TPUL2T323

TPUL2T323 デュアル再トリガ可能、拡張 RC 時間設定型モノステーブル マル チバイブレータ

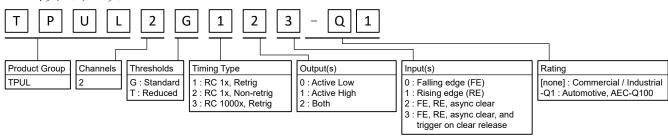
1 特長

- RC は 10ms ~ 880s の範囲で構成可能
- 拡張パルス幅機能により、長いパルス幅で必要とされ るコンデンサの値は 1000 分の 1 に削減されます
- パルスが 10ms 未満の場合は、を使用します
- 標準値 1%、最大パルス幅変動 10%
- 幅広い動作範囲:1.5V~5.5V
- 5.5V までの入力電圧に対応
- 4.5V ~ 5.5V 電源で TTL 互換
- すべての入力のシュミットトリガアーキテクチャ
- 単一電源電圧トランスレータ (「減少された入力スレッ *ショルド電圧* を参照):
 - 昇圧変換:
 - 1.2V ~ 1.8V
 - 1.5V ~ 2.5V
 - 1.8V ~ 3.3V
 - $3.3V \sim 5.0V$
 - 降圧変換:
 - 5.0V、3.3V、2.5V から 1.8V
 - 5.0V、3.3V から 2.5V
 - $5.0V \sim 3.3V$

2 アプリケーション

- デジタル振幅シフトキーイング (ASK) 信号を復調しま
- システムを一定時間リセットします
- 正の固定幅デジタル パルスを生成します
- デジタル信号の立ち上がりエッジを検出します
- デジタル信号の立ち下がりエッジを検出します
- スイッチのデバウンス

3 説明

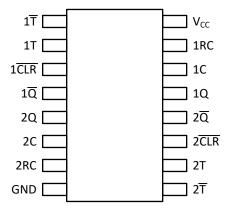

TPUL2T323 デバイスには、1.5V ~ 5.5V で動作するよう に設計された、独立した拡張パルス幅 RC 構成が可能 で、かつ再トリガ可能なモノステーブルマルチバイブレー タが 2 つ搭載されています。出力パルスの持続時間は、 近似出力パルス幅 two ≅ 1000 × R × C で外付けの抵抗 および容量の値を選択することで構成されます。

このデバイスは3つの入力を備えており、立ち上がりエッ ジ (T) と立ち下がりエッジ (T) トリガに対応し、アクティブな 出力パルスを停止するために非同期的に使用できるクリア 入力(CLR)が可能です。すべての入力はシュミットトリガ アーキテクチャを内蔵しているため、低速の入力遷移に対 応でき、ノイズ耐性が向上します。

製品情報

型	パッケージ (1)	パッケージ	本体
番		サイズ ⁽²⁾	サイズ
TPUL2T323	PW (TSSOP、16)	5mm × 6.4mm	5mm × 4.4mm

- (1) 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。
- (2) パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。


TPUL ファミリの命名規則

English Data Sheet: SCASE79

目次

4 ピン構成および機能

寸法については、機械的な図を参照してください。

図 4-1. PW パッケージ 16 ピン TSSOP 上面図

表 4-1. ピンの機能

	ピン	(4)	- 女 4-1. こノの版化
名称	番号	- I/O ⁽¹⁾	説明
1₸	1	ı	チャンネル 1 立ち下がりエッジ トリガ入力。 1T と 1 CLR を high に保持する必要があります
1T	2	I	チャンネル 1 立ち上がりエッジ トリガ入力。 1 \overline{T} ε low に、 1 \overline{CLR} ε high に保持する必要があります。
1CLR	3	1	チャネル 1 非同期クリア入力、アクティブ Low。 $1\overline{1}$ が low に、 $1\overline{1}$ が high に保持されている場合、立ち上がり エッジ トリガ入力として動作することもできます
1Q	4	0	チャネル 1 反転出力
2Q	5	0	チャネル 2 出力
2C	6	G	チャネル 2 外部タイミング コンデンサの負の接続。外部タイミング コンデンサの放電電流用のリターン パスを提供します。 内部でグラウンドに接続されます
2RC	7	I/O	チャネル 2 の外部タイミング ノード接続。詳細な動作手順については、「 <i>アプリケーション情報</i> 」セクションを参照してください
GND	8	G	グランド
2₹	9	I	チャンネル 2 立ち下がりエッジトリガ入力。2T と 2 CLR を high に保持する必要があります
2T	10	I	チャンネル 2 立ち上がりエッジトリガ入力。 2 $\overline{\ }$
2CLR	11	ı	チャネル 2 非同期クリア入力、アクティブ Low。 $1\overline{1}$ が low に、 $2\overline{1}$ が high に保持されている場合、立ち上がり エッジ トリガ入力として動作することもできます
2Q	12	0	チャネル 2 反転出力
1Q	13	0	チャネル 1 出力
1C	14	G	チャネル 1 外部タイミング コンデンサの負の接続。外部タイミング コンデンサの放電電流用のリターン パスを提供します。 内部でグラウンドに接続されます
1RC	15	I/O	チャネル 1 の外部タイミング ノード接続。詳細な動作手順については、「 <i>アプリケーション情報</i> 」セクションを参照してください
V _{CC}	16	Р	正の電圧電源

(1) I = 入力、O = 出力、I/O = 入力と出力、G = グランド、P = 電源

English Data Sheet: SCASE79

5 仕様

5.1 絶対最大定格

自由気流での動作温度範囲内 (特に記述のない限り)(1)

			最小値	最大値	単位
V _{CC}	電源電圧範囲		-0.5	6.5	V
VI	デジタル入力電圧範囲 ⁽²⁾		-0.5	6.5	V
Vo	アクティブ状態でのデジタル出力電圧範囲(2)		-0.5	V _{CC} + 0.5	V
Vo	高インピーダンス状態でのデジタル出力電圧範囲 ⁽²⁾		-0.5	6.5	V
V _{RC}	RCピンの電圧範囲		-0.5	V _{CC} + 0.5	V
	入力クランプ ダイオード電流、連続	V _I < -0.5V		-20	mA
I _{IK}	入力クランプ ダイオード電流、パルス 1µs	V _I < -0.5V		-200	mA
	出力クランプ ダイオード電流、連続	V _O < -0.5V		-20	mA
I _{OK}	出力クランプ ダイオード電流、パルス 1µs	V _O < -0.5V		-200	mA
	デジタル出力電流、連続	V _O = 0∼V _{CC}		±50	mA
I _O	デジタル出力電流、パルス 1μs	V _O = 0∼V _{CC}		±200	mA
	V _{CC} または GND を通過する連続電流			±200	mA
R _{ext}	外部タイミング抵抗		1		kΩ
C _{ext}	外部タイミング キャパシタンス			1 ⁽³⁾	μF
T_J	接合部温度			150	°C
T _{stg}	保存温度		-65	150	°C

- (1) 絶対最大定格外での操作は、デバイスに恒久的な損傷を引き起こす可能性があります。「絶対最大定格」は、これらの条件において、または「推 奨動作条件」に示された値を超える他のいかなる条件でも、本製品が正しく動作することを暗に示すものではありません。「絶対最大定格」の範囲 内で、一時的に「推奨動作条件」の範囲を超えた動作をさせる場合、必ずしもデバイスが損傷を受けるものではありませんが、完全には機能しない可能性があります。この方法でデバイスを動作させると、デバイスの信頼性、機能性、性能に影響を及ぼし、デバイスの寿命を短縮する可能性があります。
- (2) 関連するクランプ電流定格を順守しても、電圧定格を超えることがあります。
- (3) 外部ダイオードを追加すると、タイミング容量の最大値を超える場合があります。詳細については、アプリケーションと実装セクションを参照してください。

5.2 ESD 定格

			値	単位
V	静電放電	人体モデル (HBM)、ANSI/ESDA/JEDEC JS-001 準拠 ⁽¹⁾	±2000	V
V _(ESD)		デバイス帯電モデル (CDM)、ANSI/ESDA/JEDEC JS-002 準拠 ⁽²⁾	±1000	v

- (1) JEDEC のドキュメント JEP155 に、500V HBM では標準の ESD 管理プロセスで安全な製造が可能であると規定されています。
- (2) JEDEC のドキュメント JEP157 に、250V CDM では標準の ESD 管理プロセスで安全な製造が可能であると規定されています。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

4

5.3 推奨動作条件

外気温度範囲での動作時 (特に記述がない限り)

仕様	説明	条件	最小値	最大値	単位
/ _{cc}	電源電圧		1.5	5.5	V
V _I (1)	入力電圧		0	5.5	V
Vo	出力電圧		0	V _{CC}	V
		V _{CC} = 1.5V		-4	mA
		V _{CC} = 1.8V		-6	mA
I _{OH} ⁽²⁾	High レベル出力電流	V _{CC} = 2.5V		-26	mA
		V _{CC} = 3.3V		-50	mA
		V _{CC} = 5V		-50	mA
		V _{CC} = 1.5V		4	mA
	Low レベル出力電流	V _{CC} = 1.8V		6	mA
I _{OL} ⁽²⁾		V _{CC} = 2.5V		26	mA
		V _{CC} = 3.3V		50	mA
		V _{CC} = 5V		50	mA
R _{ext} ⁽³⁾	外部タイミング抵抗	V _{CC} = 1.5V∼5.5V	6.5	1000	kΩ
C _{ext} ⁽³⁾	外部タイミング キャパシタンス	V _{CC} = 1.5V∼5.5V	0.1	1000	nF
t _{wo}	構成設定された出力パルス幅	V _{CC} = 1.5V∼5.5V	0.01	880	s
CL	デジタル出力負荷容量	V _{CC} = 1.5V∼5.5V		50	pF
V _{POR}	パワーオンリセットランプ電圧	Δt/ΔV _{CC} ≥ 20μs/V	0.3	1.5	V
Δt/ΔV _{CC}	パワーオン ランプ レート	V _{CC} = 0.3V∼1.5V	20		μs/V
Δt/Δν	入力遷移の立ち上がりまたは立ち 下がりレート	V_{CC} = 1.5V \sim 5.5V		100	ms/V
T _A	外気温度での動作時	外気温度での動作時	-40	125	°C

- (1) デバイスが適切に動作するように、デバイスの未使用の入力はすべて、 V_{CC} または GND に固定する必要があります。
- (2) 連続動作の推奨最大出力電流。V_{OH} および V_{OL} の仕様を維持するためのテスト電流の値については、電気的特性を参照してください。12mA を超える平均出力電流で動作すると、デバイスの信頼性に影響を及ぼし、デバイスの寿命を縮める可能性があります。
- (3) 推奨される R_{ext} および C_{ext} 値は、 $スイッチング特性表の <math>\Delta t_{wo}$ に示される最大誤差を維持します。

5.4 熱に関する情報

パッケージ	120 ×			熱評価	基準(1)			単位
		R _{0JA}	R _{0JC(top)}	R _{0JB}	Ψ_{JT}	Ψ_{JB}	R _{0JC(bot)}	#1111
PW (TSSOP)	16	138.3	75.1	96.5	19.4	95.5	該当なし	°C/W

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション ノートを参照してください。

5.5 電気的特性

自由空気での動作温度範囲内、T_A = 25℃ で測定した代表値 (特に記述のない限り)。

	パラメータ	テスト条件	V _{CC}	最小値	標準値	最大値	単位
			1.5V	0.65	0.84	0.96	
			1.8V	0.73	0.95	1.11	
V_{T+}	正のスイッチン グ スレッショル		2.5V	0.88	1.11	1.33	V
v T+	ド		3.3V	1.03	1.27	1.5	V
			5V	1.33	1.58	1.82	
			5.5V	1.41	1.67	1.91	
			1.5V	0.32	0.41	0.5	
			1.8V	0.36	0.46	0.53	
V _{T-}	負のスイッチン グ スレッショル		2.5V	0.45	0.55	0.63	V
V -	ド		3.3V	0.54	0.65	0.74	V
			5V	0.7	0.85	0.96	
			5.5V	0.74	0.89	1.02	
			1.5V	0.33	0.45	0.6	
		1.8V	0.36	0.5	0.65		
ΔV_T	ヒステリシス		2.5V	0.42	0.56	0.72	V
ΔνΤ	(V _{T+} - V _{T-})		3.3V	0.49	0.62	0.78	V
			5V	0.61	0.74	0.91	
		5.5V	0.65	0.77	0.95		
		I _{OH} = -50μA	1.5V ~ 5.5V	V _{CC} - 0.1	V _{CC} - 0.01		
		I _{OH} = -1mA	1.65V	1.2	1.61		.,
V_{OH}	High レベル出	I _{OH} = -2mA	2.3V	2.1	2.24		V
	力電圧	I _{OH} = -8mA	3V	2.4	2.78		
		I _{OH} = -12mA	4.5V	3.94	4.21		
		I _{OH} = -12mA	5.5V	4.94	5.23		V
		I _{OL} = 50μA	1.5V ~ 5.5V		0.01	0.1	
		I _{OL} = 1mA	1.65V		0.03	0.45	
V_{OL}	Lowレベル出	I _{OL} = 2mA	2.3V		0.04	0.2	V
	力電圧	I _{OL} = 8mA	3V		0.13	0.4	
		I _{OL} = 12mA	4.5V		0.15	0.5	
		I _{OL} = 12mA	5.5V		0.13	0.5	
I _I	入力リーク電流	V _I = 5.5V または 0V	$0 extsf{V}\sim 5.5 extsf{V}$			±50	nA
I _{CEXT}	コンデンサ ピン 電流	監視状態、V _{CEXT} = 0.5 × V _{CC}	1.5V ~ 5.5V			±50	nA
		アクティブ状態、放電、V _{CEXT} = 1.5V	1.5V			11	mA
		アクティブ状態、放電、V _{CEXT} = 2.3V	2.3V			29	mA
I _{CEXT}	コンデンサピン	アクティブ状態、放電、V _{CEXT} = 3V	3V			45	mA
	電流	アクティブ状態、放電、V _{CEXT} = 4.5V	4.5V			95	mA
		アクティブ状態、放電、V _{CEXT} = 5.5V	5.5V			138	mA
I _{off}	部分的パワー オフ電流	V_{l} または V_{0} = 5.5V または 0V	0.0 v 0.3 v		0.25	10	μA
I _{CC}	電源電流	準備完了状態、 $V_I = V_{CC}$ または $0V$ 、 $I_O = 0$	5.5V		0.19	2	μA

Copyright © 2025 Texas Instruments Incorporated

6

自由空気での動作温度範囲内、T_A = 25℃で測定した代表値 (特に記述のない限り)。

/	ペラメータ	テスト条件	V _{cc}	最小値	標準値	最大値	単位
			1.5V			180	
		1	1.65V			200	
,		て、ウェブレのマカニ、ブルギ・ソーソーナセル・ハノー・ロ	2.3V			290	
Icc	電源電流	チャネルごとのアクティブ状態、 $V_I = V_{CC}$ または $0V$ 、 $I_O = 0$	3V			450	μA
			4.5V			836	
						1126	
ΔI _{CC}	電源電流の変 化	1 つの入力、 V_I = $0 \sim V_{CC}$ 、その他のすべての入力は V_{CC} または $0V$ 、 I_O = 0 mA	1.5V ~ 5.5V			2.1	mA
Cı	入力容量	V _I = 5.5V または 0V	5.5V		1		pF
Co	出力容量	V _O = 5.5V または 0V	0V		3		pF
			1.5V	16	17.9	20	
			1.65V	14	15.5	17	
	4-me =	0 0.5 // 0 //	2.3V	7	9.7	13	
C _{int}	内部容量	部容量 $C_{\text{ext}} = 0 \text{pF}; V_{\text{cext}} = 0 \sim V_{\text{CC}}$	3V	6	9.9	14	pF
			4.5V	5	7.7	10	
			5.5V	4	5.7	7	

5.6 タイミング特性

自由空気での推奨動作温度範囲内 (特に記述のない限り)

パラメータ	説明	条件	V _{cc}	最小 値	最大 値	単位
			1.5V	18.2		
t _{wi}			1.8V ± 0.15V	9.9		
	パルス幅	任意のトリガ入力	2.5V ± 0.2V	7.8		ns
			3.3V ± 0.3V	5.8		
			5V ± 0.5V	4.1		
			1.5V	9.6		
			1.8V ± 0.15V	8		
		T は T↑ または CLR↑ の前に低いです	2.5V ± 0.2V	6.9		ns
			3.3V ± 0.3V	6.6		
			5V ± 0.5V	6.5		
			1.5V	5		
			1.8V ± 0.15V	5		
t _{su}	トリガ入力間のセットア ップ時間	T は \bar{T} ↓ または \overline{CLR} ↑ の前に高いです	2.5V ± 0.2V	5		ns
) / M IFI		3.3V ± 0.3V	5		
			5V ± 0.5V	5		
			1.5V	9.2		
			1.8V ± 0.15V	7.8		ns
		\overline{CLR} は \overline{T} \downarrow または T \uparrow の前に高いです	2.5V ± 0.2V	6.7		
			3.3V ± 0.3V	6.5		
			5V ± 0.5V	6.4		

自由空気での推奨動作温度範囲内 (特に記述のない限り)

パラメータ	説明	条件	V _{cc}	最小 晶 値	大 値	単位
			1.5V	9.3		
t _h			1.8V ± 0.15V	7.8		
	ホールド時間	任意のトリガ入力	2.5V ± 0.2V	6.7		ns
			3.3V ± 0.3V	6.5		
			5V ± 0.5V	6.4		
			1.5V	13.1		
			1.8V ± 0.15V	13		
		任意のトリガ入力、R _{ext} = 100kΩ、C _{ext} = 100pF	2.5V ± 0.2V	12.6		μs
			3.3V ± 0.3V	12.5		
			5V ± 0.5V	12.2		
			1.5V	2		
			1.8V ± 0.15V	2		
t _{rr} (1)	再トリガ時間	任意のトリガ入力、R _{ext} = 10kΩ、C _{ext} = 0.1μF	2.5V ± 0.2V	2		ms
			3.3V ± 0.3V	2.1		1
			5V ± 0.5V	2.1		
			1.5V	912		
			1.8V ± 0.15V	911		
		任意のトリガ入力、R _{ext} = 10kΩ、C _{ext} = 10μF	2.5V ± 0.2V	904		ms
			3.3V ± 0.3V	893		
			5V ± 0.5V	864		
t _{startup} (2)	起動時間		$1.5 extsf{V} \sim 5.5 extsf{V}$		0	μs

- (1) クリア入力 (CLR) を 2500 × C_{ext} よりも頻繁にトリガすると、デバイスの長期的な信頼性に影響を与える可能性があります。クリア入力の高速トリガ が繰り返し行われると、RC ピンに過剰な平均電流が発生します。
- (2) デバイスの起動中に受信されたトリガは無視できます。外部タイミング コンデンサには、起動後に充電するための時間が必要です。最適な最初のパルス精度を実現するには、電源電圧が安定した動作条件に達した後、最初のトリガを印加する前に、500 × Cext の最小値を待機します。

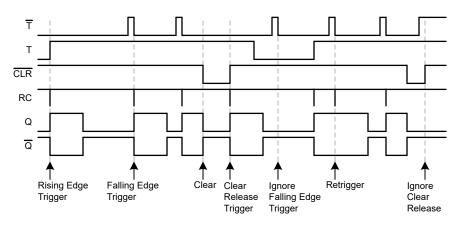


図 5-1. 入力 / 出力タイミング図

5.7 スイッチング特性

自由空気での動作温度範囲内、T_A = 25℃で測定した代表値 (特に記述のない限り)。「パラメータ測定情報」参照

パラメータ	始点 (入力)	終点 (出力)	テスト条件	V _{cc}	最小値	標準値	最大値	単位
C _L = 15pF								
				1.5V	7	35	59	
				1.65V	6	28.6	47	
	T、T、または CLR	Q または Q	C = 15×5	2.3V	4	16.6	26	
t _{pd}	T.T. E/C/4 GLR	Q ECU Q	C _L = 15pF	3V	3	12.4	19	ns
				4.5V	2	9.4	13	
				5.5V	2	9.2	12	
				1.5V		4.3	8.3	
				1.65V		3.9	7	
		Q または <u>Q</u>	C _L = 15pF	2.3V		3	5.6	ne
t _t		Q E/C/4 Q	OL - 13pi	3V		2.5	5	ns
				4.5V		2.4	4.9	
				5.5V		2.7	5.8	
C _L = 50pF								
				1.5V	7	37	67	
	T、T、または CLR	または $\overline{\text{CLR}}$ Qまたは $\overline{\text{Q}}$ C_{L} = 50pF	C _L = 50pF	1.65V	6	30.2	53	ns
				2.3V	4	17.6	30	
t _{pd}				3V	3	13	22	
				4.5V	2	9.8	16	
				5.5V	2	9.6	14	
				1.5V	2.3	3.6	4.4	
				1.65V	2.5	3.5	4.3	
			$R_{\text{ext}} = 1M\Omega, C_{\text{ext}} =$	2.3V	2.2	3.4	4.1	m a
			0、C _L = 50pF	3V	2.2	3.3	4	ms
				4.5V	2.1	3.2	3.8	
				5.5V	2	3.1	3.8	
				1.5V	831	934	1017	
				1.65V	832	934	1018	
+ (1)		 Q または	$R_{ext} = 10k\Omega, C_{ext} =$	2.3V	837	932	1024	mo
t _{wo} (1)		Q E/C/L Q	$0.1\mu F, C_L = 50pF$	3V	842	938	1030	ms
				4.5V	852	949	1043	
				5.5V	857	954	1049	
				1.5V	261	295	324	
				1.65V	250	301	316	
			$R_{\text{ext}} = 330 \text{k}\Omega \text{, } C_{\text{ext}} =$	2.3V	253	298	315	
			$R_{ext} = 330k\Omega, C_{ext} = 1\mu F, C_L = 50pF$	3V	255	300	317	S
				4.5V	261	306	320	
			5.5V	264	310	323		
Δt _{wo} ⁽²⁾		Q または Q	C _L = 50pF	1.5V ~ 5.5V		±1	±10	%

自由空気での動作温度範囲内、T_A = 25℃で測定した代表値 (特に記述のない限り)。「パラメータ測定情報」参照

パラメータ	始点 (入力)	終点 (出力)	テスト条件	V _{cc}	最小値 標準値	最大値	単位
				1.5V	8.2	34.4	ns
				1.65V	7	28	
+		 Q または	 C _L = 50pF	2.3V	4.5	24.6	
t _t		Q E/C/L Q	CL - SUPP	3V	3.9	17.4	
				4.5V	3.1	12.6	
				5.5V	2.9	8.7	
				1.5V	46		
			T - V = CND f	1.65V	46		
C _{pd} (3)	CLR		$T = V_{CC}, \overline{T} = GND f_1$ $= 10MHz C_L = 50pF$ $2.3V$	49		pF	
O _{pd} (*)	CLR		C _{ext} = 0pF R _{ext} =	3V	40		ρг
			1ΜΩ	4.5V	47		
				5.5V	49		

- (1) 出力パルス幅
- (2) K係数の代表的特性に対する出力パルス幅の変動 (外部タイミング部品の変動を除く)。
- (3) 消費電力容量は、『CMOS の消費電力と Cpd の計算』に従って計算されます。

5.8 代表的特性

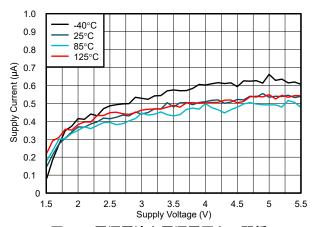

T_A = 25℃ (特に記述のない限り)

表 5-1. 共通 RC を使用したパルス幅、V_{CC} = 3.3V

抵抗値	コンデンサ値									
	10μF	1μF	100nF	10nF	1nF	100pF	10pF			
1kΩ	10.1s	1.01s	106ms	11.0ms	1.21ms ⁽¹⁾	179µs ⁽¹⁾	61.9µs ⁽¹⁾			
1.5kΩ	15.0s	1.50s	1.53ms	15.9ms	1.74ms ⁽¹⁾	242µs ⁽¹⁾	69.4µs ⁽¹⁾			
2.2kΩ	21.7s	2.17s	220ms	22.7ms	2.49ms ⁽¹⁾	331µs ⁽¹⁾	84.7µs ⁽¹⁾			
3.3kΩ	32.1s	3.21s	326ms	33.5ms	3.64ms ⁽¹⁾	468µs ⁽¹⁾	102µs ⁽¹⁾			
4.7kΩ	45.3s	4.53s	460ms	47.2ms	5.14ms ⁽¹⁾	643µs ⁽¹⁾	125µs ⁽¹⁾			
6.8kΩ	65.2s	6.52s	661ms	68.1ms	7.36ms ⁽¹⁾	904µs ⁽¹⁾	157µs ⁽¹⁾			
10kΩ	95.1s	9.51s	966ms	99.5ms	10.8ms	1.30ms ⁽¹⁾	207µs ⁽¹⁾			
15kΩ	143s	14.3s	1.44s	149ms	16.1ms	1.92ms ⁽¹⁾	281µs ⁽¹⁾			
22kΩ	209s	20.9s	2.12s	218ms	23.4ms	2.79ms ⁽¹⁾	387µs ⁽¹⁾			
33kΩ	313s	31.3s	3.16s	327ms	35.3ms	4.14ms ⁽¹⁾	552µs ⁽¹⁾			
47kΩ	444s	44.4s	4.50s	464ms	49.8ms	5.88ms ⁽¹⁾	763µs ⁽¹⁾			
68kΩ	644s	64.4s	6.52s	670ms	72.3ms	8.47ms ⁽¹⁾	1.06ms ⁽¹⁾			
100kΩ	946s	94.6s	9.58s	985ms	106ms	12.5ms	1.55ms ⁽¹⁾			
150kΩ	1420s	142s	14.3s	1.48s	160ms	18.5ms	2.29ms ⁽¹⁾			
220kΩ	2080s	208s	21.0s	2.17s	234ms	27.3ms	3.32ms ⁽¹⁾			
330kΩ	2924s ⁽²⁾	312s	31.5s	3.25s	351ms	40.6ms	4.94ms ⁽¹⁾			
470kΩ	2939s ⁽²⁾	444s	44.9s	4.64s	501ms	58.0ms	7.02ms ⁽¹⁾			
680kΩ	2962s ⁽²⁾	643s	64.9s	6.69s	724ms	84.3ms	10.1ms			
1ΜΩ	2995s ⁽²⁾	940s	95.8s	9.88s	1.06s	125ms	14.8ms			

^{(1) 10}ms 未満に設定されたパルス幅 (K×R×C < 10 μ s) では、ステート マシンを正しくトリガできない可能性があり、出力パルスが非常に短くなります (t_{wo} < 10 μ s)。

^{(2) 2253}s (K×R×C > 2.2s) を超えるパルス幅は、デジタル タイミング回路の能力を超えるため大きく変化する可能性があります。

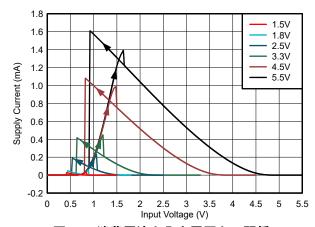
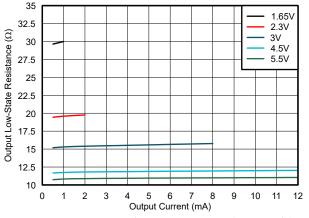



図 5-3. 消費電流と入力電圧との関係

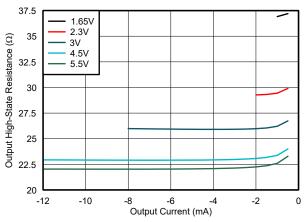


図 5-4. 出力 Low 状態抵抗と出力電流との関係

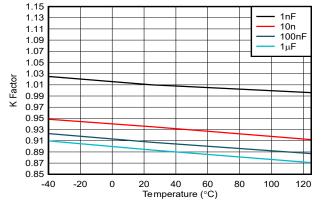


図 5-5. 出力 High 状態抵抗と出力電流との関係

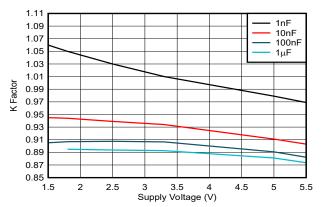


図 5-6. K 係数と温度との関係、R_{ext} = 10kΩ

図 5-7. K 係数と電源電圧との関係、R_{ext} = 10kΩ

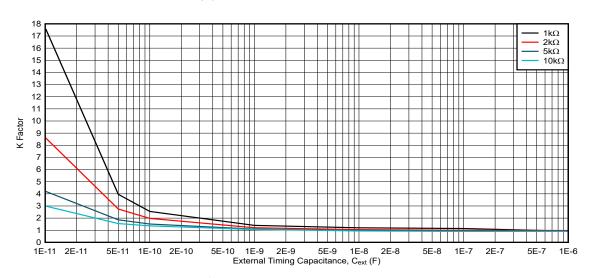


図 5-8. K 係数、 V_{CC} = 1.5V、 R_{ext} = 1kΩ \sim 10kΩ

12

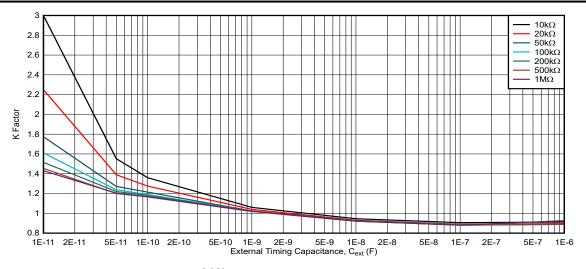


図 5-9. K 係数、 V_{CC} = 1.5V、 R_{ext} = 10k Ω ~ 1M Ω

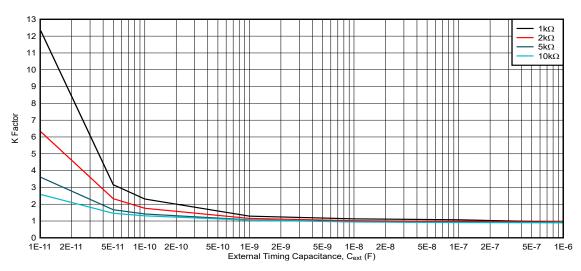


図 5-10. K 係数、 V_{CC} = 1.8V、 R_{ext} = 1 $k\Omega\sim 10k\Omega$

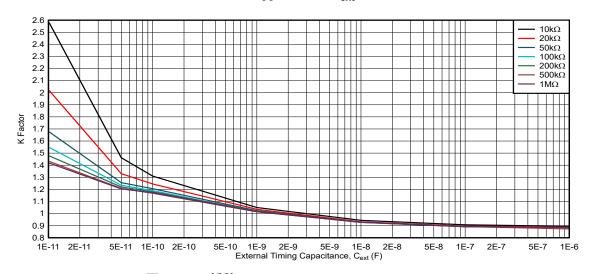


図 5-11. K 係数、 V_{CC} = 1.8V、 R_{ext} = 10 $k\Omega\sim 1$ MΩ

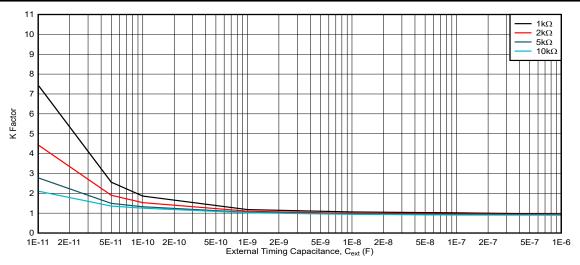


図 5-12. K 係数、 V_{CC} = 2.5V、 R_{ext} = 1k Ω ~ 10k Ω

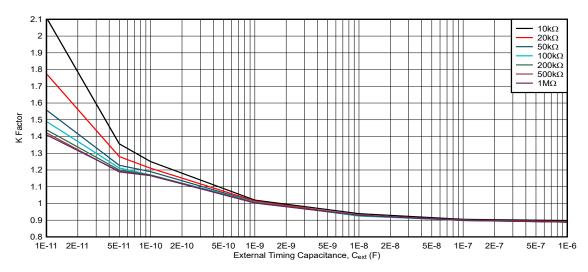


図 5-13. K 係数、 V_{CC} = 2.5V、 R_{ext} = 10 $k\Omega$ ~ 1 $M\Omega$

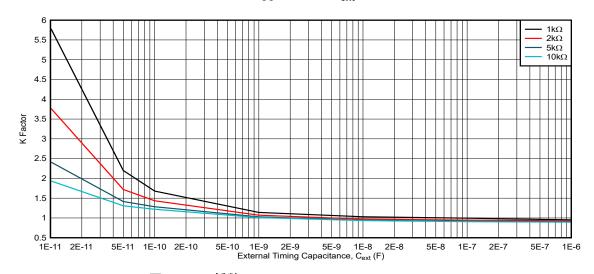


図 5-14. K 係数、 V_{CC} = 3.3V、 R_{ext} = 1k $\Omega\sim 10$ k Ω

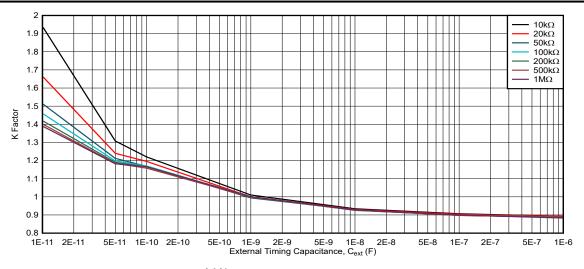


図 5-15. K 係数、 V_{CC} = 3.3V、 R_{ext} = 10kΩ \sim 1MΩ

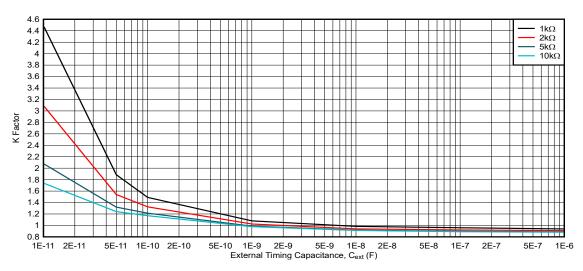


図 5-16. K 係数、 V_{CC} = 5V、 R_{ext} = 1kΩ \sim 10kΩ

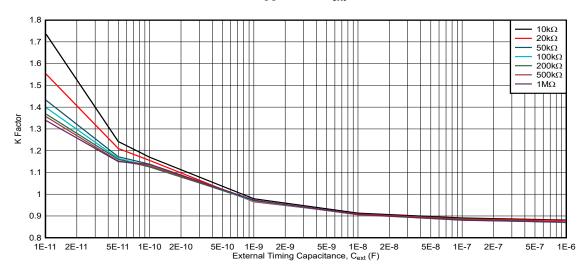


図 5-17. K 係数、 V_{CC} = 5V、 R_{ext} = $10k\Omega\sim 1M\Omega$

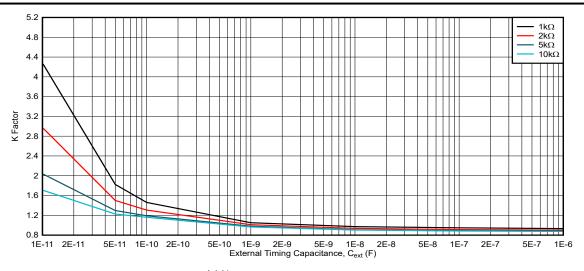
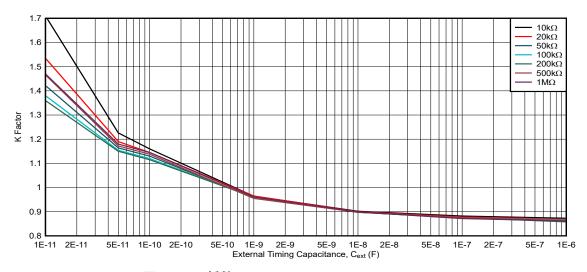
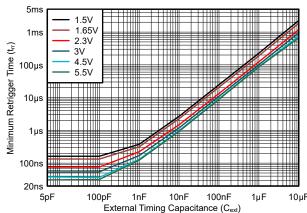
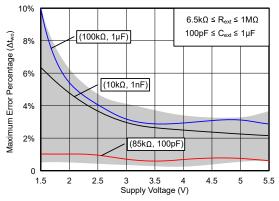


図 5-18. K 係数、 V_{CC} = 5.5V、 R_{ext} = 1 $k\Omega$ ~ 10 $k\Omega$


図 5-19. K 係数、 V_{CC} = 5.5V、 R_{ext} = 10 $k\Omega$ ~ 1 $M\Omega$

200 100 Maximum Retrigger Time Error (%) 50 3V 4.5\ 20 5.5V 10 2 0.5 0.2 0.1 0.05 $5k\Omega$ 10kΩ 100kΩ External Timing Resistance (R_{ext}) 2kΩ 1kΩ 1ΜΩ

External Timing Capacitance (Cext) 図 5-21. 再トリガ時間の最大誤差 (合計パルス幅と外図 5-20. 最小再トリガ時間と外部タイミング コンデン 部タイミング抵抗の値に対するパーセンテージで表さ サの値との関係 れた値)

以下のプロットの誤差データは、製造プロセスと自由気流動作温度の変動に起因する代表的な動作 (公称材料、 $T_A = 25^{\circ}C$) からの変化を示しています。

10% 1.5V 1.8V Maximum Error Percentage ($\Delta t_{
m wo}$) 2.5V 8% 3.3V 5V 5.5V 6% 4% 0 10kΩ 50kΩ 100kΩ 200kΩ 500kΩ 1MΩ 5kΩ 20k0 External Timing Resistance (Rev.)

図 5-22. 電源電圧における最大出力パルス幅誤差 (絶 対値)

図 5-23. C_{ext} = 100pF での最大出力パルス幅誤差 (絶 対値) とタイミング抵抗値との関係

各ライン:1つのタイミング部品の組み合わせ 影付き領域:すべてのタイミング部品の組み合わせ

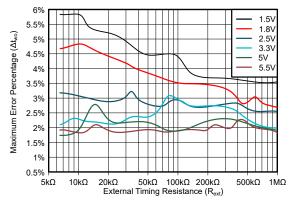
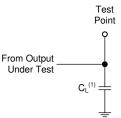


図 5-24. C_{ext} = 1nF での最大出力パルス幅誤差 (絶対値) とタイミング抵抗値との関係


17

6 パラメータ測定情報

以下の表に示す例では、波形間の位相関係を任意に選択しました。 すべての入力パルスは、以下の特性を持つジェネレータによって供給されます。 $PRR \leq 1MHz$ 、 $Z_O = 50\Omega$ 、 $t_t < 2.5 ns$ 。

出力は個別に測定され、測定するたびに入力が1回遷移します。

- (1) C_L にはプローブとテスト装置の容量が含まれます。

図 6-1. プッシュプル出力のための負荷回路

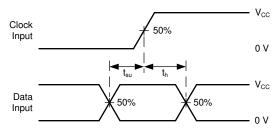


図 6-3. 電圧波形、セットアップ時間およびホールド時間

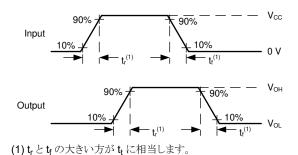
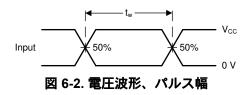



図 6-5. 電圧波形、入力および出力の遷移時間

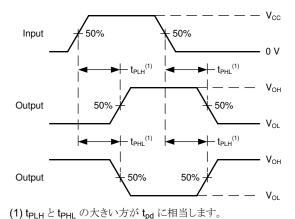
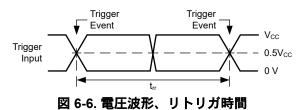
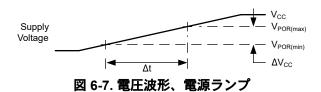




図 6-4. 電圧波形、伝搬遅延

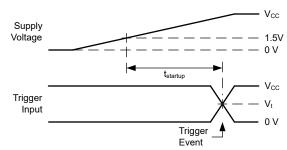


図 6-8. 電圧波形、起動時間

19

7 詳細説明

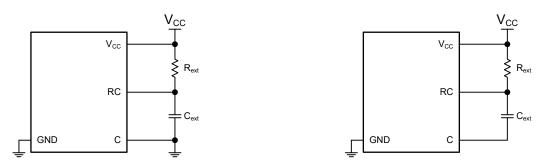
7.1 概要

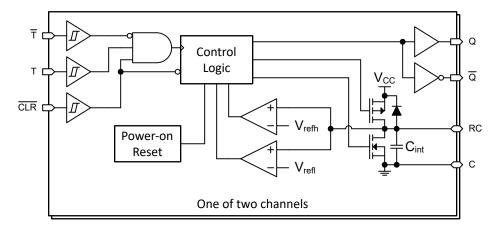
TPUL2T323 デバイスには、2 つの独立した拡張パルス幅 再トリガ不可なモノステーブル マルチバイブレータ回路が搭載されていますモノステーブル マルチバイブレータは、一般的に「ワンショット」とも呼ばれますが、トリガされたときに単一のデジタル パルスを生成し、トリガされたときに一定の出力状態が維持されます。

TPUL2T323 デバイスは、各チャネルに 3 つのゲート付きトリガ入力を備えています。立ち上がりエッジトリガには、T または \overline{CLR} 入力が使用されます。立ち下がりエッジトリガには \overline{T} 入力が使用されます。

TPUL2T323 デバイスには非同期クリア入力 (CLR) が内蔵されており、進行中の出力パルスを終了できます。

トリガされると、TPUL2T323 は t_{wo} = 1024 × K × R_{ext} × C_{ext} として定義された正のデジタル パルスを出力します。 R_{ext} と C_{ext} はそれぞれ外部タイミング抵抗と、外部タイミング コンデンサの成分の値 Ω と F で測定された値、K は「代表的特性」セクションに記載されている無価値の非直線性補正係数です。外部タイミング部品 は、図 7-1 に示すように接続する必要があります。C 端子への外部グランド接続はオプションです。




図 7-1. タイミング部品の接続、外部グランドありとなし

7.2 機能ブロック図

 $V_{refh} = 0.69 \times V_{CC}$

 $V_{refl} = 0.25 \times V_{CC}$

C_{int} は内部寄生容量の合計を示し、「電気的特性」表に記載されています。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

7.3 機能説明

7.3.1 命名規則

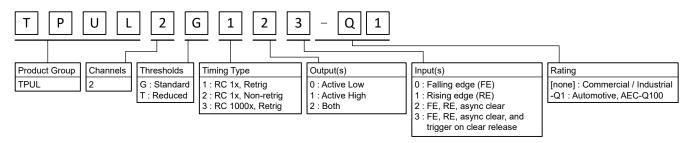


図 7-2. デバイス名の意味

7.3.2 再トリガ可能ワンショット

このデバイスは、固定幅の出力パルスを生成する、再トリガ可能モノステーブルマルチバイブレータ (ワンショット) 回路を内蔵しています。 再トリガ可能ワンショットの出力パルス幅は、出力がアクティブな間、追加の入力トリガによって延長されます。 他のトリガが受信されていない場合、出力パルスは設定された期間が経過した後に期限切れになります。

再トリガ イベント後の出力パルス幅は、再トリガ イベントが発生している間、タイミング コンデンサを完全に放電する必要はないため、常に通常の出力パルス幅より短くなります。この変更による最大誤差は、選択されたタイミング コンデンサの放電時間です。より大きな抵抗値と、特定のパルス幅に対応するコンデンサ値の小さな値を選択することで、リトリガ タイミングによる誤差を最小限に抑えることができます。詳細については、「代表的特性」セクションの再トリガのプロットを参照してください。

7.3.3 拡張 RC 時間設定型ワンショット

出力パルス幅 (t_{WO}) は、外部タイミング部品 R_{ext} と C_{ext} を選択することにより制御されます。TPUL2T323 は、 $t_{wo} \cong 1000 \times R_{ext} \times C_{ext}$ の標準的な出力パルス幅をターゲットにするように設計されていますが、実際のパルス幅は複数の変数によって変化するため、システム設計がより正確なパルス幅を推定することができるように、非直線性補正係数 K が追加されました。式 1 を使用して、出力パルス幅を最も正確に予測します。

$$t_{WO} = K \times 1024 \times R_{PYI} \times C_{PYI} \tag{1}$$

出力パルス幅は、複数の変数に依存します。

- 外部タイミング部品 (R_{ext}、C_{ext})
- 電圧
- 温度
- 製造と設計
- デジタル ステート マシンの動作

外部タイミング部品の値によって、出力パルス幅が直接制御されます。また、製造、電圧、または温度が原因で部品の値が変動すると、出力パルス幅に直接影響が生じます。

ほとんどの抵抗は、動作中に非常に一貫性のある値を維持するため、精度にはほとんど影響しない傾向があります。

ほとんどのコンデンサでは製造の値のバラツキが大きく、温度や動作電圧によっても変動する場合があります。一般に、タイミングコンデンサは、RC時間設定型モノステーブルマルチバイブレータの単一の最大誤差発生源となります。

また、TPUL2T323 によって引き起こされる誤差もいくつかあります。この誤差は、 \mathbb{C} スイッチング特性 \mathbb{C} セクションに Δt_{WO} として示され、デジタル ステート マシンの動作、設計、製造、温度による変動も含まれます。さらに、パルス幅に固有のランダム性がいくらかあるため、他のすべての要因が一定に保たれていても、通常は 1% 未満になります。これは、 Δt_{WO} の仕様で考慮されています。

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

21

出力パルス幅 ($e_{\Delta two}$) のパーセント誤差を推定するには、複数の入力が必要です。式 2 は、部品の許容誤差による合計パルス幅誤差を推定する最善の方法です。 e_R はタイミング抵抗によって生じている誤差、 e_C はタイミング コンデンサによって生じている誤差、 Δt_{WO} は TPUL2T323 によって生じている誤差です。

$$e_{\Delta two} = e_R + e_C + e_R e_C + \Delta t_{wo} (1 + e_R + e_C + e_R e_C)$$
(2)

簡単に推定するには、誤差値の合計を使用します $(e_{\Delta two} \cong e_R + e_C + \Delta t_{wo})$ 。 たとえば、X7R コンデンサ (製造許容誤差 5% + 温度変動 15%)、抵抗 0.1%、 Δt_{WO} 5% を使用する一般的な TPUL2T323 アプリケーション回路の場合、最大誤差は 25.1% であることが迅速に推定されます。より正確な式を使用すると、最大誤差は実際には 26.126% になります。

7.3.4 平衡化された CMOS プッシュプル出力

このデバイスには、平衡化された CMOS プッシュプル出力が内蔵されています。「平衡化」という用語は、デバイスが同様の電流をシンクおよびソースできることを示します。このデバイスの駆動能力により、軽負荷に高速エッジが生成される場合があるため、リンギングを防ぐために配線と負荷の条件を考慮する必要があります。さらに、このデバイスの出力は、デバイスを損傷することなく維持できる以上に大きな電流を駆動できます。過電流による損傷を防止するため、デバイスの出力電力を制限することが重要です。「絶対最大定格」で定義されている電気的および熱的制限を常に順守してください。

未使用のプッシュプル CMOS 出力は、未接続のままにしておく必要があります。

7.3.5 CMOS シュミット トリガ入力

このデバイスには、シュミットトリガ アーキテクチャによる入力が搭載されています。これらの入力は高インピーダンスであり、「電気的特性」表に示されている入力静電容量と並列に配置された、入力からグランドまでの抵抗として、通常はモデル化されます。ワーストケースの抵抗は、「絶対最大定格」表に示されている最大入力電圧と、「電気的特性」表に示されている最大入力リーク電流からオームの法則 (R = V ÷ I) を使用して計算します。

シュミットトリガ入力アーキテクチャは、「電気的特性」表の ΔV_T で定義されるヒステリシスを備えているので、このデバイスは低速またはノイズの多い入力に対する耐性が非常に優れています。入力は標準 CMOS 入力よりもはるかに低速で駆動できますが、未使用の入力を適切に終端することをお勧めします。入力を低速の遷移信号で駆動すると、「電気的特性」表の ΔI_{CC} として定義されている入力あたりの最大値で、デバイスの動的消費電流が増加します。シュミットトリガ入力の詳細については、『シュミットトリガについて』を参照してください。

動作中は片時も、入力をオープンのままにすることはできません。未使用の入力は、有効な High または Low 電圧レベルで終端する必要があります。システムが入力を常にアクティブに駆動していない場合、システムが入力をアクティブに駆動していないときに有効な入力電圧を与えるため、プルアップまたはプルダウン抵抗を追加できます。抵抗値は複数の要因で決まりますが、10kΩ の抵抗が推奨され、通常はすべての要件を満たします。

7.3.6 既知のパワーアップ状態でのラッチ論理

このデバイスには、ラッチ論理回路が内蔵されています。ラッチ回路には一般に D タイプ ラッチと D タイプ フリップ フロップが含まれていますが、揮発性メモリとして機能するすべての論理回路が含まれています。標準的な論理デバイスでは、電源を最初に印加した後、各ラッチ回路の出力状態は不明です。ただし、このデバイスには追加されたパワー オン リセット (POR) 回路が搭載されており、デバイスが通常機能を開始する前のパワーアップ時に、すべての内蔵ラッチ回路の状態を設定します。

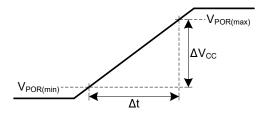


図 7-3. 既知のパワーアップ状態での電源 (Vcc) ランプ特性

図 7-3 に、電源電圧の正しいターンオン ランプを示し、「推奨動作条件」と「電気的特性」の表で使用される値を定義して

パワーオン ランプを開始する前に、電源が完全にオフになっている必要があります (Vcc ≦ VPOR(min))。

電源電圧は、「推奨動作条件」表に記載されている範囲内の速度で上昇する必要があります。

各ラッチ論理回路の出力状態は、デバイスに電力が印加されている間 (V_{CC} ≧ V_{POR(max)}) のみ安定した状態を維持しま

これらの推奨事項から逸脱すると、デバイスが未知のパワーオン状態になる可能性があります。

7.3.7 部分的パワー ダウン (I_{off})

このデバイスには、電源ピンが 0V に保持されているときにすべての出力をディセーブルにする回路が搭載されていま す。ディセーブルになっているときは、印加される入力電圧に関係なく、出力は電流のソースとシンクのどちらも行いませ ん。各出力のリーク電流の量は、「電気的特性」表の Ioff 仕様によって定義されます。

7.3.8 低減された入力スレッショルド電圧

TPUL2T323 は、昇圧変換に対応するための低減された入力電圧スレッショルドと、降圧変換に対応するための最大 5.5V レベルの信号を許容する入力を備えた設計になっています。正常に機能させるには、High 入力状態では規定の V_{T+(MAX)} (V_{IH}) レベル以上、Low 入力状態では規定の V_{T-(MIN)} (V_{IL}) 以下に入力信号を保持する必要があります。比較 のために、 $oxed{N}$ 7-4 に TPULxT デバイス ファミリの $oxed{V}_{II}$ および $oxed{V}_{II}$ レベル (代表値) と標準的な CMOS デバイスの電圧レ ベルを示します。

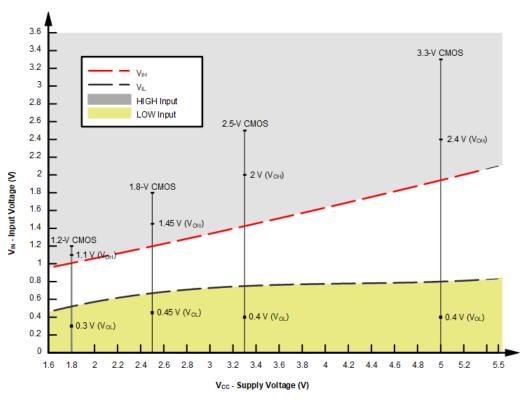


図 7-4. TPULxT の入力電圧レベル

Product Folder Links: TPUL2T323

Copyright © 2025 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

23

7.3.9 クランプ ダイオード構造

図 7-5 は、このデバイスの入力と出力には負のクランプ ダイオードのみがあることを示しています。

注意

*絶対最大定格*表に規定されている値を超える電圧は、デバイスに損傷を与える可能性があります。入力と出力のクランプ電流の定格を順守しても、入力と出力の電圧定格を超えることがあります。

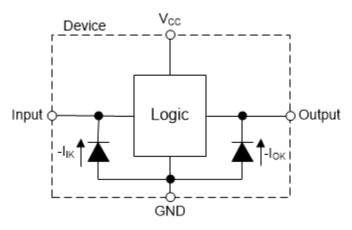


図 7-5. 各入力と出力に対するクランプ ダイオードの電気的配置

7.4 デバイスの機能モード

7.4.1 オフ状態動作

TPUL2T323 には部分的パワーダウン (Ioff) 保護機能が搭載されており、電源電圧が約 0V のときに出力が強制的に高インピーダンス状態になります。電源オフ状態では、デジタル入力および出力に電圧を印加でき、デバイスは応答しません。また、逆電力が供給されません。この保護は RC ピンには適用されません。

7.4.2 スタートアップ動作

TPUL2T323 には内部パワーオン リセット (POR) 回路が搭載され、起動中の誤トリガを防止します。既知のパワーアップ 状態でのラッチ論理に記載されている電源ランプ要件の詳細があります。タイミング要件表に従い、スタートアップ時間 (t_{startup}) が終了した後で通常動作を開始することができます。アクティブなとき、POR 回路は TPUL2T323 を Ready 状態に保持します。

7.4.3 オン状態動作

下表に TPUL2T323 のオン状態の機能モードを示します。

衣 /-1. (機能衣										
	入力 ⁽¹⁾		出力 ⁽²⁾							
CLR	Ŧ	Т	Q	Q						
L	Х	Х	L	Н						
Н	Н	Х	L(3)	H ⁽³⁾						
Н	Х	L	L(3)	H ⁽³⁾						
Н	L	1	(4)	(4)						
Н	\	Н	(4)	(4)						
1	L	Н								

表 7-1. 機能表

- (1) H = High 電圧レベル、L = Low 電圧レベル、X = ドントケア
- (3) これらの出力は、入力で示された定常状態が、すべての出力パルスが完了するくらい十分長い間セットアップされていたという仮定に基づいています。
- (4) 前の出力パルスがまだアクティブである間に出力パルスがトリガされた場合、出力は追加のパルス幅だけ high を駆動し続けます。

25

8アプリケーションと実装

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 アプリケーション情報

TPUL2T323 を使用して、入力トリガイベントから固定幅パルスを生成します。このデバイスは再トリガ可能です。つまり、 出力がアクティブの間に入力トリガを受信した場合、出力パルスは延長され、最新のトリガから設定された期間後に期限切れになりません。

入力トリガー イベントは、次の 3 つのゲート入力から発生します。 \overline{T} 、T、および \overline{CLR} 。これらの入力は 3 入力 AND ゲート に統合され、 \overline{T} は内部反転されているため、論理式はブール式 Y=! (\overline{T})・T・ \overline{CLR} に従います。各入力はシュミットトリガ アーキテクチャを使用しているため、ヒステリシスが組み込まれているため、低速の遷移やノイズの多い信号に対応できます。信号が V_{T+} より高い場合は論理 high として入力信号が検出され、入力信号が V_{T-} より低い場合は low として検出されます。 V_{T+} と V_{T-} の間で、これらの値のいずれかを交差するまで、入力信号は最後の有効な状態として検出されます。 出力パルスは、前述の内部 Y 信号の立ち上がりエッジでトリガされます。

出力パルス幅は、外付けタイミング部品 R_{ext} および C_{ext} の選択により制御されます。「代表的特性」セクションにはプロットが示されており、必要なパルス幅に対して適切な部品の値を簡単に選択できます。TPUL2T323 のタイミング精度に対する外部部品の影響の詳細については、「特長」セクションを参照してください。

8.2 代表的なアプリケーション - エッジ検出器

このアプリケーションでは、TPUL2T323 を使用して入力信号の立ち上がりまたは立ち下がりエッジを検出し、検出された各エッジについて短いパルスを出力に生成します。図 8-1 に、立ち上がりエッジ検出器の回路構成を示します。立ち下がりエッジ検出器の場合は、入力信号を T 入力の代わりに \overline{T} 入力に接続し、T 入力を V_{CC} に接続します。それ以外の場合、コンポーネントと構成は同一です。

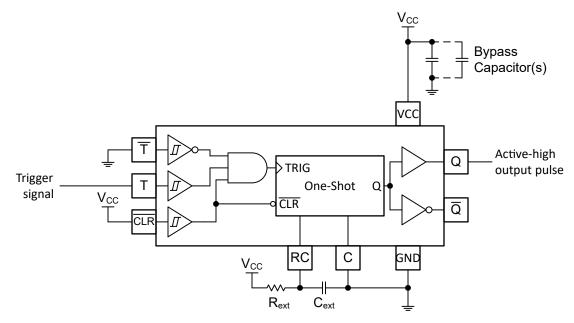


図 8-1. TPUL2T323 を使用したパルス ジェネレータの回路図

Copyright © 2025 Texas Instruments Incorporated

8.2.1 設計要件

8.2.1.1 タイミング部品

TPUL2T323 の出力パルス幅は、外部タイミング部品によって直接決定されます。

 $R_{\rm ext}$ と $C_{\rm ext}$ でサポートされている値の範囲は、「*推奨動作条件*」の表に記載されています。 *絶対最大定格* 表に記載された制限値を超えないようにしてください。

TPUL2T323 は、 C_{ext} = 0pF と記載されている外付けコンデンサなしで使用できます。この条件では、出力パルス幅は、動作電圧と外部タイミング抵抗 R_{EXT} のみによって決定されます。 R_{ext} = 1M Ω 、 C_{ext} = 0pF の場合における予想される変動は、「*スイッチング特性*」の表に示されています。

1μF よりも大きな外付けタイミング コンデンサを使用する場合は、図 8-2 に示すように外付けショットキー ダイオード (next) を追加することで、電源オフ時にコンデンサの放電パスとなります。

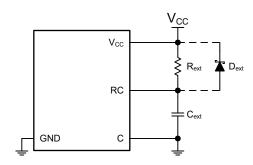


図 8-2. 外部保護ダイオード接続

8.2.1.2 入力に関する考慮事項

入力信号は、を超えるとロジック Low と見なされ、を超えるとロジック High と見なされます。「絶対最大定格」に記載された最大入力電圧範囲を超えないようにしてください。

未使用の入力は、V_{CC} またはグランドに終端させる必要があります。入力がまったく使われていない場合は、未使用の入力を直接終端させることができます。入力が常時ではなく、時々使用される場合は、プルアップ抵抗かプルダウン抵抗と接続することも可能です。デフォルト状態が High の場合にはプルアップ抵抗、デフォルト状態が Low の場合にはプルダウン抵抗を使用します。コントローラの駆動電流、TPUL2T323 へのリーク電流 (「電気的特性」で規定)、および必要な入力遷移レートによって抵抗のサイズが制限されます。ほとんどのアプリケーションでは、10kΩ 抵抗値が推奨されます。

Product Folder Links: TPUL2T323

このデバイスの入力の詳細については、「機能説明」セクションを参照してください。

27

8.2.1.3 出力に関する考慮事項

正の電源電圧を使用して、出力 HIGH 状態電圧を生成します。出力から電流を引き出すと、「電気的特性」の V_{OH} 仕様 で規定されたように出力電圧が低下します。グランド電圧を使用して、出力 LOW 状態電圧を生成します。出力に電流を シンクすると、「電気的特性」の Vol 仕様で規定されたように出力電圧が上昇します。

非常に短い期間であっても、逆の状態になる可能性があるプッシュプル出力は、過剰な電流とデバイスの損傷を避けるた め、互いに直接接続しないでください。

TPUL2T323 は、データシートの仕様をすべて満たしつつ、合計容量 50pF 以下の負荷を直接駆動できます。大きな容 量性負荷の場合は、電流を「絶対最大定格」内に維持するために直列抵抗を追加します。

TPUL2T323 は、「電気的特性」表に定義されている出力電圧および電流 (V_{OH} および V_{OL}) で、R_L≧ V_O / I_O で記述さ れる合計抵抗の負荷を駆動できます。HIGH 状態で出力する場合、この式の出力電圧は、測定した出力電圧と Vcc ピン の電源電圧の差として定義されます。

未使用の出力はフローティングのままにできます。出力を V_{CC} またはグランドに直接接続しないようにしてください。

本デバイスの出力の詳細については、「機能説明」セクションを参照してください。

8.2.1.4 電源に関する考慮事項

目的の電源電圧が「推奨動作条件」で規定されている範囲内であることを確認します。「電気的特性」セクションに記載さ れているように、電源電圧は本デバイスの電気的特性を決定づけます。

グランドは、TPUL2T323 のすべての出力によってシンクされる総電流、「*電気的特性*」に記載された消費電流 (I_{CC}) の最 大値、スイッチングに必要な任意の過渡電流の合計に等しい電流をシンクできる必要があります。 ロジック デバイスは、グ ランド接続にシンクできる電流のみをシンクできます。「絶対最大定格」に記載された GND 総電流の最大値を超えないよ うにしてください。

熱上昇は、『*標準リニアおよびロジック(SLL*) パッケージおよびデバイスの熱特性』に記載されている情報を使用して計算 できます。

注意

「*絶対最大定格*」に記載された最大接合部温度 (T_{J(max)}) は、本デバイスの損傷を防止するための追加の制 限値です。「絶対最大定格」に記載されたすべての制限値を必ず満たすようにしてください。これらの制限値 は、デバイスへの損傷を防ぐために規定されています。

Copyright © 2025 Texas Instruments Incorporated

8.2.2 詳細な設計手順

テキサス インスツルメンツは TPUL2T323 を使用するときに最適な結果が得られるように、Excel ベースのカリキュレータ を提供しています。このカリキュレータは、デバイスの製品フォルダの*設計と開発*セクションにあります。以下の手順は、このドキュメントに記載されている情報を使用して必要なタイミング部品の値を手動で計算する際に使用されます。

- 1. 目的の出力パルス幅 (two) を選択し、two1 = two / 1024 を計算します。
- 2. これを解くと次のようになります。 $C_{ext1} = t_{wo1}/50000$
- 3. 以下から、C_{ext1} に最も近い 10 進コンデンサ値を選択し、_{C ext} に使用します。{100pF、1nF、10nF、10nF、1μF、10μF}
- 4. これを解くと次のようになります。 $R_{ext1} = t_{wo1}/C_{ext}$
- 5. 手順 4 の R_{ext 1} と手順 3 の C_{ext} を使用して、「代表的特性」セクションの適切なプロットを使用して、最も近い K 係数を求めます。
- 6. これを解くと次のようになります。 $R_{ext} = t_{wo1}/(K \times C_{ext})$
- 7. 選択したタイミング抵抗 R_{EXT} を RC から V_{CC} に接続します。
- 8. 選択したタイミング コンデンサ C_{ext} を RC (正) から C (負) に接続します。 C ピンはグランドに追加接続できますが、 通常動作では必要ありません。
- 9. V_{CC} と GND との間に、 0.1μ F のバイパス コンデンサを追加します。このコンデンサは、物理的にデバイスの近く、かつ V_{CC} ピンと GND ピンの両方に電気的に近づけて配置する必要があります。レイアウト例を「レイアウト」セクションに示します。
- 10. 出力の容量性負荷は、必ず 50pF 以下になるようにします。これは厳密な制限ではありませんが、パフォーマンスを最適化し、信頼性の問題を防ぐことができます。これは、TPUL2T323 から受信デバイスへのパターンを短く、かつ適切なサイズにすることで実現できます。
- 11. 出力の抵抗性負荷を $(V_{CC}/I_{O(max)})\Omega$ より大きくします。これを行うと、「絶対最大定格」の最大出力電流に違反するのを防ぐことができます。ほとんどの CMOS 入力は、 $M\Omega$ 単位で測定される抵抗性負荷を備えています。これは、上記で計算される最小値よりはるかに大きい値です。
- **12**. 熱の問題が TPUL ファミリ デバイスで懸念されることはほとんどありませんが、消費電力と熱の上昇はアプリケーション レポート『CMOS の消費電力と Cpd の計算』の手順を使用して計算できます。

8.2.3 アプリケーション曲線

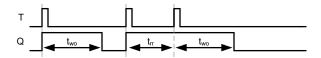


図 8-3. 出力パルスのタイミング図

29

8.3 代表的なアプリケーション - 遅延パルス ジェネレータ

このアプリケーションでは、TPUL2T323 を使用して、立ち上がりエッジ入力トリガから遅延出力パルスを生成します。この回路構成を、図 8-4 に示します。

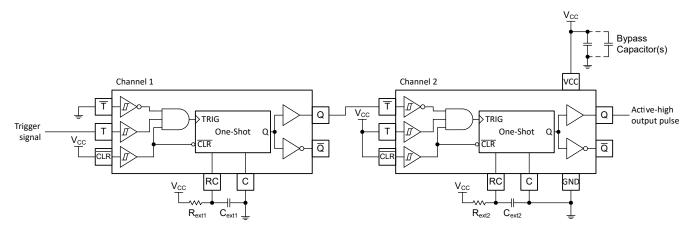


図 8-4. TPUL2T323 を使用した遅延パルス生成回路図

8.3.1 アプリケーション曲線

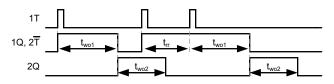


図 8-5. 出力パルスのタイミング図

8.4 電源に関する推奨事項

電源には、「推奨動作条件」に記載された電源電圧定格の最小値と最大値の間の任意の電圧を使用できます。

起動中、電源は、「推奨動作条件」表に規定された起動ランプレートの範囲内で立ち上がる必要があります。

電源の障害を防止するため、各 V_{CC} 端子に適切なバイパスコンデンサを配置する必要があります。TPUL2T323の通常動作には、 $0.1\mu F$ バイパスコンデンサを推奨します。異なる周波数のノイズを除去するため、複数のバイパスコンデンサを並列に配置します。通常、 $0.1\mu F$ と $1\mu F$ の値のコンデンサを並列にして使います。

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SCASE79

8.5 レイアウト

8.5.1 レイアウトのガイドライン

- タイミング部品の配置
 - デバイスの近くに配置
 - デバイスの端子接続へ電気的に短絡したパスを提供
- バイパスコンデンサの配置
 - デバイスの正電源端子の近くに配置
 - 電気的に短いグランド帰環パスを提供
 - インピーダンスを最小化するため、広いパターンを使用
 - 可能な場合はいつでも、ボードの同じ側にデバイス、コンデンサ、パターンを配置
- 信号トレースの形状
 - 8mil~12mil のトレース幅
 - 伝送ラインの影響を最小化する 12cm 未満の長さ
 - 信号トレースの 90° のコーナーは避ける
 - 信号トレースの下に、途切れのないグランドプレーンを使用
 - 信号トレース周辺の領域をグランドでフラッドフィル
 - 12cm を超えるパターン用
 - インピーダンス制御トレースを使用
 - 出力の近くに直列ダンピング抵抗を使用して、ソース終端
 - 分岐を回避。個別に分岐が必要なバッファ信号

8.5.2 レイアウト例

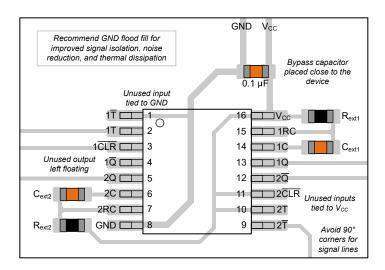


図 8-6. PW (TSSOP) パッケージの TPUL2T323 のプッシュプルレイアウト例

English Data Sheet: SCASE79

9 デバイスおよびドキュメントのサポート

テキサス・インスツルメンツは、幅広い開発ツールを提供しています。デバイスの性能の評価、コードの生成、ソリューションの開発を行うためのツールとソフトウェアを以下で紹介します。

9.1 ドキュメントのサポート

9.1.1 関連資料

関連資料については、以下を参照してください。

- テキサス・インスツルメンツ、『CMOS の消費電力と Cpd の計算』アプリケーション ノート
- テキサス・インスツルメンツ、『ロジック設計』アプリケーション ノート
- テキサス・インスツルメンツ、『標準リニアおよびロジック (SLL) パッケージおよびデバイスの熱特性』アプリケーション / ート

9.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

9.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

9.4 商標

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

9.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

9.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

10 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision * (April 2025) to Revision A (September 2025)

Page

• ドキュメントのステータスを「事前情報」から初回リリースに更新......1

Product Folder Links: TPUL2T323

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2025 Texas Instruments Incorporated

11 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

Product Folder Links: TPUL2T323

資料に関するフィードバック(ご意見やお問い合わせ)を送信

33

English Data Sheet: SCASE79

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated www.ti.com

16-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
PTPUL2T323PWR	Active	Preproduction	TSSOP (PW) 16	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
PTPUL2T323PWR.A	Active	Preproduction	TSSOP (PW) 16	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
TPUL2T323PWR	Active	Production	TSSOP (PW) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	T2T323

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPUL2T323:

Automotive: TPUL2T323-Q1

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

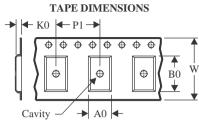
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

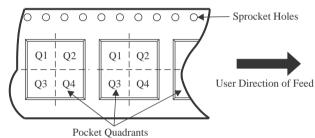
www.ti.com 16-Oct-2025

ไดเ	ΓF·	Qualified	1 Version	Definitions


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

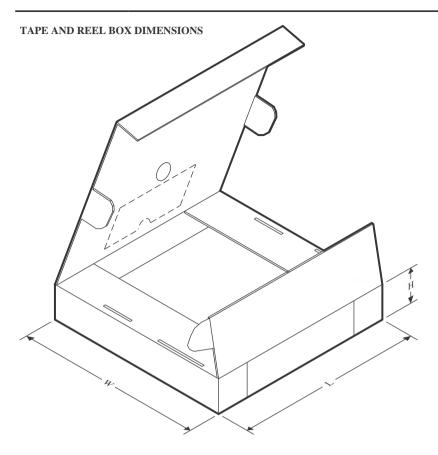
PACKAGE MATERIALS INFORMATION

www.ti.com 17-Oct-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

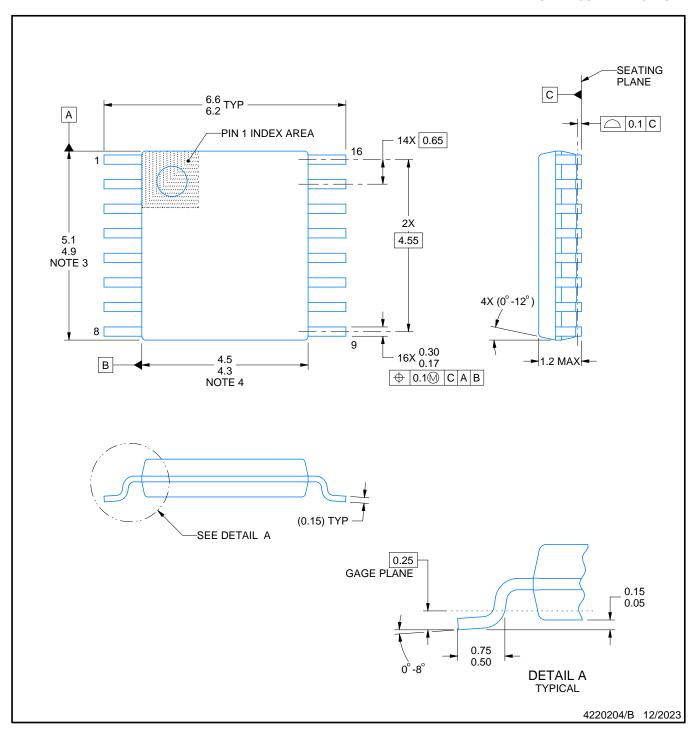


*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPUL2T323PWR	TSSOP	PW	16	3000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Oct-2025

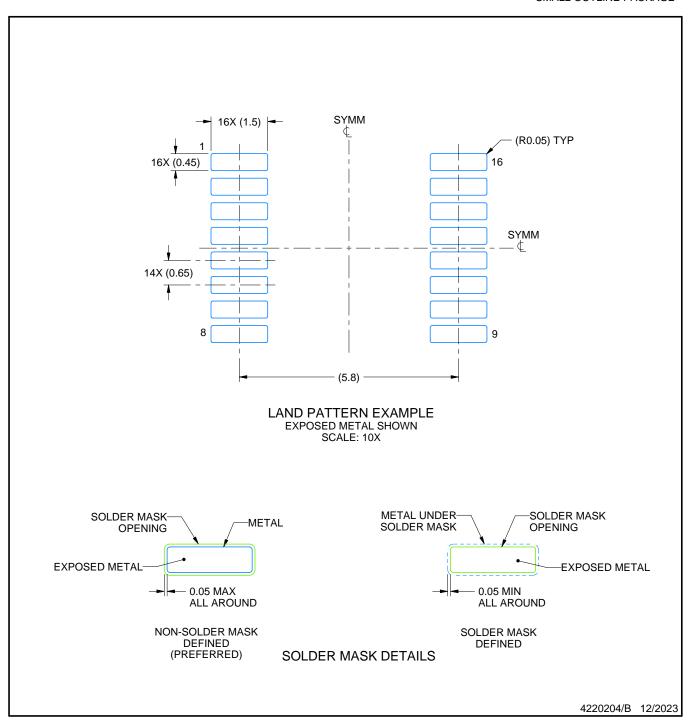


*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	TPUL2T323PWR	TSSOP	PW	16	3000	353.0	353.0	32.0

SMALL OUTLINE PACKAGE

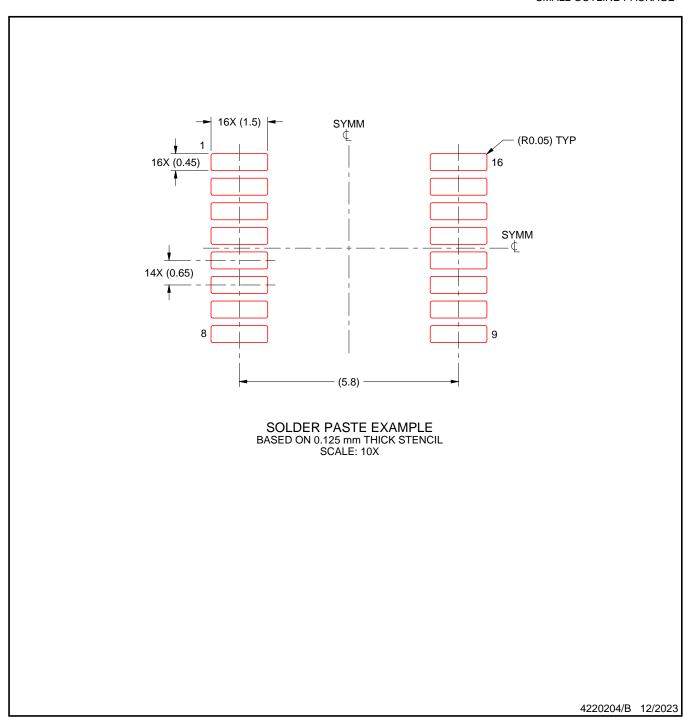
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月