TRF1208-EP Enhanced Product, Near-DC to 11GHz, Fully Differential RF Amplifier #### 1 Features - Vendor item drawing number: VID V62/25645 - High reliability enhanced product - Controlled baseline - One assembly and test site - One fabrication site - Extended product life cycle - Product traceability - Lead-free construction - Extended temperature range: -55°C to +125°C - Excellent performance driving RF ADCs - Fixed power gain of 16dB in single-ended-todifferential mode - Bandwidth: 11GHz. 3dB - Gain flatness: 8GHz, 1dB - OIP3: 37dBm (2GHz), 30dBm (6GHz) - P1dB: 15dBm (2GHz), 12.5dBm (6GHz) - NF: 6.8dB (2GHz), 7.2dB (6GHz) - Gain and phase imbalance: ±0.3dB and ±3° - Power-down feature - Single-supply operation: 3.3V - Active current: 138mA # 2 Applications - RF sampling or GSPS ADC driver - Aerospace and defense - Phased array radar - Radar seeker front end - Electronic warfare (SIGINT, ELINT) - Military radios - Satellite Communications (SATCOM) ### 3 Description The TRF1208-EP is a very high-performance fully differential amplifier (FDA) optimized for radio-frequency (RF) applications. This device is an excellent choice for ac-coupled applications that require single-ended-to-differential conversion when driving an analog-to-digital converter (ADC) high-performance such as the AFE7950-EP ADC12DJ5200-EP. The on-chip matching components simplify printed-circuit-board (PCB) implementation and provide the highest performance over the usable bandwidth. The device is fabricated in Texas Instruments' advanced complementary BiCMOS process and is available in a space-saving, WQFN-FCRLF package. The TRF1208-EP operates on a single-rail supply and consumes approximately 138mA of active current. A power-down feature is available for power saving. #### **Package Information** | PART
NUMBER | PACKAGE ⁽¹⁾ | PACKAGE SIZE ⁽²⁾ | |----------------|------------------------|-----------------------------| | TRF1208-EP | RPV (WQFN-FCRLF, 12) | 2mm × 2mm | - For more information, see Section 10. - The body size (length × width) is a nominal value and includes pins. TRF1208-EP Driving a High-Speed ADC # **Table of Contents** | 1 Features1 | 7 Application and Implementation15 | |---------------------------------------|---| | 2 Applications1 | 7.1 Application Information | | 3 Description1 | 7.2 Typical Applications17 | | 4 Pin Configuration and Functions2 | 7.3 Power Supply Recommendations20 | | 5 Specifications3 | 7.4 Layout20 | | 5.1 Absolute Maximum Ratings3 | 8 Device and Documentation Support21 | | 5.2 ESD Ratings3 | 8.1 Device Support21 | | 5.3 Recommended Operating Conditions3 | 8.2 Documentation Support21 | | 5.4 Thermal Information3 | 8.3 Receiving Notification of Documentation Updates21 | | 5.5 Electrical Characteristics4 | 8.4 Support Resources21 | | 5.6 Typical Characteristics6 | 8.5 Trademarks21 | | 6 Detailed Description13 | 8.6 Electrostatic Discharge Caution21 | | 6.1 Overview13 | 8.7 Glossary21 | | 6.2 Functional Block Diagram13 | 9 Revision History21 | | 6.3 Feature Description14 | | | 6.4 Device Functional Modes14 | Information21 | # **4 Pin Configuration and Functions** Figure 4-1. RPV Package, 12-Pin WQFN-FCRLF (Top View) # Table 4-1. Pin Functions | PIN | PIN | | PIN | | DESCRIPTION | | |-------------|-------------|--------|--|--|-------------|--| | NAME | NO. | ITPE | DESCRIPTION | | | | | GND | 1, 4, 7, 10 | Ground | Ground | | | | | INM | 5 | Input | Differential signal input, negative | | | | | INP | 6 | Input | Differential signal input, positive | | | | | OUTM | 12 | Output | Differential signal output, negative | | | | | OUTP | 11 | Output | Differential signal output, positive | | | | | PD | 2 | Input | Power-down signal. Supports 1.8V and 3.3V logic. 0 = Chip enabled 1 = Power down | | | | | TP1 | 8 | _ | Test pin. Short to ground. | | | | | TP2 | 3 | _ | Test pin. Short to ground. | | | | | VDD | 9 | Power | 3.3V supply | | | | | Thermal pad | Pad | _ | Thermal pad. Connect to ground on board. | | | | Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated ## 5 Specifications ### 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |------------------|------------------------|------|--------------------|------| | V_{DD} | Supply voltage | -0.3 | 3.7 | V | | INP, INM | Input pin power | | 20 ⁽²⁾ | dBm | | V_{PD} | Power-down pin voltage | -0.3 | 3.7 ⁽³⁾ | V | | TJ | Junction temperature | | 150 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. ### 5.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾ | ±1000 | V | | V _(ESD) | Liectiostatic discharge | Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins ⁽²⁾ | ±250 | v | ⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. ### **5.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |----------------|------------------------------|-------------|-----|------|------| | V_{DD} | Supply voltage | 3.2 | 3.3 | 3.45 | V | | T _A | Ambient free-air temperature | – 55 | 25 | | °C | | TJ | Junction temperature | | | 125 | °C | ### 5.4 Thermal Information | | | TRF1208-EP | | | |-----------------------|--|------------------|------|--| | | THERMAL METRIC ⁽¹⁾ | RPV (WQFN-FCRLF) | UNIT | | | | | 12 PINS | | | | R _{θJA} | Junction-to-ambient thermal resistance | 66.9 | °C/W | | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 64.3 | °C/W | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 17.4 | °C/W | | | Ψ_{JT} | Junction-to-top characterization parameter | 1.7 | °C/W | | | Ψ_{JB} | Junction-to-board characterization parameter | 17.2 | °C/W | | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | 9.0 | °C/W | | For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC Package Thermal Metrics</u> application report. ⁽²⁾ When $V_{DD} = 0V$, maximum value is 0dBm. ³⁾ When $V_{DD} = 0V$, maximum value is 0.3V. ⁽²⁾ JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. ## **5.5 Electrical Characteristics** at T_A = 25°C, V_{DD} = 3.3V, 50 Ω single-ended input, and 100 Ω differential output (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|--|--|-----|-------------|-----|---------| | AC PERF | ORMANCE | | | | | | | SSBW | Small-signal 3dB bandwidth | $V_O = 0.1V_{PP}$ | | 11 | | GHz | | LSBW | Large-signal 3dB bandwidth | V _O = 1V _{PP} | | 11 | | GHz | | 1dB BW | Bandwidth for 1dB flatness | | | 8 | | GHz | | S21 | Power gain | f = 2GHz | | 16 | | dB | | S11 | Input return loss | f = 10MHz to 8GHz | | -10 | | dB | | S12 | Reverse isolation | f = 2GHz | | -35 | | dB | | Imb _{GAIN} | Gain imbalance | f = 10MHz to 8GHz | | ± 0.3 | | dB | | Imb _{PHASE} | Phase imbalance | f = 10MHz to 8GHz | | ± 3 | | degrees | | CMRR | Common-mode rejection ratio ⁽¹⁾ | f = 2GHz | | -45 | | dB | | | | f = 0.5GHz, P _O = 3dBm | | -70 | | | | LIDO | | f = 2GHz, P _O = 3dBm | | -65 | | dDo | | HD2 | Second-order harmonic distortion | f = 6GHz, P _O = 3dBm | | -52 | | dBc | | | | f = 8GHz, P _O = 3dBm | | -45 | | | | | | f = 0.5GHz, P _O = 3dBm | | -68 | | | | LIDO | Third-order harmonic distortion | f = 2GHz, P _O = 3dBm | | -63 | | dBc | | HD3 | | f = 6GHz, P _O = 3dBm | | -56 | | | | | | f = 8GHz, P _O = 3dBm | | -63 | | | | | Second-order intermodulation distortion | f = 0.5GHz, P _O = -4dBm per tone (10MHz spacing) | | -73 | | | | | | f = 2GHz, P _O = -4dBm per tone
(10MHz spacing) | | -69 | | dBc | | IMD2 | | f = 6GHz, P _O = -4dBm per tone
(10MHz spacing) | | -56 | | | | | | f = 8GHz, P _O = -4dBm per tone
(10MHz spacing) | | -45 | | | | | | f = 0.5GHz, P _O = -4dBm per tone (10MHz spacing) | | – 75 | | | | | | f = 2GHz, P _O = -4dBm per tone (10MHz spacing) | | -84 | | - dBc | | IMD3 | Third-order intermodulation distortion | f = 6GHz, P _O = -4dBm per tone (10MHz spacing) | | -72 | | | | | | f = 8GHz, P _O = -4dBm per tone (10MHz spacing) | | – 51 | | | | | | f = 0.5GHz | | 11 | | | | 00440 | Output 1 dB | f = 2GHz | | 15 | | al Duna | | OP1dB | Output 1dB compression point | f = 6GHz | | 12.5 | | dBm | | | | f = 8GHz | | 7.5 | | | | | | f = 0.5GHz, P _o = –4dBm per tone
(10MHz spacing) | | 68 | | - dBm | | OUDG | | f = 2GHz, P _o = -4dBm per tone
(10MHz spacing) | | 63 | | | | OIP2 | Output second-order intercept point | f = 6GHz, P _o = –4dBm per tone
(10MHz spacing) | | 55 | | | | | | f = 8GHz, P _o = –4dBm per tone
(10MHz spacing) | | 42 | | | ## **5.5 Electrical Characteristics (continued)** at T_A = 25°C, V_{DD} = 3.3V, 50Ω single-ended input, and 100Ω differential output (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN TYP | MAX | UNIT | | |---------------------|---|--|---------|-----|----------|--| | | | f = 0.5GHz, P _o = –4dBm per tone
(10MHz spacing) | 34 | | | | | | | f = 2GHz, P _o = -4dBm per tone
(10MHz spacing) | 37 | | | | | OIP3 | Output third-order intercept point | f = 4GHz, P _o = –4dBm per tone
(10MHz spacing) | 34 | | dBm | | | | | f = 6GHz, P _o = –4dBm per tone
(10MHz spacing) | 30 | | | | | | | f = 8GHz, P _o = –4dBm per tone
(10MHz spacing) | 21 | | | | | | | f = 0.5GHz | 6.5 | | | | | NIE | Naisa Garria | f = 2GHz | 6.8 | | dB | | | NF | Noise figure | f = 6GHz | 7.2 | | | | | | | f = 8GHz | 7 | | | | | IMPEDA | NCE | | | | | | | Z _{O-DIFF} | Differential output impedance | f = dc (internal to the device) | 3 | | Ω | | | Z _{IN} | Single-ended input impedance | INM pin terminated with 50Ω | 50 | | Ω | | | TRANSIE | ENT | | | · | | | | V_{OMAX} | Maximum output voltage (differential) | | 2 | | V_{PP} | | | V _{OSAT} | Output saturated voltage level (differential) | f = 2GHz | 3.9 | | V_{PP} | | | t _{REC} | Overdrive recovery time | Using a –0.5V _P input pulse of 2ns duration | 0.2 | | ns | | | POWER : | SUPPLY | | | | | | | I _{QA} | Active current | Current on V _{DD} pin, PD = 0 | 138 | | mA | | | I _{QPD} | Power-down quiescent current | Current on V _{DD} pin, PD = 1 | 7 | | mA | | | ENABLE | | | | · | | | | V _{PDHIGH} | PD pin logic high | | 1.45 | | V | | | V _{PDLOW} | PD pin logic low | | | 0.8 | V | | | 1 | PD bias current (current on PD pin) | PD = high (1.8V logic) | 50 | 100 | пΔ | | | I _{PDBIAS} | pill) | PD = high (3.3V logic) | 200 | 250 | μA | | | C _{PD} | PD pin capacitance | | 2 | | pF | | | t _{ON} | Turn-on time | 50% V _{PD} to 90% RF | 200 | | ns | | | t _{OFF} | Turn-off time | 50% V _{PD} to 10% RF | 50 | | ns | | ⁽¹⁾ Calculated using the formula (S21 – S31) / (S21 + S31). Port-1: INP, Port-2: OUTP, Port-3: OUTM. ### 5.6 Typical Characteristics at T_A = 25°C, temperature curves specify ambient temperature, V_{DD} = 3.3V, 50Ω single-ended input, and 100Ω differential output (unless otherwise noted) Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated at T_A = 25°C, temperature curves specify ambient temperature, V_{DD} = 3.3V, 50Ω single-ended input, and 100Ω differential output (unless otherwise noted) -135 -140 Phase Noise (dBc/Hz) -145 -150 -155 -160 -165 100 1k 1M 10M Frequency (Hz) f = 1GHz, $P_{IN} = -10dBm$ Figure 5-37. Low Frequency Gain Response Figure 5-38. Additive (Residual) Phase Noise Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated ## **6 Detailed Description** ### 6.1 Overview The TRF1208-EP is a very high-performance amplifier optimized for radio frequency (RF) and intermediate frequency (IF) with signal bandwidths up to 11GHz. The device is designed for ac-coupled applications that require a single-ended-to-differential conversion when driving an analog-to-digital converter (ADC). The low frequency response is limited only by the ac-coupling capacitor on the PCB. If the lowest signal frequency is >100KHz, use 100nF ac-coupling capacitors. If the lowest signal frequency is 9kHz, use a 4.7μ F capacitor in parallel with 100nF capacitor on each input-output pin. The device has a two-stage architecture and provides approximately 16dB of gain in single-ended-to-differential mode, when driving a differential 100Ω load for single-ended inputs driven from a 50Ω source. This device also works as a fully-differential amplifier. This device does not require any pullup or pulldown components on the PCB, and thereby simplifies the layout and provides the highest performance over the entire bandwidth. The input and output are ac coupled. The TRF1208-EP is powered with 3.3V supply. A power-down feature is also available. ### 6.2 Functional Block Diagram The following figure shows the functional block diagram of TRF1208-EP. The device essentially has two stages with a voltage-feedback configuration. ### **6.3 Feature Description** ### 6.3.1 Fully-Differential Amplifier The TRF1208-EP is a voltage-feedback fully differential amplifier (FDA) with a fixed gain by architecture. The TRF1208-EP operates as a single-ended to differential amplifier by terminating the INM pin with a 50Ω resistor and driving the INP pin directly with no external components. This amplifier has nonlinearity cancellation circuits that provide excellent linearity performance over a wide range of frequencies. The output of the amplifier has a low dc impedance. Therefore, if required, match the output of the amplifier to a load by adding the appropriate series resistors or attenuator pad. #### 6.3.2 Single Supply Operation The TRF1208-EP operates on a single 3.3V supply. The input and output bias voltages are set internally. Therefore, ac-couple the signal path on the board at all four RF input and output pins. Single-supply operation simplifies the board design. #### 6.4 Device Functional Modes TRF1208-EP has two functional modes: active and power-down. The functional modes are controlled by the PD pin as described below. #### 6.4.1 Power Down Mode The device features a power-down option. The PD pin is used to power down the amplifier. This pin supports both 1.8V and 3.3V digital logic, and is referenced to ground. A logic 1 turns the device off and places the device into a low-quiescent-current state. When disabled, the signal path is still present through the internal circuits. Input signals applied to a disabled device still appear at the outputs at a lower level through this path, as is the case for any disabled feedback amplifier. Product Folder Links: TRF1208-EP # 7 Application and Implementation #### **Note** Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 7.1 Application Information ### 7.1.1 Driving a High-Speed ADC A common application for the TRF1208-EP is driving a high-speed ADC that has a differential input (such as the ADC12DJ5200-EP or AFE7950-EP). Conventionally passive baluns are used to drive giga-samples-per-second (GSPS) ADCs as a result of the low availability of high-bandwidth, linear amplifiers. The TRF1208-EP is typically configured as a single-ended to differential (S2D) RF amplifier that has excellent bandwidth flatness, gain, and phase imbalance comparable to or exceeding costly passive RF baluns. Figure 7-1 shows a typical interface circuit for ADC12DJ5200-EP. Depending on the ADC and system requirement, simplify this circuit or make this circuit more complex. Figure 7-1. Interfacing With the ADC12DJ5200-EP Figure 7-1 shows two sections of the circuit between the driver amp and the ADC: namely, the matching pad (or attenuator pad) and the antialiasing filter. Use small-form-factor, RF-quality, passive components for these circuits. The output swing of the TRF1208-EP is designed to drive these ADCs full-scale, while at the same time not overdrive the ADC. This functionality avoids the need for any voltage limiting device at the ADC. Figure 7-2 shows a typical interface circuit for the AFE7950-EP, where the TRF1208-EP is the S2D amplifier. A. AFE matching network – component type (L or C) and values depend on channel (A, B, C, D, FB1, and FB2) and frequency band. Figure 7-2. Interfacing With the AFE7950-EP ### 7.1.2 Calculating Output Voltage Swing This section gives a quick reference of the output voltage swings for different input power levels. In this example, the output is terminated with a 100Ω differential load and a power gain of 16dB is assumed. Figure 7-3. Power and Voltage Levels Voltage gain = $$20 \times \log(V_O / V_I)$$ (1) Power gain = $$10 \times \log(P_O / P_I) = 10 \times \log((V_O^2 / 100) / (V_I^2 / 50)) = 20 \times \log(V_O / V_I) - 3dB$$ (2) Table 7-1. Output Voltage Swings for Different Input Power Levels | INF | PUT | OUT
(TRF12 | PUT
208-EP) | |-------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------| | P _I (dBm ₅₀) | V _I (V _{PP}) | P _O (dBm ₁₀₀) | V _O (V _{PP}) | | -20 | 0.063 | -4 | 0.564 | | –15 | 0.112 | 1 | 1.004 | | -10 | 0.2 | 6 | 1.785 | | -9 | 0.224 | 7 | 2.002 | ### 7.1.3 Thermal Considerations The TRF1208-EP is available in a 2mm × 2mm, WQFN-FCRLF package that has excellent thermal properties. Connect the thermal pad underneath the chip to a ground plane. Short the ground plane to the other ground pins of the chip at four corners, if possible, to allow heat propagation to the top layer of PCB. Use a thermal via that connects the thermal pad plane on the top layer of the PCB to the inner layer ground planes to allow heat propagation to the inner layers. Product Folder Links: TRF1208-EP ### 7.2 Typical Applications An example of the TRF1208-EP acting as an S2D amplifier for the AFE7950-EP is explained in this section. #### 7.2.1 TRF1208-EP in Receive Chain This section describes an RF receiver chain in which the TRF1208-EP operates as a single-ended-to-differential (S2D) amplifier and drives a receive channel of AFE7950-EP. Figure 7-4 shows a generic schematic of a design in which TRF1208-EP drives an AFE7950-EP receive channel. The exact values of the components depend on the frequency band for which the AFE7950-EP front-end is matched. Figure 7-4. TRF1208-EP in a Receive Chain With the AFE7950-EP #### 7.2.1.1 Design Requirements The AFE7950-EP channel is required to be matched to 2.3GHz. ### 7.2.1.2 Detailed Design Procedure The TRF1208-EP is configured as an S2D amplifier. The section close to TRF1208-EP output is an attenuator pad that is meant for robust matching. The section close to the AFE7950-EP is the matching network for the AFE7950-EP ADC input that is channel dependent. The matching components are chosen based on the AFE7950-EP return-loss data and some final optimization because the manufactured board parameters potentially influence the exact component values needed. Table 7-2 shows the bill of materials (BOM) values of the design for RXA channel that is matched to center frequency of 2.3GHz. Table 7-2. Component Values of RX Chain With Center Frequency = 2.3GHz | SECTION | DESIGNATOR | TYPE | VALUE | INSTALL OR DO NOT INSTALL | |--------------|------------|-----------|-------|---------------------------| | DC block cap | C117 | Capacitor | 100nF | Install | | DC block cap | C115 | Capacitor | 100nF | Install | | DC block cap | C111 | Capacitor | 100nF | Install | | DC block cap | C122 | Capacitor | 100nF | Install | | INM term | R82 | Resistor | 50Ω | Install | | Attenuator | R74 | Resistor | 10Ω | Install | | Attenuator | R70 | Resistor | 10Ω | Install | | Attenuator | R69 | Resistor | 10Ω | Install | | Attenuator | R67 | Resistor | 10Ω | Install | | Attenuator | R71 | Resistor | 120Ω | Install | | Attenuator | R68 | Resistor | 120Ω | Install | | Matching | C91 | _ | _ | Do not install | | Matching | C103 | _ | _ | Do not install | | Matching | C83 | _ | _ | Do not install | | Matching | L22 | Inductor | 0.1nH | Install | | Matching | L18 | Inductor | 0.1nH | Install | | Matching | C96 | Inductor | 0.1nH | Install | | Matching | C87 | Inductor | 0.1nH | Install | | Matching | L20 | Inductor | 5.6nH | Install | | Matching | C97 | Capacitor | 3.9pF | Install | | Matching | C88 | Capacitor | 3.9pF | Install | | Matching | C92 | _ | _ | Do not install | Product Folder Links: TRF1208-EP ### 7.2.1.3 Application Curve Figure 7-5 shows the in-band output response for the design in the previous section. The response is measured with an input power of –30dBm at the input of TRF1208-EP. Figure 7-5. In-Band Output Response ### 7.3 Power Supply Recommendations The TRF1208-EP requires a single 3.3V supply. Supply decoupling is critical to high-frequency performance. Typically two or three capacitors are used for supply decoupling. For the lowest-value capacitor, use a small, form-factor component that is placed closest to the V_{DD} pin of the device. Use a bulk decoupling capacitor of a larger value and size that fits next to the small capacitor. See also Section 7.4. ### 7.4 Layout #### 7.4.1 Layout Guidelines TRF1208-EP is a wide-band, voltage-feedback amplifier with approximately 16dB of gain. When designing with a wide-band RF amplifier with relatively high gain, take precautions with board layout to maintain stability and optimized performance. Use a multilayer board to maintain signal and power integrity and thermal performance. Figure 7-6 shows an example of a good layout. This figure shows only the top layer. Route the RF input and output lines as grounded coplanar waveguide (GCPW) lines. For the second layer, use a continuous ground layer without any ground-cuts near the amplifier area. Match the output differential lines in length to minimize phase imbalance. Use small-footprint passive components wherever possible. Also take care of the input side layout. Use a 50Ω line for the INP routing, and ensure that the termination on INM pin has low parasitics by placing the ac-coupling capacitor and the 50Ω resistor very close to the device. Use an RF-quality, 50Ω resistor for termination. Ensure that the ground planes on the top and internal layers are well stitched with vias. Place thermal vias under the device that connect the top thermal pad with ground planes in the inner layers of the PCB. For improved heat dissipation, connect the thermal pad to the top-layer ground plane through the ground pins (see also Section 7.4.2). #### 7.4.2 Layout Example Figure 7-6. Layout Example: Placement and Top Layer Layout Evaluate the TRF1208-EP device using the TRF1208EVM board. Additional information about the evaluation board construction and test setup is given in the *TRF1208EVM* user's guide. Product Folder Links: TRF1208-EP ## 8 Device and Documentation Support ### 8.1 Device Support ### 8.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. ### 8.2 Documentation Support #### 8.2.1 Related Documentation ### 8.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 8.4 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 8.5 Trademarks TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. #### 8.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 8.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. ### 9 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | DATE | REVISION | NOTES | |-------------|----------|-----------------| | August 2025 | * | Initial Release | ### 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 15-Aug-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|--------------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | TRF1208RPVTNEPG4 | Active | Production | WQFN-HR (RPV) 12 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 208E | ⁽¹⁾ Status: For more details on status, see our product life cycle. - (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. - (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. - (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. - (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF TRF1208-EP: Catalog: TRF1208 NOTE: Qualified Version Definitions: ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. # **PACKAGE OPTION ADDENDUM** www.ti.com 15-Aug-2025 • Catalog - TI's standard catalog product # **PACKAGE MATERIALS INFORMATION** www.ti.com 16-Aug-2025 ### TAPE AND REEL INFORMATION | | - | |----|---| | A0 | Dimension designed to accommodate the component width | | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|-------------|--------------------|----|-----|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TRF1208RPVTNEPG4 | WQFN-
HR | RPV | 12 | 250 | 180.0 | 8.4 | 2.3 | 2.3 | 1.15 | 4.0 | 8.0 | Q2 | **PACKAGE MATERIALS INFORMATION** www.ti.com 16-Aug-2025 ### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |------------------|--------------|-----------------|------|-----|-------------|------------|-------------|--| | TRF1208RPVTNEPG4 | WQFN-HR | RPV | 12 | 250 | 210.0 | 185.0 | 35.0 | | PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) ^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated