configured to fit a variety of power supply and motor drive topologies, as well as drive several types of transistors, including SiC MOSFETs. The UCC21320-Q1 has many features that allow it to integrate well with control circuitry and protect the gates it drives such as: resistor-programmable dead time (DT) control, a DISABLE pin, and under voltage lock out (UVLO) for both input and output voltages. The UCC21320-Q1 also holds its outputs low when the inputs are left open or when the input pulse is not wide enough. The driver inputs are CMOS and TTL compatible for interfacing to digital and analog power controllers alike. Each channel is controlled by its respective input pins (INA and INB), allowing full and independent control of each of the outputs. ## 7.2 Functional Block Diagram Copyright © 2024, Texas Instruments Incorporated ## 7.3 Feature Description #### 7.3.1 VDD, VCCI, and Under Voltage Lock Out (UVLO) The UCC21320-Q1 has an internal under voltage lock out (UVLO) protection feature on the supply circuit blocks between the VDD and VSS pins for both outputs. When the VDD bias voltage is lower than V_{VDD_ON} at device start-up or lower than V_{VDD_OFF} after start-up, the VDD UVLO feature holds the effected output low, regardless of the status of the input pins (INA and INB). When the output stages of the driver are in an unbiased or UVLO condition, the driver outputs are held low by an active clamp circuit that limits the voltage rise on the driver outputs (Illustrated in \boxtimes 7-1). In this condition, the upper PMOS is resistively held off by R_{Hi-Z} while the lower NMOS gate is tied to the driver output through R_{CLAMP} . In this configuration, the output is effectively clamped to the threshold voltage of the lower NMOS device, typically around 1.5 V, when no bias power is available. 図 7-1. Simplified Representation of Active Pull Down Feature The VDD UVLO protection has a hysteresis feature (V_{VDD_HYS}). This hysteresis prevents chatter when there is ground noise from the power supply. Also this allows the device to accept small drops in bias voltage, which is bound to happen when the device starts switching and operating current consumption increases suddenly. The input side of the UCC21320-Q1 also has an internal under voltage lock out (UVLO) protection feature. The device isn't active unless the voltage, VCCI, is going to exceed V_{VCCI_ON} on start up. And a signal will cease to be delivered when that pin receives a voltage less than V_{VCCI_OFF} . And, just like the UVLO for VDD, there is hystersis (V_{VCCI_HYS}) to ensure stable operation. All versions of the UCC21320-Q1 can withstand an absolute maximum of 30 V for VDD, and 20 V for VCCI. ## 表 7-1. UCC21320 -Q1 VCCI UVLO Feature Logic | CONDITION | INPL | JTS | OUTPUTS | | | |--|------|-----|---------|------|--| | CONDITION | INA | INB | OUTA | OUTB | | | VCCI-GND < V _{VCCI_ON} during device start up | Н | L | L | L | | | VCCI-GND < V _{VCCI_ON} during device start up | L | Н | L | L | | | VCCI-GND < V _{VCCI_ON} during device start up | Н | Н | L | L | | | VCCI-GND < V _{VCCI_ON} during device start up | L | L | L | L | | | VCCI-GND < V _{VCCI_OFF} after device start up | Н | L | L | L | | | VCCI-GND < V _{VCCI_OFF} after
device start up | L | Н | L | L | | | VCCI-GND < V _{VCCI_OFF} after device start up | Н | Н | L | L | | | VCCI-GND < V _{VCCI_OFF} after device start up | L | L | L | L | | ## 表 7-2. UCC21320 -Q1 VDD UVLO Feature Logic | AX 7-2. OCC21320 -Q1 VDD CVEC 1 eature Logic | | | | | | | |--|-----|-----|---------|------|--|--| | CONDITION | INP | UTS | OUTPUTS | | | | | CONDITION | INA | INB | OUTA | OUTB | | | | VDD-VSS < V _{VDD_ON} during device start up | Н | L | L | L | | | | VDD-VSS < V _{VDD_ON} during device start up | L | Н | L | L | | | | VDD-VSS < V _{VDD_ON} during device start up | Н | Н | L | L | | | | VDD-VSS < V _{VDD_ON} during device start up | L | L | L | L | | | | VDD-VSS < V _{VDD_OFF} after device start up | Н | L | L | L | | | | VDD-VSS < V _{VDD_OFF} after device start up | L | Н | L | L | | | | VDD-VSS < V _{VDD_OFF} after device start up | Н | Н | L | L | | | | VDD-VSS < V _{VDD_OFF} after device start up | L | L | L | L | | | *資料に関するフィードバック (ご意見やお問い合わせ) を送信* Copyright © 2024 Texas Instruments Incorporated #### 7.3.2 Input and Output Logic Table ## 表 7-3. INPUT/OUTPUT Logic Table (1) Assume VCCI, VDDA, VDDB are powered up. See セクション 7.3.1 for more information on UVLO operation modes. | INP | UTS | DISABLE | OUTPUTS | | NOTE | |-----------|-----------|----------------|---------|------|--| | INA | INB | DISABLE | OUTA | OUTB | NOTE | | L | L | L or Left Open | L | L | ISD ATT OF THE STATE STA | | L | Н | L or Left Open | L | Н | If Dead Time function is used, output transitions occur after the dead time expires. See セクション 7.4.2 | | Н | L | L or Left Open | Н | L | 3. p. 100 | | Н | Н | L or Left Open | L | L | DT is left open or programmed with R _{DT} | | Н | Н | L or Left Open | Н | Н | DT pin pulled to VCCI | | Left Open | Left Open | L or Left Open | L | L | - | | Х | Х | Н | L | L | - | ^{(1) &}quot;X" means L, H or left open. ## 7.3.3 Input Stage The input pins (INA, INB, and DIS) of the UCC21320-Q1 are based on a TTL and CMOS compatible input-threshold logic that is totally isolated from the VDD supply voltage. The input pins are easy to drive with logic-level control signals (such as those from 3.3-V micro-controllers), since the UCC21320-Q1 has a typical high threshold (V_{INAH}) of 1.8 V and a typical low threshold of 1 V, which vary little with temperature (see \boxtimes 5-20, \boxtimes 5-21). A wide hysterisis (V_{INA_HYS}) of 0.8 V makes for good noise immunity and stable operation. If any of the inputs are ever left open, internal pull-down resistors force the pin low. These resistors are typically 200 k Ω (see Since the input side of the UCC21320-Q1 is isolated from the output drivers, the input signal amplitude can be larger or smaller than VDD, provided that it does not exceed the recommended limit. This allows greater flexibility when integrating with control signal sources, and allows the user to choose the most efficient VDD for their chosen gate. That said, the amplitude of any signal applied to INA or INB must *never* be at a voltage higher than VCCI. #### 7.3.4 Output Stage The UCC21320-Q1 output stages feature a pull-up structure which delivers the highest peak-source current when it is most needed, during the Miller plateau region of the power-switch turn on transition (when the power switch drain or collector voltage experiences dV/dt). The output stage pull-up structure features a P-channel MOSFET and an additional Pull-Up N-channel MOSFET in parallel. The function of the N-channel MOSFET is to provide a brief boost in the peak-sourcing current, enabling fast turn on. This is accomplished by briefly turning on the N-channel MOSFET during a narrow instant when the output is changing states from low to high. The onresistance of this N-channel MOSFET ($R_{\rm NMOS}$) is approximately 1.47 Ω when activated. The R_{OH} parameter is a DC measurement and it is representative of the on-resistance of the P-channel device only. This is because the *Pull-Up* N-channel device is held in the off state in DC condition and is turned on only for a brief instant when the output is changing states from low to high. Therefore the effective resistance of the UCC21320-Q1 pull-up stage during this brief turn-on phase is much lower than what is represented by the R_{OH} parameter. Therefore, the value of R_{OH} belies the fast nature of the UCC21320-Q1's turn-on time. The pull-down structure in the UCC21320-Q1 is simply composed of an N-channel MOSFET. The R_{OL} parameter, which is also a DC measurement, is representative of the impedance of the pull-down state in the device. Both outputs of the UCC21320-Q1 are capable of delivering 4-A peak source and 6-A peak sink current pulses. The output voltage swings between VDD and VSS provides rail-to-rail operation, thanks to the MOS-out stage which delivers very low drop-out. To ensure robust and reliable operation of gate drivers, pay special attention to the minimum pulse width. The minimum pulse width shown in the electrical characteristics table describes the minimum input pulse that would be passed to the output in an unloaded driver. This is dictated by the deglitch filter present in the driver IC. An input ON or OFF pulse width longer than the maximum specification is needed to guarantee an output state change and avoid potential shoot-through. With a loaded driver, extra precaution must be taken to ensure robust operation of the system. During gate switching, if the output state changes before the driver completes each transition, a non-zero current switching event occurs. Combined with layout parasitics, non-zero current switching can cause internal rail overshoot and EOS damage of the gate driver. Thus, a minimum output width is needed for reliable system operation. This minimum output pulse width is dependent on several factors: gate capacitance, VDD supply voltage, gate resistance, and PCB layout parasitics. The minimum pulse width for robust operation might be magnitudes larger than the minimum pulse width shown in the electrical characteristics table. System-level study should be carried out to determine the minimum output pulse width required for each system. 図 7-2. Output Stage Copyright © 2024 Texas Instruments Incorporated #### 7.3.5 Diode Structure in the UCC21320 -Q1 ☑ 7-3 illustrates the multiple diodes involved in the ESD protection components of the UCC21320-Q1. This provides a pictorial representation of the absolute maximum rating for the device. 図 7-3. ESD Structure #### 7.4 Device Functional Modes #### 7.4.1 Disable Pin Setting the DISABLE pin high shuts down both outputs simultaneously. Grounding (or left open) the DISABLE pin allows the UCC21320-Q1 to operate normally. The DISABLE response time is in the range of 20ns and quite responsive, which is as fast as propagation delay. The DISABLE pin is only functional (and necessary) when VCCI stays above the UVLO threshold. It is recommended to tie this pin to ground if the DISABLE pin is not used to achieve better noise immunity, and it is recommended to bypass using a ≈1nF low ESR/ESL capacitor close to DIS pin when connecting DIS pin to a micro controller with distance. 23 #### 7.4.2 Programmable Dead Time (DT) Pin The UCC21320-Q1 allows the user to adjust dead time (DT) in the following ways: #### 7.4.2.1 Tying the DT Pin to VCC Outputs completely match inputs, so no dead time is asserted. This allows outputs to overlap. #### 7.4.2.2 DT Pin Connected to a Programming Resistor between DT and GND Pins One can program t_{DT} by placing a resistor, R_{DT} , between the DT pin and GND. The appropriate R_{DT} value can be determined from $\not \equiv 1$, where R_{DT} is in k Ω and t_{DT} is in ns: $$t_{\rm DT} \approx 10 \times R_{\rm DT} \tag{1}$$ The steady state voltage at DT pin is around 0.8 V, and the DT pin current will be less than 10uA when R_{DT}=100kΩ.
When using R_{DT}> 5kΩ, it is recommended to parallel a ceramic capacitor, ≤1nF, close to the chip with RDT to achieve better noise immunity and better deadtime matching between two channels. It is not recommended to leave the DT pin floating. An input signal's falling edge activates the programmed dead time for the other signal. The output signals' dead time is always set to the longer of either the driver's programmed dead time or the input signal's own dead time. If both inputs are high simultaneously, both outputs will immediately be set low. This feature is used to prevent shoot-through, and it doesn't affect the programmed dead time setting for normal operation. Various driver dead time logic operating conditions are illustrated and explained in **27-4**: 図 7-4. Input and Output Logic Relationship With Input Signals Condition A: INB goes low, INA goes high. INB sets OUTB low immediately and assigns the programmed dead time to OUTA. OUTA is allowed to go high after the programmed dead time. Condition B: INB goes high, INA goes low. Now INA sets OUTA low immediately and assigns the programmed dead time to OUTB. OUTB is allowed to go high after the programmed dead time. Condition C: INB goes low, INA is still low. INB sets OUTB low immediately and assigns the programmed dead time for OUTA. In this case, the input signal's own dead time is longer than the programmed dead time. Thus, when INA goes high, it immediately sets OUTA high. Condition D: INA goes low, INB is still low. INA sets OUTA low immediately and assigns the programmed dead time to OUTB. INB's own dead time is longer than the programmed dead time. Thus, when INB goes high, it immediately sets OUTB high. Product Folder Links: UCC21320-Q1 Copyright © 2024 Texas Instruments Incorporated **Condition E:** INA goes high, while INB and OUTB are still high. To avoid overshoot, INA immediately pulls OUTB low and keeps OUTA low. After some time OUTB goes low and assigns the programmed dead time to OUTA. OUTB is already low. After the programmed dead time, OUTA is allowed to go high. **Condition F:** INB goes high, while INA and OUTA are still high. To avoid overshoot, INB immediately pulls OUTA low and keeps OUTB low. After some time OUTA goes low and assigns the programmed dead time to OUTB. OUTA is already low. After the programmed dead time, OUTB is allowed to go high. 25 Product Folder Links: UCC21320-Q1 ## 8 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ## 8.1 Application Information The UCC21320-Q1 effectively combines both isolation and buffer-drive functions. The flexible, universal capability of the UCC21320-Q1 (with up to 18-V VCCI and 25-V VDDA/VDDB) allows the device to be used as a low-side, high-side, high-side/low-side or half-bridge driver for MOSFETs, IGBTs or SiC MOSFETs. With integrated components, advanced protection features (UVLO, dead time, and disable) and optimized switching performance; the UCC21320-Q1 enables designers to build smaller, more robust designs for enterprise, telecom, automotive, and industrial applications with a faster time to market. ## 8.2 Typical Application The circuit in 🗵 8-1 shows a reference design with the UCC21320-Q1 driving a typical half-bridge configuration which could be used in several popular power converter topologies such as synchronous buck, synchronous boost, half-bridge/full bridge isolated topologies, and 3-phase motor drive applications. 図 8-1. Typical Application Schematic Copyright © 2024 Texas Instruments Incorporated ## 8.2.1 Design Requirements 表 8-1 lists reference design parameters for the example application: UCC21320-Q1 driving 1200-V SiC-MOSFETs in a high side-low side configuration. | 表 8-1. UCC21320- | Q1 Design Requirements | |------------------|------------------------| | RAMETER | VALUE | | PARAMETER | VALUE | UNITS | |---------------------------------------|-------------|-------| | Power transistor | C2M0080120D | - | | VCC | 5.0 | V | | VDD | 20 | V | | Input signal amplitude | 3.3 | V | | Switching frequency (f _s) | 100 | kHz | | DC link voltage | 800 | V | #### 8.2.2 Detailed Design Procedure #### 8.2.2.1 Designing INA/INB Input Filter It is recommended that users avoid shaping the signals to the gate driver in an attempt to slow down (or delay) the signal at the output. However, a small input R_{IN}-C_{IN} filter can be used to filter out the ringing introduced by non-ideal layout or long PCB traces. Such a filter should use an R_{IN} in the range of 0 Ω to 100 Ω and a C_{IN} between 10 pF and 100 pF. In the example, an R_{IN} = 51 Ω and a C_{IN} = 33 pF are selected, with a corner frequency of approximately 100 MHz. When selecting these components, it is important to pay attention to the trade-off between good noise immunity and propagation delay. #### 8.2.2.2 Select External Bootstrap Diode and its Series Resistor The bootstrap capacitor is charged by VDD through an external bootstrap diode every cycle when the low side transistor turns on. Charging the capacitor involves high-peak currents, and therefore transient power dissipation in the bootstrap diode may be significant. Conduction loss also depends on the diode's forward voltage drop. Both the diode conduction losses and reverse recovery losses contribute to the total losses in the gate driver circuit. When selecting external bootstrap diodes, it is recommended that one chose high voltage, fast recovery diodes or SiC Schottky diodes with a low forward voltage drop and low junction capacitance in order to minimize the loss introduced by reverse recovery and related grounding noise bouncing. In the example, the DC-link voltage is 800 V_{DC}. The voltage rating of the bootstrap diode should be higher than the DC-link voltage with a good margin. Therefore, a 1200-V SiC diode, C4D02120E, is chosen in this example. When designing a bootstrap supply, it is recommended to use a bootstrap resistor, R_{BOOT}. A bootstrap resistor, is also used to reduce the inrush current in D_{BOOT} and limit the ramp up slew rate of voltage of VDDA-VSSA during each switching cycle. Failure to limit the voltage to VDDx-VSSx to less than the Absolute Maximum Ratings of the FET and UCC21320-Q1 may result in permanent damage to the device in certain cases. The recommended value for R_{BOOT} is between 1 Ω and 20 Ω depending on the diode used. In the example, a current limiting resistor of 2.2 Ω is selected to limit the inrush current of bootstrap diode. The estimated worst case peak current through D_{Boot} is, $$I_{DBoot(pk)} = \frac{V_{DD} - V_{BDF}}{R_{Boot}} = \frac{20V - 2.5V}{2.2\Omega} \approx 8A$$ (2) where V_{BDF} is the estimated bootstrap diode forward voltage drop at 8 A. #### 8.2.2.3 Gate Driver Output Resistor The external gate driver resistors, R_{ON}/R_{OFF}, are used to: - 1. Limit ringing caused by parasitic inductances/capacitances. - 2. Limit ringing caused by high voltage/current switching dv/dt, di/dt, and body-diode reverse recovery. - 3. Fine-tune gate drive strength, i.e. peak sink and source current to optimize the switching loss. - 4. Reduce electromagnetic interference (EMI). As mentioned in セクション 7.3.4, the UCC21320-Q1 has a pull-up structure with a P-channel MOSFET and an additional *pull-up* N-channel MOSFET in parallel. The combined peak source current is 4 A. Therefore, the peak source current can be predicted with: $$I_{OA+} = min \left(4A, \frac{V_{DD} - V_{BDF}}{R_{NMOS} || R_{OH} + R_{ON} + R_{GFET_Int}} \right)$$ (3) $$I_{OB+} = min \left(4A, \frac{V_{DD}}{R_{NMOS} || R_{OH} + R_{ON} + R_{GFET_Int}} \right)$$ $$(4)$$ #### where - R_{ON}: External turn-on resistance. - R_{GFET_INT}: Power transistor internal gate resistance, found in the power transistor datasheet. - I_{O+} = Peak source current The minimum value between 4 A, the gate driver peak source current, and the calculated value based on the gate drive loop resistance. In this example: $$I_{OA+} = \frac{V_{DD} - V_{BDF}}{R_{NMOS} || R_{OH} + R_{ON} + R_{GFET_Int}} = \frac{20V - 0.8V}{1.47\Omega || 5\Omega + 2.2\Omega + 4.6\Omega} \approx 2.4A$$ (5) $$I_{OB+} = \frac{V_{DD}}{R_{NMOS} || R_{OH} + R_{ON} + R_{GFET_Int}} = \frac{20V}{1.47\Omega || 5\Omega + 2.2\Omega + 4.6\Omega} \approx 2.5A$$ (6) Therefore, the high-side and low-side peak source current is 2.4 A and 2.5 A respectively. Similarly, the peak sink current can be calculated with: $$I_{OA-} = min \left(6A, \frac{V_{DD} - V_{BDF} - V_{GDF}}{R_{OL} + R_{OFF} || R_{ON} + R_{GFET_Int}} \right)$$ (7) $$I_{OB-} = min \left(6A, \frac{V_{DD} - V_{GDF}}{R_{OL} + R_{OFF} || R_{ON} + R_{GFET_Int}} \right)$$ (8) #### where - R_{OFF}: External turn-off resistance; - V_{GDF}: The anti-parallel diode forward voltage drop which is in series with R_{OFF}. The diode in this example is an MSS1P4. - I_O.: Peak sink current the minimum value between 6 A, the gate driver peak sink current, and the calculated value based on the gate drive loop resistance. In this example, $$I_{OA-} = \frac{V_{DD} - V_{BDF} - V_{GDF}}{R_{OL} + R_{OFF} || R_{ON} + R_{GFET_Int}} = \frac{20V - 0.8V - 0.75V}{0.55\Omega + 0\Omega + 4.6\Omega} \approx 3.6A$$ (9) $$I_{OB-=} \frac{V_{DD} - V_{GDF}}{R_{OL} + R_{OFF} \mid\mid R_{ON} + R_{GFET_Int}} = \frac{20V - 0.75V}{0.55\Omega + 0\Omega + 4.6\Omega} \approx 3.7A \tag{10}$$ Therefore, the high-side and low-side peak sink current is 3.6 A and 3.7 A respectively. Importantly, the estimated peak current is also influenced by PCB layout and load capacitance. Parasitic inductance in the gate driver loop can slow down the peak gate drive current and introduce overshoot and undershoot. Therefore, it is strongly recommended that the gate driver loop should be minimized. On the other hand, the peak source/sink current is dominated by loop parasitics when the load capacitance (C_{ISS}) of the power
transistor is very small (typically less than 1 nF), because the rising and falling time is too small and close to the parasitic ringing period. Failure to control OUTx voltage to less than the Absolute Maximum Ratings in the datasheet (including transients) may result in permanent damage to the device in certain cases. To reduce excessive gate ringing, it is recommended to use a ferrite bead near the gate of the FET. External clamping diodes can also be added in the case of extended overshoot/undershoot, in order to clamp the OUTx voltage to the VDDx and VSSx voltages. #### 8.2.2.4 Gate to Source Resistor Selection A gate to source resistor, R_{GS} , is recommended to pull down the gate to the source voltage when the gate driver output is unpowered and in an indeterminate state. This resistor also helps to mitigate the risk of dv/dt induced turn-on due to Miller current before the gate driver is able to turn on and actively pull low. This resistor is typically sized between $5.1k\Omega$ and $20k\Omega$, depending on the Vth and ratio of C_{GD} to C_{GS} of the power device. #### 8.2.2.5 Estimate Gate Driver Power Loss The total loss, P_G , in the gate driver subsystem includes the power losses of the UCC21320-Q1 (P_{GD}) and the power losses in the peripheral circuitry, such as the external gate drive resistor. Bootstrap diode loss is not included in P_G and not discussed in this section. P_{GD} is the key power loss which determines the thermal safety-related limits of the UCC21320-Q1, and it can be estimated by calculating losses from several components. The first component is the static power loss, P_{GDQ} , which includes quiescent power loss on the driver as well as driver self-power consumption when operating with a certain switching frequency. P_{GDQ} is measured on the bench with no load connected to OUTA and OUTB at a given VCCI, VDDA/VDDB, switching frequency and ambient temperature. \boxtimes 5-4 shows the per output channel current consumption vs. operating frequency with no load. In this example, $V_{VCCI} = 5$ V and $V_{VDD} = 20$ V. The current on each power supply, with INA/INB switching from 0 V to 3.3 V at 100 kHz is measured to be $I_{VCCI} = 2.5$ mA, and $I_{VDDA} = I_{VDDB} = 1.5$ mA. Therefore, the P_{GDQ} can be calculated with $$P_{\text{GDQ}} = V_{\text{VCCI}} \times I_{\text{VCCI}} + V_{\text{VDDA}} \times I_{\text{DDA}} + V_{\text{VDDB}} \times I_{\text{DDB}} \approx 72 \text{mW}$$ (11) The second component is switching operation loss, P_{GDO} , with a given load capacitance which the driver charges and discharges the load during each switching cycle. Total dynamic loss due to load switching, P_{GSW} , can be estimated with $$P_{GSW} = 2 \times V_{DD} \times Q_{G} \times f_{SW}$$ (12) where English Data Sheet: SLUSDU7 • Q_G is the gate charge of the power transistor. If a split rail is used to turn on and turn off, then VDD is going to be equal to difference between the positive rail to the negative rail. So, for this example application: $$P_{GSW} = 2 \times 20 \text{ V} \times 60 \text{nC} \times 100 \text{kHz} = 240 \text{mW}$$ (13) Q_G represents the total gate charge of the power transistor switching 800 V at 20 A, and is subject to change with different testing conditions. The UCC21320-Q1 gate driver loss on the output stage, P_{GDO} , is part of P_{GSW} . P_{GDO} will be equal to P_{GSW} if the external gate driver resistances are zero, and all the gate driver loss is dissipated inside the UCC21320-Q1. If there are external turn-on and turn-off resistances, the total loss will be distributed between the gate driver pull-up/down resistances and external gate resistances. Importantly, the pull-up/down resistance is a linear and fixed resistance if the source/sink current is not saturated to 4 A/6 A, however, it will be non-linear if the source/sink current is saturated. Therefore, P_{GDO} is different in these two scenarios. #### Case 1 - Linear Pull-Up/Down Resistor: $$P_{GDO} = \frac{P_{GSW}}{2} \times \left(\frac{R_{OH} || R_{NMOS}}{R_{OH} || R_{NMOS} + R_{ON} + R_{GFET_Int}} + \frac{R_{OL}}{R_{OL} + R_{OFF} || R_{ON} + R_{GFET_Int}} \right)$$ (14) In this design example, all the predicted source/sink currents are less than 4 A/6 A, therefore, the UCC21320-Q1 gate driver loss can be estimated with: $$P_{GDO} = \frac{240 \text{mW}}{2} \times \left(\frac{5\Omega \| 1.47\Omega}{5\Omega \| 1.47\Omega + 2.2\Omega + 4.6\Omega} + \frac{0.55\Omega}{0.55\Omega + 0\Omega + 4.6\Omega} \right) \approx 30 \text{mW}$$ (15) ## Case 2 - Nonlinear Pull-Up/Down Resistor: $$P_{\text{GDO}} = 2 \times f_{\text{SW}} \times \left[4A \times \int\limits_{0}^{T_{\text{R_Sys}}} \left(V_{\text{DD}} - V_{\text{OUTA/B}}\left(t\right) \right) dt + 6A \times \int\limits_{0}^{T_{\text{F_Sys}}} V_{\text{OUTA/B}}\left(t\right) dt \right] \tag{16}$$ where V_{OUTA/B}(t) is the gate driver OUTA and OUTB pin voltage during the turn on and off transient, and it can be simplified that a constant current source (4 A at turn-on and 6 A at turn-off) is charging/discharging a load capacitor. Then, the V_{OUTA/B}(t) waveform will be linear and the T_{R Sys} and T_{F Sys} can be easily predicted. For some scenarios, if only one of the pull-up or pull-down circuits is saturated and another one is not, the P_{GDO} will be a combination of Case 1 and Case 2, and the equations can be easily identified for the pull-up and pull-down based on the above discussion. Therefore, total gate driver loss dissipated in the gate driver UCC21320-Q1, P_{GD} , is: $$P_{GD} = P_{GDQ} + P_{GDO} \tag{17}$$ which is equal to 102 mW in the design example. #### 8.2.2.6 Estimating Junction Temperature The junction temperature (T_J) of the UCC21320-Q1 can be estimated with: $$T_{J} = T_{C} + \Psi_{JT} \times P_{GD}$$ (18) 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated #### where - T_C is the UCC21320-Q1 case-top temperature measured with a thermocouple or some other instrument, and - Ψ_{JT} is the Junction-to-top characterization parameter from the Thermal Information table. Using the junction-to-top characterization parameter (Ψ_{JT}) instead of the junction-to-case thermal resistance $(R_{\Theta JC})$ can greatly improve the accuracy of the junction temperature estimation. The majority of the thermal energy of most ICs is released into the PCB through the package leads, whereas only a small percentage of the total energy is released through the top of the case (where thermocouple measurements are usually conducted). $R_{\Theta JC}$ can only be used effectively when most of the thermal energy is released through the case, such as with metal packages or when a heatsink is applied to an IC package. In all other cases, use of $R_{\Theta JC}$ will inaccurately estimate the true junction temperature. Ψ_{JT} is experimentally derived by assuming that the amount of energy leaving through the top of the IC will be similar in both the testing environment and the application environment. As long as the recommended layout guidelines are observed, junction temperature estimates can be made accurately to within a few degrees Celsius. For more information, see the Semiconductor and IC Package Thermal Metrics application report. #### 8.2.2.7 Selecting VCCI, VDDA/B Capacitor Bypass capacitors for VCCI, VDDA, and VDDB are essential for achieving reliable performance. It is recommended that one choose low ESR and low ESL surface-mount multi-layer ceramic capacitors (MLCC) with sufficient voltage ratings, temperature coefficients and capacitance tolerances. Importantly, DC bias on an MLCC will impact the actual capacitance value. For example, a 25-V, 1- μ F X7R capacitor is measured to be only 500 nF when a DC bias of 15 V_{DC} is applied. #### 8.2.2.7.1 Selecting a VCCI Capacitor A bypass capacitor connected to VCCI supports the transient current needed for the primary logic and the total current consumption, which is only a few mA. Therefore, a 50-V MLCC with over 100 nF is recommended for this application. If the bias power supply output is a relatively long distance from the VCCI pin, a tantalum or electrolytic capacitor, with a value over 1 µF, should be placed in parallel with the MLCC. #### 8.2.2.7.2 Selecting a VDDA (Bootstrap) Capacitor A VDDA capacitor, also referred to as a *bootstrap capacitor* in bootstrap power supply configurations, allows for gate drive current transients up to 6 A, and needs to maintain a stable gate drive voltage for the power transistor. The total charge needed per switching cycle can be estimated with $$Q_{Total} = Q_{G} + \frac{I_{VDD} @ 100 kHz (No Load)}{f_{SW}} = 60nC + \frac{1.5mA}{100 kHz} = 75nC$$ (19) where - Q_G: Gate charge of the power transistor. - I_{VDD}: The channel self-current consumption with no load at 100kHz. Therefore, the absolute minimum C_{Boot} requirement is: $$C_{Boot} = \frac{Q_{Total}}{\Delta V_{VDDA}} = \frac{75nC}{0.5V} = 150nF$$ (20) where ΔV_{VDDA} is the voltage ripple at VDDA, which is 0.5 V in this example. In practice, the value of C_{Boot} is greater than the calculated value. This allows for the capacitance shift caused by the DC bias voltage and for situations where the power stage would otherwise skip pulses due to load transients. Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 31 Therefore, it is recommended to include a safety-related margin in the C_{Boot} value and place it as close to the VDD and VSS pins as possible. A 50-V 1- μ F capacitor is chosen in this example. $$C_{Boot} = 1\mu F \tag{21}$$ Care should be taken when selecting the bootstrap capacitor to ensure that the VDD to VSS voltage does not drop below the recommended minimum operating level listed in section 6.3. The value of the bootstrap capacitor should be sized such that it can supply the initial charge to switch the power device, and then continuously supply the gate driver quiescent
current for the duration of the high-side on-time. If the supply voltage drops below the UVLO falling threshold because Cboot is too small, the driver will turn off. Unexpected switching of power devices can cause high di/dt and high dv/dt noise on the output of the driver may result in permanent damage to the device. To further lower the AC impedance for a wide frequency range, it is recommended to have bypass capacitor placed very close to VDDx - VSSx pins with a low ESL/ESR. In this example a 100 nF, X7R ceramic capacitor, is placed in parallel with C_{Boot} to optimize the transient performance. 注 Too large C_{BOOT} is not good. C_{BOOT} may not be charged within the first few cycles and V_{BOOT} could stay below UVLO. As a result, the high-side FET does not follow input signal command. Also during initial C_{BOOT} charging cycles, the bootstrap diode has highest reverse recovery current and losses. #### 8.2.2.7.3 Select a VDDB Capacitor Chanel B has the same current requirements as Channel A, Therefore, a VDDB capacitor (shown as C_{VDD} in \boxtimes 8-1) is needed. In this example with a bootstrap configuration, the VDDB capacitor will also supply current for VDDA through the bootstrap diode. A 50-V, 10- μ F MLCC and a 50-V, 220-nF MLCC are chosen for C_{VDD} . If the bias power supply output is a relatively long distance from the VDDB pin, a tantalum or electrolytic capacitor, with a value over 10 μ F, should be used in parallel with CVDD. #### 8.2.2.8 Dead Time Setting Guidelines For power converter topologies utilizing half-bridges, the dead time setting between the top and bottom transistor is important for preventing shoot-through during dynamic switching. The UCC21320-Q1 dead time specification in the electrical table is defined as the time interval from 90% of one channel's falling edge to 10% of the other channel's rising edge (see 🗵 6-4). This definition ensures that the dead time setting is independent of the load condition, and guarantees linearity through manufacture testing. However, this dead time setting may not reflect the dead time in the power converter system, since the dead time setting is dependent on the external gate drive turn-on/off resistor, DC-Link switching voltage/current, as well as the input capacitance of the load transistor. Here is a suggestion on how to select an appropriate dead time for UCC21320-Q1: $$DT_{Setting} = DT_{Req} + T_{F_Sys} + T_{R_Sys} - T_{D(on)}$$ (22) where - DT_{setting}: UCC21320-Q1 dead time setting in ns, DT_{Setting} = 10 × RDT(in $k\Omega$). - DT_{Req}: System required dead time between the real V_{GS} signal of the top and bottom switch with enough margin, or ZVS requirement. - T_{F Svs}: In-system gate turn-off falling time at worst case of load, voltage/current conditions. - T_{R Sys}: In-system gate turn-on rising time at worst case of load, voltage/current conditions. - T_{D(on)}: Turn-on delay time, from 10% of the transistor gate signal to power transistor gate threshold. In the example, DT_{Setting} is set to 250 ns. English Data Sheet: SLUSDU7 It should be noted that the UCC21320-Q1 dead time setting is decided by the DT pin configuration (see $\[\] \] \$ 7.4.2), and it cannot automatically fine-tune the dead time based on system conditions. It is recommended to parallel a ≤ 1 nF ceramic capacitor close to the DT pin with R_{DT} to achieve better noise immunity. 33 Product Folder Links: UCC21320-Q1 ## 8.2.2.9 Application Circuits with Output Stage Negative Bias When parasitic inductances are introduced by non-ideal PCB layout and long package leads (e.g. TO-220 and TO-247 type packages), there could be ringing in the gate-source drive voltage of the power transistor during high di/dt and dv/dt switching. If the ringing is over the threshold voltage, there is the risk of unintended turn-on and even shoot-through. Applying a negative bias on the gate drive is a popular way to keep such ringing below the threshold. Below are a few examples of implementing negative gate drive bias. 図 8-2. Negative Bias with Zener Diode on Iso-Bias Power Supply Output \boxtimes 8-3 shows another example which uses two supplies (or single-input-double-output power supply). Power supply V_{A+} determines the positive drive output voltage and V_{A-} determines the negative turn-off voltage. The configuration for channel B is the same as channel A. This solution requires more power supplies than the first example, however, it provides more flexibility when setting the positive and negative rail voltages. 図 8-3. Negative Bias with Two Iso-Bias Power Supplies The last example, shown in 🗵 8-4, is a single power supply configuration and generates negative bias through a Zener diode in the gate drive loop. The benefit of this solution is that it only uses one power supply and the bootstrap power supply can be used for the high side drive. This design requires the least cost and design effort among the three solutions. However, this solution has limitations: - 1. The negative gate drive bias is not only determined by the Zener diode, but also by the duty cycle, which means the negative bias voltage will change when the duty cycle changes. Therefore, converters with a fixed duty cycle (~50%) such as variable frequency resonant convertors or phase shift convertors favor this solution. - 2. The high side VDDA-VSSA must maintain enough voltage to stay in the recommended power supply range, which means the low side switch must turn-on or have free-wheeling current on the body (or anti-parallel) diode for a certain period during each switching cycle to refresh the bootstrap capacitor. Therefore, a 100% duty cycle for the high side is not possible unless there is a dedicated power supply for the high side, like in the other two example circuits. 図 8-4. Negative Bias with Single Power Supply and Zener Diode in Gate Drive Path #### 8.2.3 Application Curves Channel 1 (Yellow): UCC21320-Q1 INA pin signal. Channel 2 (Blue): UCC21320-Q1 INB pin signal. **Channel 3 (Pink):** Gate-source signal on the high side power transistor. Channel 4 (Green): Gate-source signal on the low side power transistor. In \boxtimes 8-5, INA and INB are sent complimentary 3.3-V, 50% duty-cycle signals. The gate drive signals on the power transistor have a 250-ns dead time, shown in the measurement section of \boxtimes 8-5. The dead-time matching is less than 1 ns with the 250-ns dead-time setting. \boxtimes 8-6 shows a zoomed-in version of the waveform of \boxtimes 8-5, with measurements for propagation delay and rising/falling time. Cursors are also used to measure dead time. Importantly, the output waveform is measured between the power transistors' gate and source pins, and is not measured directly from the driver OUTA and OUTB pins. Due to the split on and off resistors (R_{on} , R_{off}) and different sink and source currents, different rising (16 ns) and falling time (9 ns) are observed in \boxtimes 8-6. 図 8-5. Bench Test Waveform for INA/B and OUTA/B 図 8-6. Zoomed-In Bench Test Waveform # 9 Power Supply Recommendations The recommended input supply voltage (VCCI) for the UCC21320-Q1 is between 3 V and 18 V. The output bias supply voltage (VDDA/VDDB) range depends on which version of UCC21320-Q1 one is using. The lower end of this bias supply range is governed by the internal under voltage lockout (UVLO) protection feature of each device. One mustn't let VDD or VCCI fall below their respective UVLO thresholds (for more information on UVLO see \$\frac{\tau 7\sum 3\times 7.3.1}{2000}\$). The upper end of the VDDA/VDDB range depends on the maximum gate voltage of the power device being driven by the UCC21320-Q1. The UCC21320-Q1 have a recommended maximum VDDA/VDDB of 25 V. A local bypass capacitor should be placed between the VDD and VSS pins. This capacitor should be positioned as close to the device as possible. A low ESR, ceramic surface mount capacitor is recommended. It is further suggested that one place two such capacitors: one with a value of ≈10-µF for device biasing, and an additional ≤100-nF capacitor in parallel for high frequency filtering. Similarly, a bypass capacitor should also be placed between the VCCI and GND pins. Given the small amount of current drawn by the logic circuitry within the input side of the UCC21320-Q1, this bypass capacitor has a minimum recommended value of 100 nF. Product Folder Links: UCC21320-Q1 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated # 10 Layout ## 10.1 Layout Guidelines One must pay close attention to PCB layout in order to achieve optimum performance for the UCC21320-Q1. Below are some key points. ### **Component Placement:** - Low-ESR and low-ESL capacitors must be connected close to the device between the VCCI and GND pins and between the VDD and VSS pins to support high peak currents when turning on the external power transistor. - To avoid large negative transients on the switch node VSSA (HS) pin, the parasitic inductances between the source of the top transistor and the source of the bottom transistor must be minimized. - It is recommended to place the dead-time setting resistor, R_{DT}, and its bypassing capacitor close to DT pin of the UCC21320-Q1. - It is recommended to bypass using a ≈1nF low ESR/ESL capacitor, C_{DIS}, close to DIS pin when connecting to a μC with distance. #### **Grounding Considerations:** - It is essential to confine the high peak currents that charge and discharge the transistor gates to a minimal physical area. This will decrease the loop inductance and minimize noise on the gate terminals of the transistors. The gate driver must be placed as close as possible to the transistors. - Pay attention to high current path that includes the bootstrap capacitor, bootstrap diode, local VSSBreferenced bypass capacitor, and the low-side transistor body/anti-parallel diode. The bootstrap capacitor is recharged on a cycle-by-cycle basis through the
bootstrap diode by the VDD bypass capacitor. This recharging occurs in a short time interval and involves a high peak current. Minimizing this loop length and area on the circuit board is important for ensuring reliable operation. #### **High-Voltage Considerations:** - To ensure isolation performance between the primary and secondary side, one should avoid placing any PCB traces or copper below the driver device. A PCB cutout is recommended in order to prevent contamination that may compromise the UCC21320-Q1's isolation performance. - For half-bridge, or high-side/low-side configurations, where the channel A and channel B drivers could operate with a DC-link voltage up to 1500 V_{DC}, one should try to increase the creepage distance of the PCB layout between the high and low-side PCB traces. ### **Thermal Considerations:** - A large amount of power may be dissipated by the UCC21320-Q1 if the driving voltage is high, the load is heavy, or the switching frequency is high (refer to セクション 8.2.2.5 for more details). Proper PCB layout can help dissipate heat from the device to the PCB and minimize junction to board thermal impedance (θ_{JB}). - Increasing the PCB copper connecting to VDDA, VDDB, VSSA and VSSB pins is recommended, with priority on maximizing the connection to VSSA and VSSB (see ☑ 10-2 and ☑ 10-3). However, high voltage PCB considerations mentioned above must be maintained. - If there are multiple layers in the system, it is also recommended to connect the VDDA, VDDB, VSSA and VSSB pins to internal ground or power planes through multiple vias of adequate size. However, keep in mind that there shouldn't be any traces/coppers from different high voltage planes overlapping. Product Folder Links: UCC21320-Q1 Copyright © 2024 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 39 # 10.2 Layout Example ☑ 10-1 shows a 2-layer PCB layout example with the signals and key components labeled. 図 10-1. Layout Example 図 10-2 and 図 10-3 shows top and bottom layer traces and copper. 注 There are no PCB traces or copper between the primary and secondary side, which ensures isolation performance. PCB traces between the high-side and low-side gate drivers in the output stage are increased to maximize the creepage distance for high-voltage operation, which will also minimize cross-talk between the switching node VSSA (SW), where high dv/dt may exist, and the low-side gate drive due to the parasitic capacitance coupling. 10-4 shows a 3D view of the bottom side recommended layout, showing the board cutout. 図 10-2. Top Layer Traces and Copper 図 10-3. Bottom Layer Traces and Copper 注 The location of the PCB cutout between the primary side and secondary sides, which ensures isolation performance. 図 10-4. 3-D PCB Bottom View Showing Recommended Cutout 41 Product Folder Links: UCC21320-Q1 # 11 Device and Documentation Support ## 11.1 Documentation Support #### 11.1.1 Related Documentation For related documentation see the following: Isolation Glossary # 11.2 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。 #### 11.3 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 #### 11.4 Trademarks テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 11.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 11.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## 12 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Changes from Revision * (March 2020) to Revision A (August 2024) | Page | |--|------| | ドキュメント全体にわたって表、図、相互参照の採番方法を更新 | 1 | | • 「特長」から HBM および CDM ESD の分類レベルを削除 | | | • 伝搬遅延の標準値を 19ns から 33ns に変更 | 1 | | • 最小パルス幅を 10ns から 20ns に変更 | 1 | | • 最大遅延マッチング 5ns の箇条書き項目を削除 | | | • CMTI を 100V/ns 超から 125V/ns 超に変更 | 1 | | • サージ耐性の箇条書き項目を削除 | 1 | | 40 年を超える寿命の絶縁バリアに関する箇条書き項目を削除 | 1 | | • 5ns 未満の入力パルスの除去に関する箇条書き項目を削除 | 1 | | ・ 動作温度を新しい接合部温度範囲に変更 | 1 | | クラス最高の伝搬遅延と PWD に関する文を削除 | | | • 最小 CMTI を 100V/ns から 125V/ns に変更 | 1 | | Changed capacitor size on DT pin and recommended DT condition | | Copyright © 2024 Texas Instruments Incorporated ## www.ti.com/ja-jp | • | Changed channel to channel isolation voltage from 1500V to 1850V for DWK package | | |---|---|----------------| | • | Updated ESD spec from HBM = ±4000 and CDM = ±1500 to HBM = ±2000 and CDM = ±1000 to match ES | SD | | | industry standards | 4 | | • | Deleted ambient temperature spec | 4 | | • | Changed Max junction temp to 150C | <mark>4</mark> | | • | Updated values from RθJA = 67.3°C/W, RθJC(top) = 34.4°C/W, RθJB = 32.1°C/W, ψJT = 18.0°C/W, ψJB | = | | | 31.6°C/W to RθJA = 74.1°C/W, RθJC(top) = 34.1°C/W, RθJB = 32.8°C/W, ψJT = 23.7°C/W, ψJB = 32.1°C | | | | W | 4 | | • | Updated values from PD = 1.05W, PDI = 0.05W, PDA/PDB = 0.5W to PD = 950mW, PDI = 50mW, PDA/PI | DB | | | = 450mW, Changed test conditions | 5 | | • | Updated values from DTI = >21mm, VIOSM = 6250VPK to DTI = >17mm, VIOSM = 6500VPK and | | | | | 6 | | • | Deleted safety related certifications section | <mark>6</mark> | | • | Updated values from IS = 75mA/36mA, PS = 50mW/900mW/900mW/1850mW to IS = 53mA/32mA, PS = | | | | | 7 | | • | Update test condition from VDDA=VDDB=12V to VDDA=VDDB=15V | | | • | Updated VCCI quiescent current typical value from 1.5mA to 1.4mA | | | • | Updated IVDDA/IVDDB quiescent current spec Max value from 1.8mA to 2.5mA | | | • | Updated IVCCI operating current Typ value from 2.0mA to 3.0mA and added Max value 3.5mA | 7 | | • | Added IVDDA/IVDDB operating current Max = 4.2mA | 7 | | • | Updated values from Rising threshold Min = 8.3V, Typ = 8.7V, Max = 9.2V to Min = 7.7V, Typ = 8.5V, Max | = | | | 8.9V | <mark>7</mark> | | • | Updated values from Falling threshold Min = 7.8V, Typ = 8.2V, Max = 8.7V to Min = 7.2V, Typ = 7.9V, Max | | | | 8.4V | | | • | Updated 8-V UVLO hysteresis typ = 0.5V to 0.6V | 7 | | • | Updated Input high threshold Min value from 1.6V to 1.2V | 7 | | • | Changed output voltage test condition from VDD=12V to VDD=15V. Changed typical value from 11.95V to | | | | 14.95V | 7 | | • | Updated Deadtime parameter by moving to new Timing Requirements table and added more parameters. | | | • | Changed propagation delay TPDHL and TPDLH from Typ = 19ns, Max = 30ns to Typ = 33ns, Max = 45ns | _ | | | and adding Min = 26ns | 8
 | | • | Changed propagation delay matching from Max = 5ns to Max = 6.5ns from TJ = -40C to -10C and Max = 5 | | | | | 8 | | • | Added VCCI power up delay | | | • | Updated VDDA/VDDB power-up delay from Max = 100us to 10us | | | • | Updated CMTI from Min = 100V/ns to 125V/ns Updated thermal and isolation curves to match updated characteristics | | | • | Changed test condition from VDDA=VDDB=12V to VDDA=VDDB=15V | 9 | | | | | | | Updated typical characteristics figures | 10 | | • | Updated block diagram to include deglitch filter block on drivers | | | | Added paragraph regarding narrow pulse | | | | Updated ESD diode structure | | | • | Changed recommended DT size from >=2.2nF to <=1nF | | | • | Updated typical schematic DT pin capacitor recommendation | | | | Changed recommended DT capacitor size to <=1nF | | | | Onangoa reconstitutada Diri capacitor size to s- IIII | 02 | # 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 18-Jul-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ | MSL rating/ | Op temp (°C) | Part marking | |-----------------------|----------|---------------|-----------------|-----------------------|------|---------------|---------------------|--------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow | | (6) | | | | | | | | (4) | (5) | | | | UCC21320QDWKQ1 | Obsolete | Production | SOIC (DWK) 14 | - | - | Call TI | Call TI | -40 to 125 | UCC21320Q | |
UCC21320QDWKRQ1 | Active | Production | SOIC (DWK) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 125 | UCC21320Q | | UCC21320QDWKRQ1.A | Active | Production | SOIC (DWK) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 125 | UCC21320Q | | UCC21320QDWKRQ1.B | Active | Production | SOIC (DWK) 14 | 2000 LARGE T&R | - | Call TI | Call TI | -40 to 125 | | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. SMALL OUTLINE INTEGRATED CIRCUIT #### NOTES: - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing - per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side. - 5. Reference JEDEC registration MS-013. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE INTEGRATED CIRCUIT ## NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated