

TPS65261, TPS65261-1

JAJSC02C - DECEMBER 2013 - REVISED MAY 2023

TPS6526x 入力電圧 4.5V~18V、出力電流 3A / 2A / 2A、 トリプル同期整流降圧型コンバータ

1 特長

Texas

動作入力電源電圧範囲 $(4.5V \sim 18V)$

Instruments

- 帰還基準電圧:0.6V±1%
- 最大連続出力電流:3A / 2A / 2A
- 可変クロック周波数:250kHz~2MHz
- 各バックに専用のイネーブル・ピンとソフト・スタート・ピ
- 自動パワーアップ / パワーダウン・シーケンス
- 軽負荷時のパルス・スキップ・モード (PSM) (TPS65261 のみ)
- 出力電圧パワー・グッド・インジケータ
- 入力電圧パワー障害インジケータ
- 過熱保護

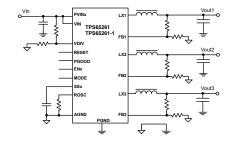
2 アプリケーション

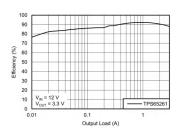
- DTV
- セット・トップ・ボックス
- ホーム・ゲートウェイおよびアクセス・ポイント・ネットワー
- ワイヤレス・ルータ
- 監視機器
- POS 機器

3 概要

TPS65261、TPS65261-1 は、出力電流 3A / 2A / 2A の モノリシック・トリプル同期降圧型 (バック) コンバータです。 4.5V~18V の幅広い入力電源電圧範囲をサポートしてお り、5V、9V、12V、または 15V のようなほとんどの中間バス 電圧入力に対応できます。コンバータは定周波数ピーク 電流モードを備え、アプリケーションを単純化しながら、目 的のアプリケーションに合わせてシステムを最適化できる よう設計されています。コンバータのスイッチング周波数 は、外付け抵抗を使用して 250kHz~2MHz の範囲内で 調整できます。Buck1 と Buck2、3 の間は位相差 180 度 で動作し (Buck2 と 3 は同相動作)、入力フィルタ回路へ の要求を最小限に抑えることができるようになります。

TPS65261、TPS65261-1 は、MODE ピンを V7V に接 続して EN1/2/3 ピンを設定することで、自動パワー・シ ーケンスを有効にできます。また、オープン・ドレインの RESET 信号を使用してパワーダウンを監視できます。


軽負荷時には、TPS65261 は自動的にパルス・スキップ・ モード (PSM) で動作し、TPS65261-1 は強制連続電流 モード (FCC) で動作します。 PSM モードでは、軽負荷時 にスイッチング損失を低減することで高い効率を実現しま す。FCC モードでは、ノイズ耐性が高まり、RF 干渉が低 減されます。


また、これらの製品は、過電圧保護、過電流保護、短絡保 護、および過熱保護機能を備えており、どちらかの出力電 圧がレギュレーション範囲を外れると、パワー・グッド・ピン がアサートされます。

デバイス情報(1)

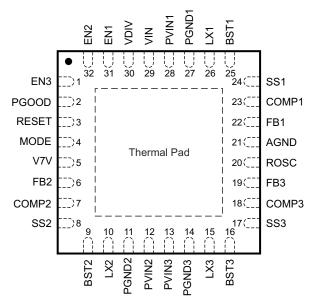
部品番号	モード	パッケージ
TPS65261	PSM	RHB (VQFN, 32)
TPS65261-1	FCCM	KIID (VQFIV, 32)

利用可能なすべてのパッケージについては、このデータシートの 末尾にある注文情報を参照してください。

代表的なアプリケーション

Table of Contents

1 特長	1	7.4 Device Functional Modes	23
2 アプリケーション		8 Application and Implementation	25
3 概要		8.1 Application Information	
4 Revision History		8.2 Typical Application	
5 Pin Configuration and Functions		8.3 Power Supply Recommendations	
6 Specifications		8.4 Layout	35
6.1 Absolute Maximum Ratings		9 Device and Documentation Support	38
6.2 ESD Ratings		9.1 Documentation Support	38
6.3 Recommended Operating Conditions		9.2ドキュメントの更新通知を受け取る方法	38
6.4 Thermal Information		9.3 サポート・リソース	38
6.5 Electrical Characteristics		9.4 Trademarks	
6.6 Typical Characteristics		9.5 静電気放電に関する注意事項	
7 Detailed Description		9.6 用語集	
7.1 Overview		10 Mechanical, Packaging, and Orderable	
7.2 Functional Block Diagram		Information	38
7.3 Feature Description			


4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

С	hanges from Revision B (May 2014) to Revision C (May 2023)	Page
•	ドキュメント全体にわたって表、図、相互参照の採番方法を更新	1
•	ドキュメント全体にわたって画像の色を除去	1
•	Changed the description of V7V pin in 表 5-1	3
•	Moved the storage temperature row in the ESD Ratings table to the Absolute Maximum Ratings table.	
•	Renamed Handling Ratings to ESD Ratings	5
•	Changed the recommended value of capacitor from V7V pin to power ground in V7V Low Dropout Reand Bootstrap	gulator
•	Changed the recommended value of C5 in 🗵 8-1	25
C	changes from Revision A (December 2013) to Revision B (May 2014)	Page
•	新しいデータシートのテンプレートに合わせてすべてのテキスト、表、およびグラフィックスを変更	1
•	Changed 🗵 8-37	37

5 Pin Configuration and Functions

(There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for optimal thermal performance.)

図 5-1. RHB Package 8-Pin VQFN (Top View)

表 5-1. Pin Functions

	PIN	DESCRIPTION				
NO.	NAME	- DESCRIPTION				
1	EN3	Enable for buck3. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck3 with a resistor divider.				
2	PGOOD	An open drain output, asserts low if output voltage of any buck beyond regulation range due to thermal shutdown, overcurrent, undervoltage or ENx shut down.				
3	RESET	Open drain power failure output signal.				
4	MODE	When high, an automatic power-up/power-down sequence is provided according to states of EN1, EN2 and EN3 pins.				
5	V7V	Internal LDO for gate driver and internal controller. Connect a 10-µF capacitor from the pin to power ground				
6	FB2	Feedback Kelvin sensing pin for buck2 output voltage. Connect this pin to buck2 resistor divider.				
7	COMP2	Error amplifier output and Loop compensation pin for buck2. Connect a series resistor and capacitor to compensate the control loop of buck2 with peak current PWM mode.				
8	SS2	Soft-start and tracking input for buck2. An internal 5-µA pullup current source is connected to this pin. The soft-start time can be programmed by connecting a capacitor between this pin and ground.				
9	BST2	Boot strapped supply to the high side floating gate driver in buck2. Connect a capacitor (recommend 47nF) from BST2 pin to LX2 pin.				
10	LX2	Switching node connection to the inductor and bootstrap capacitor for buck2. The voltage swing at this pin is from a diode voltage below the ground up to PVIN2 voltage.				
11	PGND2	Power ground connection of buck2. Connect PGND2 pin as close as practical to the (–) terminal of VIN2 input ceramic capacitor.				
12	PVIN2	Input power supply for buck2. Connect PVIN2 pin as close as practical to the (+) terminal of an input ceramic capacitor (suggest 10µF).				
13	PVIN3	Input power supply for buck3. Connect PVIN3 pin as close as practical to the (+) terminal of an input ceramic capacitor (suggest 10µF).				
14	PGND3	Power ground connection of buck3. Connect PGND3 pin as close as practical to the (–) terminal of VIN3 input ceramic capacitor.				

表 5-1. Pin Functions (continued)

PIN		DECORPORTION
NO.	NAME	DESCRIPTION
15	LX3	Switching node connection to the inductor and bootstrap capacitor for buck3. The voltage swing at this pin is from a diode voltage below the ground up to PVIN3 voltage.
16	BST3	Boot strapped supply to the high side floating gate driver in buck3. Connect a capacitor (recommend 47nF) from BST3 pin to LX3 pin.
17	SS3	Soft-start and tracking input for buck3. An internal 5-µA pullup current source is connected to this pin. The soft-start time can be programmed by connecting a capacitor between this pin and ground.
18	COMP3	Error amplifier output and Loop compensation pin for buck3. Connect a series resistor and capacitor to compensate the control loop of buck3 with peak current PWM mode.
19	FB3	Feedback Kelvin sensing pin for buck3 output voltage. Connect this pin to buck3 resistor divider.
20	ROSC	Oscillator frequency programmable pin. Connect an external resistor to set the switching frequency.
21	AGND	Analog ground common to buck controllers and other analog circuits. It must be routed separately from high current power grounds to the (–) terminal of bypass capacitor of input voltage VIN.
22	FB1	Feedback Kelvin sensing pin for buck1 output voltage. Connect this pin to buck1 resistor divider.
23	COMP1	Error amplifier output and Loop compensation pin for buck1. Connect a series resistor and capacitor to compensate the control loop of buck1 with peak current PWM mode.
24	SS1	Soft-start and tracking input for buck1. An internal 5-µA pullup current source is connected to this pin. The soft-start time can be programmed by connecting a capacitor between this pin and ground.
25	BST1	Boot strapped supply to the high side floating gate driver in buck1. Connect a capacitor (recommend 47nF) from BST1 pin to LX1 pin.
26	LX1	Switching node connection to the inductor and bootstrap capacitor for buck1. The voltage swing at this pin is from a diode voltage below the ground up to PVIN1 voltage.
27	PGND1	Power ground connection of Buck1. Connect PGND1 pin as close as practical to the (–) terminal of VIN1 input ceramic capacitor.
28	PVIN1	Input power supply for buck1. Connect PVIN1 pin as close as practical to the (+) terminal of an input ceramic capacitor (suggest 10µF).
29	VIN	Buck controller power supply.
30	VDIV	Input voltage threshold for power failure detection of input voltage.
31	EN1	Enable for buck1. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck1 with a resistor divider.
32	EN2	Enable for buck2. Float to enable. Can use this pin to adjust the input undervoltage lockout of buck2 with a resistor divider.
	PAD	There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for optimal thermal performance.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	MIN	MAX	UNIT
PVIN1, PVIN2, PVIN3,VIN	-0.3	20	V
LX1, LX2, LX3 (Maximum withstand voltage transient < 20 ns)	-1.0	20	V
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively	-0.3	7	V
EN1, EN2, EN3, PGOOD, V7V, MODE, RESET, VDIV	-0.3	7	V
FB1, FB2, FB3, COMP1, COMP2, COMP3, SS1, SS2, SS3, ROSC	-0.3	3.6	V
AGND, PGND1, PGND2, PGND3	-0.3	0.3	V
Operating junction temperature, T _J	-40	125	°C
Storage temperature range, T _{stg}	-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			MIN	MAX	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-2000	2000	V	
V _(ESD)	Liectiostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	-500	500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
	PVIN1, PVIN2, PVIN3,VIN	4.5	18	V
	LX1, LX2, LX3 (Maximum withstand voltage transient < 20 ns)	-0.8	18	V
	BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively	-0.1	6.8	V
	EN1, EN2, EN3, PGOOD, V7V, MODE, RESET, VDIV	-0.1	6.3	V
	FB1, FB2, FB3, COMP1, COMP2, COMP3, SS1, SS2, SS3, ROSC	-0.1	3	V
T _A	Operating junction temperature	-40	85	°C
TJ	Operating junction temperature	-40	125	°C

6.4 Thermal Information

	THERMAL METRIC(1)	TPS65261	LINUT
	THERMAL METRIC	RHB (32 PINS)	UNIT
R _{θJA}	Junction-to-ambient thermal resistance	31.6	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	23.4	
R _{0JB}	Junction-to-board thermal resistance	6.1	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	0.2	C/VV
ΨЈВ	Junction-to-board characterization parameter	6.1	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	0.9	

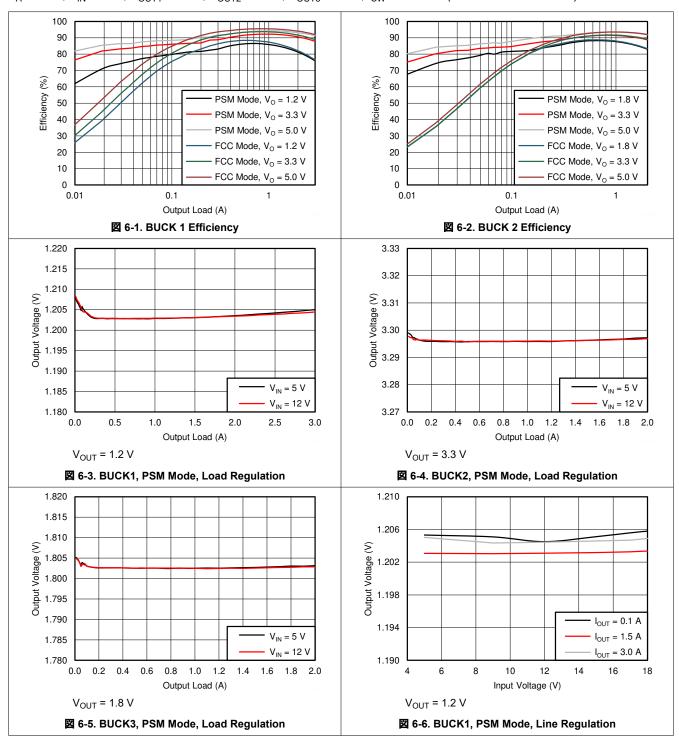
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

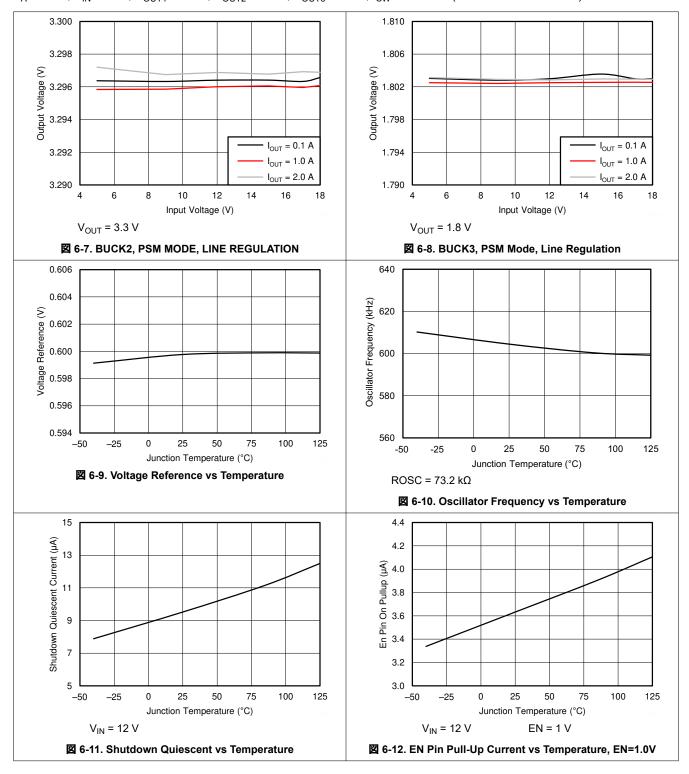
 $T_A = 25$ °C, $V_{IN} = 12$ V, $f_{SW} = 600$ kHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT SUPPLY	VOLTAGE					
VIN	Input voltage range		4.5		18	V
		VIN rising	4	4.25	4.5	
UVLO	VIN undervoltage lockout	VIN falling	3.5	3.75	4	V
		Hysteresis		500		mV
IDD _{SDN}	Shutdown supply current	EN1=EN2=EN3=MODE=0 V		9.2		μA
IDD _{Q_NSW}		EN1=EN2=EN3=5 V, FB1=FB2=FB3=0.8 V		605		μΑ
IDD _{Q_NSW1}	Input quiescent current without	EN1=5V, EN2=EN3=0 V, FB1=0.8V		330		μA
IDD _{Q_NSW2}	buck1/2/3 switching	EN2=5 V, EN1=EN3=0V, FB2=0.8 V		330		μA
IDD _{Q_NSW3}		EN3=5V, EN1=EN2=0V, FB3=0.8V		330		μA
V _{7V}	V7V LDO output voltage	V _{7V} load current = 0 A	6	6.3	6.6	V
I _{OCP_V7V}	V7V LDO current limit			175		mA
FEEDBACK VO	LTAGE REFERENCE					
\/	Foodbook voltage	V _{COMP} = 1.2 V, T _J = 25°C	0.596	0.6	0.605	V
V_{FB}	Feedback voltage	V _{COMP} = 1.2 V, T _J = -40°C to 125°C	0.594	0.6	0.606	V
V _{LINEREG_BUCK}	Line regulation-DC	I _{OUT1} = 1.5 A, I _{OUT2} = 1 A, I _{OUT3} = 1 A 5 V < PVINx < 18 V		0.002		%/V
V _{LOADREG_BUCK}	Load regulation-DC	I _{OUTx} = (10–100%) × I _{OUTx_max}		0.02		%/A
Buck1, Buck2, I	Buck3					
V _{ENXH}	EN1/2/3 high level input voltage			1.2	1.26	V
V _{ENXL}	EN1/2/3 low level input voltage		1.1	1.15		V
I _{ENX1}	EN1/2/3 pullup current	ENx = 1 V		3.6		μA
I _{ENX2}	EN1/2/3 pullup current	ENx = 1.5 V		6.6		μΑ
I _{ENhys}	Hysteresis current			3		μA
I _{SSX}	Soft start charging current		4.3	5	6	μA
T _{ON_MIN}	Minimum on time			80	100	ns
G _{m_EA}	Error amplifier trans-conductance	-2 μA < I _{COMPX} < 2 μA		300		μS
G _{m_PS1/2/3}	COMP1/2/3 voltage to inductor current Gm	I _{LX} = 0.5 A		7.4		A/V
I _{LIMIT1}	Buck1 peak inductor current limit		4.33	5.1	6.02	Α
I _{LIMITSOURCE1}	Buck1 low side source current limit			4.3		Α
I _{LIMITSINK1}	Buck1 low side sink current limit			1.3		Α
I _{LIMIT2/3}	Buck2/3 peak inductor current limit		2.6	3.1	3.73	Α
I _{LIMITSOURCE2/3}	Buck2/3 low side source current limit			2.7		Α
I _{LIMITSINK2/3}	Buck2/3 low side sink current limit			1		Α
T _{Hiccup_wait}	Overcurrent wait time			256		cycles
T _{Hiccup_re}	Hiccup time before re-start			8192		cycles
Rdson_HS1	Buck1 High-side switch resistance	VIN = 12 V		100		mΩ
Rdson_LS1	Buck1 low-side switch resistance	VIN = 12 V		65		mΩ
Rdson_HS2	Buck2 High-side switch resistance	VIN = 12 V		140		mΩ
Rdson_LS2	Buck2 low-side switch resistance	VIN = 12 V		95		mΩ
Rdson_HS3	Buck3 High-side switch resistance	VIN = 12 V		140		mΩ
Rdson_LS3	Buck3 low-side switch resistance	VIN = 12 V		95		mΩ

6.5 Electrical Characteristics (continued)


 $T_A = 25$ °C. $V_{IN} = 12$ V. $f_{SW} = 600$ kHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER GOOD, I	MODE, POWER SEQUENCE					
		FBx undervoltage Falling		92.5		%V _{REF}
V		FBx undervoltage Rising		95		%V _{REF}
V_{th_PG}	Feedback voltage threshold	FBx overvoltage Rising		107.5		%V _{REF}
		FBx overvoltage Falling		105		%V _{REF}
T _{DEGLITCH(PG)_F}	PGOOD falling edge deglitch time			128		cycles
T _{RDEGLITCH(PG)_R}	PGOOD rising edge deglitch time			512		cycles
I _{PG}	PGOOD pin leakage				0.05	μA
V_{LOW_PG}	PGOOD pin low voltage	I _{SINK} = 1 mA			0.4	V
V _{MODEH}	MODE high level input voltage			1.2	1.26	V
V _{MODEL}	MODE low level input voltage		1.1	1.15		V
I _{MODE1}	MODE pullup current	MODE = 1 V		3.6		μA
I _{MODE2}	MODE pullup current	MODE = 1.5 V		6.6		μA
T _{psdelay}	Delay time between bucks at automatic power sequencing mode	MODE = 1.5 V		1024		cycles
POWER FAILURI	E DETECTOR		'			
VDIV _{th}	VDIV threshold		1.18	1.23	1.26	V
	VDIV million compart	VDIV = 1 V		1		μA
I _{VDIV}	VDIV pullup current	VDIV = 1.5 V		2		μA
I _{VDIVhys}	VDIV hysteresis current			1		μA
T _{deglitch_R}	RESET deglitch on the rising edge			534		cycles
T _{deglitch_F}	RESET deglitch on the falling edge		12	14	16	cycles
OSCILLATOR						
F _{SW}	Switching fraguency	ROSC = 73.2 kΩ	560	600	640	kHz
F _{SW_range}	Switching frequency		250	į.	2000	kHz
THERMAL PROT	ECTION		<u>'</u>			
T _{TRIP_OTP}	Thermal protection trip point	Temperature rising		160		°C
T _{HYST OTP}	Thermal protection trip point	Hysteresis		20		°C


6.6 Typical Characteristics

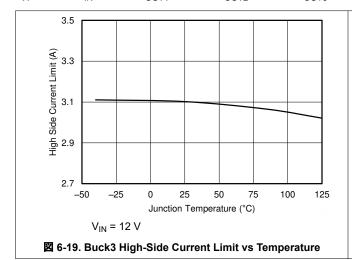
 $T_A = 25$ °C, $V_{IN} = 12$ V, $V_{OUT1} = 1.2$ V, $V_{OUT2} = 3.3$ V, $V_{OUT3} = 1.8$ V, $f_{SW} = 600$ kHz (unless otherwise noted)

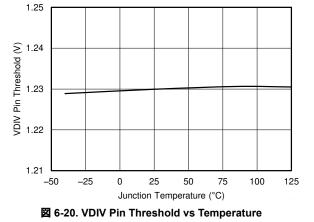
6.6 Typical Characteristics (continued)

 $T_A = 25$ °C, $V_{IN} = 12$ V, $V_{OUT1} = 1.2$ V, $V_{OUT2} = 3.3$ V, $V_{OUT3} = 1.8$ V, $f_{SW} = 600$ kHz (unless otherwise noted)

6.6 Typical Characteristics (continued)

 $T_A = 25^{\circ}C$, $V_{IN} = 12$ V, $V_{OUT1} = 1.2$ V, $V_{OUT2} = 3.3$ V, $V_{OUT3} = 1.8$ V, $f_{SW} = 600$ kHz (unless otherwise noted)


図 6-17. Buck1 High-Side Current Limit vs Temperature


図 6-18. Buck2 High-Side Current Limit vs Temperature

6.6 Typical Characteristics (continued)

 $T_A = 25^{\circ}C$, $V_{IN} = 12$ V, $V_{OUT1} = 1.2$ V, $V_{OUT2} = 3.3$ V, $V_{OUT3} = 1.8$ V, $f_{SW} = 600$ kHz (unless otherwise noted)

7 Detailed Description

7.1 Overview

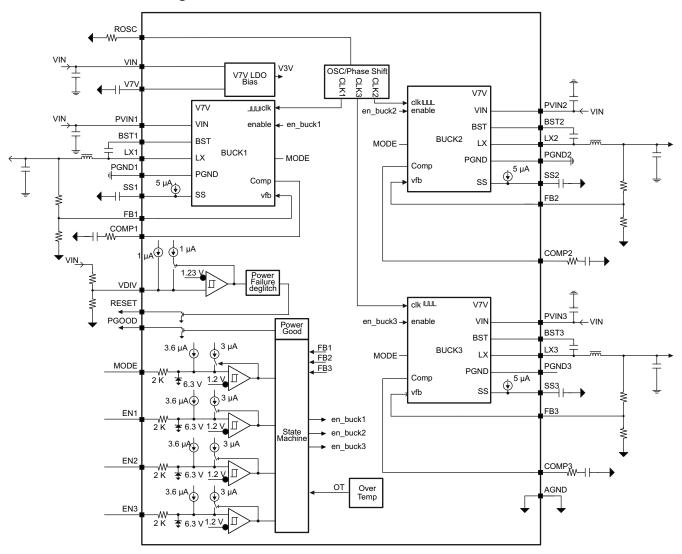
The TPS65261, TPS65261-1 is a monolithic triple synchronous step-down (buck) converter with 3A/2A/2A output currents. A wide 4.5V to 18V input supply voltage range encompasses the most intermediate bus voltages operating off 5V, 9V, 12V or 15V power bus. The feedback voltage reference for each buck is 0.6V. Each buck is independent with dedicated enable, soft-start and loop compensation pins.

The TPS65261, TPS65261-1 implements a constant frequency, peak current mode control that simplifies external loop compensation. The wide switching frequency of 250kHz to 2MHz allows optimizing system efficiency, filtering size and bandwidth. The switching frequency can be adjusted with an external resistor connected between ROSC pin and ground. The switching clock of buck1 is 180° out-of-phase operation from the clocks of buck2 and buck3 channels to reduce input current ripple, input capacitor size and power supply induced noise.

The TPS65261, TPS65261-1 has been designed for safe monotonic startup into pre-biased loads. The default start up is when VIN is typically 4.5V. The ENx pin also can be used to adjust the input voltage under voltage lockout (UVLO) with an external resistor divider. In addition, the ENx pin has an internal 3.6uA current source, so the EN pin can be floating to automatically power up the converters.

The TPS65261, TPS65261-1 reduces the external component count by integrating a bootstrap circuit. The bias voltage for the integrated high-side MOSFET is supplied by a capacitor between the BST and LX pin. A UVLO circuit monitors the bootstrap capacitor voltage VBST-VLX in each buck. When V_{BST-VLX} voltage drops to the threshold, LX pin is pulled low to recharge the bootstrap capacitor. The TPS65261, TPS65261-1 can operate at 100% duty cycle as long as the bootstrap capacitor voltage is higher than the BOOT-LX UVLO threshold which is typically 2.1V.

The TPS65261, TPS65261-1 features a PGOOD pin to supervise each output voltage of the buck converters. The TPS65261, TPS65261-1 has power good comparators with hysteresis, which monitor the output voltages through feedback voltages. When all bucks are in regulation range and power sequence is done, PGOOD is asserted to high.


The SS (soft start/tracking) pin is used to minimize inrush currents or provide power supply sequencing during power up. A small value capacitor or resistor divider is connected to the pin for soft start or voltage tracking.

At light loading, TPS65261 will automatically operate in pulse skipping mode (PSM) to save power.

The TPS65261, TPS65261-1 is protected from overload and over temperature fault conditions. The converter minimizes excessive output overvoltage transients by taking advantage of the power good comparator. When the output is overvoltage, the high-side MOSFET is turned off until the internal feedback voltage is lower than 105% of the 0.6V reference voltage. The TPS65261, TPS65261-1 implements both high-side MOSFET overload protection and bidirectional low-side MOSFET overload protection to avoid inductor current runaway. If the overcurrent condition has lasted for more than the OC wait time (256 clock cycles), the converter will shut down and re-start after the hiccup time (8192 clock cycles). The TPS65261, TPS65261-1 shuts down if the junction temperature is higher than the thermal shutdown trip point. When the junction temperature drops 20°C typically below the thermal shutdown trip point, the TPS65261, TPS65261-1 will be restarted under control of the soft start circuit automatically.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Adjusting the Output Voltage

The output voltage of each buck is set with a resistor divider from the output of buck to the FB pin. It is recommended to use 1% tolerance or better resistors.

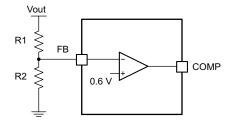


図 7-1. Voltage Divider Circuit

$$R_2 = R_1 \times \frac{0.6}{V_{out} - 0.6} \tag{1}$$

To improve efficiency at light loads, consider using larger value resistors. If the values are too high, the regulator is more sensitive to noise. The recommended resistor values are shown in 表 7-1.

OUTPUT VOLTAGE (V)	R1 (kΩ)	R2 (kΩ)
1	10	15
1.2	10	10
1.5	15	10
1.8	20	10
2.5	31.6	10
3.3	45.3	10
3.3	22.6	4.99
5	73.2	10
5	36.5	4.99

7.3.2 Power Failure Detector

The power failure detector monitors the voltage on VDIV, and sets open-drain output RESET low when VDIV is below 1.23V. There is deglitch on the rising edge, 534 frequency cycles. ☒ 7-2 shows the power failure detector timing diagram.

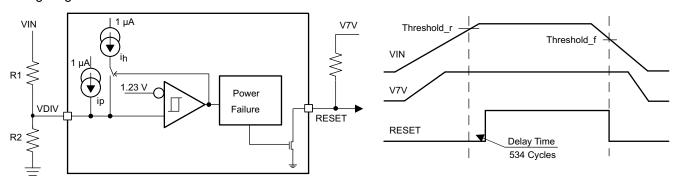


図 7-2. Power Failure Detector Timing Diagram

The thresholds can be calculated using ± 2 and ± 3 .

Threshold_r =
$$Vref\left(1 + \frac{R1}{R2}\right) - I_p \times R1$$
 (2)

Threshold_{-f} = Vref
$$\left(1 + \frac{R1}{R2}\right) - \left(I_P + I_h\right) \times R1$$
 (3)

The divider resisters can be calculated using ± 4 and ± 5 .

$$R1 = \frac{\text{Threshold}_{-r} - \text{Threshold}_{-f}}{I_h}$$
(4)

$$R2 = \frac{Vref}{\frac{Threshold_{-r} - Vref}{Threshold_{-r} - Threshold_{-f}} \times I_h + I_p}$$
(5)

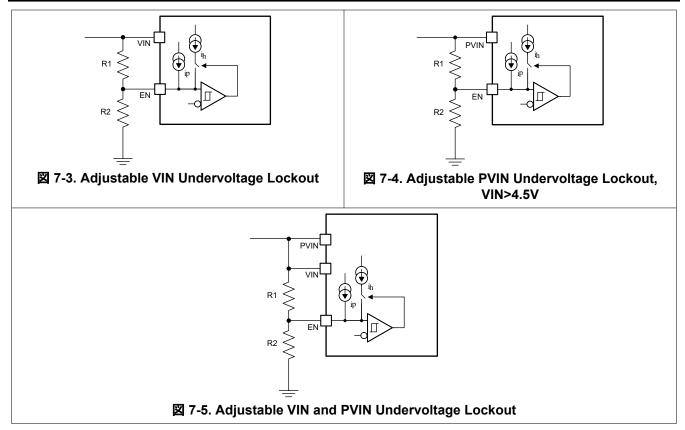
Where $I_h = 1\mu A$, $I_p = 1\mu A$.

7.3.3 Enable and Adjusting Undervoltage Lockout

The EN1/2/3 pin provides electrical on/off control of the device. After the EN1/2/3 pin voltage exceeds the threshold voltage, the device starts operation. If each ENx pin voltage is pulled below the threshold voltage, the regulator stops switching and enters low lq state.

The EN pin has an internal pull-up current source, allowing the user to float the EN pin to enable the device. If an application requires controlling the EN pin, use open drain or open collector output logic to interface with the pin.

The device implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 500mV. If an application requires either a higher UVLO threshold on the VIN pin or a secondary UVLO on the PVINx in split rail applications, then the ENx pin can be configured as shown in \boxtimes 7-3, \boxtimes 7-4 and \boxtimes 7-5. When using the external UVLO function, it is recommended to set the hysteresis to be greater than 500mV.


The EN pin has a small pull-up current Ip which sets the default state of the pin to enable when no external components are connected. The pull-up current is also used to control the voltage hysteresis for the UVLO function because it increases by Ih after the EN pin crosses the enable threshold. The UVLO thresholds can be calculated using \pm 6 and \pm 7.

$$R_{1} = \frac{V_{START} \left(\frac{V_{ENFALLING}}{V_{ENRISING}} \right) - V_{STOP}}{I_{P} \left(1 - \frac{V_{ENFALLING}}{V_{ENRISING}} \right) + I_{h}}$$
(6)

$$R_{2} = \frac{R_{1} \times V_{ENFALLING}}{V_{STOP} - V_{ENFALLILNG} + R_{1} \left(I_{h} + I_{p} \right)}$$
(7)

Where $I_h = 3\mu A$, $I_P = 3.6uA$, $V_{ENSRISING} = 1.2V$, $V_{ENFALLING} = 1.15V$.

7.3.4 Soft-Start Time

The voltage on the respective SS pin controls the start-up of the buck output. When the voltage on the SS pin is less than the internal 0.6V reference, the TPS65261, TPS65261-1 regulates the internal feedback voltage to the voltage on the SS pin instead of 0.6V. The SS pin can be used to program an external soft-start function or to allow output of the buck to track another supply during start-up. The device has an internal pull-up current source of 5μ A (typical) that charges an external soft-start capacitor to provide a linear ramping voltage at the SS pin. The TPS65261-1 regulates the internal feedback voltage to the voltage on the SS pin, allowing VOUT to rise smoothly from 0V to its regulated voltage without inrush current. The soft-start time can be calculated approximately by $\frac{1}{5}$ 8.

$$Tss(ms) = \frac{Css(nF) \times Vref(V)}{Iss(\mu A)}$$
(8)

Many of the common power supply sequencing methods can be implemented using the SSx and ENx pins. 区 7-6 shows the method implementing ratio-metric sequencing by connecting the SSx pins of three buck channels together. The regulator outputs ramp up and reach regulation at the same time. When calculating the soft-start time, the pull-up current source must be tripled in 式 8.

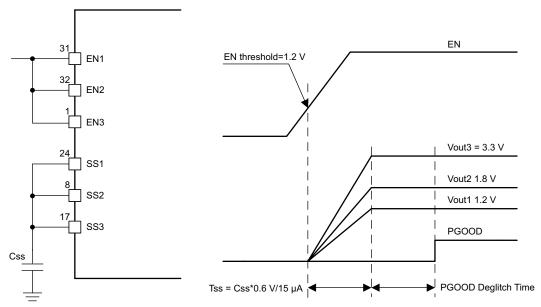


図 7-6. Ratio Metric Power Up Using SSx Pins

Simultaneous power supply sequencing can be implemented by connecting capacitor to SSx pin, shown in \boxtimes 7-7. The capacitors can be calculated using $\not\equiv$ 8 and $\not\equiv$ 9.

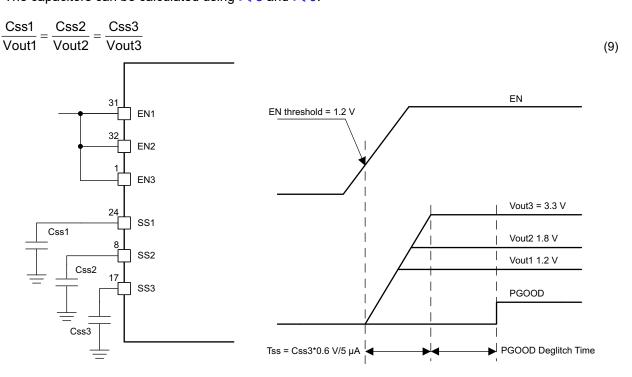


図 7-7. Simultaneous Startup Sequence Using SSx Pins

7.3.5 Power Up Sequencing

TPS65261, TPS65261-1 features a comprehensive sequencing circuit for the 3 bucks. If the MODE pin ties high to V7V, three buck start up and shutdown is in sequence according to different buck enable pin setup. If the MODE pin ties low to ground, three buck on/off is separately controlled by three enable pins.

7.3.5.1 External Power Sequencing

The TPS65261, TPS65261-1 has a dedicated enable pin and soft-start pin for each converter. The converter enable pins are biased by a current source that allows for easy sequencing with the addition of an external capacitor. Disabling the converter with an active pull-down transistor on the ENs pin allows for a predictable power-down timing operation. \boxtimes 7-8 shows the timing diagram of a typical buck power-up sequence by connecting a capacitor at ENx pin.

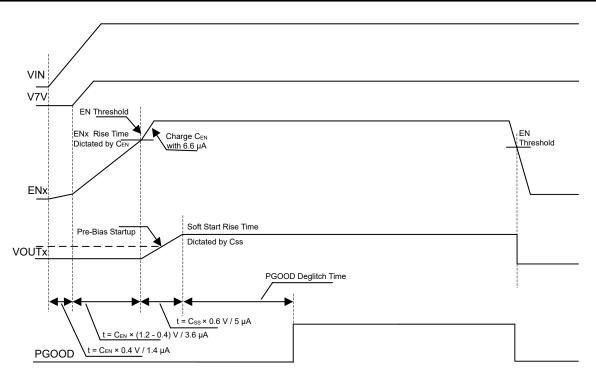


図 7-8. Startup Power Sequence

7.3.5.2 Automatic Power Sequencing

The TPS65261, TPS65261-1 starts with a pre-defined power-up and power-down sequence when the MODE pin ties high to V7V. As shown in ₹ 7-2, the sequence is dictated by the different combinations of EN1 and EN2 status. EN3 is used to start/stop the converters. Buck2 and buck3 are identical converters and can be swapped in the system operation to allow for additional sequencing stages. ☒ 7-9 shows the power sequencing when EN1 and EN2 are pulled up high.

表 7-2. Power Sequencing

	MODE	EN1	EN2	EN3	Start Sequencing	Shutdown Sequencing
	High	High	High		Buck1→Buck2→Buck3	Buck3→Buck2→Buck1
Automatic Power	High	Low	High	Used to start/stop bucks in sequence	Buck2→Buck1→Buck3	Buck3→Buck1→Buck2
Sequencing	High	High	Low	'	Buck2→Buck3→Buck1	Buck1→Buck3→Buck2
	High	Low	Low	Reserved	Reserved	Reserved
Externally controlled sequencing	Low	Used to start/stop buck1	Used to start/stop buck2	Used to start/stop buck3	x	x

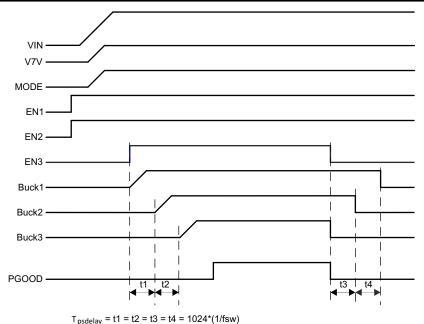


図 7-9. Automatic Power Sequencing

7.3.6 V7V Low Dropout Regulator and Bootstrap

Power for the high-side and low-side MOSFET drivers and most other internal circuitry is derived from the V7V pin. The internal built-in low dropout linear regulator (LDO) supplies 6.3V (typical) from VIN to V7V. A 10μ F ceramic capacitor must be connected from V7V pin to power ground.

If the input voltage, VIN, decreases to UVLO threshold voltage, the UVLO comparator detects the V7V pin voltage and forces the converter off.

Each high-side MOSFET driver is biased from the floating bootstrap capacitor, CB, shown in Z 7-10, which is normally recharged during each cycle through an internal low-side MOSFET or the body diode of a low-side MOSFET when the high-side MOSFET turns off. The boot capacitor is charged when the BST pin voltage is less than VIN and BST-LX voltage is below regulation. The recommended value of this ceramic capacitor is 47nF. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10V or higher is recommended because of the stable characteristics over temperature and voltage. Each low-side MOSFET driver is powered from the V7V pin directly.

To improve drop out, the device is designed to operate at 100% duty cycle as long as the BST to LX pin voltage is greater than the BST-LX UVLO threshold, which is typically 2.1V. When the voltage between BST and LX drops below the BST-LX UVLO threshold, the high-side MOSFET is turned off and the low-side MOSFET is turned on allowing the boot capacitor to be recharged.

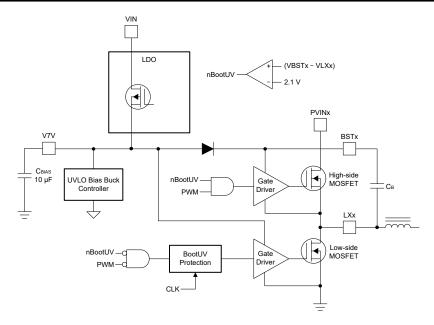


図 7-10. V7V Linear Dropout Regulator and Bootstrap Voltage Diagram

7.3.7 Out-of-Phase Operation

To reduce input ripple current, the switch clock of buck1 is 180° out-of-phase from the clock of buck2 and buck3. This enables the system, having less input current ripple, to reduce the input capacitors' size, cost and EMI.

7.3.8 Output Overvoltage Protection (OVP)

The device incorporates an output overvoltage protection (OVP) circuit to minimize output voltage overshoot. When the output is overloaded, the error amplifier compares the actual output voltage to the internal reference voltage. If the FB pin voltage is lower than the internal reference voltage for a considerable time, the output of the error amplifier demands maximum output current. After the condition is removed, the regulator output rises and the error amplifier output transitions to the steady state voltage. In some applications with small output capacitance, the load can respond faster than the error amplifier. This leads to the possibility of an output overshoot. Each buck compares the FB pin voltage to the OVP threshold. If the FB pin voltage is greater than the OVP threshold, the high-side MOSFET is turned off preventing current from flowing to the output and minimizing output overshoot. When the FB voltage drops lower than the OVP threshold, the high-side MOSFET turns on at the next clock cycle.

7.3.9 Slope Compensation

To prevent the sub-harmonic oscillations when the device operates at duty cycles greater than 50%, the device adds built-in slope compensation, which is a compensating ramp to the switch current signal.

7.3.10 Overcurrent Protection

The device is protected from overcurrent conditions with cycle-by-cycle current limiting on both the high-side MOSFET and the low-side MOSFET.

7.3.10.1 High-side MOSFET Overcurrent Protection

The device implements current mode control which uses the COMP pin voltage to control the turn off of the high-side MOSFET and the turn on of the low-side MOSFET on a cycle-by-cycle basis. During each cycle, the switch current and the current reference generated by the COMP pin voltage are compared, when the peak switch current intersects the current reference, the high-side switch is turned off.

7.3.10.2 Low-side MOSFET Overcurrent Protection

While the low-side MOSFET is turned on, its conduction current is monitored by the internal circuitry. During normal operation, the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side MOSFET sourcing current is compared to the internally set low-side sourcing current limit. If the low-side sourcing current is exceeded, the high-side MOSFET is not turned on and the low-side MOSFET stays on for the next cycle. The high-side MOSFET is turned on again when the low-side current is below the low-side sourcing current limit at the start of a cycle.

The low-side MOSFET can also sink current from the load. If the low-side sinking current limit is exceeded, the low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario both MOSFETs are off until the start of the next cycle.

Furthermore, if an output overload condition (as measured by the COMP pin voltage) has lasted for more than the hiccup wait time which is programmed for 256 switching cycles shown in \boxtimes 7-11, the device will shut down itself and restart after the hiccup time of 8192 cycles. The hiccup mode helps reduce the device power dissipation under severe overcurrent condition.

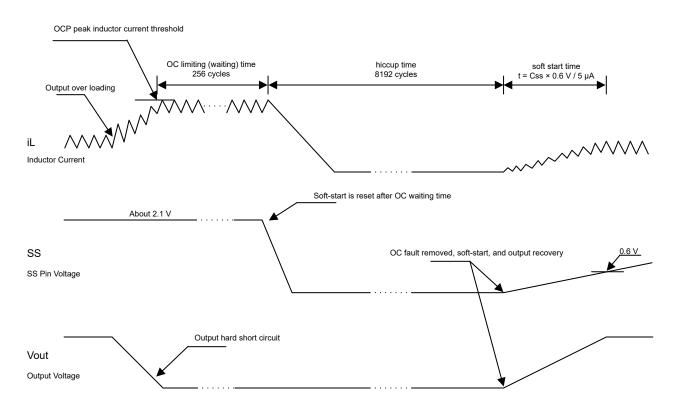


図 7-11. Overcurrent Protection

7.3.11 Power Good

The PGOOD pin is an open drain output. After feedback voltage of each buck is between 95% (rising) and 105% (falling) of the internal voltage reference, the PGOOD pin pull-down is de-asserted and the pin floats. It is recommended to use a pull-up resistor between the values of $10k\Omega$ and $100k\Omega$ to a voltage source that is 5.5V or less. The PGOOD is in a defined state after the VIN input voltage is greater than 1V, but with reduced current sinking capability. The PGOOD achieves full current sinking capability after the VIN input voltage is above UVLO threshold, which is 4.25V.

The PGOOD pin is pulled low when any feedback voltage of a buck is lower than 92.5% (falling) or greater than 107.5% (rising) of the nominal internal reference voltage. Also, the PGOOD is pulled low if the input voltage is

undervoltage locked up, thermal shutdown is asserted, the EN pin is pulled low or the converter is in a soft-start period.

7.3.12 Adjustable Switching Frequency

The ROSC pin can be used to set the switching frequency by connecting a resistor to GND. The switching frequency of the device is adjustable from 250KHz to 2MHz.

To determine the ROSC resistance for a given switching frequency, use ₹ 10 or the curve in ₹ 7-12. To reduce the solution size, set the switching frequency as high as possible, but tradeoffs of the supply efficiency and minimum controllable on time must be considered.

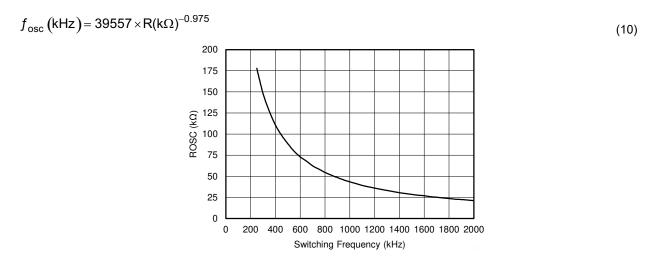


図 7-12. ROSC versus Switching Frequency

7.3.13 Thermal Shutdown

The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds 160°C typically. The device reinitiates the power up sequence when the junction temperature drops below 140°C typically.

7.4 Device Functional Modes

7.4.1 Pulse Skipping MODE (PSM)

The TPS65261 can enter high efficiency pulse skipping mode (PSM) operation at light load current.

When a controller is enabled for PSM operation, the peak inductor current is sensed and compared with 230mA current typically. Because the integrated current comparator catches the peak inductor current only, the average load current entering PSM varies with applications and external output filters. In PSM, the sensed peak inductor current is clamped at 230mA.

When a controller operates in PSM, the inductor current is not allowed to reverse. The reverse current comparator turns off the low-side MOSFET when the inductor current reaches zero, preventing it from reversing and going negative.

Due to the delay in the circuit and current comparator tdly (typical 50ns at V_{IN} = 12V), the real peak inductor current threshold to turn off high-side power MOSFET, can shift higher depending on inductor inductance and input/output voltages. The threshold of peak inductor current to turn off high-side power MOSFET can be calculated by \pm 11.

$$IL_{PEAK} = 230 \text{ mA} + \frac{Vin - Vout}{L} \times tdly$$
(11)

After the charge accumulated on the Vout capacitor is more than loading need, COMP pin voltage drops to low voltage driven by the error amplifier. There is an internal comparator at the COMP pin. If COMP voltage is lower than 0.35V, the power stage stops switching to save power.

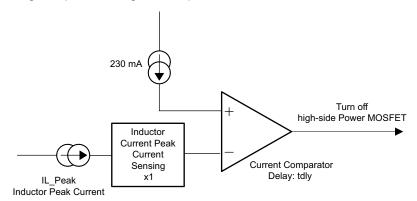


図 7-13. PSM Current Comparator

8 Application and Implementation

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

The devices are triple synchronous step down dc/dc converters. They are typically used to convert a higher dc voltage to lower dc voltages with continuous available output current of 3A/2A/2A. The following design procedure can be used to select component values for the TPS65261 and TPS65261-1. This section presents a simplified discussion of the design process.

8.2 Typical Application

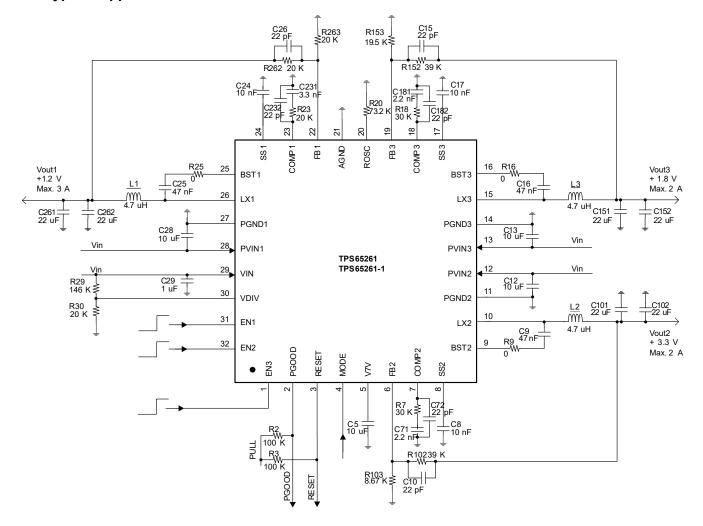


図 8-1. Typical Application Schematic

8.2.1 Design Requirements

This example details the design of triple synchronous step-down converter. A few parameters must be known in order to start the design process. These parameters are typically determined at the system level. For this example, we start with the following known parameters:

表 8-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE			
Vout1	1.2 V			
lout1	3 A			
Vout2	3.3 V			
lout2	2 A			
Vout3	1.8 V			
lout3	2 A			
Transient Response 1A Load Step	±5%			
Input Voltage	12 V normal, 4.5 V to 18 V			
Output Voltage Ripple	±1%			
Switching Frequency	600 kHz			

8.2.2 Detailed Design Procedure

8.2.2.1 Output Inductor Selection

To calculate the value of the output inductor, use \pm 12. LIR is a coefficient that represents the amount of inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor because the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In general, the inductor ripple value is at the discretion of the designer; however, LIR is normally from 0.1 to 0.3 for the majority of applications.

$$L = \frac{V_{\text{inmax}} - V_{\text{out}}}{I_{\text{o}} \times \text{LIR}} \times \frac{V_{\text{out}}}{V_{\text{in max}} \times f_{\text{sw}}}$$
(12)

For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded. The RMS and peak inductor current can be found from \pm 14 and \pm 15.

$$I_{ripple} = \frac{V_{inmax} - V_{out}}{L} \times \frac{V_{out}}{V_{inmax} \times f_{sw}}$$
(13)

$$I_{Lrms} = \sqrt{I_{O}^{2} + \frac{\left(\frac{V_{out} \times (V_{inmax} - V_{out})}{V_{inmax} \times L \times f_{sw}}\right)^{2}}{12}}$$
(14)

$$I_{Lpeak} = I_{out} + \frac{I_{ripple}}{2}$$
 (15)

The current flowing through the inductor is the inductor ripple current plus the output current. During power up, faults or transient load conditions, the inductor current can increase above the calculated peak inductor current level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current rating equal to or greater than the switch current limit rather than the peak inductor current.

8.2.2.2 Output Capacitor Selection

There are three primary considerations for selecting the value of the output capacitor. The output capacitor determines the modulator pole, the output voltage ripple, and how the regulator responds to a large change in load current. The output capacitance needs to be selected based on the most stringent of these three criteria.

The desired response to a large change in the load current is the first criteria. The output capacitor needs to supply the load with current when the regulator cannot. This situation can occur if there are desired hold-up times for the regulator where the output capacitor must hold the output voltage above a certain level for a specified amount of time after the input power is removed. The regulator is also temporarily not able to supply sufficient output current if there is a large, fast increase in the current needs of the load such as a transition from no load to full load. The regulator usually needs two or more clock cycles for the control loop to see the change in load current and output voltage and adjust the duty cycle to react to the change. The output capacitor must be sized to supply the extra current to the load until the control loop responds to the load change. The output capacitance must be large enough to supply the difference in current for 2 clock cycles while only allowing a tolerable amount of drop in the output voltage. 3 16 shows the minimum output capacitance necessary to accomplish this.

$$C_{o} = \frac{2 \times \Delta I_{out}}{f_{sw} \times \Delta V_{out}}$$
(16)

Where ΔI_{out} is the change in output current, f_{sw} is the regulators switching frequency and ΔV_{out} is the allowable change in the output voltage.

 \pm 17 calculates the minimum output capacitance needed to meet the output voltage ripple specification. Where f_{sw} is the switching frequency, $V_{oripple}$ is the maximum allowable output voltage ripple, and $I_{oripple}$ is the inductor ripple current.

$$C_{o} > \frac{1}{8 \times f_{sw}} \times \frac{1}{\frac{V_{oripple}}{I_{oripple}}}$$
(17)

式 18 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple specification.

$$R_{esr} < \frac{V_{oripple}}{I_{oripple}}$$
(18)

Additional capacitance de-ratings for aging, temperature and DC bias must be factored in, which increases this minimum value. Capacitors generally have limits to the amount of ripple current they can handle without failing or producing excess heat. An output capacitor that can support the inductor ripple current must be specified. Some capacitor data sheets specify the root mean square (RMS) value of the maximum ripple current. 式 19 can be used to calculate the RMS ripple current the output capacitor needs to support.

$$I_{corms} = \frac{V_{out} \times (V_{inmax} - V_{out})}{\sqrt{12} \times V_{inmax} \times L \times f_{sw}}$$
(19)

8.2.2.3 Input Capacitor Selection

The TPS65261, TPS65261-1 requires a high quality ceramic, type X5R or X7R, input decoupling capacitor of at least 10 μ F of effective capacitance on the PVIN input voltage pins. In some applications, additional bulk capacitance can also be required for the PVIN input. The effective capacitance includes any DC bias effects. The voltage rating of the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating greater than the maximum input current ripple of The TPS65261, TPS65261-1. The input ripple current can be calculated using \vec{x} 20.

$$I_{inrms} = I_{out} \times \sqrt{\frac{V_{out}}{V_{inmin}} \times \frac{\left(V_{inmin} - V_{out}\right)}{V_{inmin}}}$$
(20)

The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors because they have a high capacitance to volume ratio and are fairly stable over temperature. The output capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor decreases as the DC bias across a capacitor increases. The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be calculated using 3.21.

$$\Delta V_{\text{in}} = \frac{I_{\text{outmax}} \times 0.25}{C_{\text{in}} \times f_{\text{sw}}}$$
(21)

8.2.2.4 Loop Compensation

The TPS65261, TPS65261-1 incorporates a peak current mode control scheme. The error amplifier is a transconductance amplifier with a gain of 300 μ S. A typical type II compensation circuit adequately delivers a phase margin between 60° and 90°. C_b adds a high frequency pole to attenuate high frequency noise when needed. To calculate the external compensation components, follow these steps.

- Select switching frequency f_{sw} that is appropriate for application depending on L and C sizes, output ripple, and EMI. Switching frequency between 500kHz to 1MHz gives best trade-off between performance and cost. To optimize efficiency, lower switching frequency is desired.
- 2. Set up cross over frequency, fc, which is typically between 1/5 and 1/20 of f_{sw} .
- 3. R_C can be determined by

$$R_{C} = \frac{2\pi \times fc \times Vo \times Co}{G_{m-EA} \times Vref \times G_{m-PS}}$$
(22)

Where G_{m_EA} is the error amplifier gain (300 μ S), G_{m_PS} is the power stage voltage to current conversion gain (7.4A/V).

4. Calculate C_C by placing a compensation zero at or before the dominant pole $\left(fp = \frac{1}{C_o \times R_L \times 2\pi}\right)$.

$$C_{C} = \frac{R_{L} \times Co}{R_{C}}$$
 (23)

5. Optional C_b can be used to cancel the zero from the ESR associated with C_O.

$$C_{b} = \frac{R_{ESR} \times Co}{R_{C}}$$
(24)

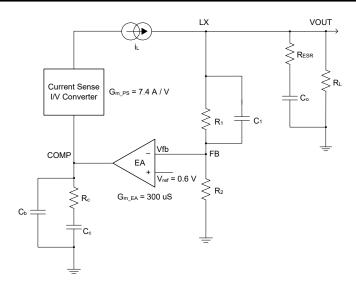
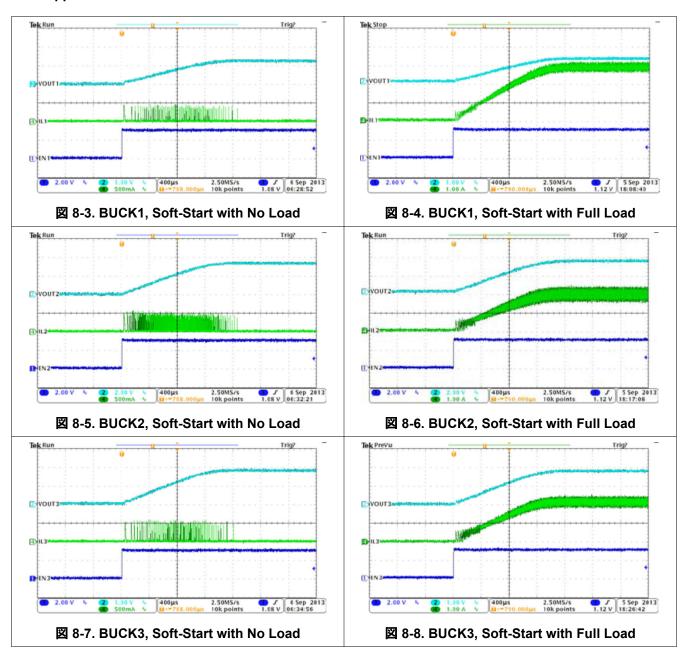
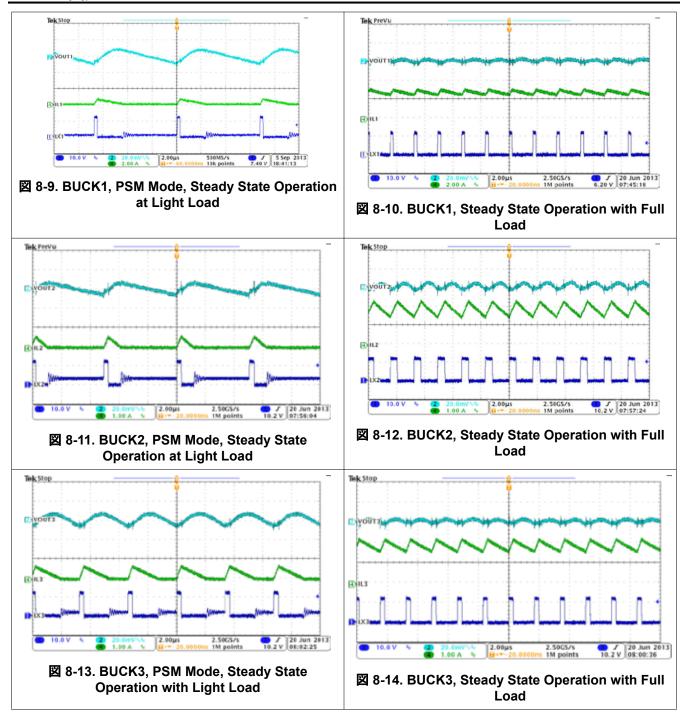
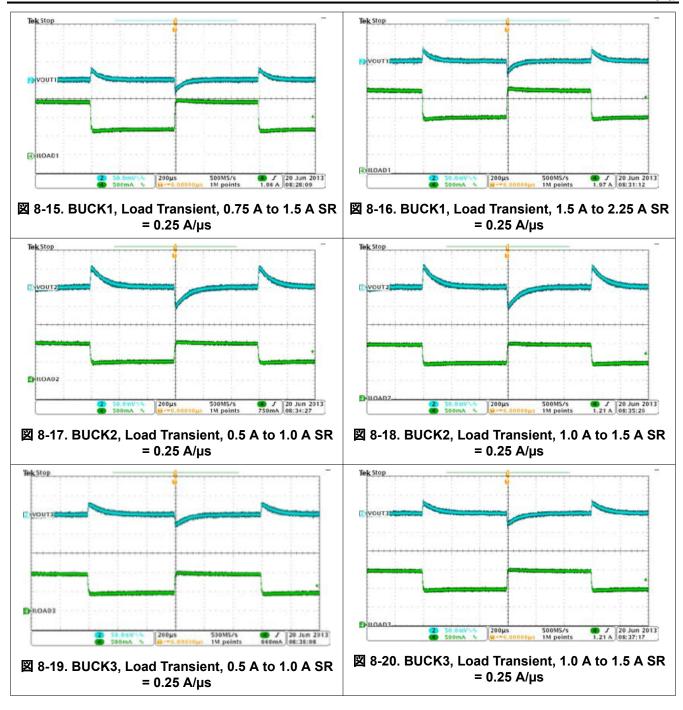
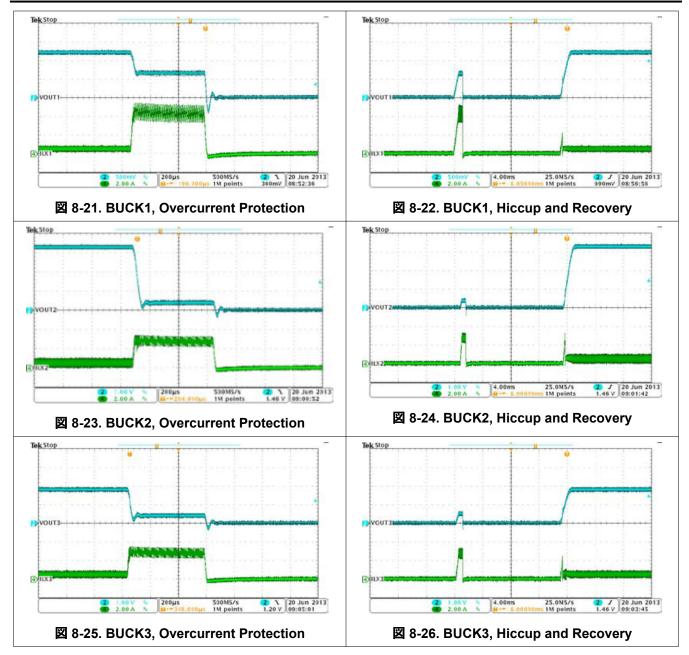
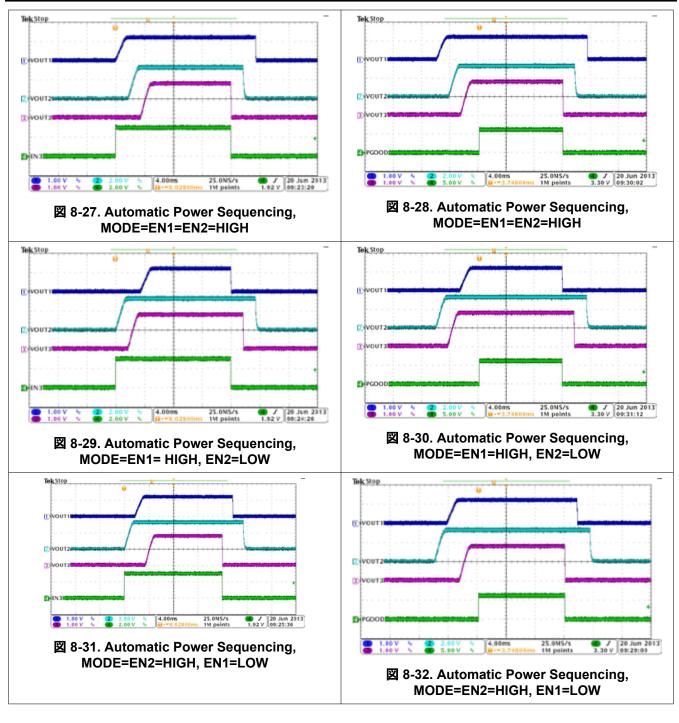




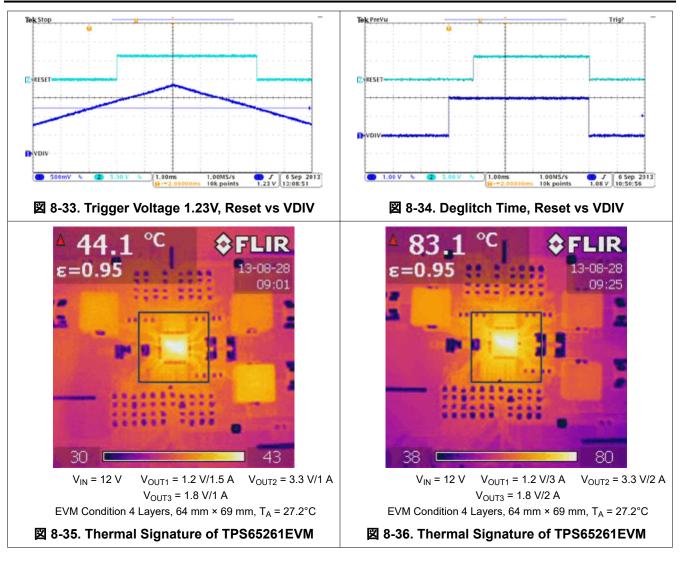
図 8-2. DC/DC Loop Compensation



8.2.3 Application Curves







8.3 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 4.5 V and 18 V. This input power supply must be well regulated. If the input supply is located more than a few inches from the TPS65261 or TPS65261-1 converter additional bulk capacitance can be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of $47~\mu F$ is a typical choice.

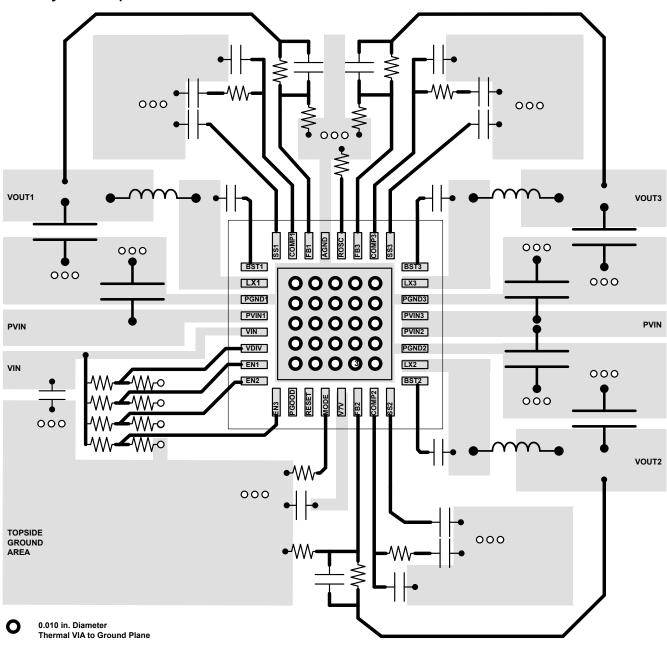
8.4 Layout

8.4.1 Layout Guidelines

The TPS65261, TPS65261-1 can be laid out on 2-layer PCB, illustrated in ⊠ 8-37.

Layout is a critical portion of good power supply design. See 🗵 8-37 for a PCB layout example. The top contains the main power traces for PVIN, VOUT, and LX. Also on the top layer are connections for the remaining pins of the TPS65261, TPS65261-1 and a large top side area filled with ground. The top layer ground area must be connected to the bottom layer ground using vias at the input bypass capacitor, the output filter capacitor and directly under the TPS65261, TPS65261-1 device to provide a thermal path from the exposed thermal pad land to ground. The bottom layer acts as ground plane connecting analog ground and power ground.

For operation at full rated load, the top side ground area together with the bottom side ground plane must provide adequate heat dissipating area. There are several signals paths that conduct fast changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade the power



supplies performance. To help eliminate these problems, the PVIN pin must be bypassed to ground with a low ESR ceramic bypass capacitor with X5R or X7R dielectric. Care must be taken to minimize the loop area formed by the bypass capacitor connections, the PVIN pins and the ground connections. The VIN pin must also be bypassed to ground using a low ESR ceramic capacitor with X5R or X7R dielectric.

Because the LX connection is the switching node, the output inductor must be located close to the LX pins, and the area of the PCB conductor minimized to prevent excessive capacitive coupling. The output filter capacitor ground must use the same power ground trace as the PVIN input bypass capacitor. Try to minimize this conductor length while maintaining adequate width. The small signal components must be grounded to the analog ground path.

The FB and COMP pins are sensitive to noise so the resistors and capacitors must be located as close as possible to the IC and routed with minimal lengths of trace. The additional external components can be placed approximately as shown.

8.4.2 Layout Example

O VIA to Ground Plane

図 8-37. PCB Layout

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Parts

PART NUMBER	DESCRIPTION	COMMENTS
TPS65262	4.5 V to 18 V, triple buck with dual adjustable LDOs	Triple buck 3-A/1-A/1-A output current, dual LDOs 100-mA/200-mA output current, automatic power sequencing
TPS65263	4.5 V to 18 V, triple buck with I2C interface	Triple buck 3-A/2-A/2-A output current, I2C controlled dynamic voltage scaling (DVS)
TPS65651-1/2/3	4.5 V to 18 V, triple buck with different PGOOD deglitch time	Triple buck 3-A/2-A/2-A output current, support 1s, 32-ms, 256-ms PGOOD deglitch time, adjustable current limit setting by external resistor
TPS65287	4.5 V to 18 V, triple buck with power switch and push button control	Triple buck 3-A/2-A/2-A output current, up to 2.1-A USB power with overcurrent setting by external resistor, push button control for intelligent system power-on/power-off operation
TPS65288	4.5 V to 18 V, triple buck with dual power switches	Triple buck 3-A/2-A/2-A output current, 2 USB power switches current limiting at typical 1.2 A (0.8/1.0/1.4/1.6/1.8/2.0/2.2A available with manufacture trim options)

9.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.com のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

9.3 サポート・リソース

TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

9.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

9.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

www.ti.com

m 31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TPS65261-1RHBR	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261-1
TPS65261-1RHBR.A	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261-1
TPS65261-1RHBRG4	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261-1
TPS65261-1RHBRG4.A	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261-1
TPS65261-1RHBT	Active	Production	VQFN (RHB) 32	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261-1
TPS65261-1RHBT.A	Active	Production	VQFN (RHB) 32	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261-1
TPS65261RHBR	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261
TPS65261RHBR.A	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261
TPS65261RHBRG4	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261
TPS65261RHBRG4.A	Active	Production	VQFN (RHB) 32	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261
TPS65261RHBT	Active	Production	VQFN (RHB) 32	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261
TPS65261RHBT.A	Active	Production	VQFN (RHB) 32	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS 65261

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

PACKAGE OPTION ADDENDUM

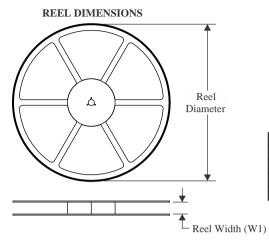
www.ti.com 31-Oct-2025

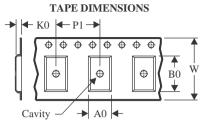
(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

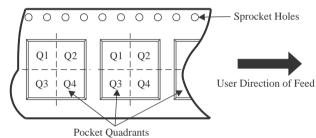
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

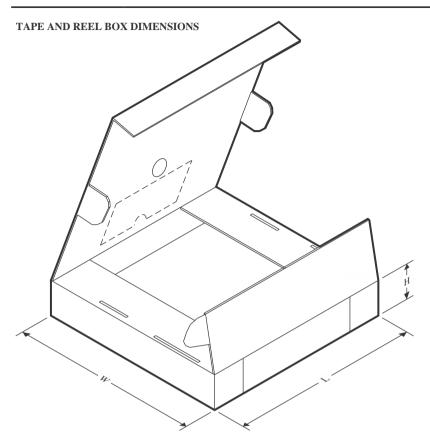
PACKAGE MATERIALS INFORMATION

www.ti.com 5-Aug-2025


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

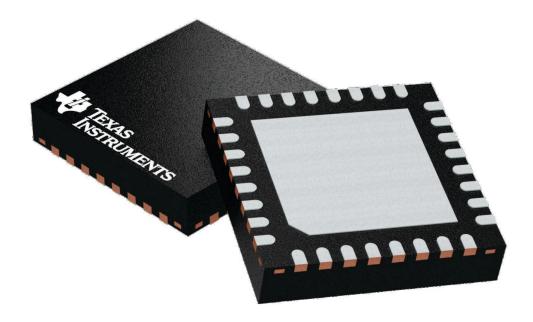
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS65261-1RHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
TPS65261-1RHBRG4	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
TPS65261-1RHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
TPS65261RHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
TPS65261RHBRG4	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
TPS65261RHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com 5-Aug-2025

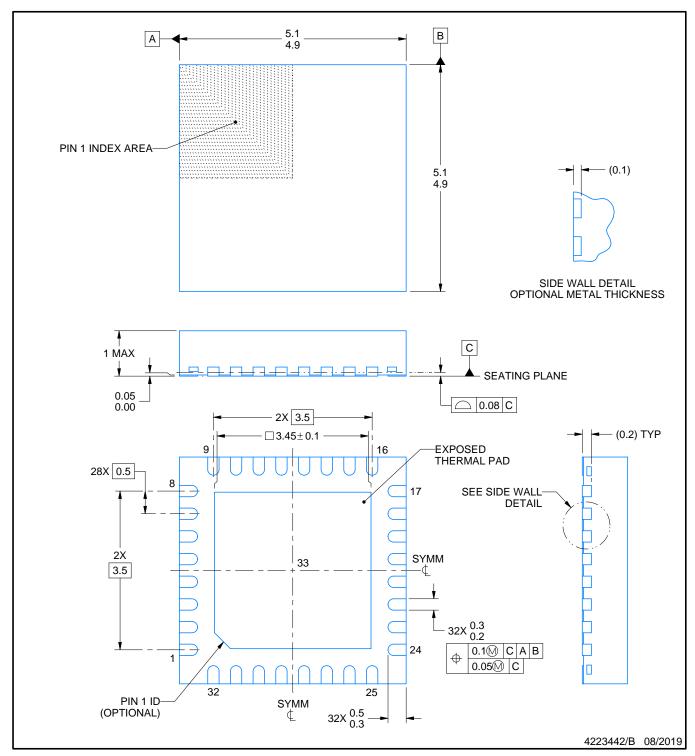


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65261-1RHBR	VQFN	RHB	32	3000	346.0	346.0	33.0
TPS65261-1RHBRG4	VQFN	RHB	32	3000	346.0	346.0	33.0
TPS65261-1RHBT	VQFN	RHB	32	250	210.0	185.0	35.0
TPS65261RHBR	VQFN	RHB	32	3000	346.0	346.0	33.0
TPS65261RHBRG4	VQFN	RHB	32	3000	346.0	346.0	33.0
TPS65261RHBT	VQFN	RHB	32	250	210.0	185.0	35.0

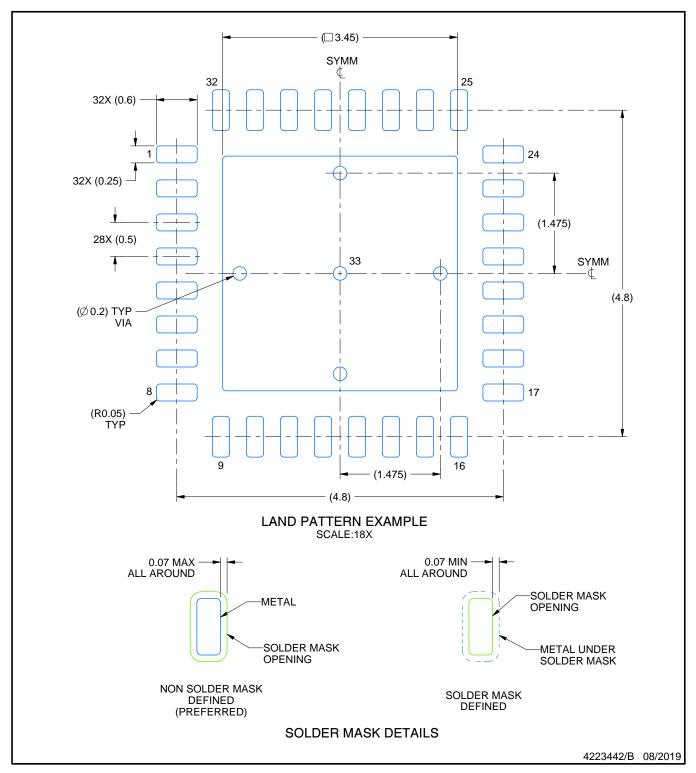
5 x 5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224745/A

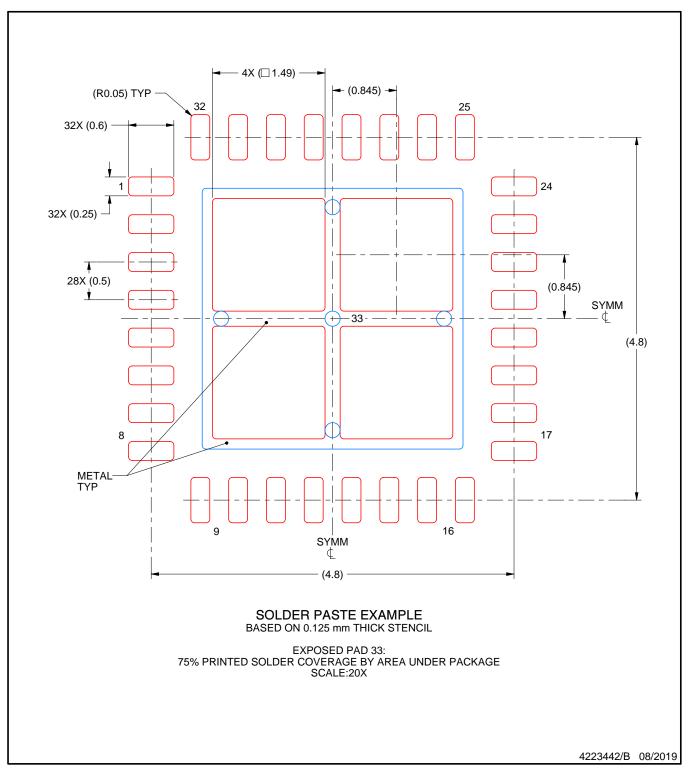
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月