TPS6521845 JAJSK46A - NOVEMBER 2020 - REVISED AUGUST 2021 # TPS6521845 NXP i.MX 6Solo および 6DualLite 向けパワー・マネージメント IC (PMIC) ### 1 特長 - スイッチング FET を内蔵した可変降圧型コンバータ ×3 (DCDC1, DCDC2, DCDC3): - DCDC1: デフォルト 1.425V で最大 1.8A - DCDC2: デフォルト 1.425V で最大 1.8A - DCDC3: デフォルト 1.5V で最大 1.8A - VIN 範囲:2.7V~5.5V - 可変出力電圧範囲:0.85V~1.675V (DCDC1 お よび DCDC2) - 可変出力電圧範囲:0.9V~3.4V (DCDC3) - 軽負荷電流時のパワー・セーブ・モード - 100% デューティ・サイクル動作による最小のドロッ プアウト電圧 - ディセーブル時のアクティブな出力放電 - スイッチング FET を内蔵した可変昇降圧コンバータ ×1 (DCDC4): - DCDC4: デフォルト 3.3V で最大 1.6A - VIN 範囲:2.7V~5.5V - 可変出力電圧範囲:1.175V~3.4V - ディセーブル時のアクティブな出力放電 - バッテリ・バックアップ・ドメイン用の低静止電流・高効 率の降圧型コンバータ ×2 (DCDC5、DCDC6) - DCDC5:1V 出力 - DCDC6:1.8V 出力 - VIN 範囲:2.2V~5.5V - システム電源またはコイン電池バックアップ・バッテ リから供給 - 可変汎用 LDO (LDO1) - LDO1: デフォルト 1.8V で最大 400mA - VIN 範囲:1.8V~5.5V - 可変出力電圧範囲:0.9V~3.4V - ディセーブル時のアクティブな出力放電 - 350mA の電流制限付き低電圧負荷スイッチ (LS1) - VIN 範囲:1.2V~3.6V - 1.35V 時のスイッチ・インピーダンス:110mΩ (最大 - 電流制限を 100mA または 500mA に選択できる 5V 負荷スイッチ (LS2) - VIN 範囲:4V~5.5V - 5V 時のスイッチ・インピーダンス:500mΩ (最大値) - 電流制限を 100mA または 500mA に選択できる高電 圧負荷スイッチ (LS3) - VIN 範囲:1.8V~10V - スイッチ・インピーダンス:500mΩ (最大値) - スーパーバイザ機能モニタを内蔵したスーパーバイザ - DCDC1、DCDC2 ±4% 精度 - DCDC3、DCDC4 ±5% 精度 - LDO1 ±5% 精度 - 保護、診断、制御: - 低電圧誤動作防止 (UVLO) - 常時オンのプッシュボタン・モニタ - 過熱警告とシャットダウン - バックアップ電源およびメイン電源用の個別のパワ ー・グッド出力 - I^2C インターフェイス (アドレスは 0x24) (400kHz 時の I²C の動作については、タイミング要件を参 ### 2 アプリケーション - ヒューマン・マシン・インターフェイス (HMI) - 産業用オートメーション - 電子 POS (ePOS) - 試験/測定機器 - パーソナル・ナビゲーション ### 3 概要 TPS6521845 は、携帯型 (リチウムイオン・バッテリ) と据 置型 (5V アダプタ) のいずれのアプリケーションでもサポ ートするように設計された、シングル・チップのパワー・マネ ージメント IC (PMIC) です。このデバイスは、-40°C~ +105℃の温度範囲で動作することが特長で、幅広い産業 用アプリケーションに適しています。 #### 製品情報(1) | 部品番号 | パッケージ | 本体サイズ (公称) | |------------|-----------|-----------------| | TPS6521845 | VQFN (48) | 6.00mm × 6.00mm | 利用可能なすべてのパッケージについては、このデータシートの 末尾にある注文情報を参照してください。 図 3-1. 概略回路図 ## **Table of Contents** | 1 特長 | 1 | 7.5 Register Maps | 4 | |--------------------------------------|---|--|--------------------| | 2 アプリケーション | | 8 Application and Implementation | 7 | | 3 概要 | | 8.1 Application Information | | | 4 Revision History | | 8.2 Typical Application | 78 | | 5 Pin Configuration and Functions | | 9 Power Supply Recommendations | 82 | | 6 Specifications | | 10 Layout | 82 | | 6.1 Absolute Maximum Ratings | | 10.1 Layout Guidelines | 82 | | 6.2 ESD Ratings | | 10.2 Layout Example | 82 | | 6.3 Recommended Operating Conditions | | 11 Device and Documentation Support | 84 | | 6.4 Thermal Information | | 11.1 Documentation Support | 84 | | 6.5 Electrical Characteristics | | 11.2 Receiving Notification of Documentation Updates | s <mark>8</mark> 4 | | 6.6 Timing Requirements | | 11.3 サポート・リソース | 84 | | 6.7 Typical Characteristics | | 11.4 Trademarks | 84 | | 7 Detailed Description | | 11.5 静電気放電に関する注意事項 | 84 | | 7.1 Overview | | 11.6 用語集 | | | 7.2 Functional Block Diagram | | 12 Mechanical, Packaging, and Orderable | | | 7.3 Feature Description | | Information | 84 | | 7.4 Device Functional Modes | | | | # **4 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | C | Changes from Revision * (November 2020) to Revision A (August 2021) | Page | |---|---|------| | • | DCDC1 のデフォルト電圧を 1.1V から 1.425V に変更 | 1 | | • | DCDC2 のデフォルト電圧を 1.1V から 1.425V に変更 | 1 | | • | DCDC3 のデフォルト電圧を 1.2V から 1.5V に変更 | | ## **5 Pin Configuration and Functions** 図 5-1. 48-Pin RSL VQFN With Exposed Thermal Pad (Top View, 6 mm × 6 mm × 1 mm With 0.4-mm Pitch) 表 5-1. Pin Functions | | PIN | TYPE | DESCRIPTION | |-----|----------|------|--| | NO. | NAME | ITPE | DESCRIPTION | | 1 | IN_DCDC1 | Р | Input supply pin for DCDC1. | | 2 | SDA | I/O | Data line for the I ² C interface. Connect to pullup resistor. | | 3 | SCL | I | Clock input for the I ² C interface. Connect to pullup resistor. | | 4 | LDO1 | 0 | Output voltage pin for LDO1. Connect to capacitor. | | 5 | IN_LDO1 | Р | Input supply pin for LDO1. | | 6 | IN_LS3 | Р | Input supply pin for load switch 3. | | 7 | LS3 | 0 | Output voltage pin for load switch 3. Connect to capacitor. | | 8 | PGOOD | 0 | Power-good output (configured as open drain). Pulled low when either DCDC1-4 or LDO1 are out of regulation. Load switches and DCDC5-6 do not affect PGOOD pin. | | 9 | AC_DET | I | AC monitor input and enable for DCDC1-4, LDO1 and load switches. See セクション 7.4.1 for details. Tie pin to IN_BIAS if not used. | | 10 | nPFO | 0 | Power-fail comparator output, deglitched (open drain). Pin is pulled low when PFI input is below power-fail threshold. | | 11 | GPIO1 | I/O | Pin configured as DDR reset-input (driving GPO2) or as general-purpose, open-drain output. See セクション 7.3.1.14 for more information. | | 12 | IN_DCDC4 | Р | Input supply pin for DCDC4. | | 13 | L4A | Р | Switch pin for DCDC4. Connect to inductor. | | 14 | L4B | Р | Switch pin for DCDC4. Connect to inductor. | | 15 | DCDC4 | Р | Output voltage pin for DCDC4. Connect to capacitor. | | 16 | PFI | I | Power-fail comparator input. Connect to resistor divider. | | 17 | DC34_SEL | I | Power-up default selection pin for DCDC3 or DCDC4. Power-up default is programmed by a resistor connected to ground. See セクション 7.3.1.13 for resistor options. | ## 表 5-1. Pin Functions (continued) | PIN | | | | | | |-----|-------------|------|---|--|--| | NO. | NAME | TYPE | DESCRIPTION | | | | 18 | IN_nCC | 0 | Output pin indicates if DCDC5 and DCDC6 are powered from main supply (IN_BU) or coin-cell battery (CC). Pin is push-pull output. Pulled low when PMIC is powered from coin cell battery. Pulled high when PMIC is powered from main supply (IN_BU). | | | | 19 | PGOOD_BU | 0 | Power-good, push-pull output for DCDC5 and DCDC6. Pulled low when either DCDC5 or DCDC6 is out of regulation. Pulled high (to DCDC6 output voltage) when both rails are in regulation. | | | | 20 | L5 | Р | Switch pin for DCDC5. Connect to inductor. | | | | 21 | FB5 | I | Feedback voltage pin for DCDC5. Connect to output capacitor. | | | | 22 | FB6 | | Feedback voltage pin for DCDC6. Connect to output capacitor. | | | | 23 | L6 | Р | Switch pin for DCDC6. Connect to inductor. | | | | 24 | SYS_BU | Р | System voltage pin for battery-backup supply power path. Connect to 1-µF capacitor. Connecting any external load to this pin is not recommended. | | | | 25 | СС | Р | Coin cell battery input. Serves as the supply to DCDC5 and DCDC6 if no voltage is applied to IN_BU. Tie this pin to ground if it is not in use. | | | | 26 | GPIO3 | I/O | Pin can be configured as warm reset (negative edge) for DCDC1 and DCDC2 or as a general-purpose, opendrain output. See セクション 7.3.1.14 for more details. | | | | 27 | IN_BU | Р | Default input supply pin for battery backup supplies (DCDC5 and DCDC6). | | | | 28 | N/C | | No. 1 and | | | | 29 | N/C | _ | No connect. Leave pin floating. | | | | 30 | LS1 | 0 | Output voltage pin for load switch 1. Connect to capacitor. | | | | 31 | IN_LS1 | Р | Input supply pin for load switch 1. | | | | 32 | IN_LS2 | Р | Input supply pin for load switch 2. | | | | 33 | LS2 | 0 | Output voltage pin for load switch 2. Connect to capacitor. | | | | 34 | GPO2 | 0 | Pin configured as DDR reset signal (controlled by GPIO1) or as general-purpose output. Buffer can be configured as push-pull or open-drain. | | | | 35 | INT_LDO | Р | Internal bias voltage. Connecting any external load to this pin is not recommended. | | | | 36 | IN_BIAS | Р | Input supply pin for reference system. | | | | 37 | IN_DCDC3 | Р | Input supply pin for DCDC3. | | | | 38 | L3 | Р | Switch pin for DCDC3. Connect to inductor. | | | | 39 | FB3 | I | Feedback voltage pin for DCDC3. Connect to output capacitor. | | | | 40 | nWAKEUP | 0 | Signal to SOC to indicate a power on event (active low, open-drain output). | | | | 41 |
FB2 | ı | Feedback voltage pin for DCDC2. Connect to output capacitor. | | | | 42 | L2 | Р | Switch pin for DCDC2. Connect to inductor. | | | | 43 | IN_DCDC2 | Р | Input supply pin for DCDC2. | | | | 44 | РВ | I | Push-button monitor input. Typically connected to a momentary switch to ground (active low). See セクション 7.4.1 for details. | | | | 45 | nINT | 0 | Interrupt output (active low, open drain). Pin is pulled low if an interrupt bit is set. The pin returns to Hi-Z state after the bit causing the interrupt has been read. Interrupts can be masked. | | | | 46 | PWR_EN | I | Power enable input for DCDC1-4, LDO1 and load switches. See セクション 7.4.1 for details. | | | | 47 | FB1 | ı | Feedback voltage pin for DCDC1. Connect to output capacitor. | | | | 48 | L1 | Р | Switch pin for DCDC1. Connect to inductor. | | | | _ | Thermal Pad | Р | Power ground and thermal relief. Connect to ground plane. | | | ## **6 Specifications** ### **6.1 Absolute Maximum Ratings** Operating under free-air temperature range (unless otherwise noted).(1) | | | | MIN | MAX | UNIT | | |------------------|--|--|------|------|--------|--| | | Supply voltage II | IN_BIAS, IN_LDO1, IN_LS2, IN_DCDC1, IN_DCDC2, IN_DCDC3, IN_DCDC4 | -0.3 | 7 | | | | | | IN_LS1, CC | -0.3 | 3.6 | V | | | | | IN_LS3 | -0.3 | 11.2 | | | | | | IN_BU | -0.3 | 5.8 | | | | | Input voltage | DC34_SEL | -0.3 | 3.6 | V | | | | input voitage | All pins unless specified separately | -0.3 | 7 | | | | | Output voltage | DC34_SEL | -0.3 | 3.6 | V | | | | | All pins unless specified separately | -0.3 | 7 | V | | | | Source or sink | GPO2 | | 6 | mA | | | | Source or sink current | PGOOD_BU, IN_nCC | | 1 | l IIIA | | | | Sink current | PGOOD, nWAKEUP, nINT, nPFO, SDA, GPIO1, GPIO3 | | 6 | mA | | | T _A | Γ _A Operating ambient temperature | | -40 | 105 | °C | | | T _J | Junction temperature | | -40 | 125 | °C | | | T _{stg} | Storage temperatu | re | -65 | 150 | °C | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 6.2 ESD Ratings | | | | VALUE | UNIT | |-------------------|-------------------------|--|-------|------| | V | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | \/ | | V _{(ESI} | ^{D)} discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±500 | V | Product Folder Links: TPS6521845 - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## **6.3 Recommended Operating Conditions** Over operating free-air temperature range (unless otherwise noted). | | | MIN | NOM MAX | UNIT | |---------------------------------|--------------------|-------|---------|------| | Supply voltage, IN_BIAS | | 2.7 | 5.5 | V | | Input voltage for DCDC1, DCDC2 | , DCDC3, and DCDC4 | 2.7 | 5.5 | V | | Supply voltage, IN_BU | | 2.2 | 5.5 | V | | Supply voltage, CC | | 2.2 | 3.3 | V | | Input voltage for LDO1 | | 1.8 | 5.5 | V | | Input voltage for LS1 | | 1.2 | 3.6 | V | | Input voltage for LS2 | | 3 | 5.5 | V | | Input voltage for LS3 | | 1.8 | 10 | V | | Output voltage for DCDC1 | | 0.85 | 1.675 | V | | Output voltage for DCDC2 | | 0.85 | 1.675 | V | | Output voltage for DCDC3 | | 0.9 | 3.4 | V | | Output voltage for DCDC4 | | 1.175 | 3.4 | V | | Output voltage for DCDC5 | | | 1 | V | | Output voltage for DCDC6 | | | 1.8 | V | | Output voltage for LDO1 | | 0.9 | 3.4 | V | | Output current for DCDC1, DCDC | 2, and DCDC3 | 0 | 1.8 | Α | | | VIN_DCDC4 = 2.8 V | | 1 | | | Output current for DCDC4 | VIN_DCDC4 = 3.6 V | | 1.3 | Α | | | voltage, CC | 1.6 | | | | Output current for DCDC5 and DC | CDC6 | 0 | 25 | mA | | · | | mA | | | | Output current for LS1 | | 0 | 300 | mA | | Output current for LS2 | | 0 | 920 | mA | | Output current for LS3 | VIN_LS3 > 2.3 V | 0 | 900 | mA | | Output current for Los | VIN_LS3 ≤ 2.3 V | 0 | 475 | ША | ### **6.4 Thermal Information** | | | TPS6521845 RSL (VQFN) 48 PINS 17.2 5.8 30.6 0.2 5.6 | | |-----------------------|---|---|------| | | UNIT | | | | | | 48 PINS | | | R _{0JC(top)} | Junction-to-case (top) | 17.2 | °C/W | | $R_{\theta JB}$ | Junction-to-board | 5.8 | °C/W | | $R_{\theta JA}$ | Thermal resistance, junction-to-ambient. JEDEC 4-layer, high-K board. | 30.6 | °C/W | | Ψ_{JT} | Junction-to-package top | 0.2 | °C/W | | Ψ_{JB} | Junction-to-board | 5.6 | °C/W | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) | 1.5 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. #### 6.5 Electrical Characteristics Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CONDI | TIONS | MIN | TYP | MAX | רואט | |------------------------------------|---|---|--|------|------|--|------| | INPUT VOL | TAGE AND CURRENTS | | | | | | | | | | Normal operation | | 2.7 | | 5.5 | ., | | V_{IN_BIAS} | Input supply voltage range | EEPROM programming | | 4.5 | | 5.5 | V | | | | | UVLO[1:0] = 00b | 2.7 | 2.75 | 2.8 | V | | | Hardenes Heart Leaders | Supply falling; measured in | UVLO[1:0] = 01b | 2.85 | 2.95 | 3.05 | V | | V_{UVLO} | Undervoltage lockout | respect to V _{IN_BIAS} | UVLO[1:0] = 10b | 3.15 | 3.25 | 3.35 | V | | | | | UVLO[1:0] = 11b | 3.25 | 3.35 | 5.5
2.8
3.05
3.35
3.45
5.5
20%
2%
10
22
20%
5.5
1.675
2%
2.5%
1.8 | V | | | | Supply rising; V _{IN BIAS} slew | UVLOHYS = 0b | | 200 | 3.35
3.45
5.5 | mV | | | | rate < 30 V/s | UVLOHYS = 1b | | 400 | | mV | | V_{UVLO} | Hysteresis | Supply rising: VIN DIAS Slew | UVLOHYS = 0b | | 0 | | mV | | OFF SUSPEND SYS_BU VSYS_BU CSYS_BU | | rate > 30 V/s | UVLOHYS = 1b | | 0 | | mV | | | Deglitch time | | | | | | ms | | I _{OFF} | OFF state current, total current into IN_BIAS, IN_DCDCx, IN_LDO1, IN_LSx, IN_BU | V _{IN} = 3.6 V; All rails disabled.
T _J = 0°C to 85°C | | | 5 | | μA | | I _{SUSPEND} | SUSPEND current, total current into IN_BIAS, IN_DCDCx, IN_LDO1, IN_LSx, IN_BU | V _{IN} = 3.6 V; DCDC3 enabled, low-power mode, no load. All other rails disabled. T _{.I} = 0°C to 105°C | | | 220 | | μA | | SYS_BU | | | | | | | | | V _{SYS BU} | SYS_BU voltage range | Powered from V _{IN BU} or V _{CC} | | 2.2 | | 5.5 | V | | | Recommended SYS_BU capacitor | Ceramic, X5R or X7R, see 表 8-3. | | | 1 | | μF | | C _{SYS_BU} | Tolerance | Ceramic, X5R or X7R, rated v | -20% | | 20% | | | | INT_LDO | | I | | | | | | | . , | Output voltage | | | | 2.5 | | V | | V _{INT_LDO} | DC accuracy | I _{OUT} < 10 mA | | -2% | | 2% | | | I _{OUT} | Output current range | Maximum allowable external le | oad | 0 | - | 10 | mA | | | Short circuit current limit | Output shorted to GND | | | 23 | | mA | | | Hold-up time | All rails enabled before power $V_{IN\ BIAS} = 2.8\ V$ to 0 V in < 1 μ | off, | 150 | | | ms | | Vuvlo | Nominal output capacitor value | Ceramic, X5R or X7R, see 表 | 8-3. | 0.1 | 1 | 22 | μF | | | -20% | | 20% | | | | | | DCDC1 (1. | 1-V BUCK) | | | | | | | | V _{IN_DCDC1} | Input voltage range | V _{IN_BIAS} > V _{UVLO} | | 2.7 | | 5.5 | V | | | Output voltage range | Adjustable through I ² C | | 0.85 | | 1.675 | V | | | DC accuracy | 2.7 V ≤ V _{IN} ≤ 5.5 V; 0 A ≤ I _{OUT} ≤ 1.8 A | | -2% | - | 2% | | | V _{DCDC1} | Dynamic accuracy | I _{OUT} = 50 mA to 450 mA in < 1 | In respect to nominal output voltage
I _{OUT} = 50 mA to 450 mA in < 1 μs | | | 2.5% | | | I _{OUT} | Continuous output current | V _{IN_DCDC1} > 2.7 V | | | | 1.8 | Α | | IQ | Quiescent current | | n; Device not switching, | | 25 | 50 | μA | Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CO | ONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|---------------------------------|---|---|-------|-------|--|------| | _ | High-side FET on resistance | V _{IN_DCDC1} = 3.6 V | | | 230 | 355 | | | R _{DS(ON)} | Low-side FET on resistance | V _{IN DCDC1} = 3.6 V | | | 90 | 145 | mΩ | | | High-side current limit | V _{IN DCDC1} = 3.6 V | | | 2.8 | | | | I _{LIMIT} | Low-side current limit | V _{IN DCDC1} = 3.6 V | | | 3.1 | | Α | | | | | STRICT = 0b | 88.5% | 90% | 91.5% | | | | Power-good threshold | V _{OUT} falling | STRICT = 1b | 95% | 96.5% | 96% | | | | | | STRICT = 0b | 3.8% | 4.1% | 4.4% | | | | Hysteresis | V _{OUT} rising | STRICT = 1b | | 0.25% | | ms | | V_{PG} | | ., ., ., | STRICT = 0b | | 1 | | ms | | | | V _{OUT} falling | STRICT = 1b | | 50 | | μs | | | Deglitch | | STRICT = 0b | | 10 | | μs | | | | V _{OUT} rising STRICT = 1b | | | 10 | | μs | | | Time-out | | | | | | ms | | |
Overvoltage Detection Threshold | V _{OUT} rising, STRICT = 1b | | 103% | | 104% | | | V_{OV} | Hystersis | V _{OUT} falling, STRICT = 1b |) | | 0.25% | | | | | Deglitch | V _{OUT} rising, STRICT = 1b | | | 50 | | μs | | I _{INRUSH} | Inrush current | V _{IN DCDC1} = 3.6 V; C _{OUT} = | = 10 μF to 100 μF | 500 | | mA | | | R _{DIS} | Discharge resistor | IN_EGEO 7 GOT T | | 150 | 250 | 350 | Ω | | L | Nominal inductor value | See 表 8-2. | | 1 | 1.5 | 2.2 | μH | | | Tolerance | | -30% | | 30% | | | | C _{OUT} | Output capacitance value | Ceramic, X5R or X7R, se | e 表 8-3. | 10 | 22 | 100 ⁽⁸⁾ | μF | | DCDC2 (1. | 1-V BUCK) | | J | | | | | | V _{IN_DCDC2} | Input voltage range | V _{IN BIAS} > V _{UVLO} | | 2.7 | | 5.5 | V | | | Output voltage range | Adjustable through I ² C | | 0.85 | | 1.675 | V | | V_{DCDC2} | DC accuracy | 2.7 V ≤ V _{IN} ≤ 5.5 V; 0 A ≤ | I _{OUT} ≤ 1.8 A | -2% | | 2% | | | I _{OUT} | Continuous output current | V _{IN DCDC2} > 2.7 V | | | | 1.8 | Α | | I _Q | Quiescent current | Total current from I _{N_DCDC} no load | ₂ pin; device not switching, | | 25 | 50 | μA | | | High-side FET on resistance | V _{IN DCDC2} = 3.6 V | | | 230 | 355 | | | R _{DS(ON)} | Low-side FET on resistance | V _{IN_DCDC2} = 3.6 V | | | 90 | 145 | mΩ | | | High-side current limit | V _{IN_DCDC2} = 3.6 V | _ | | 2.8 | | ^ | | I _{LIMIT} | Low-side current limit | V _{IN_DCDC2} = 3.6 V | | | 3.1 | 355
145
91.5%
96%
4.4%
104%
500
350
2.2
30%
100 ⁽⁸⁾
5.5
1.675
2%
1.8
50
355 | Α | | | 5 |) / C III | STRICT = 0b | 88.5% | 90% | 91.5% | | | | Power-good threshold | V _{OUT} falling | STRICT = 1b | 95% | 95.5% | 96% | | | | Lhustarasia | V riging | STRICT = 0b | 3.8% | 4.1% | 4.4% | | | | Hysteresis | V _{OUT} rising | STRICT = 1b | | 0.25% | | ms | | V_{PG} | | V follows | STRICT = 0b | | 1 | | ms | | | Doglitah | V _{OUT} falling | STRICT = 1b | | 50 | | μs | | | Deglitch | V riging | STRICT = 0b | | 10 | | μs | | | | V _{OUT} rising | STRICT = 1b | | 10 | | μs | | | Time-out | | ' | | 5 | | ms | Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CON | IDITIONS | MIN | TYP | MAX | UNIT | |--|------------------------------------|---|--------------------------------------|-------|--------|--------|------| | | Overvoltage Detection
Threshold | V _{OUT} rising, STRICT = 1b | | 103% | | 104% | | | V_{OV} | Hystersis | V _{OUT} falling, STRICT = 1b | | | 0.25% | | | | | Deglitch | V _{OUT} rising, STRICT = 1b | V _{OUT} rising, STRICT = 1b | | | | μs | | I _{INRUSH} | Inrush current | V _{IN_DCDC2} = 3.6 V; C _{OUT} = 1 | 10 μF to 100 μF | | | 500 | mA | | R _{DIS} | Discharge resistor | | | 150 | 250 | 350 | Ω | | | Nominal inductor value | See 表 8-2. | | 1 | 1.5 | 2.2 | μH | | L | Tolerance | | | -30% | | 30% | | | C _{OUT} | Output capacitance value | Ceramic, X5R or X7R, see | 表 8-3. | 10 | 22 | 100(8) | μF | | DCDC3 (1.2 | P-V BUCK) | | | | | | | | V _{IN_DCDC3} | Input voltage range | V _{IN BIAS} > V _{UVLO} | | | | 5.5 | V | | | Output voltage range | Adjustable through I ² C | | 0.9 | | 3.4 | V | | V_{DCDC3} | DC accuracy | $2.7 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}; 0 \text{ A} \le \text{I}_{\text{C}}$
$\text{V}_{\text{IN}} \text{ DCDC3} \ge (\text{V}_{\text{DCDC3}} + 700)$ | _{DUT} ≤ 1.8 A,
mV) | -2% | | 2% | | | I _{OUT} | Continuous output current | V _{IN DCDC3} > 2.7 3.6 V | | | | 1.8 | Α | | I _Q | Quiescent current | | | | 25 | 50 | μA | | | High-side FET on resistance | V _{IN DCDC3} = 3.6 V | | | 230 | 345 | | | R _{DS(ON)} | Low-side FET on resistance | V _{IN DCDC3} = 3.6 V | | | 100 | 150 | mΩ | | | High-side current limit | $\begin{array}{c} \text{tance} & \text{V}_{\text{IN_DCDC3}} = 3.6 \text{ V} & 100 & 150 \\ \hline & \text{V}_{\text{IN_DCDC3}} = 3.6 \text{ V} & 2.8 \\ \hline & \text{V}_{\text{IN_DCDC3}} = 3.6 \text{ V} & 3 \\ \hline & \text{V}_{\text{OUT}} \text{ falling} & STRICT = 0b & 88.5\% & 90\% & 91.5\% \\ \hline & STRICT = 1b & 95\% & 95.5\% & 96\% \\ \hline & STRICT = 0b & 3.8\% & 4.1\% & 4.4\% \\ \hline \end{array}$ | | | | | | | LIMIT | Low-side current limit | V _{IN_DCDC3} = 3.6 V | | 3 | | A | | | | Power-good threshold | V _{OUT} falling | STRICT = 0b | 88.5% | 90% | 91.5% | | | | | | STRICT = 1b | 95% | 95.5% | 96% | | | | Hysteresis | V _{OUT} rising | STRICT = 0b | 3.8% | 4.1% | 4.4% | | | | | | STRICT = 1b | | 0.25% | | ms | | V_{PG} | | V _{OUT} falling | STRICT = 0b | | 1 | | ms | | | Dealitch | | STRICT = 1b | | 50 | | μs | | | Dogitori | Vour rising | STRICT = 0b | | 10 | | μs | | | | V ₀₀₁ rising | STRICT = 1b | | 10 | | μs | | | Time-out | | | | 5 | | ms | | ., | Overvoltage Detection
Threshold | V _{OUT} rising, STRICT = 1b | | 104% | 104.5% | 105% | | | VOV | Hystersis | V _{OUT} falling, STRICT = 1b | | | 0.25% | | | | Overvoltage Detection Threshold Vout rising, STRICT = 1b 1 | | 50 | | μs | | | | | I _{INRUSH} | Inrush current | $V_{IN_DCDC3} = 3.6 \text{ V}; C_{OUT} = 7$ | 10 μF to 100 μF | | | 500 | mA | | R _{DIS} | Discharge resistor | | | | 250 | 350 | Ω | | L | Nominal inductor value | See 表 8-2. | 1.0 | 1.5 | 2.2 | μH | | | _ | Tolerance | | -30% | | 30% | | | | C _{OUT} | Output capacitance value | Ceramic, X5R or X7R, see | 表 8-3. | 10 | 22 | 100 | μF | | DCDC4 (3.3 | -V BUCK-BOOST) / ANALOG A | ND I/O | | | | | | | | Input voltage soft-start range | _ | | 3.4 | | | V | | V _{IN_DCDC4} | | - | | 3.8 | | | | | | Input voltage operating range | $V_{IN_BIAS} > V_{UVLO}, -40$ °C to | +105°C | 2.7 | | 5.5 | V | Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CO | TEST CONDITIONS | | TYP | MAX | UNIT | |---------------------|--|---|---|-------|-------|-------|------------------| | | Output voltage range | Adjustable through I ² C | | 1.175 | | 3.4 | V | | V _{DCDC4} | DC accuracy | 2.7 V ≤ V _{IN} ≤ 5.5 V;
0 A ≤ I _{OUT} ≤ 1 A | | -2% | | 2% | | | | Output voltage ripple | PFM mode enabled;
$4.2 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V};$
$0 \text{ A} \le \text{I}_{\text{OUT}} \le 1 \text{ A} 1.6 \text{ A}$
$C_{\text{OUT}} = 80 \text{ µF}$
$V_{\text{OUT}} = 3.3 \text{ V}$ | PFM mode enabled;
$4.2 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V};$
$0 \text{ A} \le \text{I}_{\text{OUT}} \le 1 \text{ A} 1.6 \text{ A}$
$\text{C}_{\text{OUT}} = 80 \mu\text{F}$ | | | 200 | mV _{pp} | | | Minimum duty cycle in step-
down mode | | | | | 18% | | | | | V _{IN_DCDC4} = 2.8 V, V _{OUT} = 3 | 3.3 V | | | 1 | | | Гоит | Continuous output current | V _{IN_DCDC4} = 3.6 V, V _{OUT} = 3 | 3.3 V | | | 1.3 | Α | | | | $V_{IN_DCDC4} = 5 \text{ V}, V_{OUT} = 3.3$ | 3 V | | | 1.6 | | | I _Q | Quiescent current | Total current from IN_DCD switching, no load. | C4 pin; Device not | | 25 | 50 | μA | | f _{SW} | Switching frequency | | | | 2400 | | kHz | | | High-side FET on resistance | V _{IN_DCDC3} = 3.6 V | IN_DCDC4 to L4A | | 166 | | | | P | Tright-side FET off resistance | VIN_DCDC3 - 3.0 V | L4B to DCDC4 | | 149 | | mΩ | | $R_{DS(ON)}$ | Low-side FET on resistance | V _{IN DCDC3} = 3.6 V | L4A to GND | | 142 | 190 |] 11152 | | | Low-side i E i oi i resistance | L4B to GND | | | 144 | 190 | | | I _{LIMIT} | Average switch current limit | V _{IN_DCDC4} = 3.6 V | | | 3000 | | mA | | | Power-good threshold | V _{OUT} falling | STRICT = 0b | 88.5% | 90% | 91.5% | | | | Tower good amounted | V ₀₀₁ raining | STRICT = 1b | 95% | 96.5% | 96% | | | | Hysteresis | V _{OUT} rising | STRICT = 0b | 3.8% | 4.1% | 4.4% | | | | | 001 3 | STRICT = 1b | | 0.25% | | ms | | V_{PG} | Deglitch | V _{OUT} falling | STRICT = 0b | | 1 | | ms | | | | 001 | STRICT = 1b | | 50 | | μs | | | | V _{OUT} rising | | | 10 | | μs | | | | 001 | STRICT = 1b | | 10 | | μs | | | Time-out | | | | 5 | | ms | | V | Overvoltage Detection
Threshold | V _{OUT} rising, STRICT = 1b | | 103% | | 104% | | | V _{OV} | Hystersis | V _{OUT} falling, STRICT = 1b | | | 0.25% | | | | | Deglitch | V _{OUT} rising, STRICT = 1b | | | 50 | | μs | | I _{INRUSH} | Inrush current | V_{IN_DCDC4} = 3.6 V; C_{OUT} = | 10 μF to 100 μF | | | 500 | mA | | R _{DIS} | Discharge resistor | | | 150 | 250 | 350 | Ω | | L | Nominal inductor value | See 表 8-2. | | 1.2 | 1.5 | 2.2 | μH | | _ | Tolerance | | | -30% | | 30% | | | C _{OUT} | Output capacitance value | Ceramic, X5R or X7R, see | 40 | 80 | 100 | μF | | | DCDC5 an | d DCDC6 (POWER PATH) | | | | | | | | V _{CC} | DCDC5 and DCDC6 input voltage range. | V _{IN_BU} = 0 V | | 2.2 | | 3.3 | V | | V _{IN_BU} | DCDC5 and DCDC6 input voltage range ⁽¹⁾ | | | 2.2 | | 5.5 | V | | t _{RISE} | V _{CC} , V _{IN_BU} rise time | V _{CC} = 0 V to 3.3 V, V _{IN_BU} | = 0 V to 5.5 V | 30 | | | μs | | | | | | | | _ | | Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------------
--|---|-------|------|----------|------------------| | D | Power path switch impedance | CC to SYS_BU
V _{CC} = 2.4 V, V _{IN_BU} = 0 V | | 14.5 | | Ω | | Power path switch impedance | | IN_BU to SYS_BU
V _{IN_BU} = 3.6 V | | 10.5 | | \$2 | | I _{LEAK} | Forward leakage current Into CC pin; V _{CC} = 3.3 V, V _{IN_BU} = 0 V; OFF state; FSEĀL = 0b; over full temperature range | | | 50 | 300 | nA | | | Reverse leakage current | Out of CC pin;
V _{CC} = 1.5 V; V _{IN_BU} = 5.5 V;
over full temperature range | | | 500 | | | R _{CC} | Acceptable CC source impedance | I _{OUT, DCDC5} < 10 μA;
I _{OUT, DCDC6} < 10 μA | | | 1000 | Ω | | IQ | Quiescent current | Average current into CC pin; RECOVERY or POWER_OFF state; V_{IN_BU} = 0 V; V_{CC} = 2.4 V; DCDC5 and DCDC6 enabled, no load T_J = 25°C | | 350 | | nA | | DCDC5 (1 | V BATTERY BACKUP SUPPLY) | 1 | | | | | | | Output voltage | | | 1 | | V | | V _{DCDC5} | | 2.7 V≤V _{IN_BU} ≤ 5.5 V; 1.5 μA≤I _{OUT} ≤25 mA−40°C≤TA<
0°C | -2.5% | | 2.5% | | | | DC accuracy | 2.7 V≤V _{IN_BU} ≤5.5 V 1.5 μA≤ I _{OUT} ≤25 mA 0°C≤TA< 105°C | -2% | | 2% | | | | | 2.2 V≤V _{CC} ≤3.3 V; V _{IN_BU} = 0;1.5 μA ≤ I _{OUT} ≤100 μA | -2.5% | - | 2.5% | | | | Output voltage ripple | L = 10 μ H; C _{OUT} = 22 μ F; 100- μ A load, occurs during band-gap sampling | | | 32 | mV _{pp} | | I _{OUT} | Continuous output current | $2.2 \text{ V} \le \text{V}_{CC} \le 3.3 \text{ V}$
$\text{V}_{IN_BU} = 0 \text{ V}$ | | 10 | 100 | μA | | | | $2.7 \text{ V} \le \text{V}_{\text{IN_BU}} \le 5.5 \text{ V}$ | | | 25 | mA | | I _{LIMIT} | High-side current limit | V _{IN_BU} = 2.8 V | | 50 | | mA | | V_{PG} | Power-good threshold | V _{OUT} falling | 79% | 85% | 91% | | | ▼PG | Hysteresis | V _{OUT} rising | | 6% | | | | L | Nominal inductor value | Chip inductor, see 表 8-3. | 4.7 | 10 | 22 | μH | | L | Tolerance | | -30% | | 30% | | | <u> </u> | Output capacitance value | Ceramic, X5R or X7R, see 表 8-3. | 20 | | 47 | μF | | C _{OUT} | Tolerance | | -20% | | 20% | | | DCDC6 (1. | 8-V BATTERY BACKUP SUPPLY |) | | | | | | | Output voltage | | | 1.8 | | V | | V _{DCDC6} | DC accuracy | $2.7 \text{ V} \le \text{V}_{\text{IN_BU}} \le 5.5 \text{ V};$
1 $\mu\text{A} \le \text{I}_{\text{OUT}} \le 25 \text{ mA}$ | -2% | | 2% | | | | DC accuracy | 2.2 $V \le V_{CC} \le 3.3 \text{ V}, V_{IN_BU} = 0;$
1 $\mu A \le I_{OUT} \le 100 \mu A$ | -2% | | 2% | | | I _{OUT} | Continuous output current | $2.2 \text{ V} \le \text{V}_{CC} \le 3.3 \text{ V}$
$\text{V}_{\text{IN_BU}} = 0 \text{ V}$ 10 | | 100 | μA
mA | | | | High-side FET on resistance | $2.7 \text{ V} \le \text{V}_{\text{IN_BU}} \le 5.5 \text{ V}$ | | 2.5 | 3.5 | 111/4 | | R _{DS(ON)} | | V _{IN_BU} = 3 V | | | | Ω | | 1 | Low-side FET on resistance | 111_50 | | 2 | 3 | ^ | | I _{LIMIT} | High-side current limit | V _{IN_BU} = 3 V | | 50 | | mA | | V_{PG} | Hysteresis | V _{OUT} rising | | 3% | | | Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CON | DITIONS | MIN | TYP | MAX | UNIT | |-----------------------|---|--|---------------------------------|------|-------|------|------| | | Nominal inductor value | Chip inductor, see 表 8-3 | | 4.7 | 10 | 22 | μH | | L | Tolerance | | | -30% | | 30% | | | 0 | Output capacitance value | Ceramic, X5R or X7R, see | 表 8-3 | 20 | | 47 | μF | | C _{OUT} | Tolerance | | | -20% | - | 20% | | | LDO1 (1.8 | -V LDO) | | 1 | | | | | | V _{IN_LDO1} | Input voltage range | V _{IN_BIAS} > V _{UVLO} | | 1.8 | | 5.5 | V | | IQ | Quiescent current | No load | | | 35 | | μΑ | | V | Output voltage range | Adjustable through I ² C | | 0.9 | | 3.4 | V | | V _{OUT} | DC accuracy | $V_{OUT} + 0.2 \text{ V} \le V_{IN} \le 5.5 \text{ V};$ | 0 A ≤ I _{OUT} ≤ 200 mA | -2% | | 2% | | | l | Output current range | $V_{IN_LDO1} - V_{DO} = V_{OUT}$ | | 0 | | 200 | mA | | l _{OUT} | Output current range | V _{IN_LDO1} > 2.7 V, V _{OUT} = 1.8 | V | 0 | | 400 | IIIA | | I _{LIMIT} | Short circuit current limit | Output shorted to GND | | 445 | 550 | | mA | | V_{DO} | Dropout voltage | I _{OUT} = 100 mA, V _{IN} = 3.6 V | | | | 200 | mV | | Dames were the second | V falling | STRICT = 0b | 88.5% | 90% | 91.5% | | | | | Power-good threshold | V _{OUT} falling | STRICT = 1b | 95% | 96.5% | 96% | | | | Hysteresis | V _{OUT} rising | STRICT = 0b | 3.8% | 4.1% | 4.4% | | | | | | STRICT = 1b | | 0.25% | | ms | | V_{PG} | Deglitch | V _{OUT} falling | STRICT = 0b | | 1 | | ms | | | | | STRICT = 1b | | 50 | | μs | | | | V _{OUT} rising | STRICT = 0b | | 10 | | μs | | | | V _{OUT} rising | STRICT = 1b | | 10 | | μs | | | Time-out | | | | 5 | | ms | | | Overvoltage Detection
Threshold | V _{OUT} rising, STRICT = 1b | | 103% | | 104% | | | V_{OV} | Hystersis | V _{OUT} falling, STRICT = 1b | | | 0.25% | | | | | Deglitch | V _{OUT} rising, STRICT = 1b | | | 50 | | μs | | I _{INRUSH} | Inrush current | V _{IN_DCDC2} = 3.6 V; C _{OUT} = 1 | 0 μF to 100 μF | | | 500 | mA | | R _{DIS} | Discharge resistor | | | 150 | 250 | 350 | Ω | | C _{OUT} | Nominal output Output capacitance value | Ceramic, X5R or X7R | | 10 | | 100 | μF | | LOAD SW | ITCH 1 (LS1) | | | | | | | | V _{IN_LS1} | Input voltage range | V _{IN_BIAS} > V _{UVLO} | | 1.2 | | 3.6 | V | | | | V _{IN_LS1} = 3.3 V, I _{OUT} = 300 r
range | mA, over full temperature | | | 110 | | | | | V _{IN_LS1} = 1.8 V, I _{OUT} = 300 r
DDR2, LPDDR, MDDR at 26
temperature range | | | | 110 | | | R _{DS(ON)} | Static on resistance | V _{IN_LS1} = 1.5 V, I _{OUT} = 300 mA, DDR3 at 333 MHz over full temperature range | | | | 110 | mΩ | | | | V _{IN_LS1} = 1.35 V, I _{OUT} = 300
DDR3L at 333 MHz over full | | | | 110 | | | | | V _{IN_LS1} = 1.2 V, I _{OUT} = 200 mA,
LPDDR2 at 333 MHz over full temperature range | | | | 150 | | | I _{LIMIT} | Short circuit current limit | Output shorted to GND | | 350 | | | mA | | т | Overtemperature shutdown ⁽³⁾ | | | 125 | 132 | 139 | | | T _{OTS} | Hysteresis | | | | 10 | | °C | Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |---------------------|--|---|----------------------|------|------|------|------| | C _{OUT} | Nominal output capacitance value | Ceramic, X5R or X7R, see 表 8-3. | | 10 | | 100 | μF | | LOAD SW | ITCH 2 (LS2) | | | | | | | | V _{IN_LS2} | Input voltage range | $V_{IN_BIAS} > V_{UVLO}$ | | 4 | | 5.5 | V | | V _{UVLO} | Undervoltage lockout | Measured at IN_LS2. Supply fa | lling ⁽⁴⁾ | 2.48 | 2.6 | 2.7 | V | | VUVLO | Hysteresis | Input voltage rising | | | 170 | | mV | | R _{DS(ON)} | Static on resistance | V_{IN_LS2} = 5 V, I_{OUT} = 500 mA, or range | ver full temperature | | | 500 | mΩ | | | | | LS2ILIM[1:0] = 00b | 94 | | 126 | | | l | Short circuit current limit | Output shorted to GND; V _{IN LS2} | LS2ILIM[1:0] = 01b | 188 | | 251 | mA | | I _{LIMIT} | Short chicait carrent limit | ≥ 4 V | LS2ILIM[1:0] = 10b | 465 | | 631 | IIIA | | | | | LS2ILIM[1:0] = 11b | 922 | | 1290 | | | I _{LEAK} | Reverse leakage current | V _{LS2} > V _{IN_LS2} + 1 V | | | 12 | 30 | μA | | t _{BLANK} | Interrupt blanking time | Output shorted to GND until inte | errupt is triggered | | 15 | | ms | | R _{DIS} | Internal discharge resistor at output ⁽²⁾ | LS2DCHRG = 1b | | 150 | 250 | 380 | Ω | | - | Overtemperature shutdown ⁽⁴⁾ | | | 125 | 132 | 139 | | | T _{OTS} | Hysteresis | | | | 10 | | °C | | C _{OUT} | Nominal output capacitance value | Ceramic, X5R or X7R, see 表 8 | -3. | 1 | | 100 | μF | | LOAD SW | ITCH 3 (LS3) | | l | | | | | | V _{IN_LS3} | Input voltage range | V _{IN BIAS} > V _{UVLO} | | 1.8 | | 10 | V | | | | V _{IN_LS3} = 9 V, I _{OUT} = 500 mA, over full temperature range | | | | 440 | | | Б | | V_{IN_LS3} = 5 V, I_{OUT} = 500 mA, over full temperature range | | | | 526 | | | R _{DS(ON)} | Static on resistance | $V_{\rm IN_LS3}$ = 2.8 V, I _{OUT} = 200 mA, over full temperature range | | | | 656 | mΩ | | | | V_{IN_LS3} = 1.8 V, I_{OUT} = 200 mA, over full temperature range | | | | 910 | | | | | | LSILIM[1:0] = 00b | 98 | | 126 | | | | | V _{IN LS} > 2.3 V, | LSILIM[1:0] = 01b | 194 | | 253 | | | | | Output shorted to GND | LSILIM[1:0] = 10b | 475 | | 738 | | | I _{LIMIT} | Short circuit current limit | | LSILIM[1:0] = 11b | 900 | | 1234 | mA | | | | | LSILIM[1:0] = 00b | 98 | | 126 | | | | | V _{IN_LS} ≤ 2.3 V,
Output shorted to GND | LSILIM[1:0] = 01b | 194 | | 253 | | | | | Output shorted to GND | LSILIM[1:0] = 10b | 475 | | 738 | | | t _{BLANK} | Interrupt blanking time | Output shorted to GND until interrupt is triggered. | | | 15 | | ms | | R _{DIS} | Internal discharge resistor at output ⁽²⁾ | LS3DCHRG = 1 65 | | 650 | 1000 | 1500 | Ω | | - | Overtemperature shutdown ⁽⁴⁾ | | | 125 | 132 | 139 | °C | | T _{OTS} | Hysteresis | | | | 10 | | °C | | C _{OUT} | Nominal output capacitance value | Ceramic, X5R or X7R, see 表 8 | 1 | 100 | 220 | μF | | | BACKUP | BATTERY MONITOR | | l. | | | | | Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CONDITION | ONS | MIN | TYP | MAX | UNIT | |-----------------------|---------------------------------|---|----------------|-------------------------------|-----|--------|------| | | | Ideal level | | | 3 | | V | | | Comparator threshold | Good level | | |
2.6 | | V | | V_{TH} | · | Low level | | | 2.3 | | V | | | Accuracy | | | | - | 3% | | | R _{LOAD} | Load impedance | Applied from CC to GND during | comparison. | 70 | 100 | 130 | kΩ | | t _{DLY} | Measurement delay | R _{LOAD} is connected during delay is taken at the end of delay. | | | 600 | | ms | | I/O I EVEI | LS AND TIMING CHARACTERISTIC | , | | | | | | | | 20 AND THINKS CHARACTERIOTIC | PGDLY[1:0] = 00b | | | 10 | | | | | | PGDLY[1:0] = 01b | | | 20 | | | | PG_{DLY} | PGOOD delay time | PGDLY[1:0] = 10b | | | 50 | | ms | | | | PGDLY[1:0] = 11b | | | 150 | | | | | | | Rising edge | | 100 | | ms | | | | PB input | Falling edge | | 50 | | ms | | | | | Rising edge | | 100 | | μs | | | | AC_DET input | Falling edge | | 10 | | ms | | | | | Rising edge | | 10 | | ms | | t_{DG} | Deglitch time | PWR_EN input | Falling edge | | 100 | | μs | | | | | Rising edge | | 1 | | ms | | | | GPIO1 Falling edge | | | 1 | | ms | | | | GPIO3 GPIO2 Rising edge Falling edge | | | 5 | | μs | | | | | | | 5 | | μs | | | | TRST = 0b | | 8 | | | | | t _{RESET} | Reset time | PB input held low | TRST = 1b | | 15 | | s | | | - | SCL, SDA, GPIO1, and GPIO3 GPIO2 | | 1.3 | | | | | V_{IH} | High level input voltage | AC_DET, PB | | 0.66 ×
IN_BIAS | | | V | | | | PWR EN | | 1.3 | | | | | V _{IL} | Low level input voltage | SCL, SDA, PWR_EN, AC_DET, GPIO3 GPIO2 | PB, GPIO1, and | 0 | | 0.4 | V | | | | GPO2; I _{SOURCE} = 5 mA; GPO2_BUF = 1 | | V _{IN_LS1} - 0.3 | V | IN_LS1 | | | V _{OH} | High level output voltage | PGOOD_BU; I _{SOURCE} = 100 μA | | V _{DCDC6} –
10 mV | | | V | | | | nWAKEUP, nINT, SDA, PGOOD, GPIO1, GPO2, and GPIO3; I _{SINK} = 2 mA | | 0 | | 0.3 | | | V_{OL} | Low level output voltage | nPFO; I _{SINK} = 2 mA | | 0 | | 0.35 | V | | | | PGOOD_BU; I _{SINK} = 100 μA | | 0 | | 0.3 | | | | Power-fail comparator threshold | Input falling | | | 800 | | mV | | | Hysteresis | Input rising | | | 40 | | mV | | V_{PFI} | Accuracy | | | -4% | | 4% | | | | | Input falling | | | 25 | | μs | | | Deglitch | Input rising | | | 10 | | ms | | I _{DC34_SEL} | DC34 SEL bias current | Enabled only at power-up. | | | 10 | | μA | Over operating free-air temperature range (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | |-----------------------|--|--|----------|------|------|------|--| | | | Threshold 1 | | 100 | | | | | | | Threshold 2 | | 163 | | | | | | | Threshold 3 | | 275 | | | | | V _{DC34_SEL} | DCDC3 and DCDC4 power-up default selection thresholds | Threshold 4 | | 400 | | mV | | | | deldak selesten tincenelde | Threshold 5 | | 575 | | 1 | | | | | Threshold 6 | | 825 | | | | | | | Threshold 7 | | 1200 | | | | | | | Setting 0 | 0 | 0 | 7.7 | | | | | | Setting 1 | 11.3 | 12.1 | 13 | | | | | | Setting 2 | 18.1 | 20 | 22 | | | | В | DCDC3 and DCDC4 power-up default selection resistor values | Setting 3 | 30.9 | 31.6 | 32.3 | kΩ | | | R _{DC34_SEL} | | Setting 4 | 44.8 | 45.3 | 46.4 | | | | | | Setting 5 | 64.2 | 64.9 | | | | | | | Setting 6 | 92.9 | 95.3 | 96.9 | | | | | | Setting 7 | 135.3 | 150 | | | | | | lamit bias sumant | SCL, SDA, GPIO1 ⁽⁵⁾ , GPIO3 ⁽⁵⁾ ; V _{IN} = 3.3 V | | 0.01 | 1 | μA | | | I _{BIAS} | Input bias current | PB, AC_DET, PFI; V _{IN} = 3.3 V | | | 500 | nA | | | I _{LEAK} | Pin leakage current | nINT, nWAKEUP, nPFO, PGOOD, PWR_EN, GPIO1 ⁽⁶⁾ , GPO2 ⁽⁷⁾ , GPIO3 ⁽⁶⁾ V _{OUT} = 3.3 V | | | 500 | nA | | | OSCILLATO | OR | | | | | | | | | Oscillator frequency | | | 2400 | | kHz | | | f_{OSC} | Frequency accuracy | $T_{\rm J} = -40^{\circ}{\rm C} \text{ to } +105^{\circ}{\rm C}$ | -12% | | 12% | | | | OVERTEM | PERATURE SHUTDOWN | | <u> </u> | | | | | | | Overtemperature shutdown | Increasing junction temperature | 135 | 145 | 155 | °C | | | T _{OTS} | Hysteresis | Decreasing junction temperature | | 20 | | | | | T | High-temperature warning | Increasing junction temperature | 90 | 100 | 110 | °C | | | T _{WARN} | Hysteresis | Decreasing junction temperature | 15 | | | | | - IN_BU has priority over CC input. (1) - Discharge function disabled by default. (2) - Switch is temporarily turned OFF if temperature exceeds OTS threshold. - (3) (4) Switch is temporarily turned OFF if input voltage drops below UVLO threshold. - (5) Configured as input. - Configured as output. (6) - Configured as open-drain output. (7) - 500-μF of remote capacitance can be supported for DCDC1 and DCDC2. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## **6.6 Timing Requirements** | | | | MIN | NOM | MAX | UNIT | |---------------------|--|------------------------------|-----|-----|------|-------| | f | Serial clock frequency | | | 100 | | kHz | | f _{SCL} | Serial Glock frequency | | | 400 | | KI IZ | | + | Hold time (repeated) START condition. After this period, the | SCL = 100 kHz | 4 | | | μs | | t _{HD;STA} | first clock pulse is generated. | SCL = 400 kHz | 600 | | | ns | | t 1.0 | LOW period of the SCL clock | SCL = 100 kHz | 4.7 | | | ше | | t_{LOW} | LOW period of the SCL Glock | SCL = 400 kHz | 1.3 | | | μs | | + | LICH paried of the SCI plack | SCL = 100 kHz | 4 | | | | | t _{HIGH} | HIGH period of the SCL clock | SCL = 400 kHz ⁽¹⁾ | 1 | | | μs | | 4 0- | Cat up time for a remarked CTART condition | SCL = 100 kHz | 4.7 | | | μs | | t _{SU;STA} | Set-up time for a repeated START condition | SCL = 400 kHz | 600 | | | ns | | | Data hald times | SCL = 100 kHz | 0 | | 3.45 | μs | | t _{HD;DAT} | Data hold time | SCL = 400 kHz | 0 | | 900 | ns | | | Data and up time | SCL = 100 kHz | 250 | | | | | t _{SU;DAT} | Data set-up time | SCL = 400 kHz | 100 | | | ns | | | Disa time of both CDA and COL simula | SCL = 100 kHz | | | 1000 | | | t _r | Rise time of both SDA and SCL signals | SCL = 400 kHz | | | 300 | ns | | 4 | Fall time of both CDA and CCI signals | SCL = 100 kHz | | | 300 | | | t _f | Fall time of both SDA and SCL signals | SCL = 400 kHz | | | 300 | ns | | | Cat up time for CTOD and distant | SCL = 100 kHz | 4 | | | μs | | t _{SU;STO} | Set-up time for STOP condition | SCL = 400 kHz | 600 | | | ns | | | Bus free time between STOP and START condition | SCL = 100 kHz | 4.7 | | | | | t _{BUF} | bus free time between STOP and START condition | SCL = 400 kHz | 1.3 | | | μs | | 4 | Pulse width of spikes which must be suppressed by the input | SCL = 100 kHz | (2) | | (2) | 20 | | t _{SP} | filter | SCL = 400 kHz | 0 | | 50 | ns | | ^ | Compatitive local for each has live | SCL = 100 kHz | | | 400 | | | C _b | Capacitive load for each bus line | SCL = 400 kHz | | | 400 | pF | ⁽¹⁾ The SCL duty cycle at 400 kHz must be > 40%. ⁽²⁾ The inputs of I²C devices in Standard-mode do not require spike suppression. ## **6.7 Typical Characteristics** At $T_J = 25$ °C unless otherwise noted. ## 7 Detailed Description #### 7.1 Overview The TPS6521845 provides three step-down converters, three load switches, three general-purpose I/Os, two battery backup supplies, one buck-boost converter, and one LDO. The system can be supplied by a regulated 5-V supply. The device is characterized across a –40°C to +105°C temperature range, which makes it suitable for various industrial applications. The I^2C interface provides comprehensive features for using TPS6521845. All rails, load switches, and GPIOs can be enabled and disabled. Voltage thresholds for the UVLO and supervisor can be customized. Power-up and power-down sequences can also be programmed through I^2C . Interrupts for overtemperature, overcurrent, and undervoltage can be monitored for the load-switch. The three hysteretic step-down converters can each supply up to 1.8 A of current. The default output voltages for each converter can be adjusted through the I²C interface. DCDC1 and DCDC2 features dynamic voltage scaling with an adjustable slew rate. The step-down converters operate in a low power mode at light load, and can be forced into power mode (PWM) operation for noise sensitive applications. #### 7.2 Functional Block Diagram Product Folder Links: TPS6521845 #### 7.3 Feature Description #### 7.3.1 Wake-Up and Power-Up and Power-Down Sequencing The TPS6521845 has a predefined power-up and power-down sequence, which does not change in a typical application. The user can define custom sequences with I^2C . The power-up sequence is defined by a series of ten strobes and nine delay times. Each output rail is assigned to a strobe to determine the order of enabling rails. A single rail is assigned to only one strobe, but multiple rails can be assigned to the same strobe. The delay times between strobes are between 2 ms and 5 ms. ### 7.3.1.1 Power-Up Sequencing When the power-up sequence initiates, STROBE 1 occurs, and any rail assigned to this strobe is enabled. After a delay time of DLY1, STROBE 2 occurs and the rail assigned to this strobe is powered up. The sequence continues until all strobes occur and all DLYx times execute. Strobe assignments and delay times are defined in the SEQx registers, and are changed under I²C control. The power-up sequence executes if one of the following events occurs: - · From the OFF state: - The push-button (PB) is pressed (falling edge on PB) or - The AC_DET pin is pulled low (falling edge) or - The PWR_EN is asserted (driven to high-level) or - The main power is connected (IN_BIAS) and AC_DET is grounded and - The device is not in undervoltage lockout (UVLO) or overtemperature shutdown (OTS). - · From the PRE OFF state: - The PB is pressed (falling edge on PB) or - The AC_DET pin is pulled low (falling edge) or - The PWR EN is asserted (driven to high-level) and - The device is not in UVLO or OTS. - · From the SUSPEND state: - The PB is pressed (falling edge on PB) or - The AC DET pin is pulled low (falling edge) or - The PWR EN pin is
pulled high (level sensitive) and - The device is not in UVLO or OTS. When a power-up event is detected, the device enters a WAIT_PWR_EN state and triggers the power-up sequence. The device remains in WAIT_PWR_EN as long as the PWR_EN and either the PB or AC_DET pin are held low. If both, the PB and AC_DET return to logic-high state and the PWR_EN pin has not been asserted within 20 s of entering WAIT_PWR_EN state, the power-down sequence is triggered and the device returns to OFF state. Once PWR_EN is asserted, the device advances to ACTIVE state, which is functionally equivalent to WAIT_PWR_EN. However, the AC_DET pin is ignored and power-down is controlled by the PWR_EN pin only. Rails not assigned to a strobe (SEQ = 0000b) are not affected by power-up and power-down sequencing and remain in their current ON or OFF state regardless of the sequencer. A rail can be enabled and disabled at any time by setting the corresponding enable bit in the ENABLEx register, with the exception that the ENABLEx register cannot be accessed while the sequencer is active. Enable bits always reflect the current enable state of the rail. For example, the sequencer sets and resets the enable bits for the rails under its control. 注 The power-up sequence is defined by strobes and delay times, and can be triggered by the PB, AC_DET (not shown, same as PB), or PWR_EN pin. Push-button deglitch time is not shown. #### 図 7-1. Power-Up Sequences from OFF or SUSPEND State; PB is Power-Up Event 図 7-2. Power-Up Sequences from SUSPEND State; PWR_EN is Power-Up Event 図 7-3. Power-Up Sequences from RECOVERY State #### 7.3.1.2 Power-Down Sequencing By default, the power-down sequence follows the reverse of the power-up sequence. When the power-down sequence is triggered, STROBE 10 occurs and any rail assigned to STROBE 10 is shut down and its discharge circuit is enabled. After a delay time of DLY9, STROBE 9 occurs and any rail assigned to it is shut down and its discharge circuit is enabled. The sequence continues until all strobes occur and all DLYx times execute. The DLYx times are extended by a factor of 10x to provide ample time for discharge, and preventing output voltages from crossing during shut-down. The DLYFCTR bit is applied globally to all power-down delay times. Regardless of the DLYx and DLYFCTR settings, the PMIC enters OFF, SUSPEND, or RECOVERY state 500 ms after the power-down sequence initiates, to ensure that the discharge circuits remain enabled for a minimum of 150 ms before the next power-up sequence starts. A power-down sequence executes if one of the following events occurs: - The device is in the WAIT_PWR_EN state, the PB and AC_DET pins are high, PWR_EN is low, and the 20-s timer has expired. - The device is in the ACTIVE state and the PWR EN pin is pulled low. - The device is in the WAIT_PWR_EN, ACTIVE, or SUSPEND state and the push-button is held low for > 8 s (15 s if TRST = 1b). - · A fault occurs in the device (OTS, UVLO, PGOOD failure). When transitioning from ACTIVE to SUSPEND state, the rails not controlled by the power-down sequencer maintains the same ON/OFF state in SUSPEND state that it had in ACTIVE state. This allows for the selected power rails to remain powered up when in the SUSPEND state. When transitioning to the OFF or RECOVERY state, rails not under sequencer control are shut-down as follows: - DCDC1, DCDC2, DCDC3, DCDC4, LDO1, and LS1 shut down at the beginning of the power-down sequence, if not under sequencer control (SEQ = 0b). - LS2 and LS3 shut down as the state machine enters an OFF or RECOVERY state; 500 ms after the powerdown sequence is triggered. If the supply voltage on IN_BIAS drops below 2.5 V, the digital core is reset and all power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4, and LDO1). The amount of time the discharge circuitry remains active is a function of the INT_LDO hold up time (see セクション 7.3.1.6 for more details). #### 7.3.1.3 Strobe 1 and Strobe 2 STROBE 1 and STROBE 2 are dedicated to DCDC5 and DCDC6 which are *always-on*; powered up as soon as the device exits the OFF state, and ON in any other state. STROBE 1 and STROBE 2 options are available only for DCDC5 and DCDC6, not for any other rails. 図 7-4. Power-Down Sequences to OFF State; PWR_EN is Power-Down Event; FSEAL = 0b STROBE2 and STROBE1 are not shown. 図 7-5. Power-Down Sequences to SUSPEND State; PWR_EN is Power-Down Event; FSEAL = 1b STROBE2 and STROBE1 are not shown. 図 7-6. Power-Down Sequences to RECOVERY State; TSD or UV is Power-Down Event Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 7.3.1.4 Supply Voltage Supervisor and Power-Good (PGOOD) Power-good (PGOOD) is an open-drain output of the built-in voltage supervisor that monitors DCDC1, DCDC2, DCDC3, DCDC4, and LDO1. The output is Hi-Z when all enabled rails are in regulation and driven low when one or more rails encounter a fault which brings the output voltage outside the specified tolerance range. In a typical application PGOOD drives the reset signal of the SOC. 図 7-7. Definition of Undervoltage, Overvoltage Thresholds, Hysteresis, and Deglitch Times The following rules apply to the PGOOD output: - The power-up default state for THE PGOOD is low. When all rails are disabled, the PGOOD output is driven low. - · Only enabled rails are monitored. Disabled rails are ignored. - Power-good monitoring of a particular rail starts 5 ms after the rail is enabled and is continuously monitored thereafter. This allows the rail to power-up. - The PGOOD is delayed by PGDLY time after the sequencer is finished and the last rail is enabled. - If an enabled rail is continuously outside the monitoring threshold for longer than the deglitch time, then the PGOOD is pulled low, and all rails are shut-down following the power-down sequence. PGDLY does not apply. - Disabling a rail manually by resetting the DCx_EN or LDO1_EN bit has no effect on the PGOOD pin. If all rails are disabled, the PGOOD is driven low as the last rail is disabled. - If the power-down sequencer is triggered, PGOOD is driven low. - The PGOOD is driven low in the SUSPEND state, regardless of the number of rails that are enabled. A. (1) Sequence shown for TPS65218D0 variant. For other TPS65218xx variants, refer to registers SEQ1-7 in Section 5.6.4 for factory programmed sequence order and timing. ## 図 7-8. Typical Power-Up Sequence of the Main Output Rails ### 7.3.1.5 Backup Supply Power-Good (PGOOD_BU) PGOOD_BU is a push-pull output indicating if DCDC5 and DCDC6 are in regulation. The output is driven to high when both rails are in regulation, and driven low if at least one of the rails is below the power-good threshold. The output-high level is equal to the output voltage of DCDC6. PGOOD_BU is the logical *and* between PGOOD (DCDC5) and PGOOD (DCDC6), and has no delay time built-in. Unlike the main power-good, a fault on DCDC5 or DCDC6 does not trigger the power-down sequencer, does not disable any of the rails in the system, and has no effect on the PGOOD pin. DCDC5 and DCDC6 recover automatically once the fault is removed. 注 In this example, the power-down is triggered by a fault on DCDC3. A. Sequence shown for TPS65218D0 and TPS6521825 variants. For TPS6521815 variant, order and timing of DCDC5 and DCDC6 can be modified using registers SEQ1-2 and SEQ5 in セクション 7.5.4. #### 図 7-9. Typical Power-Up Sequence of DCDC5 and DCDC6 #### 7.3.1.6 Internal LDO (INT_LDO) The internal LDO provides a regulated voltage to the internal digital core and analog circuitry. The internal LDO has a nominal output voltage of 2.5 V and can support up to 10 mA of external load. When system power fails, the UVLO comparator triggers the power-down sequence. If system power drops below 2.5 V, the digital core is reset and all remaining power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4 and LDO1). The internal LDO reverse blocks to prevent the discharging of the output capacitor (C_{INT_LDO}) on the INT_LDO pin. The remaining charge on the INT_LDO output capacitor provides a supply for the power rail discharge circuitry to ensure the outputs are discharged to ground even if the system supply has failed. The amount of hold-up time specified in is a function of the output capacitor value (C_{INT_LDO}) and the amount of external load on the INT_LDO pin, if any. The design allows for enough hold-up time to sufficiently discharge DCDC1-4, and LDO1 to ensure proper processor power-down sequencing. The amount of hold-up time is a function of the output capacitor value, which should not exceed 22 μ F and the amount of external load, if any. 図 7-10. Internal LDO and UVLO Sensing #### 7.3.1.7 Current Limited Load Switches The TPS6521845 provides three current limited load switches with individual inputs, outputs, and enable control. Each switch provides the following control and diagnostic features: - The ON or OFF state of the switch is controlled by the corresponding LSx EN bit in the ENABLE register. - LS1 can be controlled by the sequencer or through I²C communication. - LS2 and LS3 can only be controlled through I²C communication. The sequencer has no control over LS2 and LS3. - Each switch has an active discharge function, disabled by default, and enabled through the LSxDCHRG bit. When enabled, the switch output is discharged to ground whenever the switch is disabled. - When the PFI input drops below the power-fail threshold (the power-fail comparator trips), the load switches are automatically disabled to shed system load. This function must be individually enabled for each switch through the corresponding LSxnPFO bit. The switches do not turn back on automatically as the system voltage recovers, and must be manually re-enabled. - An interrupt (LSx_I) issues whenever a load switch actively limits the output current, such as when the output load exceeds the
current limit value. The switch remains ON and provides current to the load according to the current-limit setting. - All three load switches have local overtemperature sensors which disable the corresponding switch if the power dissipation and junction temperature exceeds the safe operating value. The switch automatically recovers once the temperature drops below the OTS threshold value minus hysteresis. The LSx_F (fault) interrupt bit is set while the switch is held OFF by the OTS function. #### 7.3.1.7.1 Load Switch 1 (LS1) LS1 is a non-reverse blocking, low-voltage (< 3.6 V), low-impedance switch intended to support DDRx self-refresh mode by cutting off the DDRx supply to the SOC DDRx interface during SUSPEND mode. In a typical application, the input of LS1 is tied to the output of DCDC3 while the output of LS1 is connected to the memory-interface supply pin of the SOC. LS1 can be controlled by the internal sequencer, just as any power rail. 図 7-11. Typical Application of Load Switch 1 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 7.3.1.7.2 Load Switch 2 (LS2) LS2 is a reverse-blocking, 5 V, low-impedance switch. Load switch 2 provides four different current limit values (100/200/500/1000 mA) that are selectable through LS2ILIM[1:0] bits. Overcurrent is reported through the LS2_I interrupt. LS2 has its own input-undervoltage protection which forces the switch OFF if the switch input voltage (V_{IN_LS2}) is <2.7 V. Similar to OTS, the LS2_F interrupt is set when the switch is held OFF by the local UVLO function, and the switch recovers automatically when the input voltage rises above the UVLO threshold. 図 7-12. Typical Application of Load Switch 2 #### 7.3.1.7.3 Load Switch 3 (LS3) LS3 is a non-reverse blocking, medium-voltage (< 10 V), low-impedance switch that can be used to provide 1.8-V to 10-V power to an auxiliary port. LS3 has four selectable current limit values that are selectable through LS3ILIM[1:0]. 図 7-13. Typical Application of Load Switch 3 #### 7.3.1.8 LDO1 LDO1 is a general-purpose LDO intended to provide power to analog circuitry on the SOC. LDO1 has an input voltage range from 1.8 V to 5.5 V, and can be connected either directly to the system power or the output of a DCDC converter. The output voltage is programmable in the range of 0.9 V to 3.4 V with a default of 1.8 V. LDO1 supports up to 200 mA at the minimum specified headroom voltage, and up to 400 mA at the typical operating condition of $V_{OUT} = 1.8 \text{ V}$, $V_{IN \ LDO1} > 2.7 \text{ V}$. #### 7.3.1.9 Coin Cell Battery Voltage Acquisition 図 7-14. Left: Flow Chart for Acquiring Coin Cell Battery Voltage Right: Comparator Circuit #### 7.3.1.10 UVLO Depending on the slew rate of the input voltage into the IN_BIAS pin, the power rails of TPS6521845 will be enabled at either V_{ULVO} or $V_{ULVO} + V_{HYS}$. If the slew rate of the IN_BIAS voltage is greater than 30 V/s, then TPS6521845 will power up at V_{ULVO} . Once the input voltage rises above this level, the input voltage may drop to the V_{UVLO} level before the PMIC shuts down. In this scenario, if the input voltage were to fall below V_{UVLO} but above 2.55 V, the input voltage would have to recover above V_{UVLO} in less than 5 ms for the device to remain active. If the slew rate of the IN_BIAS voltage is less than 30 V/s, then TPS6521845 will power up at $V_{ULVO} + V_{HYS}$. Once the input voltage rises above this level, the input voltage may drop to the V_{UVLO} level before the PMIC shuts down. In this scenario, if the input voltage were to fall below V_{UVLO} but above 2.5 V, the input voltage would have to recover above $V_{UVLO} + V_{HYS}$ in less than 5 ms for the device to remain active. In either slew rate scenario, if the input voltage were to fall below 2.5 V, the digital core is reset and all remaining power rails are shut down instantaneously and are pulled low to ground by their internal discharge circuitry (DCDC1-4 and LDO1). Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 図 7-15. Definition of UVLO and Hysteresis, IN_BIAS Slew Rate > 30 V/s 図 7-16. Definition of UVLO and Hysteresis, IN_BIAS Slew Rate < 30 V/s After the UVLO triggers, the internal LDO blocks current flow from its output capacitor back to the IN_BIAS pin, allowing the digital core and the discharge circuits to remain powered for a limited amount of time to properly shut-down and discharge the output rails. The hold-up time is determined by the value of the capacitor connected to INT LDO. See セクション 7.3.1.6 for more details. ### 7.3.1.11 Power-Fail Comparator The power-fail comparator notifies the system host if the system supply voltage drops and the system is at risk of shutting down. The comparator has an internal 800-mV threshold and the trip-point is adjusted by an external resistor divider. By default, the power-fail comparator has no impact on any of the power rails or load switches. Load switches are configured individually, to be disabled when the PFI comparator trips to shed system load and extend hold-up time as described in $brac{abc}{2} 7.3.1.7$. The power-fail comparator also triggers the power-down sequencer, such that all or selective rails power-down when the system voltage fails. To tie the power-fail comparator into the power-down sequence, the OFFnPFO bit in the CONTROL register must be set to 1. The power-fail comparator cannot be monitored by software, such that no interrupt or status bit is associated to this function. 図 7-17. Power-Fail Comparator Simplified Circuit and Timing Diagram #### 7.3.1.12 Battery-Backup Supply Power-Path DCDC5 and DCDC6 are supplied from either the CC (coin-cell battery) input or IN_BU (main system supply). The power-path is designed to prioritize IN_BU to maximize coin-cell battery life. Whenever the PMIC is powered-up (WAIT_PWR_EN, ACTIVE, SUSPEND, and RECOVERY state), the power-path is forced to select the IN_BU input. In OFF mode the power-path selects the higher of the two inputs with a built-in hysteresis of 150 mV as shown in \boxtimes 7-18. 図 7-18. Switching Behavior of the Battery-Backup-Supply Power-Path; Power-Path Hysteresis - System is supplied by Li-lon battery with a fresh coin-cell backup battery. - B. (VIN_BIAS slow decay) - 図 7-20. Switching Behavior of the Battery-Backup-Supply Power-Path; Weakening Main Battery, Strong Coin-Cell - A. Main Supply is disconnected or decays rapidly. - B. Rapid decay of VIN BIAS (preregulator) ## ☑ 7-19. Switching Behavior of the Battery-Backup-Supply Power-Path; Main Power Supply Removal - System is supplied by Li-lon battery with a weak coin-cell backup battery. - B. VIN BIAS slow decay 図 7-21. Switching Behavior of the Battery-Backup-Supply Power-Path; Weakening Main Battery, Weak Coin-Cell When V_{IN_BIAS} drops below the UVLO threshold, the PMIC shuts down all rails and enters OFF mode. At this point the power-path selects the higher of the two input supplies. If the coin-cell battery is less than 150 mV above the UVLO threshold, SYS_BU remains connected to IN_BU (see \boxtimes 7-20). If the coin-cell is >150 mV above the UVLO threshold, the power-path switches to the CC input as shown in \boxtimes 7-21. With no load on the main supply, the input voltage may recover over time to a value greater than the coin-cell voltage and the power-path switches back to IN_BU. This is a typical behavior in a Li-Ion battery powered system. Depending on the system load, V_{IN_BIAS} may drop below V_{INT_LDO} before the power-down sequence is completed. In that case, INT_LDO is turned OFF and the digital core is reset forcing the unit into OFF mode and the power-path switches to IN_BU as shown in \boxtimes 7-19. ## 7.3.1.13 DCDC3 and DCDC4 Power-Up Default Selection 図 7-22. Left: Flow Chart for Selecting DCDC Power-Up Default Voltage Right: Comparator Circuit 表 7-1. Power-Up Default Values of DCDC3 and DCDC4 | F | SEL [KΩ] | | POWER-UP DEFAULT | | | | | |-------|----------|-----------------|------------------|---------------|--|--|--| | MIN | TYP | MAX | DCDC3[5:0] | DCDC4[5:0] | | | | | 0 | 0 | 7.7 | 0xCh (1.2 V) | 0x32h (3.3 V) | | | | | 11.3 | 12.1 | 13 | 0x12 (1.35 V) | 0x32h (3.3 V) | | | | | 18.1 | 20 | 22 | 0x18 (1.5 V) | 0x32h (3.3 V) | | | | | 30.9 | 31.6 | 32.3 | 0x1F (1.8 V) | 0x32h (3.3 V) | | | | | 44.8 | 45.3 | 46.4 | 0x3D (3.3 V) | 0x01 (1.2 V) | | | | | 64.2 | 64.9 | | 0xCh (1.2 V)) | 0x07 (1.35 V) | | | | | 92.9 | 95.3 | 96.9 | 0xCh (1.2 V) | 0x0D (1.5 V) | | | | | 135.3 | 150 | Tied to INT_LDO | 0xCh (1.2 V) | 0x14 (1.8 V) | | | | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ### 7.3.1.14 I/O Configuration The device has two GPIOs and one GPO pin, which are configured as follows: - GPIO1: - General-purpose, open-drain output is controlled by the GPO1 user bit or sequencer. - DDR3 reset input signal from SOC. The signal is either latched or passed-through to the GPO2 pin. See 表 7-2 for details. - GPO2: - General-purpose output is controlled by the GPO2 user bit. - DDR3 reset output signal. Signal is controlled by GPIO1 and PGOOD. See 表 7-3 for details. - Output buffer is configured as open-drain or push-pull. - GPIO3: - General-purpose, open-drain output id controlled by the GPO3 user bit or sequencer. - Reset input-signal for DCDC1 and DCDC2. #### 表 7-2. GPIO1 Configuration | IO1_SEL
(EEPROM) | GPO1
(USER BIT) | PGOOD
(PMIC SIGNAL) | GPIO1
(I/O PIN) | COMMENTS | | | | | |---------------------|--------------------|------------------------|--------------------|--|--|--|--|--| | 0 | 0 | X | 0 | Open-drain output, driving low | | | | | | 0 | 1 | X | HiZ | Open-drain output, HiZ | | | | | | 1 | Х | 0 | х | Pin is configured as input and intended as DDR RESET signal. Coming out of POR, GPO2
is driven low. Otherwise, GPO2 status is latched at falling edge of PGOOD. See 37-25. | | | | | | 1 | Х | 1 | 0 | Pin is configured as input and intended as DDR RESET signal. GPO2 is driven low. | | | | | | 1 | Х | 1 | 1 | Pin is configured as input and intended as DDR RESET signal. GPO2 is driven high. | | | | | #### 表 7-3. GPO2 Configuration | 2.7 of or | | | | | | | | | |---|----------------------|--------------------|--|--|--|--|--|--| | IO1_SEL
(EEPROM) | GPO2_BUF
(EEPROM) | GPO2
(USER BIT) | COMMENTS | | | | | | | 0 | 0 | 0 | GPO2 is open drain output controlled by GPO2 user bit (driving low). | | | | | | | 0 | 0 | 1 | GPO2 is open drain output controlled by GPO2 user bit (HiZ). | | | | | | | 0 | 1 | 0 | GPO2 is push-pull output controlled by GPO2 user bit (driving low). | | | | | | | 0 | 1 | 1 | GPO2 is push-pull output controlled by GPO2 user bit (driving high). | | | | | | | 1 | 0 | Х | GPO2 is open drain output controlled by GPIO1 and PGOOD. | | | | | | | 1 | 1 | Х | GPO2 is push-pull output controlled by GPIO1 and PGOOD. | | | | | | #### 表 7-4. GPIO3 Configuration | DC12_RST
(EEPROM) | GPO3
(USER BIT) | GPIO3
(I/O PIN) | COMMENTS | |----------------------|--------------------|--------------------|---| | 0 | 0 | 0 | Open-drain output, driving low | | 0 | 1 | HiZ | Open-drain output, HiZ | | 1 | X | Active low | GPIO3 is DCDC1 and DCDC2 reset input signal to PMIC (active low). See セクション 7.3.1.14.2 for details. | #### 7.3.1.14.1 Configuring GPO2 as Open-Drain Output GPO2 may be configured as open-drain or push-pull output. The supply for the push-pull driver is internally connected to the IN_LS1 input pin, whereas an external pull-up resistor and supply are required in the open-drain configuration. Because of the internal connection to IN_LS1, the external pull-up supply must not exceed the voltage on the IN_LS1 pin, otherwise leakage current may be observed from GPO2 to IN_LS1 as shown in \mathbb{Z} 7-23. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 図 7-23. GPO2 as Open-Drain Output 注 When configured as open-drain output, the external pull-up supply must not exceed the voltage level on IN_LS1 pin. #### 7.3.1.14.2 Using GPIO3 as Reset Signal to DCDC1 and DCDC2 The GPIO3 is an edge-sensitive reset input to the PMIC, when the DC12_RST bit set to 1. The reset signal affects DCDC1 and DCDC2 only, so that only those two registers are reset to the power-up default whenever GPIO3 input transitions from high to low, while all other registers maintain their current values. DCDC1 and DCDC2 transition back to the default value following the SLEW settings, and are not power cycled. This function recovers the processor from reset events while in low-power mode. 図 7-24. I/O Pin Logic Product Folder Links: TPS6521845 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 図 7-25. DDR3 Reset Timing Diagram 注 GPIO must be configured as input (IO1_SEL = 1b). GPO2 is automatically configured as output. #### 7.3.1.15 Push Button Input (PB) The PB pin is a CMOS-type input used to power-up the PMIC. Typically, the PB pin is connected to a momentary switch to ground and an external pullup resistor. The power-up sequence is triggered if the PB input is held low for 600 ms. 図 7-26. Left: Typical PB Input Circuit Right: Push-Button Input (PB) Deglitch and Power-Up Timing In ACTIVE mode, the TPS6521845 monitors the PB input and issues an interrupt when the pin status changes, such as when it drops below or rises above the PB input-low or input-high thresholds. The interrupt is masked by the PBM bit in the INT MASK1 register. 図 7-27. PB Input-Low or Input-High Thresholds 注 Interrupts are issued whenever the PB pin status changes. The PB_STATE bit reflects the current status of the PB input. nWAKEUP is pulled low for 150 µs on every falling edge of PB. #### 7.3.1.15.1 Signaling PB-Low Event on the nWAKEUP Pin In ACTIVE state, the nWAKEUP pin is pulled low for five 32-kHz clock cycles (approximately 150 μ s) whenever a falling edge on the PB input is detected. This allows the host processor to wakeup from DEEP SLEEP mode of operation. It is recommended to pull-up the nWAKEUP pin to DCDC6 output through a 1-M Ω resistor . #### 7.3.1.15.2 Push Button Reset If the PB input is pulled low for 8 s (15 s if TRST = 1b) or longer, then all rails except for DCDC5 and DCDC6 are disabled, and the device enters the RECOVERY state. The device powers up automatically after the 500 ms power-down sequence is complete, regardless of the state of the PB input. Holding the PB pin low for 8 s (15 s if TRST = 1b), only turns off the device temporarily and forces a system restart, and is not a power-down function. If the PB is held low continuously, the device power-cycles in 8-s and 15-s intervals. #### 7.3.1.16 AC DET Input (AC DET) The AC DET pin is a CMOS-type input used in three different ways to control the power-up of the PMIC: - In a battery operated system, AC_DET is typically connected to an external battery charger with an opendrain power-good output pulled low when a valid charger supply is connected to the system. A falling edge on the AC_DET pin causes the PMIC to power up. - In a non-portable system, the AC_DET pin may be shorted to ground and the device powers up whenever system power is applied to the chip. - If none of the above behaviors are desired, AC_DET may be tied to system power (IN_BIAS). Power-up is then controlled through the push-button input or PWR_EN input. - A. Portable Systems - B. Non-portable Systems - C. Disabled #### 図 7-28. AC_DET Pin Configurations 図 7-29. AC_DET Input Deglitch and Power-Up Timing (Portable Systems) In ACTIVE state, the TPS6521845 monitors the AC_DET input and issues an interrupt when the pin status changes, such as when it drops below or rises above the AC_DET input-low or input-high thresholds. The interrupt is masked by the ACM bit in the INT_MASK1 register. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 図 7-30. AC_STATE Pin 注 Interrupts are issued whenever the AC_DET pin status changes. The AC_STATE bit reflects the current status of the AC_DET input. #### 7.3.1.17 Interrupt Pin (INT) The interrupt pin signals any event or fault condition to the host processor. Whenever a fault or event occurs in the device, the corresponding interrupt bit is set in the INT register, and the open-drain output is pulled low. The INT pin is released (returns to Hi-Z state) and fault bits are cleared when the host reads the INT register. If a failure persists, the corresponding INT bit remains set and the INT pin is pulled low again after a maximum of 32 µs. The MASK register masks events from generating interrupts. The MASK settings affect the INT pin only, and have no impact on the protection and monitor circuits. #### 7.3.1.18 I²C Bus Operation The TPS6521845 hosts a slave I²C interface (address 0x24) that supports data rates up to 400 kbps, autoincrement addressing. 1 図 7-31. Subaddress in I²C Transmission The I²C bus is a communications link between a controller and a series of slave terminals. The link is established using a two-wired bus consisting of a serial clock signal (SCL) and a serial data signal (SDA). The serial clock is sourced from the controller in all cases where the serial data line is bi-directional for data communication between the controller and the slave terminals. Each device has an open drain output to transmit data on the serial data line. An external pullup resistor must be placed on the serial data line to pull the drain output high during data transmission. Data transmission initiates with a start bit from the controller as shown in 🗵 7-33. The start condition is recognized when the SDA line transitions from high to low during the high portion of the SCL signal. Upon reception of a start bit, the device receives serial data on the SDA input and checks for valid address and control information. If the appropriate slave address is set for the device, the device issues an acknowledge pulse and prepares to receive register address and data. Data transmission is completed by either the reception of a stop condition or the reception of the data word sent to the device. A stop condition is recognized as a low to high transition of the SDA input during the high portion of the SCL signal. All other transitions of the SDA line must occur during the low portion of the SCL signal. An acknowledge issues after the reception of valid slave address, register-address, and data words. The I²C interfaces an auto-sequence through the register addresses, so that multiple data words can be sent for a given I²C transmission. Reference ⊠ 7-32 and ⊠ 7-33 for details. Product Folder Links: TPS6521845 ¹ Note: The SCL duty cycle at 400 kHz must be >40%. 図 7-33. I²C Protocol and Transmission Timing I²C Start Stop and Acknowledge Protocol 図 7-34. I²C Protocol and Transmission Timing I²C Data Transmission Timing #### 7.4 Device Functional Modes #### 7.4.1 Modes of Operation PB (\downarrow) has 50 ms debounce. AC_DET (↓) has 10 ms debounce. (\downarrow) = denotes falling edge of signal. 図 7-35. Modes of Operation Diagram #### 7.4.2 OFF In OFF mode, the PMIC is completely shut down with the exception of a few circuits to monitor the AC_DET, PWR_EN, and PB input. All power rails are turned off and the registers are reset to their default values. The I^2C communication interface is turned off. This is the lowest-power mode of operation. To exit OFF mode V_{IN_BIAS} must exceed the UVLO threshold and one of the following wake-up events must occur: - · The PB input is pulled low. - THE AC_DET input is pulled low. - The PWR_EN input is pulled high. To enter the OFF state, ensure that all power rails are
assigned to the sequencer, then pull the PWR_EN pin low. Additionally, if the OFFnPFO bit is set to 1b and the PFI input falls below the power fail threshold the device transitions to the OFF state. If the freshness seal is broken, DCDC5 and DCDC6 remains on in the OFF state. If a PGOOD or OTS fault occurs while in the ACTIVE state, TPS6521845 will transition to the RESET state. #### **7.4.3 ACTIVE** This is the typical mode of operation when the system is up and running. All DCDC converters, LDOs, and load switches are operational and can be controlled through the I²C interface. After a wake-up event, the PMIC enables all rails controlled by the sequencer and pulls the nWAKEUP pin low to signal the event to the host processor. The device only enters the ACTIVE state if the host asserts the PWR_EN pin within 20 s after the wake-up event. Otherwise it will enter the OFF state. The nWAKEUP pin returns to HiZ mode after the PWR_EN pin is asserted. The ACTIVE state can also be directly entered from the SUSPEND state by pulling the PWR_EN pin high. See the SUSPEND state description for details. To exit the ACTIVE mode, the PWR_EN pin must be pulled low. #### **7.4.4 SUSPEND** The SUSPEND state is a low-power mode of operation intended to support system standby. Typically all power rails are turned off with the exception of any rail with an SEQ register set to 0h. DCDC5 and DCDC6 also remain enabled if the freshness seal is broken. To enter the SUSPEND state, pull the PWR_EN pin low. All power rails controlled by the power-down sequencer are shut down, and after 500 ms the device enters the SUSPEND state. All rails not controlled by the power-down sequencer will maintain its state. Note: all register values are reset as the device enters the SUSPEND state. The device enters the ACTIVE state after it detects a wake-up event as described in the previous sections. #### **7.4.5 RESET** The TPS6521845 can be reset by holding the PB pin low for more than 8 or 15 s, depending on the value of the TRST bit. All rails are shut down by the sequencer and all register values reset to their default values. Rails not controlled by the sequencer are shut down additionally. Note: the RESET function power-cycles the device and only temporarily shuts down the output rails. Resetting the device does not lead to an OFF state. If the PB_IN pin is kept low for an extended amount of time, the device continues to cycle between the ACTIVE and RESET state, entering the RESET every 8 or 15 s. The device is also reset if a PGOOD or OTS fault occurs. The TPS6521845 remains in the RECOVERY state until the fault is removed, at which time it transitions back to the ACTIVE state. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 7.5 Register Maps #### 7.5.1 Password Protection Registers 0x11 through 0x26 are protected against accidental write by a 8-bit password. The password must be written prior to writing to a protected register and automatically resets to 0x00 after the next I²C transaction, regardless of the register accessed or transaction type (read or write). The password is required for write access only and is not required for read access. To write to a protected register: - 1. Write the address of the destination register, XORed with the protection password (0x7D), to the PASSWORD register (0x10). - 2. Write the data to the password protected register. - 3. If the content of the PASSWORD register is XORed, with an address send that matches 0x7D, then the data transfers to the protected register. Otherwise, the transaction is ignored. In either case the PASSWORD register resets to 0x00 after the transaction. The cycle must be repeated for any other register that is Level1 write protected. #### 7.5.2 Freshness Seal (FSEAL) Bit The FSEAL (freshness seal) bit prevents accidental shut-down of the always-on supplies, DCDC5 and DCDC6. The FSEAL bit exists in a default state of 0b, and can be set to 1b and reset to 0b once for factory testing. The second time the bit is set to 1b, it remains 1b and cannot reset again under software control. Coin-cell battery and main supply must be disconnected from the device to reset the FSEAL bit again. With the FSEAL bit set to 1b, DCDC5 and DCDC6 are forced ON regardless of the state of the DC5_EN and DC6_EN bit, and the rails do not turn off when the device enters the OFF state. A consecutive write of [0xB1, 0xFE, and 0xA3] to the password register sets the FSEAL bit to 1b. The three bytes must be written consecutively for the sequence to be valid. No other read or write transactions are allowed between the three bytes, or the sequence is invalid. After a valid sequence, the FSEAL bit in the STATUS register reflects the new setting. After setting the FSEAL bit, the device can enter the OFF state or any other mode of operation without affecting the state of the FSEAL bit, provided the coin-cell supply remains connected to the chip. A second write of [0xB1, 0xFE, and 0xA3] to the password register resets the FSEAL bit to 0b. The three bytes must be written consecutively for the sequence to be valid. A third write of [0xB1, 0xFE, and 0xA3] to the password register sets the FSEAL bit to 1b and locks it into this state for as long as the coin-cell supply (CC) remains connected to the device. #### 7.5.3 FLAG Register The FLAG register contains a bit for each power rail and GPO to keep track of the enable state of the rails while the system is suspended. The following rules apply to the FLAG register: - The power-up default value for any flag bit is 0. - Flag bits are read-only and cannot be written to. - Upon entering a SUSPEND state, the flag bits are set to same value as their corresponding ENABLE bits. Rails and GPOs enabled in a SUSPEND state have flag bits set to 1, while all other flag bits are set to 0. Flag bits are not updated while in the SUSPEND state or when exiting the SUSPEND state. - The FLAG register is static in WAIT_PWR_EN and ACTIVE state. The FLAG register reflects the enable state of DCDC1, DCDC2, DCDC3, DCDC4, and LDO1; and, reflects the enable state of GPO1, GPO2, and GPO3 during the last SUSPEND state. The host processor reads the FLAG register to determine if the system powered up from the OFF or SUSPEND state. In the SUSPEND state, typically the DDR memory is kept in self refresh mode and therefore the DC3_FLG or DC4_FLG bits are set. #### 7.5.4 TPS6521845 Registers \pm 7-5 lists the memory-mapped registers for the TPS6521845. All register offset addresses not listed in \pm 7-5 should be considered as reserved locations and the register contents should not be modified. 表 7-5. TPS6521845 Registers | SUBADDRESS | ACRONYM | REGISTER NAME | R/W | PASSWORD
PROTECTED | SECTION | |------------|-----------|-------------------|-----|-----------------------|---------| | 0x00 | CHIPID | CHIP ID | R | No | Go | | 0x01 | INT1 | INTERRUPT 1 | R | No | Go | | 0x02 | INT2 | INTERRUPT 2 | R | No | Go | | 0x03 | INT_MASK1 | INTERRUPT MASK 1 | R/W | No | Go | | 0x04 | INT_MASK2 | INTERRUPT MASK 2 | R/W | No | Go | | 0x05 | STATUS | STATUS | R | No | Go | | 0x06 | CONTROL | CONTROL | R/W | No | Go | | 0x07 | FLAG | FLAG | R | No | Go | | 0x10 | PASSWORD | PASSWORD | R/W | No | Go | | 0x11 | ENABLE1 | ENABLE 1 | R/W | Yes | Go | | 0x12 | ENABLE2 | ENABLE 2 | R/W | Yes | Go | | 0x13 | CONFIG1 | CONFIGURATION 1 | R/W | Yes | Go | | 0x14 | CONFIG2 | CONFIGURATION 2 | R/W | Yes | Go | | 0x15 | CONFIG3 | CONFIGURATION 3 | R/W | Yes | Go | | 0x16 | DCDC1 | DCDC1 CONTROL | R/W | Yes | Go | | 0x17 | DCDC2 | DCDC2 CONTROL | R/W | Yes | Go | | 0x18 | DCDC3 | DCDC3 CONTROL | R/W | Yes | Go | | 0x19 | DCDC4 | DCDC4 CONTROL | R/W | Yes | Go | | 0x1A | SLEW | SLEW RATE CONTROL | R/W | Yes | Go | | 0x1B | LDO1 | LDO1 CONTROL | R/W | Yes | Go | | 0x20 | SEQ1 | SEQUENCER 1 | R/W | Yes | Go | | 0x21 | SEQ2 | SEQUENCER 2 | R/W | Yes | Go | | 0x22 | SEQ3 | SEQUENCER 3 | R/W | Yes | Go | | 0x23 | SEQ4 | SEQUENCER 4 | R/W | Yes | Go | | 0x24 | SEQ5 | SEQUENCER 5 | R/W | Yes | Go | | 0x25 | SEQ6 | SEQUENCER 6 | R/W | Yes | Go | | 0x26 | SEQ7 | SEQUENCER 7 | R/W | Yes | Go | 表 7-6 explains the common abbreviations used in this section. 表 7-6. Common Abbreviations | Abbreviation | Description | |--------------|--| | R | Read | | W | Write | | R/W | Read and write capable | | h | Hexadecimal notation of a group of bits | | b | Hexadecimal notation of a bit or group of bits | | X | Do not care reset value | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ### 7.5.5 CHIPID Register (subaddress = 0x00) [reset = 0x45] CHIPID is shown in 図 7-36 and described in 表 7-7. Return to Summary Table. #### 図 7-36. CHIPID Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|------|---|-----|------|---|---| | | | CHIP | | REV | | | | | | | R-8h | | | R-5h | | | ## 表 7-7. CHIPID Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------|------|-------|------------------------| | 7-3 | CHIP | R | 8h | Chip ID: | | | | | | 0h = TPS65218 | | | | | | 1h = Future use | | | | | | 2h = TPS6521815 | | | | | | 3h = Future use | | | | | | 4h = TPS6521825 | | | | | | 5h = Future use | | | | | | 6h = TPS6521835 | | | | | | 7h = Future use | | | | | | 8h = TPS6521845 | | | | | | 9h = Future use | | | | | | Ah = TPS6521855 | | | | | | | | | | | | 1Fh = Future use | | 2-0 | REV | R | 5h | Revision code: | | | | | | 0h = Revision 1.0 | | | | | | 1h = Revision 1.1 | | | | | | 2h = Revision 2.0 | | | | | | 3h = Revision 2.1 | | | | | | 4h = Revision 3.0 | | | | | | 5h = Revision 4.0 (D0) | | | | | | 6h = Future use | | | | | | 7h = Future use | #### 7.5.6 INT1 Register (subaddress = 0x01) [reset = 0x00] INT1 is shown in $ext{ <math> ext{ } ex$ Return to Summary Table. #### 図 7-37. INT1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|--------|------| | RESE | RVED | VPRG | AC | РВ | НОТ | CC_AQC |
PRGC | | R-0 |)0b | R-0b | R-0b | R-0b | R-0b | R-0b | R-0b | #### 表 7-8. INT1 Register Field Descriptions | | | | _ | • | |-----|----------|------|-------|-------------| | Bit | Field | Туре | Reset | Description | | 7-6 | RESERVED | R | 00b | | Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 47 ## 表 7-8. INT1 Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description | |-----|--------|------|-------|--| | 5 | VPRG | R | 0b | Programming voltage interrupt: 0b = No significance. 1b = Input voltage is too low for programming power-up default values. | | 4 | AC | R | 0b | AC_DET pin status change interrupt. Note: Status information is available in STATUS register. 0b = No change in status. 1b = AC_DET status change (AC_DET pin changed high to low or low to high). | | 3 | РВ | R | 0b | Push-button status change interrupt. Note: Status information is available in STATUS register 0b = No change in status. 1b = Push-button status change (PB changed high to low or low to high). | | 2 | нот | R | Ob | Thermal shutdown early warning: 0b = Chip temperature is below HOT threshold. 1b = Chip temperature exceeds HOT threshold. | | 1 | CC_AQC | R | 0b | Coin cell battery voltage acquisition complete interrupt: 0b = No significance. 1b = Backup battery status comparators have settled and results are available in STATUS register. | | 0 | PRGC | R | 0b | EEPROM programming complete interrupt: 0b = No significance. 1b = Programming of power-up default settings has completed successfully. | ## 7.5.7 INT2 Register (subaddress = 0x02) [reset = 0x00] INT2 is shown in $ext{ <math> ext{ } ex$ Return to Summary Table. ## 図 7-38. INT2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|-------|-------|-------|-------|-------|-------| | RESE | RVED | LS3_F | LS2_F | LS1_F | LS3_I | LS2_I | LS1_I | | R-0 | 0b | R-0b | R-0b | R-0b | R-0b | R-0b | R-0b | ## 表 7-9. INT2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7-6 | RESERVED | R | 00b | | | 5 | LS3_F | R | 0b | Load switch 3 fault interrupt: 0b = No fault. Switch is working normally. 1b = Load switch exceeded operating temperature limit and is temporarily disabled. | | 4 | LS2_F | R | 0b | Load switch 2 fault interrupt: 0b = No fault. Switch is working normally. 1b = Load switch exceeded operating temperature limit or input voltage dropped below minimum value. Switch is temporarily disabled. | Product Folder Links: TPS6521845 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 表 7-9. INT2 Register Field Descriptions (continued) | | & 1-3. IN 12 Register Field Descriptions (Continued) | | | | | | | | | |-----|--|------|-------|---|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | 3 | LS1_F | R | 0b | Load switch 1 fault interrupt: 0b = No fault. Switch is working normally. 1b = Load switch exceeded operating temperature limit and is temporarily disabled. | | | | | | | 2 | LS3_I | R | 0b | Load switch 3 current-limit interrupt: 0b = Load switch is disabled or not in current limit. 1b = Load switch is actively limiting the output current (output load is exceeding current limit value). | | | | | | | 1 | LS2_I | R | Ob | Load switch 2 current-limit interrupt: 0b = Load switch is disabled or not in current limit. 1b = Load switch is actively limiting the output current (output load is exceeding current limit value). | | | | | | | 0 | LS1_I | R | Ob | Load switch 1 current-limit interrupt: 0b = Load switch is disabled or not in current limit. 1b = Load switch is actively limiting the output current (output load is exceeding current limit value). | | | | | | # 7.5.8 INT_MASK1 Register (subaddress = 0x03) [reset = 0x00] INT_MASK1 is shown in \boxtimes 7-39 and described in $\textcircled{\pi}$ 7-10. Return to Summary Table. ## 図 7-39. INT_MASK1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|--------|--------|--------|--------|---------|--------| | RESE | RVED | VPRGM | ACM | РВМ | НОТМ | CC_AQCM | PRGCM | | R-0 | 00b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | ## 表 7-10. INT_MASK1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7-6 | RESERVED | R | 00b | | | 5 | VPRGM | R/W | 0b | Programming voltage interrupt mask bit. Note: mask bit has no effect on monitoring function: 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | | 4 | ACM | R/W | 0b | AC_DET interrupt masking bit: 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). Note: mask bit has no effect on monitoring function. | | 3 | РВМ | R/W | 0b | PB interrupt masking bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | | 2 | НОТМ | R/W | 0b | HOT interrupt masking bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | ## 表 7-10. INT_MASK1 Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description | |-----|---------|------|-------|--| | 1 | CC_AQCM | R/W | 0b | C_AQC interrupt masking bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | | 0 | PRGCM | R/W | 0b | PRGC interrupt masking bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | ## 7.5.9 INT_MASK2 Register (subaddress = 0x04) [reset = 0x00] INT_MASK2 is shown in 図 7-40 and described in 表 7-11. Return to Summary Table. ### 図 7-40. INT_MASK2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|--------|--------|--------|--------|--------|--------| | RESE | RVED | LS3_FM | LS2_FM | LS1_FM | LS3_IM | LS2_IM | LS1_IM | | R-0 | 00b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | ## 表 7-11. INT_MASK2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | | | |-----|----------|------|-------|---|--|--|--|--| | 7-6 | RESERVED | R | 00b | | | | | | | 5 | LS3_FM | R/W | 0b | LS3 fault interrupt mask bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | | | | | | 4 | LS2_FM | R/W | 0b | 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). | | | | | | 3 | LS1_FM | R/W | 0b | LS1 fault interrupt mask bit. Note: mask bit has no effect on monitoring function. | | | | | | 2 | LS3_IM | R/W | 0b | LS3 current-limit interrupt mask bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | | | | | | 1 | LS2_IM | R/W | 0b | LS2 current-limit interrupt mask bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | | | | | | 0 | LS1_IM | R/W | 0b | LS1 current-limit interrupt mask bit. Note: mask bit has no effect on monitoring function. 0b = Interrupt is unmasked (interrupt event pulls nINT pin low). 1b = Interrupt is masked (interrupt has no effect on nINT pin). | | | | | Product Folder Links: TPS6521845 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated # 7.5.10 STATUS Register (subaddress = 0x05) [reset = 00XXXXXXb] Register mask: C0h STATUS is shown in \boxtimes 7-41 and is described in $\textcircled{\pi}$ 7-12. Return to Summary Table. #### 図 7-41. STATUS Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------|------|----------|----------|-----|----|------|-----| | FSEAL | EE | AC_STATE | PB_STATE | STA | TE | CC_S | TAT | | R-0b | R-0b | R-X | R-X | R- | ·X | R-X | X | 表 7-12. STATUS Register Field Descriptions | 数 1-12. STATUS Register Field Descriptions | | | | | | | | | | |--|----------|------|-------
---|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | 7 | FSEAL | R | Ob | Freshness seal (FSEAL) status. Note: See セクション 7.5.2 for details. 0b = FSEAL is in native state (fresh). 1b = FSEAL is broken. | | | | | | | 6 | EE | R | Ob | EEPROM status: 0b = EEPROM values have not been changed from factory defasetting. 1b = EEPROM values have been changed from factory default settings. | | | | | | | 5 | AC_STATE | R | X | AC_DET input status bit: 0b = AC_DET input is inactive (AC_DET input pin is high). 1b = AC_DET input is active (AC_DET input is low). | | | | | | | 4 | PB_STATE | R | X | PB input status bit: 0b = Push Button input is inactive (PB input pin is high). 1b = Push Button input is active (PB input pin is low). | | | | | | | 3-2 | STATE | R | X | State machine STATE indication: 0h = PMIC is in transitional state. 1h = PMIC is in WAIT_PWR_EN state. 2h = PMIC is in ACTIVE state. 3h = PMIC is in SUSPEND state. | | | | | | | 1-0 | CC_STAT | R | X | Coin cell state of charge. Note: Coin-cell voltage acquisition must be triggered first before status bits are valid. See CC_AQ bit in セクション 7.5.11. Oh = V _{CC} < V _{LOW_LEVEL} ; Coin cell is not present or approaching end-of-life (EOL). 1h = V _{LOW_LEVEL} < V _{CC} < V _{GOOD_LEVEL} ; Coin cell voltage is LOW. 2h = V _{GOOD_LEVEL} < V _{CC} < V _{IDEAL_LEVEL} ; Coin cell voltage is GOOD. 3h = V _{IDEAL} < V _{CC} ; Coin cell voltage is IDEAL. | | | | | | ## 7.5.11 CONTROL Register (subaddress = 0x06) [reset = 0x00] CONTROL is shown in \boxtimes 7-42 and described in $\not\equiv$ 7-13. Return to Summary Table. ### 図 7-42. CONTROL Register | | | | | 3 | | | | |----------|---|-------|--------|---|---|--------|--------| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | RESERVED | | | | | | | CC_AQ | | | | R-000 | 00 00b | | | R/W-0b | R/W-0b | Product Folder Links: TPS6521845 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 5 ## 表 7-13. CONTROL Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|----------|---| | 7-2 | RESERVED | R | 0000 00b | | | 1 | OFFnPFO | R/W | 0b | Power-fail shutdown bit: 0b = nPFO has no effect on PMIC state. 1b = All rails are shut down and PMIC enters OFF state when PFI comparator trips (nPFO is low). | | 0 | CC_AQ | R/W | 0b | Coin Cell battery voltage acquisition start bit: 0b = No significance 1b = Triggers voltage acquisition. Bit is automatically reset to 0. | ## 7.5.12 FLAG Register (subaddress = 0x07) [reset = 0x00] FLAG is shown in 図 7-43 and described in 表 7-14. Return to Summary Table. ## 図 7-43. FLAG Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|----------|----------|----------|---------|---------|---------|---------| | GPO3_FLG | GPO2_FLG | GPO1_FLG | LDO1_FLG | DC4_FLG | DC3_FLG | DC2_FLG | DC1_FLG | | R-0b ## 表 7-14. FLAG Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7 | GPO3_FLG | R | 0b | GPO3 Flag bit: 0b = Device powered up from OFF or SUSPEND state and GPO3 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and GPO3 was enabled while in SUSPEND. | | 6 | GPO2_FLG | R | Ob | GPO2 Flag bit 0b = Device powered up from OFF or SUSPEND state and GPO2 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and GPO2 was enabled while in SUSPEND. | | 5 | GPO1_FLG | R | Ob | GPO1 Flag bit: 0b = Device powered up from OFF or SUSPEND state and GPO1 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and GPO1 was enabled while in SUSPEND. | | 4 | LDO1_FLG | R | Ob | LDO1 Flag bit: 0b = Device powered up from OFF or SUSPEND state and LDO1 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and LDO1 was enabled while in SUSPEND. | | 3 | DC4_FLG | R | Ob | DCDC4 Flag bit: 0b = Device powered up from OFF or SUSPEND state and DCDC4 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and DCDC4 was enabled while in SUSPEND. | Product Folder Links: TPS6521845 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 表 7-14. FLAG Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description | |-----|---------|------|-------|---| | 2 | DC3_FLG | R | 0b | DCDC3 Flag bit: 0b = Device powered up from OFF or SUSPEND state and DCDC3 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and DCDC3 was enabled while in SUSPEND. | | 1 | DC2_FLG | R | 0b | DCDC2 Flag bit: 0b = Device powered up from OFF or SUSPEND state and DCDC2 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and DCDC2 was enabled while in SUSPEND. | | 0 | DC1_FLG | R | 0b | DCDC1 Flag bit: 0b = Device powered up from OFF or SUSPEND state and DCDC1 was disabled while in SUSPEND. 1b = Device powered up from SUSPEND state and GDCDC1PO3 was enabled while in SUSPEND. | ## 7.5.13 PASSWORD Register (subaddress = 0x10) [reset = 0x00] PASSWORD is shown in 図 7-44 and described in 表 7-15. Return to Summary Table. ## 図 7-44. PASSWORD Register ## 表 7-15. PASSWORD Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------|------|-------|---| | 7-0 | PWRD | R/W | 00h | Register is used for accessing password protected registers (see 🛨 | | | | | | クション 7.5.1 for details). Breaking the freshness seal (see セクション | | | | | | 7.5.2 for details). Programming power-up default values . Read-back | | | | | | always yields 0x00. | #### 7.5.14 ENABLE1 Register (subaddress = 0x11) [reset = 0x00] ENABLE1 is shown in 図 7-45 and described in 表 7-16. Return to Summary Table. Password protected. ### 図 7-45. ENABLE1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|--------|--------|--------|--------|--------|--------| | RESE | RVED | DC6_EN | DC5_EN | DC4_EN | DC3_EN | DC2_EN | DC1_EN | | R-0 | 00b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | 表 7-16. ENABLE1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 7-6 | RESERVED | R | 00b | | | 5 | DC6_EN | R/W | 0b | DCDC6 enable bit. DCDC6 can only be disabled if FSEAL = 0. See セクション 7.5.2 for details. 0b = Disabled 1b = Enabled | | 4 | DC5_EN | R/W | Ob | DCDC5 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. DCDC5 can only be disabled if FSEAL = 0. See セクション 7.5.2 for details. 0b = Disabled 1b = Enabled | | 3 | DC4_EN | R/W | 0b | DCDC4 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. 0b = Disabled 1b = Enabled | | 2 | DC3_EN | R/W | 0b | DCDC3 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. 0b = Disabled 1b = Enabled | | 1 | DC2_EN | R/W | 0b | DCDC2 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. 0b = Disabled 1b = Enabled | | 0 | DC1_EN | R/W | 0b | DCDC1 enable bit. Note: At power-up and down this bit is automatically updated by the internal power sequencer. 0b = Disabled 1b = Enabled | ## 7.5.15 ENABLE2 Register (subaddress = 0x12) [reset = 0x00] ENABLE2 is shown in 🗵 7-46 and described in 表 7-17. Return to Summary Table. Password protected. #### 図 7-46. ENABLE2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|-------|-------|-------|--------|--------|--------|---------| | RESERVED | GPIO3 | GPIO2 | GPIO1 | LS3_EN | LS2_EN | LS1_EN | LDO1_EN | Product Folder Links: TPS6521845 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 図 7-46. ENABLE2 Register (continued) R-0b R/W-0b R/W-0b R/W-0b R/W-0b R/W-0b 表 7-17. ENABLE2 Register Field Descriptions | Bit | Field | Type | Reset | Description | |-----|----------|------|-------|---| | 7 | RESERVED | R | 0b | Bescription | | 6 | GPIO3 | R/W | 0b | General purpose output 3 / reset polarity. Note: If DC12_RST bit (register 0x14) is set to 1 this bit has no function. 0b = GPIO3 output is driven low. 1b = GPIO3 output is HiZ. | | 5 | GPIO2 | R/W | Ob | General purpose output 2. Note: If IO_SEL bit (register 0x13) is set to 1 this bit has no function. 0b = GPO2 output is driven low. 1b = GPO2 output is HiZ. | | 4 | GPIO1 | R/W | Ob | General purpose output 1. Note: If IO_SEL bit (register 0x13) is set to 1 this bit has no function. 0b = GPO1 output is driven low. 1b = GPO1 output is HiZ. | | 3 | LS3_EN | R/W | 0b | Load switch
3 (LS3) enable bit. 0b = Disabled 1b = Enabled | | 2 | LS2_EN | R/W | 0b | Load switch 2 (LS2) enable bit. 0b = Disabled 1b = Enabled | | 1 | LS1_EN | R/W | 0b | Load switch 1 (LS1) enable bit. 0b = Disabled 1b = Enabled Note: At power-up and down this bit is automatically updated by the internal power sequencer. | | 0 | LDO1_EN | R/W | 0b | LDO1 enable bit. 0b = Disabled 1b = Enabled Note: At power-up and down this bit is automatically updated by the internal power sequencer. | #### 7.5.16 CONFIG1 Register (subaddress = 0x13) [reset = 0x08] CONFIG1 is shown in 図 7-47 and described in 表 7-18. Return to Summary Table. Password protected. #### 図 7-47. CONFIG1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|----------|---------|-------|-----|--------|-----|-------| | TRST | GPO2_BUF | IO1_SEL | PGD | _Y | STRICT | UV | ′LO | | R/W-0b | R/W-0b | R/W-0b | R/W-0 | 11b | R/W-0b | R/W | /-00b | # 表 7-18. CONFIG1 Register Field Descriptions | | l | | | lister Field Descriptions | |-----|----------|------|---|---| | Bit | Field | Туре | Reset | Description | | 7 | TRST | R/W | Ob | Push-button reset time constant: 0b = 8 s 1b = 15 s | | 6 | GPO2_BUF | R/W | 0b | GPO2 output buffer configuration: 0b = GPO2 buffer is configured as open-drain. 1b = GPO2 buffer is configured as push-pull (high-level is driven to IN_LS1). | | 5 | IO1_SEL | R/W | 0b GPIO1 / GPO2 configuration bit. See セクション 7.3.3 0b = GPIO1 is configured as general-purpose, open GPO2 is independent output. 1b = GPIO1 is configured as input, controlling GPO2 DDR3 reset signal control. | | | 4-3 | PGDLY | R/W | 01Ь | Power-Good delay. Note: Power-good delay applies to rising-edge only (power-up), not falling edge (power-down or fault). 00b = 10 ms 01b = 20 ms 10b = 50 ms 11b = 150 ms | | 2 | STRICT | R/W | ОЬ | Supply Voltage Supervisor Sensitivity selection. See セクション 6.5 for details. 0b = Power-good threshold (VOUT falling) has wider limits. Overvoltage is not monitored. 1b = Power-good threshold (VOUT falling) has tight limits. Overvoltage is monitored. | | 1-0 | UVLO | R/W | 00Ь | UVLO setting
00b = 2.75 V
01b = 2.95 V
10b = 3.25 V
11b = 3.35 V | ## 7.5.17 CONFIG2 Register (subaddress = 0x14) [reset = 0x40] CONFIG2 is shown in 図 7-48 and described in 表 7-19. Return to Summary Table. Password protected. #### 図 7-48. CONFIG2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|---------|----------|------|---------|------|---------|---| | DC12_RST | UVLOHYS | RESERVED | | LS3ILIM | | LS2ILIM | | | R/W-0b | R/W-1b | R- | ·00b | R/W | -00b | R/W-00b | | #### 表 7-19. CONFIG2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 7 | DC12_RST | R/W | 0b | DCDC1 and DCDC2 reset-pin enable: | | | | | | 0b = GPIO3 is configured as general-purpose output. | | | | | | 1b = GPIO3 is configured as warm-reset input to DCDC1 and DCDC2. | Product Folder Links: TPS6521845 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated # 表 7-19. CONFIG2 Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 6 | UVLOHYS | R/W | 1b | UVLO hysteresis:
0b = 200 mV
1b = 400 mV | | 5-4 | RESERVED | R | 00b | | | 3-2 | LS3ILIM | R/W | 00b | Load switch 3 (LS3) current limit selection: 00b = 100 mA, (MIN = 98 mA) 01b = 200 mA, (MIN = 194 mA) 10b = 500 mA, (MIN = 475 mA) 11b = 1000 mA, (MIN = 900 mA) See the LS3 current limit specification in for more details. | | 1-0 | LS2ILIM | R/W | 00b | Load switch 2 (LS2) current limit selection: 00b = 100 mA, (MIN = 94 mA) 01b = 200 mA, (MIN = 188 mA) 10b = 500 mA, (MIN = 465 mA) 11b = 1000 mA, (MIN = 922 mA) See the LS2 current limit specification in for more details. | ## 7.5.18 CONFIG3 Register (subaddress = 0x15) [reset = 0x0] CONFIG3 is shown in 図 7-49 and described in 表 7-20. Return to Summary Table. Password protected. ### 図 7-49. CONFIG3 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|---------|---------|---------|----------|----------|----------| | RESE | RVED | LS3nPFO | LS2nPFO | LS1nPFO | LS3DCHRG | LS2DCHRG | LS1DCHRG | | R-0 | 00b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | R/W-0b | #### 表 7-20. CONFIG3 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 7-6 | RESERVED | R | 00b | | | 5 | LS3nPFO | R/W | 0b | Load switch 3 power-fail disable bit: 0b = Load switch status is not affected by power-fail comparator. 1b = Load switch is disabled if power-fail comparator trips (nPFO is low). | | 4 | LS2nPFO | R/W | 0b | Load switch 2 power-fail disable bit: 0b = Load switch status is not affected by power-fail comparator. 1b = Load switch is disabled if power-fail comparator trips (nPFO is low). | | 3 | LS1nPFO | R/W | 0b | Load switch 1 power-fail disable bit: 0b = Load switch status is not affected by power-fail comparator. 1b = Load switch is disabled if power-fail comparator trips (nPFO is low). | | 2 | LS3DCHRG | R/W | 0b | Load switch 3 discharge enable bit: 0b = Active discharge is disabled. 1b = Active discharge is enabled (load switch output is actively discharged when switch is OFF). | | 1 | LS2DCHRG | R/W | 0b | Load switch 2 discharge enable bit: 0b = Active discharge is disabled. 1b = Active discharge is enabled (load switch output is actively discharged when switch is OFF). | | 0 | LS1DCHRG | R/W | 0b | Load switch 1 discharge enable bit: 0b = Active discharge is disabled. 1b = Active discharge is enabled (load switch output is actively discharged when switch is OFF). | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 7.5.19 DCDC1 Register (offset = 0x16) [reset = 0xB5] DCDC1 is shown in 図 7-50 and described in 表 7-21. Return to Summary Table. - Note 1: This register is password protected. For more information, see セクション 7.5.1. - Note 2: A 5-ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the DCDC1 register. Note 3: To change the output voltage of DCDC1, the GO bit or the GODSBL bit must be set to 1b in register 0x1A. #### 図 7-50. DCDC1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|----------|---|---|-----|-------|---|---| | PFM | RESERVED | | | DCI | DC1 | | | | R/W-1b | R-0b | | | R/W | ′-35h | | | #### 表 7-21. DCDC1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7 | PFM | R/W | 1b | Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. 0b = Disabled (forced PWM) 1b = Enabled | | 6 | RESERVED | R | 0b | | # 表 7-21. DCDC1 Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description (continued) | |-----|-------|------|-------|-------------------------------| | 5-0 | DCDC1 | R/W | 35h | DCDC1 output voltage setting: | | | | | | 0h = 0.850 | | | | | | 1h = 0.860 | | | | | | 2h = 0.870 | | | | | | 3h = 0.880 | | | | | | 4h = 0.890 | | | | | | 5h = 0.900 | | | | | | 6h = 0.910 | | | | | | 7h = 0.920 | | | | | | 8h = 0.930 | | | | | | 9h = 0.940 | | | | | | Ah = 0.950 | | | | | | Bh = 0.960 | | | | | | Ch = 0.970 | | | | | | Dh = 0.980 | | | | | | Eh = 0.990 | | | | | | Fh = 1.000 | | | | | | 10h = 1.010 | | | | | | 11h = 1.020 | | | | | | 12h = 1.030 | | | | | | 13h = 1.040 | | | | | | 14h = 1.050 | | | | | | 15h = 1.060 | | | | | | 16h = 1.070 | | | | | | 17h = 1.080 | | | | | | 18h = 1.090 | | | | | | 19h = 1.100 | | | | | | 1Ah = 1.110 | | | | | | 1Bh = 1.120 | | | | | | 1Ch = 1.130 | | | | | | 1Dh = 1.140 | | | | | | 1Eh = 1.150 | | | | | | 1Fh = 1.160 | | | | | | 20h = 1.170 | | | | | | 21h = 1.180 | | | | | | 22h = 1.190 | | | | | | 23h = 1.200 | 表 7-21. DCDC1 Register Field Descriptions (continued) | | ±X 1-Z | i. DCDC i k | register Fie | eia Descriptions (continuea) | |-----|--------|-------------|--------------|------------------------------| | Bit | Field | Туре | Reset | Description | | | | | | 24h = 1.210 | | | | | | 25h = 1.220 | | | | | | 26h = 1.230 | | | | | | 27h = 1.240 | | | | | | 28h = 1.250 | | | | | | 29h = 1.260 | | | | | | 2Ah = 1.270 | | | | | | 2Bh = 1.280 | | | | | | 2Ch = 1.290 | | | | | | 2Dh = 1.300 | | | | | | 2Eh = 1.310 | | | | | | 2Fh = 1.320 | | | | | | 30h = 1.330 | | | | | | 31h = 1.340 | | | | | | 32h = 1.350 | | | | | | 33h = 1.375 | | | | | | 34h = 1.400 | | | | | | 35h = 1.425 | | | | | | 36h = 1.450 | | | | | | 37h = 1.475 | | | | | | 38h = 1.500 | | | | | | 39h = 1.525 | | | | | | 3Ah = 1.550 | | | | | | 3Bh = 1.575 | | | | | | 3Ch = 1.600 | | | | | | 3Dh = 1.625 | | | | | | 3Eh = 1.650 | | | | | | 3Fh = 1.675 | | | | | | , | ## 7.5.20 DCDC2 Register (subaddress = 0x17) [reset = 0xB5] DCDC2 is shown in 図 7-51 and described in 表 7-22. Return to Summary Table.
Note 1: This register is password protected. For more information, see セクション 7.5.1. Note 2: A 5-ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the DCDC2 register. Note 3: To change the output voltage of DCDC2, the GO bit or the GODSBL bit must be set to 1b in register 0x1A. #### 図 7-51. DCDC2 Register | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |---|--------|----------|-------|---|-----|-------|---|---|--| | ľ | PFM | RESERVED | DCDC2 | | | | | | | | Ī | R/W-1b | R-0b | | | R/W | ′-35h | | | | ## 表 7-22. DCDC2 Register Field Descriptions | Field | Туре | Reset | Description | | | |----------------|----------|---------------------------------|--|--|--| | PFM | R/W | 1b | Pulse frequency modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. 0b = Disabled (forced PWM) 1b = Enabled | | | | RESERVED | R | 0b | | | | | RESERVED DCDC2 | R
R/W | 0b
35h | DCDC2 output voltage setting: 0h = 0.850 1h = 0.860 2h = 0.870 3h = 0.880 4h = 0.890 5h = 0.900 6h = 0.910 7h = 0.920 8h = 0.930 9h = 0.940 Ah = 0.950 Bh = 0.960 Ch = 0.970 Dh = 0.980 Eh = 0.990 Fh = 1.000 10h = 1.010 11h = 1.020 12h = 1.030 13h = 1.040 14h = 1.050 15h = 1.060 16h = 1.070 17h = 1.080 18h = 1.090 19h = 1.110 18h = 1.120 1Ch = 1.130 1Dh = 1.140 1Eh = 1.150 1Fh = 1.160 20h = 1.170 21h = 1.180 22h = 1.190 23h = 1.200 | | | | | PFM | Field Type PFM R/W RESERVED R | PFM R/W 1b RESERVED R 0b | | | 表 7-22. DCDC2 Register Field Descriptions (continued) | | eia Descriptions (continuea) | | | | |-----|------------------------------|------|-------|-------------| | Bit | Field | Туре | Reset | Description | | | | | | 24h = 1.210 | | | | | | 25h = 1.220 | | | | | | 26h = 1.230 | | | | | | 27h = 1.240 | | | | | | 28h = 1.250 | | | | | | 29h = 1.260 | | | | | | 2Ah = 1.270 | | | | | | 2Bh = 1.280 | | | | | | 2Ch = 1.290 | | | | | | 2Dh = 1.300 | | | | | | 2Eh = 1.310 | | | | | | 2Fh = 1.320 | | | | | | 30h = 1.330 | | | | | | 31h = 1.340 | | | | | | 32h = 1.350 | | | | | | 33h = 1.375 | | | | | | 34h = 1.400 | | | | | | 35h = 1.425 | | | | | | 36h = 1.450 | | | | | | 37h = 1.475 | | | | | | 38h = 1.500 | | | | | | 39h = 1.525 | | | | | | 3Ah = 1.550 | | | | | | 3Bh = 1.575 | | | | | | 3Ch = 1.600 | | | | | | 3Dh = 1.625 | | | | | | 3Eh = 1.650 | | | | | | 3Fh = 1.675 | | | 1 | 1 | 1 | | ## 7.5.21 DCDC3 Register (subaddress = 0x18) [reset = 0x98] DCDC3 is shown in $ext{ <math> ext{ } e$ Return to Summary Table. Note 1: This register is password protected. For more information, see セクション 7.5.1. Note 2: A 5-ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the DCDC3 register. 注 Power-up default may differ depending on RSEL value. See セクション 7.3.1.13 for details. #### 図 7-52. DCDC3 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|----------|---|---|-----|-------|---|---| | PFM | RESERVED | | | DCI | DC3 | | | | R/W-1b | R-0b | | | R/W | ′-18h | | | Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 63 # 表 7-23. DCDC3 Register Field Descriptions | Bit Field | Туре | Reset | Description | | | |--------------------|----------|--------|---|--|--| | 7 PFM | R/W | 1b | Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. 0b = Disabled (forced PWM) 1b = Enabled | | | | 6 RESERV | ED R | 0b | | | | | 6 RESERV 5-0 DCDC3 | ED R R/W | 0b 18h | DCDC3 output voltage setting: 0h = 0.900 1h = 0.925 2h = 0.950 3h = 0.975 4h = 1.000 5h = 1.025 6h = 1.050 7h = 1.075 8h = 1.100 9h = 1.125 Ah = 1.175 Ch = 1.200 Dh = 1.225 Eh = 1.250 Fh = 1.275 10h = 1.300 11h = 1.325 12h = 1.350 13h = 1.375 14h = 1.400 15h = 1.425 16h = 1.450 17h = 1.475 18h = 1.500 19h = 1.525 1Ah = 1.550 1Bh = 1.600 1Ch = 1.650 1Dh = 1.700 1Eh = 1.750 1Fh = 1.800 20h = 1.850 21h = 1.950 22h = 1.950 23h = 2.000 | | | 表 7-23. DCDC3 Register Field Descriptions (continued) | | | | | ela Descriptions (continuea) | | | |-----|-------|------|-------|------------------------------|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | | 24h = 2.050 | | | | | | | | 25h = 2.100 | | | | | | | | 26h = 2.150 | | | | | | | | 27h = 2.200 | | | | | | | | 28h = 2.250 | | | | | | | | 29h = 2.300 | | | | | | | | 2Ah = 2.350 | | | | | | | | 2Bh = 2.400 | | | | | | | | 2Ch = 2.450 | | | | | | | | 2Dh = 2.500 | | | | | | | | 2Eh = 2.550 | | | | | | | | 2Fh = 2.600 | | | | | | | | 30h = 2.650 | | | | | | | | 31h = 2.700 | | | | | | | | 32h = 2.750 | | | | | | | | 33h = 2.800 | | | | | | | | 34h = 2.850 | | | | | | | | 35h = 2.900 | | | | | | | | 36h = 2.950 | | | | | | | | 37h = 3.000 | | | | | | | | 38h = 3.050 | | | | | | | | 39h = 3.100 | | | | | | | | 3Ah = 3.150 | | | | | | | | 3Bh = 3.200 | | | | | | | | 3Ch = 3.250 | | | | | | | | 3Dh = 3.300 | | | | | | | | 3Eh = 3.350 | | | | | | | | 3Fh = 3.400 | | | | | | | | | | | ## 7.5.22 DCDC4 Register (subaddress = 0x19) [reset = 0xB2] DCDC4 is shown in $ext{ <math> ext{ } e$ Return to Summary Table. Note 1: This register is password protected. For more information, see セクション 7.5.1. Note 2: A 5-ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the DCDC4 register. 注 Power-up default may differ depending on RSEL value. See セクション 7.3.1.13 for details. The Reserved setting should not be selected and the output voltage settings should not be modified while the converter is operating. 図 7-53. DCDC4 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |--------|----------|-------|---|-----|-------|---|---|--| | PFM | RESERVED | DCDC4 | | | | | | | | R/W-1b | R-0b | | | R/W | ′-32h | | | | # 表 7-24. DCDC4 Register Field Descriptions | Field | Туре | Reset | Description Descriptions | | | |----------------|----------|---------------------------------|---|--|--| | PFM | R/W | 1b | Pulse Frequency Modulation (PFM, also known as pulse-skip-mode) enable. PFM mode improves light-load efficiency. Actual PFM mode operation depends on load condition. 0b = Disabled (forced PWM) 1b = Enabled | | | | RESERVED | R | 0b | | | | | RESERVED DCDC4 | R
R/W | 0b
32h | DCDC4 output voltage setting: 0h = 1.175 1h = 1.200 2h = 1.225 3h = 1.250 4h = 1.275 5h = 1.300 6h = 1.325 7h = 1.350 8h = 1.375 9h = 1.400 Ah = 1.425 Bh = 1.450 Ch = 1.475 Dh = 1.500 Eh = 1.525 Fh = 1.550 10h = 1.600 11h = 1.650 12h = 1.700 13h = 1.750 14h = 1.800 15h = 1.850 16h = 1.900 17h = 1.950 18h = 2.000 19h = 2.050 1Ah = 2.100 1Bh = 2.150 1Ch = 2.200 1Dh = 2.250 1Eh = 2.3500 20h = 2.400 21h = 2.450 22h = 2.550 23h = 2.550 | | | | | PFM | Field Type PFM R/W RESERVED R | Field Type Reset PFM R/W 1b RESERVED R 0b | | | Product Folder Links: TPS6521845 表 7-24. DCDC4 Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description (Scrimaca) | |-----|-------|------|-------|------------------------| | | | | | 24h = 2.600 | | | | | | 25h = 2.650 | | | | | | 26h = 2.700 | | | | | | 27h = 2.750 | | | | | | 28h = 2.800 | | | | | | 29h = 2.850 | | | | | | 2Ah = 2.900 | | | | | | 2Bh = 2.950 | | | | | | 2Ch = 3.000 | | | | | | 2Dh = 3.050 | | | | | | 2Eh = 3.100 | | | | | | 2Fh = 3.150 | | | | | | 30h = 3.200 | | | | | | 31h = 3.250 | | | | | | 32h = 3.300 | | | | | | 33h = 3.350 | | | | | | 34h = 3.400 | | | | | | 35h = reserved | | | | | | 36h = reserved | | | | | | 37h = reserved | | | | | | 38h = reserved | | | | | | 39h = reserved | | | | | | 3Ah = reserved | | | | | | 3Bh = reserved | | | | | | 3Ch = reserved | | | | | | 3Dh = reserved | | | | | | 3Eh = reserved | | | | | | 3Fh = reserved | ## 7.5.23 SLEW Register (subaddress = 0x1A) [reset = 0x06] SLEW is shown in 図 7-54 and described in 表 7-25. Return to Summary Table. 注 Slew-rate control applies to DCDC1 and DCDC2 only. If changing from a higher voltage to lower voltage while STRICT = 1 and converters are in a no load state, PFM bit for DCDC1 and DCDC2 must be set to 0. ## 図 7-54. SLEW Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|--------|---|----------|---|---|--------|---| | GO | GODSBL | | RESERVED | | | SLEW | | | R/W-0b | R/W-0b | | R-000b | | | R/W-6h | | ## 表 7-25. SLEW Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------
---| | 7 | GO | R/W | 0b | Go bit. Note: Bit is automatically reset at the end of the voltage transition. 0b = No change 1b = Initiates the transition from present state to the output voltage setting currently stored in DCDC1 and DCDC2 register. SLEW setting does apply. | | 6 | GODSBL | R/W | 0b | Go disable bit 0b = Enabled 1b = Disabled; DCDC1 and DCDC2 output voltage changes whenever set-point is updated in DCDC1 and DCDC2 register without having to write to the GO bit. SLEW setting does apply. | | 5-3 | RESERVED | R | 000b | | | 2-0 | SLEW | R/W | 6h | Output slew rate setting: 0h = 160 µs/step (0.0625 mV/µs at 10 mV per step) 1h = 80 µs/step (0.125 mV/µs at 10 mV per step) 2h = 40 µs/step (0.250 mV/µs at 10 mV per step) 3h = 20 µs/step (0.500 mV/µs at 10 mV per step) 4h = 10 µs/step (1.0 mV/µs at 10 mV per step) 5h = 5 µs/step (2.0 mV/µs at 10 mV per step) 6h = 2.5 µs/step (4.0 mV/µs at 10 mV per step) 7h = Immediate; slew rate is only limited by control loop response time. Note: The actual slew rate depends on the voltage step per code. Refer to DCDCx registers for details. | #### 7.5.24 LDO1 Register (subaddress = 0x1B) [reset = 0x1F] LDO1 is shown in $ext{ } ext{ e$ Return to Summary Table. Note 1: This register is password protected. For more information, see セクション 7.5.1. Note 2: A 5-ms blanking time of the over-voltage and under-voltage monitoring occurs when a write is performed on the LDO1 register. # 図 7-55. LDO1 Register #### 表 7-26. LDO1 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|-------------| | 7-6 | RESERVED | R | 00b | | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated # 表 7-26. LDO1 Register Field Descriptions (continued) | | 衣 /- | 20. LDU I F | kegister Fie | eia Descriptions (continuea) | |-----|-------|-------------|--------------|------------------------------| | Bit | Field | Туре | Reset | Description | | 5-0 | LDO1 | R/W | 1Fh | LDO1 output voltage setting: | | | | | | 0h = 0.900 | | | | | | 1h = 0.925 | | | | | | 2h = 0.950 | | | | | | 3h = 0.975 | | | | | | 4h = 1.000 | | | | | | 5h = 1.025 | | | | | | 6h = 1.050 | | | | | | 7h = 1.075 | | | | | | 8h = 1.100 | | | | | | 9h = 1.125 | | | | | | Ah = 1.150 | | | | | | Bh = 1.175 | | | | | | Ch = 1.200 | | | | | | Dh = 1.225 | | | | | | Eh = 1.250 | | | | | | Fh = 1.275 | | | | | | 10h = 1.300 | | | | | | 11h = 1.325 | | | | | | 12h = 1.350 | | | | | | 13h = 1.375 | | | | | | 14h = 1.400 | | | | | | 15h = 1.425 | | | | | | 16h = 1.450 | | | | | | 17h = 1.475 | | | | | | 18h = 1.500 | | | | | | 19h = 1.525 | | 1 | | | | | 表 7-26. LDO1 Register Field Descriptions (continued) | Bit | Field | Туре | Reset | Description (continued) | |-----|-------|-----------|-------|-------------------------| | | | . , , , , | | 1Ah = 1.550 | | | | | | 1Bh = 1.600 | | | | | | 1Ch = 1.650 | | | | | | 1Dh = 1.700 | | | | | | 1Eh = 1.750 | | | | | | 1Fh = 1.800 | | | | | | 20h = 1.850 | | | | | | 21h = 1.900 | | | | | | 22h = 1.950 | | | | | | 23h = 2.000 | | | | | | 24h = 2.050 | | | | | | 25h = 2.100 | | | | | | 26h = 2.150 | | | | | | 27h = 2.200 | | | | | | 28h = 2.250 | | | | | | 29h = 2.300 | | | | | | 2Ah = 2.350 | | | | | | 2Bh = 2.400 | | | | | | 2Ch = 2.450 | | | | | | 2Dh = 2.500 | | | | | | 2Eh = 2.550 | | | | | | 2Fh = 2.600 | | | | | | 30h = 2.650 | | | | | | 31h = 2.700 | | | | | | 32h = 2.750 | | | | | | 33h = 2.800 | | | | | | 34h = 2.850 | | | | | | 35h = 2.900 | | | | | | 36h = 2.950 | | | | | | 37h = 3.000 | | | | | | 38h = 3.050 | | | | | | 39h = 3.100 | | | | | | 3Ah = 3.150 | | | | | | 3Bh = 3.200 | | | | | | 3Ch = 3.250 | | | | | | 3Dh = 3.300 | | | | | | 3Eh = 3.350 | | | | | | 3Fh = 3.400 | ## 7.5.25 SEQ1 Register (subaddress = 0x20) [reset = 0x00] SEQ1 is shown in 図 7-56 and described in 表 7-27. Return to Summary Table. Password protected. ## 図 7-56. SEQ1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|--------|--------|--------|--------|--------|--------|--------| | DLY8 | DLY7 | DLY6 | DLY5 | DLY4 | DLY3 | DLY2 | DLY1 | | R/W-0b Product Folder Links: TPS6521845 # 表 7-27. SEQ1 Register Field Descriptions | 表 1-21. SEQT Register Fleid Descriptions | | | | | | | | |--|-------|------|-------|---|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | 7 | DLY8 | R/W | Ob | Delay8 (occurs after Strobe 8 and before Strobe 9.) 0b = 2 ms 1b = 5 ms | | | | | 6 | DLY7 | R/W | 0b | Delay7 (occurs after Strobe 7 and before Strobe 8.) 0b = 2 ms 1b = 5 ms | | | | | 5 | DLY6 | R/W | Ob | Delay6 (occurs after Strobe 6 and before Strobe 7.) 0b = 2 ms 1b = 5 ms | | | | | 4 | DLY5 | R/W | Ob | Delay5 (occurs after Strobe 5 and before Strobe 6.) 0b = 2 ms 1b = 5 ms | | | | | 3 | DLY4 | R/W | 0b | Delay4 (occurs after Strobe 4 and before Strobe 5.) 0b = 2 ms 1b = 5 ms | | | | | 2 | DLY3 | R/W | Ob | Delay3 (occurs after Strobe 3 and before Strobe 4.) 0b = 2 ms 1b = 5 ms | | | | | 1 | DLY2 | R/W | Ob | Delay2 (occurs after Strobe 2 and before Strobe 3.) 0b = 2 ms 1b = 5 ms | | | | | 0 | DLY1 | R/W | Ob | Delay1 (occurs after Strobe 1 and before Strobe 2.) 0b = 2 ms 1b = 5 ms | | | | ## 7.5.26 SEQ2 Register (subaddress = 0x21) [reset = 0x00] SEQ2 is shown in $ext{ <math> ext{} ex$ Return to Summary Table. Password protected. #### 図 7-57. SEQ2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---------|----------|---|-------|------|---|---|---------| | DLYFCTR | RESERVED | | | | | | | | R/W -0b | | | R-000 | 000b | | | R/W -0b | ### 表 7-28. SEQ2 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|----------|---| | 7 | DLYFCTR | R/W | 0b | Power-down delay factor: | | | | | | 0b = 1x | | | | | | 1b = 10x (delay times are multiplied by 10x during power-down.) | | | | | | Note: DLYFCTR has no effect on power-up timing. | | 6-1 | RESERVED | R | 000 000b | | | 0 | DLY9 | R/W | 0b | Delay9 (occurs after Strobe 9 and before Strobe 10.) | | | | | | 0b = 2 ms | | | | | | 1b = 5 ms | #### 7.5.27 SEQ3 Register (subaddress = 0x22)[reset = 0x55] SEQ3 is shown in $ext{ <math> ext{} ex$ Return to Summary Table. Password protected. ### 図 7-58. SEQ3 Register 表 7-29. SEQ3 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------|------|-------|---| | 7-4 | DC2_SEQ | R/W | 5h | DCDC2 enable STROBE: | | | | | | 0h = Rail is not controlled by sequencer. | | | | | | 1h = Rail is not controlled by sequencer. | | | | | | 2h = Rail is not controlled by sequencer. | | | | | | 3h = Enable at STROBE 3. | | | | | | 4h = Enable at STROBE 4. | | | | | | 5h = Enable at STROBE 5. | | | | | | 6h = Enable at STROBE 6. | | | | | | 7h = Enable at STROBE 7. | | | | | | 8h = Enable at STROBE 8. | | | | | | 9h = Enable at STROBE 9. | | | | | | Ah = Enable at STROBE 10. | | | | | | Bh = Rail is not controlled by sequencer. | | | | | | Ch = Rail is not controlled by sequencer. | | | | | | Dh = Rail is not controlled by sequencer. | | | | | | Eh = Rail is not controlled by sequencer. | | | | | | Fh = Rail is not controlled by sequencer. | | 3-0 | DC1_SEQ | R/W | 5h | DCDC1 enable STROBE: | | | | | | 0h = Rail is not controlled by sequencer. | | | | | | 1h = Rail is not controlled by sequencer. | | | | | | 2h = Rail is not controlled by sequencer. | | | | | | 3h = Enable at STROBE 3. | | | | | | 4h = Enable at STROBE 4. | | | | | | 5h = Enable at STROBE 5. | | | | | | 6h = Enable at STROBE 6. | | | | | | 7h = Enable at STROBE 7. | | | | | | 8h = Enable at STROBE 8. | | | | | | 9h = Enable at STROBE 9. | | | | | | Ah = Enable at STROBE 10. | | | | | | Bh = Rail is not controlled by sequencer. | | | | | | Ch = Rail is not controlled by sequencer. | | | | | | Dh = Rail is not controlled by sequencer. | | | | | | Eh = Rail is not controlled by sequencer. | | | | | | Fh = Rail is not controlled by sequencer. | ## 7.5.28 SEQ4 Register (subaddress = 0x23) [reset = 0x37] SEQ4 is shown in $ext{ <math> ext{ } ex$ Return to Summary Table. 72 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TPS6521845 Password protected. # 図 7-59. SEQ4 Register ## 表 7-30. SEQ4 Register Field Descriptions | Bit | Field | Туре | Reset | Description | | | |-----|---------|------|-------|---|--|--| | 7-4 | DC4_SEQ | R/W | 3h | DCDC4 enable STROBE: | | | | | | | | 0h = Rail is not controlled by sequencer. | | | | | | | | 1h = Rail is not controlled by sequencer. | | | | | | | | 2h = Rail is not controlled by sequencer. | | | | | | | | 3h = Enable at STROBE 3. | | | | | | | | 4h = Enable at STROBE 4. | | | | | | | | 5h = Enable at STROBE 5. | | | | | | | | 6h = Enable at STROBE 6. | | | | | | | | 7h = Enable at STROBE 7. | | | | | | | | 8h = Enable at STROBE 8. | | | | | | | | 9h = Enable at STROBE 9. | | | | | | | | Ah = Enable at STROBE 10. | | | | | | | | Bh = Rail is not controlled by sequencer. | | | | | | | | Ch = Rail is not controlled by sequencer. | | | | | | | | Dh = Rail is not controlled by sequencer. | | | | | | | | Eh = Rail is not controlled by sequencer. | | | | | | | | Fh = Rail is not controlled by sequencer. | | | | 3-0 | DC3_SEQ | R/W | 7h | DCDC3 enable STROBE: | | | | | | | | 0h = Rail is not controlled by
sequencer. | | | | | | | | 1h = Rail is not controlled by sequencer. | | | | | | | | 2h = Rail is not controlled by sequencer. | | | | | | | | 3h = Enable at STROBE 3. | | | | | | | | 4h = Enable at STROBE 4. | | | | | | | | 5h = Enable at STROBE 5. | | | | | | | | 6h = Enable at STROBE 6. | | | | | | | | 7h = Enable at STROBE 7. | | | | | | | | 8h = Enable at STROBE 8. | | | | | | | | 9h = Enable at STROBE 9. | | | | | | | | Ah = Enable at STROBE 10. | | | | | | | | Bh = Rail is not controlled by sequencer. | | | | | | | | Ch = Rail is not controlled by sequencer. | | | | | | | | Dh = Rail is not controlled by sequencer. | | | | | | | | Eh = Rail is not controlled by sequencer. | | | | | | | | Fh = Rail is not controlled by sequencer. | | | # 7.5.29 SEQ5 Register (subaddress = 0x24) [reset = 0x00] SEQ5 is shown in 図 7-60 and described in 表 7-31. Return to Summary Table. Password protected. ## 図 7-60. SEQ5 Register Product Folder Links: TPS6521845 ## 図 7-60. SEQ5 Register (continued) | RESERVED | DC6_SEQ | RESERVED | DC5_SEQ | | | |----------|---------|----------|---------|--|--| | R-0h | R/W-0h | R-0h | R/W-0h | | | # 表 7-31. SEQ5 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7-6 | RESERVED | R | 0h | | | 5-4 | DC6_SEQ | R/W | Oh | DCDC6 enable STROBE. Note: STROBE 1 and STROBE 2 are executed only if FSEAL = 0. DCDC5 and 6 cannot be disabled by sequencer once freshness seal is broken. 0h = Rail is not controlled by sequencer. 1h = Enable at STROBE 1. 2h = Enable at STROBE 2. 3h = Rail is not controlled by sequencer. | | 3-2 | RESERVED | R | 0h | | | 1-0 | DC5_SEQ | R/W | Oh | DCDC5 enable STROBE. Note: STROBE 1 and STROBE 2 are executed only if FSEAL = 0. DCDC5 and 6 cannot be disabled by sequencer once freshness seal is broken. 0h = Rail is not controlled by sequencer. 1h = Enable at STROBE 1. 2h = Enable at STROBE 2. 3h = Rail is not controlled by sequencer. | # 7.5.30 SEQ6 Register (subaddress = 0x25) [reset = 0xA8] SEQ6 is shown in $ext{ <math> ext{ } ex$ Return to Summary Table. Password protected. ## 図 7-61. SEQ6 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |--------|-----|------|---|----------|-----|-----|---|--| | | LS1 | _SEQ | | LDO1_SEQ | | | | | | R/W-Ah | | | | | R/W | -8h | | | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated # 表 7-32. SEQ6 Register Field Descriptions | | 表 7-32. SEQ6 Register Field Descriptions | | | | | | | | | |-----|--|------|-------|---|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | 7-4 | LS1_SEQ | R/W | Ah | LS1 enable STROBE: | | | | | | | | | | | 0h = Rail is not controlled by sequencer. | | | | | | | | | | | 1h = Rail is not controlled by sequencer. | | | | | | | | | | | 2h = Rail is not controlled by sequencer. | | | | | | | | | | | 3h = Enable at STROBE 3. | | | | | | | | | | | 4h = Enable at STROBE 4. | | | | | | | | | | | 5h = Enable at STROBE 5. | | | | | | | | | | | 6h = Enable at STROBE 6. | | | | | | | | | | | 7h = Enable at STROBE 7. | | | | | | | | | | | 8h = Enable at STROBE 8. | | | | | | | | | | | 9h = Enable at STROBE 9. | | | | | | | | | | | Ah = Enable at STROBE 10. | | | | | | | | | | | Bh = Rail is not controlled by sequencer. | | | | | | | | | | | Ch = Rail is not controlled by sequencer. | | | | | | | | | | | Dh = Rail is not controlled by sequencer. | | | | | | | | | | | Eh = Rail is not controlled by sequencer. | | | | | | | | | | | Fh = Rail is not controlled by sequencer. | | | | | | | 3-0 | LDO1_SEQ | R/W | 8h | LDO1 enable STROBE: | | | | | | | | | | | 0h = Rail is not controlled by sequencer. | | | | | | | | | | | 1h = Rail is not controlled by sequencer. | | | | | | | | | | | 2h = Rail is not controlled by sequencer. | | | | | | | | | | | 3h = Enable at STROBE 3. | | | | | | | | | | | 4h = Enable at STROBE 4. | | | | | | | | | | | 5h = Enable at STROBE 5. | | | | | | | | | | | 6h = Enable at STROBE 6. | | | | | | | | | | | 7h = Enable at STROBE 7. | | | | | | | | | | | 8h = Enable at STROBE 8. | | | | | | | | | | | 9h = Enable at STROBE 9. | | | | | | | | | | | Ah = Enable at STROBE 10. | | | | | | | | | | | Bh = Rail is not controlled by sequencer. | | | | | | | | | | | Ch = Rail is not controlled by sequencer. | | | | | | | | | | | Dh = Rail is not controlled by sequencer. | | | | | | | | | | | Eh = Rail is not controlled by sequencer. | | | | | | | | | | | Fh = Rail is not controlled by sequencer. | | | | | | | | | | | | | | | | | # 7.5.31 SEQ7 Register (subaddress = 0x26) [reset = 0x09] SEQ7 is shown in 図 7-62 and described in 表 7-33. Return to Summary Table. Password protected. # 図 7-62. SEQ7 Register | • | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |--------|----------|---|---|--------|----------|---|---|---|--| | | GPO3_SEQ | | | | GPO1_SEQ | | | | | | R/W-0h | | | | R/W-9h | | | | | | # 表 7-33. SEQ7 Register Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|---| | 7-4 | GPO3_SEQ | R/W | 0h | GPO3 enable STROBE: | | | | | | 0h = Rail is not controlled by sequencer. | | | | | | 1h = Rail is not controlled by sequencer. | | | | | | 2h = Rail is not controlled by sequencer. | | | | | | 3h = Enable at STROBE 3. | | | | | | 4h = Enable at STROBE 4. | | | | | | 5h = Enable at STROBE 5. | | | | | | 6h = Enable at STROBE 6. | | | | | | 7h = Enable at STROBE 7. | | | | | | 8h = Enable at STROBE 8. | | | | | | 9h = Enable at STROBE 9. | | | | | | Ah = Enable at STROBE 10. | | | | | | Bh = Rail is not controlled by sequencer. | | | | | | Ch = Rail is not controlled by sequencer. | | | | | | Dh = Rail is not controlled by sequencer. | | | | | | Eh = Rail is not controlled by sequencer. | | | | | | Fh = Rail is not controlled by sequencer. | | 3-0 | GPO1_SEQ | R/W | 9h | GPO1 enable STROBE: | | | | | | 0h = Rail is not controlled by sequencer. | | | | | | 1h = Rail is not controlled by sequencer. | | | | | | 2h = Rail is not controlled by sequencer. | | | | | | 3h = Enable at STROBE 3. | | | | | | 4h = Enable at STROBE 4. | | | | | | 5h = Enable at STROBE 5. | | | | | | 6h = Enable at STROBE 6. | | | | | | 7h = Enable at STROBE 7. | | | | | | 8h = Enable at STROBE 8. | | | | | | 9h = Enable at STROBE 9. | | | | | | Ah = Enable at STROBE 10. | | | | | | Bh = Rail is not controlled by sequencer. | | | | | | Ch = Rail is not controlled by sequencer. | | | | | | Dh = Rail is not controlled by sequencer. | | | | | | Eh = Rail is not controlled by sequencer. | | | | | | Fh = Rail is not controlled by sequencer. | # 8 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ### 8.1 Application Information The TPS6521845 is designed to pair with NXP i.MX 6Solo and 6DualLite processors. The typical application in セクション 8.2 is based on and uses terminology consistent with the Sitara[™] family of processors. ### 8.1.1 Applications Without Battery Backup Supplies In applications that do not require always-on supplies, both inputs and the output of the power-path can simply be grounded. All pins related to DCDC5 and DCDC6 are also tied to ground, and PGOOD_BU and IN_nCC are kept floating. With the backup supplies completely disabled, the FSEAL bit in the STATUS register is undefined and should be ignored. 図 8-1. DCDC5 and DCDC6 Pins 注 In applications that do not require always-on supplies, PGOOD_BU and IN_nCC can be kept floating. All other pins are tied to ground. ## 8.2 Typical Application A. Block diagram shows TPS65218D0 powering AM437x processor. For TPS6521845, refer to this Tech Note. For TPS6521815, the wiring is not pre-defined and is programmed for the specific processor in the application. 図 8-2. Typical Application Schematic for TPS65218D0 Product Folder Links: TPS6521845 ## 8.2.1 Design Requirements 表 8-1 lists the design requirements. 表 8-1. Design Parameters for TPS65218D0 (1) | | VOLTAGE | SEQUENCE | |-------|---------|----------| | DCDC1 | 1.1 V | 8 | | DCDC2 | 1.1 V | 9 | | DCDC3 | 1.2 V | 5 | | DCDC4 | 3.3 V | 7 | | DCDC5 | 1.0 V | 2 | | DCDC6 | 1.8 V | 1 | | LDO1 | 1.8 V | 3 | (1) Default output voltages shown for TPS65218D0. For other TPS65218xx variants, refer to DCDC1-4 and LDO1 registers in セクション 7.5.4. ### 8.2.2 Detailed Design Procedure ### 8.2.2.1 Output Filter Design The step down converters (DCDC1, DCDC2, and DCDC3) on TPS6521845 are designed to operate with effective inductance values in the range of 1 to 2.2 μ H and with effective output capacitance in the range of 10 to 100 μ F. The internal compensation is optimized to operate with an output filter of L = 1.5 μ H and C_{OUT} = 10 μ F. The buck boost converter (DCDC4) on TPS6521845 is designed to operate with effective inductance values in the range of 1.2 to 2.2 μ H. The internal compensation is optimized to operate with an output filter of L = 1.5 μ H and C_{OUT} = 47 μ F. The two battery backup converters (DCDC5 and DCDC6) are designed to operate with effective inductance values in the range of 4.7 to 22 μ H. The internal compensation is optimized with an output filter of L = 10 μ H and C_{OUT} = 20 μ F. Larger or smaller inductor/capacitance values can be used to optimize performance of the device for specific operation conditions. ### 8.2.2.2 Inductor Selection for Buck Converters The inductor value affects its peak to peak ripple current, the PWM to PFM transition point, the output voltage ripple, and the efficiency. The selected inductor must be rated
for its DC resistance and saturation current. The inductor ripple current (ΔL) decreases with higher inductance and increases with higher V_{IN} or V_{OUT} . \rightrightarrows 1 calculates the maximum inductor current ripple under static load conditions. The saturation current of the inductor should be rated higher than the maximum inductor current as calculated with \rightrightarrows 2. This is recommended as during heavy load transient the inductor current will rise above the calculated value. $$\Delta I_{L} = V_{OUT} \times \frac{1 - \frac{V_{OUT}}{V_{IN}}}{L \times f}$$ (1) $$I_{Lmax} = I_{OUTmax} + \frac{\Delta I_{L}}{2}$$ (2) Product Folder Links: TPS6521845 #### where - F = Switching frequency - L = Inductor value - ΔI_I = Peak-to-peak inductor ripple current - I_{Lmax} = Maximum inductor current Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 79 The following inductors have been used with the TPS6521845 (see 表 8-2). #### 表 8-2. List of Recommended Inductors | PART NUMBER | VALUE | SIZE (mm) [L × W × H] | MANUFACTURER | | | | | | | |--|------------------------|----------------------------------|--------------|--|--|--|--|--|--| | INDUCTORS FOR DCDC1, DCDC2, DCDC3, DCDC4 | | | | | | | | | | | SPM3012T-1R5M | 1.5 μH, 2.8 A, 77 mΩ | 3.2 × 3.0 × 1.2 | TDK | | | | | | | | IHLP1212BZER1R5M11 | 1.5 μH, 4.0 A, 28.5 mΩ | 3.6 × 3.0 × 2.0 | Vishay | | | | | | | | INDUCTORS FOR DCDC5, DCDC6 | | | | | | | | | | | MLZ2012N100L | 10 μH, 110 mA, 300 mΩ | 2012 / 0805 (2.00 × 1.25 × 1.25) | TDK | | | | | | | | LQM21FN100M80 | 10 μH, 100 mA, 300 mΩ | 2012 / 0805 (2.00 × 1.25 × 1.25) | Murata | | | | | | | #### 8.2.2.3 Output Capacitor Selection The hysteretic PWM control scheme of the TPS6521845 switching converters allows the use of tiny ceramic capacitors. Ceramic capacitors with low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires either an X7R or X5R dielectric. At light load currents the converter operates in power save mode, and the output voltage ripple is dependent on the output capacitor value and the PFM peak inductor current. Higher output capacitor values minimize the voltage ripple in PFM Mode and tighten DC output accuracy in PFM mode. The two battery backup converters (DCDC5 and DCDC6) always operate in PFM mode. For these converters, a capacitor of at least 20 µF is recommended on the output to help minimize voltage ripple. The buck-boost converter requires additional output capacitance to help maintain converter stability during high load conditions. At least 40 μ F of output capacitance is recommended and an additional 100-nF capacitor can be added to further filter output ripple at higher frequencies. 表 8-2 lists the recommended capacitors. 表 8-3. List of Recommended Capacitors | PART NUMBER | VALUE | SIZE (mm) [L × W × H] | MANUFACTURER | | | | | | | |--|--------|---------------------------------|--------------|--|--|--|--|--|--| | CAPACITORS FOR VOLTAGES UP TO 5.5 V ⁽¹⁾ | | | | | | | | | | | GRM188R60J105K | 1 μF | 1608 / 0603 (1.6 × 0.8 × 0.8) | Murata | | | | | | | | GRM21BR60J475K | 4.7 μF | 2012 / 0805 (2.0 × 1.25 × 1.25) | Murata | | | | | | | | GRM31MR60J106K | 10 μF | 3216 / 1206 (3.2 × 1.6 × 1.6) | Murata | | | | | | | | GRM31CR60J226K | 22 μF | 3216 / 1206 (3.2 × 1.6 × 1.6) | Murata | | | | | | | | CAPACITORS FOR VOLTAGES UP TO 3.3 V ⁽¹⁾ | | | | | | | | | | | GRM21BR60J106K | 10 µF | 2012 / 0805 (2.0 × 1.25 × 1.25) | Murata | | | | | | | Product Folder Links: TPS6521845 (1) The DC bias effect of ceramic capacitors must be considered when selecting a capacitor. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ### 8.2.3 Application Curves #### at T_J = 25°C unless otherwise noted ## 9 Power Supply Recommendations The device is designed to operate with an input voltage supply range between 2.7 V and 5.5 V. This input supply can be from a single cell Li-lon battery or other externally regulated supply. If the input supply is located more than a few inches from the additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of $47~\mu\text{F}$ is a typical choice. The coin cell back up input is designed to operate with a input voltage supply between 2.2 V and 3.3 V This input should be supplied by a coin cell battery with 3-V nominal voltage. ### 10 Layout ### 10.1 Layout Guidelines Follow these layout guidelines: - The IN_X pins should be bypassed to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass capacitance is 4.7-µF with a X5R or X7R dielectric. - The optimum placement is closest to the IN_X pins of the device. Take care to minimize the loop area formed by the bypass capacitor connection, the IN_X pin, and the thermal pad of the device. - The thermal pad should be tied to the PCB ground plane with a minimum of 25 vias. See ☑ 10-2 for an example. - The LX trace should be kept on the PCB top layer and free of any vias. - The FBX traces should be routed away from any potential noise source to avoid coupling. - DCDC4 Output capacitance should be placed immediately at the DCDC4 pin. Excessive distance between the capacitance and DCDC4 pin may cause poor converter performance. ## 10.2 Layout Example 図 10-1. Layout Recommendation Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Recommended Thermal Pad by size Hole size (s) = 8 mil Diameter (d) = 16 mil 図 10-2. PowerPAD™ Layout Recommendation ## 11 Device and Documentation Support ## 11.1 Documentation Support #### 11.1.1 Related Documentation For related documentation see the following: - Texas Instruments. Basic Calculation of a Buck Converter's Power Stage application report - Texas Instruments, Design Calculations for Buck-Boost Converters application report - Texas Instruments, Empowering Designs With Power Management IC (PMIC) for Processor Applications application report - Texas Instruments, TPS65218EVM user's guide - Texas Instruments, TPS65218 Power Management Integrated Circuit (PMIC) for Industrial Applications application report ## 11.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ## 11.3 サポート・リソース TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。 TI の使用条件を参照してください。 #### 11.4 Trademarks Sitara[™] is a trademark of Texas Instruments. TI E2E™ is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 11.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ### 11.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated www.ti.com 24-Jul-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ | MSL rating/ | Op temp (°C) | Part marking | |-----------------------|--------|---------------|-----------------|-----------------------|------|---------------|---------------------|--------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow | | (6) | | | | | | | | (4) | (5) | | | | TPS6521845RSLR | Active | Production | VQFN (RSL) 48 | 2500 LARGE T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 105 | T6521845 | | TPS6521845RSLR.A | Active | Production | VQFN (RSL) 48 | 2500 LARGE T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 105 | T6521845 | | TPS6521845RSLR.B | Active | Production | VQFN (RSL) 48 | 2500 LARGE T&R | - | NIPDAU | Level-3-260C-168 HR | -40 to 105 | T6521845 | | TPS6521845RSLT | Active | Production | VQFN (RSL) 48 | 250 SMALL T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 105 | T6521845 | | TPS6521845RSLT.A | Active | Production | VQFN (RSL) 48 | 250 SMALL T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 105 | T6521845 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no
event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. 6 x 6, 0.4 mm pitch QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLATPACK - NO LEAD ### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated