

TPS63060, TPS63061

JAJSQ85C - NOVEMBER 2011 - REVISED SEPTEMBER 2020

TPS6306x 高入力電圧、降昇圧コンバータ、2A スイッチ電流機能付き

1 特長

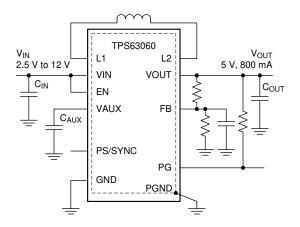
- 入力電圧範囲:2.5V~12V
- 効率:最大 93%
- 5V (V_{IN} < 10V) のときの出力電流: 降圧モードで 2A
- 5V (V_{IN} > 4V) のときの出力電流: 昇圧モードで 1.3A
- ステップダウンと昇圧モードとの自動遷移
- 標準デバイス静止電流:30µA 未満
- 2.5V~8V の固定および可変出力電圧オプション
- パワー・セーブ・モードによる低出力電力時の効率向
- 2.4MHz 固定周波数動作および同期動作が可能
- パワー・グッド出力
- 昇降圧オーバーラップ制御™
- シャットダウン中の負荷切断
- 過熱保護
- 過電圧保護

2 アプリケーション

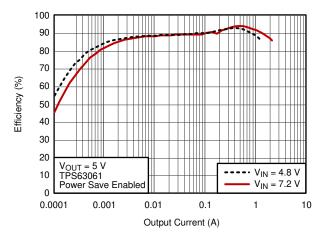
- デュアル・リチウムイオン・アプリケーション
- デジタル静止画カメラ (DSC)、およびビデオ・カメラ
- ノート PC
- 産業用計測機器
- ウルトラ・モバイル PC、インターネット携帯端末
- 個人用医療機器
- 大電力 LED

3 概要

TPS6306x デバイスは、3 セルから最大 6 セルのアルカ リ、ニッカド、ニッケル水素バッテリー、または1セル/2セ ルのリチウム・イオン、リチウム・ポリマー・バッテリを電源と する製品の電源ソリューションを提供する製品です。2 セ ルのリチウム・イオンまたはリチウム・ポリマー・バッテリから 最大 2A の電流を出力でき、5V またはそれ以下まで放電 できます。この昇降圧コンバータは、固定周波数のパルス 幅変調 (PWM) コントローラを基礎とし、同期整流を使用 して最大の効率を実現しています。負荷電流が低い時に は、コンバータはパワー・セーブ・モードに移行し、広い負 荷電流範囲にわたって高効率を維持します。パワー・セー ブ・モードを無効にし、コンバータを常に固定スイッチング 周波数で動作させることもできます。スイッチの最大平均 電流は、標準値 2.25A に制限されています。出力電圧 は、外付けの抵抗デバイダを使用してプログラムすること も、チップ内部で固定することもできます。バッテリの消耗 を最小限に抑えるために、コンバータをディセーブルにで きます。シャットダウン中は、バッテリーから負荷が切断さ れます。


これらのデバイスは、3mm x 3mm、10 ピンの WSON (DSC) パッケージで供給されます。

製品情報(1)


Section 113 184							
部品番号	パッケージ	本体サイズ (公称)					
TPS63060	WSON (10)	3.00mm x 3.00mm					
TPS63061	773017 (10)	3.0011111 x 3.00111111					

利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。

簡略化されたアプリケーション

効率と出力電流との関係

	lable of	Contents	
1 特長	1	8.3 Feature Description	10
2 アプリケーション		8.4 Device Functional Modes	11
3 概要		9 Application and Implementation	14
4 Revision History		9.1 Application Information	14
5 Device Comparison		9.2 Typical Application	
6 Pin Configuration and Functions		10 Power Supply Recommendations	20
Pin Functions		11 Layout	21
7 Specifications		11.1 Layout Guidelines	
7.1 Absolute Maximum Ratings		11.2 Layout Example	21
7.2 ESD Ratings		12 Device and Documentation Support	
7.3 Recommended Operating Conditions	6	12.1 Device Support	
7.4 Thermal Information		12.2 Documentation Support	
7.5 Electrical Characteristics		12.3 Receiving Notification of Documentation U	
7.6 Typical Characteristics		12.4 Community Resources	
8 Detailed Description		12.5 Trademarks	
8.1 Overview		13 Mechanical, Packaging, and Orderable	
8.2 Functional Block Diagrams		Information	22
4 Revision History			
Changes from Revision B (December 2014) to Revisi	ion C (September 2020)	Page
いと カル人はいたと マキ 図 和ても切っ	クをサーチ	ナ東が	4

_		5 -
•	ドキュメント全体にわたって表、図、相互参照の採番方法を更新	1
•	アプリケーションを以下のように変更:DSC およびビデオ・カメラからデジタル静止画カメラ (DSC)、およびビデオ	·力
	メラ	<mark>1</mark>
•	「概要」から PowerPAD™ パッケージを削除	1
•	「代表的なアプリケーションの回路図」を変更	
•	Removed PACKAGE MARKING from the Device Comparison Table	4
•	Changed From: PowerPAD™ To: Exposed Thermal Pad in the <i>Pin Functions</i> table	5
•	Changed L1 and L2 values in the Absolute Maximum Ratings table	<mark>6</mark>
•	Deleted Machine model (MM) from the ESD Ratings table	6
•	Added "Thermal shutdown" and "Thermal Shutdown hysteresis" to the Electrical Characteristics table	<mark>7</mark>
•	Deleted "Overtemperature protection" and "Overtemperature hysteresis" from the Electrical Characteristic	cs
	table	<mark>7</mark>
•	Added "Maximum reverse current" to the Electrical Characteristics table	<mark>7</mark>
•	Added condition footnote to Electrical Characteristics table	
•	Changed the Overview section	9
•	Changed 図 8-1 Title From: TPS63061 Fixed Output To: TPS63060 Adjustable	9
•	Changed 🗵 8-2 Title From: TPS63060 Adjustable To: TPS63061 Fixed Output	9
•	Split the Soft-Start Function and Short-Circuit Protection into two separate sections	10
•	Moved Synchronization from the Power-Save Mode section into a separate section	12
•	Changed C2 (2 x 10 μF) To: C1 (2 x 10 μF) in 🗵 9-1	14
•	Deleted two graphs "Output Current vs Input Voltage" and "Output Current vs Input Voltage" from the	
	Application Curves	17

Changes from Revision A (February 2012) to Revision B (December 2014)

Page

「ESD 定格」表、「機能説明」セクション、「デバイスの機能モード」セクション、「アプリケーションと実装」セクション、「電 源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよびドキュメントのサポート」セクション、「メカニカ ル、パッケージ、および注文情報」セクションを追加......1

5 Device Comparison

Part Number (2) (1)	Output Voltage DC/DC
TPS63060DSC	Adjustable
TPS63061DSC	5 V

- (1) Contact the factory to confirm availability of other fixed-output voltage versions.
- (2) For detailed ordering information please check the Package Option Addendum section at the end of this data sheet.

6 Pin Configuration and Functions

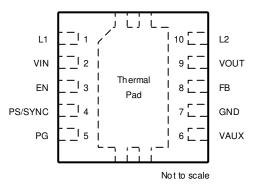


図 6-1. DSC Package 10 Pins (Top View)

Pin Functions

Pin		I/O	Description		
Name	No.	1/0	Description		
EN	3	ı	Enable input (1 enabled, 0 disabled)		
FB	8	I	Voltage feedback of adjustable versions, must be connected to VOUT on fixed output voltage versions		
GND	7		Control and logic ground		
L1	1	I	Connection for inductor		
L2	10	I	Connection for inductor		
PG	5	0	Output power good (1 good, 0 failure, open drain)		
PS/SYNC	4	ı	Enable / disable power save mode (1 disabled, 0 enabled, clock signal for synchronization)		
VAUX	6		Connection for capacitor		
VIN	2	I	Supply voltage for power stage		
VOUT	9	0	Buck-boost converter output		
Exposed Ther	mal Pad		Must be soldered to achieve the appropriate power dissipation. Must be connected to PGND.		

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
	EN, FB, PS/SYNC, VIN, VOUT, PG, L1, L2	-0.3	17	V
Voltage range	L1, L2 (AC, less than 10ns)	-5	18	V
	VAUX, FB	-0.3	7.5	V
Operating virtual junc	tion temperature range, T _J	-40	125	°C
Storage temperature,	Storage temperature, T _{stg}		150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±3000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

	MIN	MAX	UNIT
Supply voltage at VIN	2.5	12	V
Output current I _{OUT} (1)		1	Α
Operating free air temperature range, T _A	-40	85	°C
Operating virtual junction temperature range, T _J	-40	125	°C

(1) $10 \le V_{IN} \le 12 \text{ V}$

7.4 Thermal Information

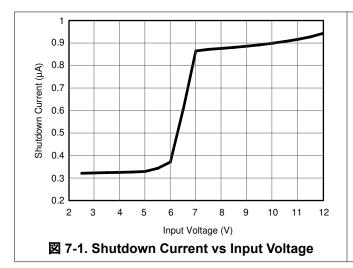
		TPS63060 TPS63061	
	THERMAL METRIC ⁽¹⁾	DSC	UNIT
		10 PINS	1
$R_{\theta JA}$	Junction-to-ambient thermal resistance	48.7	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	54.8	
$R_{\theta JB}$	Junction-to-board thermal resistance	19.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.1	G/VV
ΨЈВ	Junction-to-board characterization parameter	19.6	1
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	4.2	

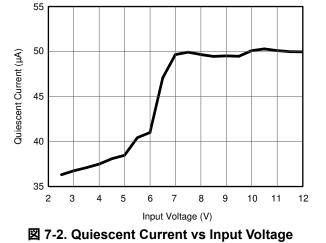
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

7.5 Electrical Characteristics


Over operating free-air temperature range (unless otherwise noted) $T_{\Delta} = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
DC/DC ST	AGE		<u> </u>				
V _{IN}	Input voltage range			2.5		12	V
V _{IIN}	Minimum input voltage for startup					2.5	V
.,			TPS63060	2.5		8	V
V_{OUT}	Output voltage	V _{PS/SYNC} = GND referenced to 5 V	TPS63061	0.6%		5%	
D _{MIN}	Minimum duty-cycle in step down conversion				10%	20%	
l	Output current at 5V in buck mode	V _{IN} <10 V		2		Α	
I _{OUT}	Output current at 5V in boost mode	V _{IN} >4 V			1.3		Α
V _{FB}	Feedback voltage	V _{PS/SYNC} = V _{IN} V _{PS/SYNC} = GND referenced to	TPS63060	495	500	505	mV
. 5	-	500 mV		0.6%		5%	
f _{OSC}	Oscillator frequency			2200	2400	2600	kHz
	Frequency range for synchronization			2200	2400	2600	kHz
I _{SW}	Average inductance current limit	V _{IN} = 5 V		2000	2250	2500	mA
R _{DS(on)H}	High-side MOSFET on-resistance	V _{IN} = 5 V			90		mΩ
R _{DS(on)L}	Low-side switch MOSFET on-resistance	V _{IN} = 5 V		95		mΩ	
	Line regulation	Power save mode disabled			0.5%		
	Load regulation	Power save mode disabled			0.5%		
IQ	Input voltage quiescent current	$I_{OUT} = 0 \text{ mA}, V_{EN} = V_{IN} = 5 \text{ V},$ $V_{OUT} = 5 \text{ V}$			30	60	μΑ
IQ	Output voltage quiescent current				7	15	μΑ
R _{FB}	FB input impedance	V _{EN} = HIGH	TPS63061		1.5		МΩ
Is	Shutdown current	V _{EN} = 0 V, V _{IN} = 5 V			0.3	2	μΑ
CONTROL	STAGE						
\	Maximum biga valtaga	V _{IN} > V _{OUT}		V _{IN}		7	V
V_{AUX}	Maximum bias voltage	V _{IN} < V _{OUT}		V _{OUT}		7	V
I _{AUX}	Load current at V _{AUX}					1	mA
UVLO	Under voltage lockout threshold	V _{IN} falling		1.8	1.9	2.2	V
UVLO	Under voltage lockout hysteresis				300		mV
	Thermal shutdown	Temperature rising			140		°C
	Thermal Shutdown hysteresis				20		°C
V _{IL}	EN, PS/SYNC input low voltage					0.4	V
V _{IH}	EN, PS/SYNC input high voltage			1.2			V
	EN, PS/SYNC input current	Clamped on GND or V _{IN}			0.01	0.1	μΑ
	PG output low voltage	V _{OUT} = 5 V, I _{PGL} = 10 μA			0.04	0.4	V
	PG output leakage current				0.01	0.1	μΑ
	Output overvoltage protection			12		16	V
I _{lim_neg}	Maximum reverse current	V _{IN} = 5 V				900	mA
t _{trans}	Time from PS/SYNC pin going low to start operating in PFM ⁽¹⁾				4.8	10	μs

⁽¹⁾ Specified by design. Not production tested.

7.6 Typical Characteristics

8 Detailed Description

8.1 Overview

The TPS6306x use 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible operating conditions. This enables the device to keep high efficiency over the complete input voltage and output power range. To regulate the output voltage at all possible input voltage conditions, the device automatically switches from buck operation to boost operation and back as required by the configuration. It always uses one active switch, one rectifying switch, one switch is held on, and one switch held off. Therefore, it operates as a buck converter when the input voltage is higher than the output voltage, and as a boost converter when the input voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are switching at the same time. Keeping one switch on and one switch off eliminates their switching losses. The RMS current through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses. Controlling the switches this way allows the converter to always keep higher efficiency.

The device provides a seamless transition from buck to boost or from boost to buck operation.

8.2 Functional Block Diagrams

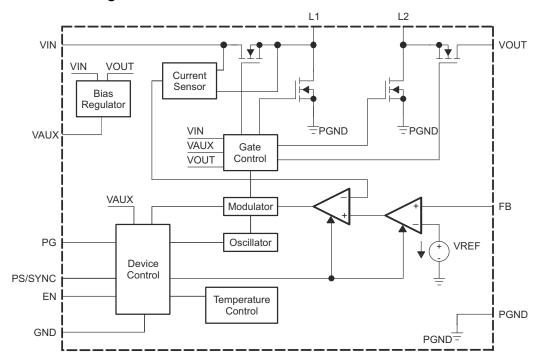


図 8-1. TPS63060 Adjustable

図 8-2. TPS63061 Fixed Output

8.3 Feature Description

8.3.1 Power Good

The device has a built in power good function to indicate whether the output voltage is regulated properly. As soon as the average inductor current gets limited to a value below the current the voltage regulator demands for maintaining the output voltage the power good output gets low impedance. The output is open drain, so its logic function can be adjusted to any voltage level the connected logic is using, by connecting a pull up resistor to the supply voltage of the logic. By monitoring the status of the current control loop, the power good output provides the earliest indication possible for an output voltage break down and leaves the connected application a maximum time to safely react.

8.3.2 Soft-Start Function

After being enabled, the device starts operating. The average current limit ramps up from an initial 400 mA following the output voltage increasing. At an output voltage of about 1.2 V, the current limit is at its nominal value. If the output voltage does not increase, the current limit does not increase. The device implements no timer. Thus, the output voltage overshoot at startup, as well as the inrush current, remains at a minimum. The device ramps up the output voltage in a controlled manner even if a large capacitor is connected at the output.

8.3.3 Short-Circuit Protection

When the output voltage does not increase above 1.2 V, the device assumes a short circuit at the output, and keeps the current limit low to protect itself and the application. During a short-circuit situation on the output, the device maintains the current limit below 2 A typically (minimum average inductance current).

8.3.4 Overvoltage Protection

If, for any reason, the output voltage is not fed back properly to the input of the voltage amplifier, control of the output voltage no longer works. Therefore, overvoltage protection is implemented to avoid the output voltage exceeding critical values for the device and possibly for the system it supplies. The implemented overvoltage protection circuit monitors the output voltage internally as well. If it reaches the overvoltage threshold, the voltage amplifier regulates the output voltage to this value.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

8.3.5 Undervoltage Lockout

An undervoltage lockout function prevents device start-up if the supply voltage on VIN is lower than approximately its threshold (see the **\frac{1}{2} \text{2.5} \text{ table}*). When in operation, the device automatically enters the shutdown mode if the voltage on VIN drops below the undervoltage lockout threshold. The device automatically restarts if the input voltage recovers to the minimum operating input voltage.

8.3.6 Overtemperature Protection

The device has a built-in temperature sensor which monitors the internal device temperature. If the temperature exceeds the programmed threshold (see the #2/232/7.5 table) the device stops operating. As soon as the device temperature has decreased below the programmed threshold, it starts operating again. There is a built-in hysteresis to avoid unstable operation at device temperatures at the overtemperature threshold.

8.4 Device Functional Modes

8.4.1 Buck-Boost Operation

To regulate the output voltage at all possible input voltage conditions, the device automatically switches from buck operation to boost operation and back as required. It always uses one active switch, one rectifying switch, one switch permanently on, and one switch permanently off. Therefore, it operates as a step down converter (buck) when the input voltage is higher than the output voltage, and as a boost converter when the input voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are permanently switching. Controlling the switches this way allows the converter to maintain high efficiency at the most important point of operation, when the input voltage is close to the output voltage. The RMS current through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses.

8.4.2 Control Loop

The controller circuit of the device is based on an average current mode topology. The average inductor current is regulated by a fast current regulator loop which is controlled by a voltage control loop. \boxtimes 8-3 shows the control loop.

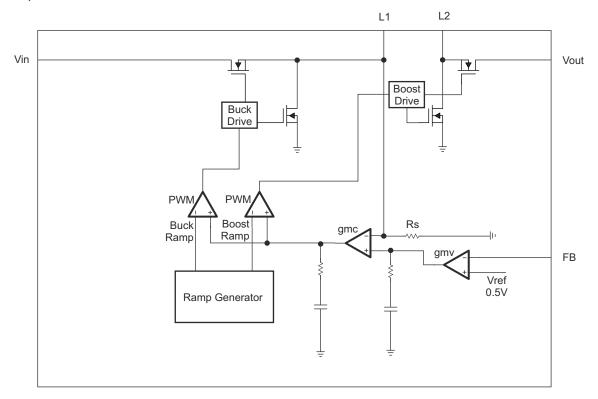


図 8-3. Average Current Mode Control

The non inverting input of the transconductance amplifier, g_{MV} , is assumed to be constant. The output of g_{MV} defines the average inductor current. The inductor current is reconstructed by measuring the current through the high side buck MOSFET. This current corresponds exactly to the inductor current in boost mode. In buck mode the current is measured during the on time of the same MOSFET. During the off time, the current is reconstructed internally starting from the peak value at the end of the on-time cycle. The average current is compared to the desired value and the difference, or current error, is amplified and compared to the buck or the boost sawtooth ramp. Depending on which of the two ramps the g_{MC} amplified output crosses, the device acitvates either the buck MOSFETs or the boost MOSFETs. When the input voltage is close to the output voltage, one boost cycle always follows a buck cycle. In this condition, no more than three cycles in a row of the same mode are allowed. This control method in the buck-boost region ensures a robust control and the highest efficiency.

8.4.3 Power-Save Mode

The PS/SYNC pin can be used to select different operation modes. Power save mode improves efficiency at light load. To enable power save mode, PS/SYNC must be set low. The device enters power save mode when the average inductor current falls to a level lower than approximately 100 mA. In that situation, the converter operates with reduced switching frequency and with a minimum quiescent current to maintain high efficiency.

During the power save mode operation, the output voltage is monitored with a comparator by the threshold comparator low and comparator high. When the device enters power save mode, the converter stops operating and the output voltage drops. The slope of the output voltage depends on the load and the value of output capacitance. As the output voltage falls below the comparator low threshold set to 2.5% typical above the output voltage, the device ramps up the output voltage again, by starting operation using a programmed average inductor current higher than required by the current load condition. Operation can last for one or several pulses. The converter continues these pulses until the comparator high threshold, set to typically 3.5% above the nominal output voltage, is reached and the average inductor current gets lower than about 100 mA. When the load increases above the minimum forced inductor current of about 100 mA, the device automatically switches to PWM mode.

The power save mode can be disabled by programming the PS/SYNC high.

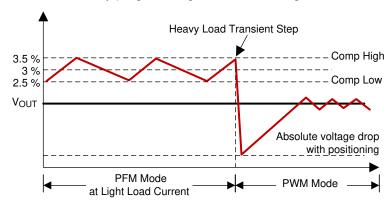


図 8-4. Power-Save Mode Thresholds and Dynamic Voltage Positioning

8.4.4 Synchronization

Connecting a clock signal at PS/SYNC forces the device to synchronize to the connected clock frequency.

Synchronization is done by a PLL to lower and higher frequencies compared to the internal clock. The PLL can also tolerate missing clock pulses without the converter malfunctioning. The PS/SYNC input supports standard logic thresholds.

8.4.5 Dynamic Voltage Positioning

The output voltage is typically 3% above the nominal output voltage at light-load currents, as the device is operating in power save mode. This operation mode allows additional headroom for the voltage drop during a load transient from light load to full load. This additional headroom allows the converter to operate with a small

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

output capacitor and maintain a low absolute voltage drop during heavy load transient changes. See 🗵 8-4 for detailed operation of the power save mode operation.

8.4.6 Dynamic Current Limit

The dynamic current limit function maintains the output voltage regulation when the power source becomes weaker. The maximum current allowed through the switch depends on the voltage applied at the input terminal of the TPS6306x devices. \boxtimes 8-5 shows this dependency, and the I_{SW} vs V_{IN}. The dynamic current limit has its lowest value when reaching the minimum recommended supply voltage at V_{IN}.

Given the I_{SW} value from \boxtimes 8-5, is then possible to calculate the output current reached in boost mode using \precsim 1 and \precsim 2 and in buck mode using \precsim 3 and \precsim 4.

Duty Cycle Boost
$$D = \frac{V_{OUT} - V_{IN}}{V_{OUT}}$$
 (1)

Maximum Output Current Boost
$$I_{OUT} = \eta \times I_{SW} \times (1 - D)$$
 (2)

Duty Cycle Buck
$$D = \frac{V_{OUT}}{V_{IN}}$$
 (3)

Maximum Output Current Buck
$$I_{OUT} = I_{SW}$$
 (4)

where

- η is the estimated converter efficiency (use the number from the efficiency curves or 0.80 as an assumption)
- f is the converter switching frequency (typical 2.4 MHz)
- · L is the selected inductor value

If the die temperature increases above the recommended maximum temperature, the dynamic current limit becomes active. The current limit is reduced with temperature increasing.

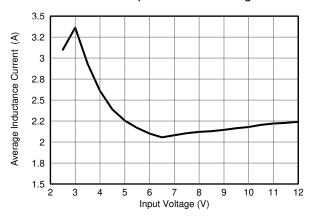


図 8-5. Average Inductance Current vs Input Voltage

8.4.7 Device Enable

The device operates when EN is set high. The device enters a shutdown sequence when EN is set to GND. During the shutdown sequence, the regulator stops switching, all internal control circuitry is switched off, and the load is disconnected from the input. It is possible for the output voltage to drop below the input voltage during shutdown. During the start-up sequence, the device limits the duty cycle and the peak current in order to avoid high peak currents flowing from the input.

9 Application and Implementation

注

以下のアプリケーション情報は、TI の製品仕様に含まれるものではなく、TI ではその正確性または完全性を 保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことに なります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

9.1 Application Information

The TPS6306x devices provide a power supply solution for products powered by either three-cell up to six-cell alkaline, NiCd or NiMH battery, or a one-cell or dual-cell Li-lon or Li-polymer battery. Output currents can go as high as 2-A while using a dual-cell Li-lon or Li-polymer battery, and discharge it down to 5 V or lower.

9.2 Typical Application

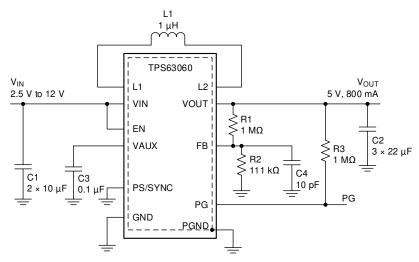


図 9-1. 5-V Adjustable Buck-Boost Converter Application

9.2.1 Design Requirements

The design guideline provides a component selection to operate the device within the recommended operating conditions. 表 9-1 lists the components used in this application.

	Section of the sectio					
Reference	Description	Manufacturer ⁽¹⁾				
	TPS63060 and TPS63061	Texas Instruments				
L1	1 μH, 3 mm x 3 mm x 1.5 mm	Coilcraft , XFL4020-102				
C1	2 × 10 μF 16V, 0805, X5R ceramic	Taiyo Yuden, EMK212BJ				
C2	3 × 22 μF 16V, 0805, X5R ceramic	Taiyo Yuden, LMK212BJ				
C3	0.1 μF, X5R ceramic					
C4	10 pF, ceramic					
R1, R2	Depending on the output voltage at TR	Depending on the output voltage at TPS63060 and TPS63061: R1=0, C4 and R2 n.a.				

表 9-1. Components for Application Characteristic Curves

(1) See セクション 12.1

9.2.2 Detailed Design Procedure

The first step is the selection of the output filter components. To simplify this process, use 表 9-2 to compare inductor and capacitor value combinations.

Product Folder Links: TPS63060 TPS63061

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

9.2.2.1 Step One: Output Filter Design

表 9-2. Outr	out Capacitor	and Inductor	Combinations
-------------	---------------	--------------	---------------------

Inductor Value [µH] ⁽¹⁾	Output Capacitor Value [µF] ⁽²⁾							
inductor value [µ11]	44	66	100					
1.0	V	√(3)	V					
1.5	V	V	√					

- Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and -30%.
- (2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by 20% and –50%.
- (3) Typical application. Other check mark indicates recommended filter combinations

9.2.2.2 Step Two: Inductor Selection

The inductor selection is affected by several parameters including inductor ripple current, output voltage ripple, transition point into power-save mode, and efficiency. See 表 9-3 for typical inductors.

表 9-3. List of Recommended Inductors

Inductor Value (μH)	Component Suplier ⁽¹⁾	Size (L×W×H) (mm)	Current Saturation (I _{SAT}) (A)	DCR (mΩ)		
1	Coilcraft XFL4020-102	4 × 4 × 2.1	5.1	10.8		
1	TOKO DEM2815 1226AS-H-1R0N	3 × 3.2 × 1.5	2.7	27		
1.5	Coilcraft XFL4020-152	4 × 4 × 2.1	4.4	14.4		

(1) See セクション 12.1

For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses. Especially at high-switching frequencies the core material has a higher impact on efficiency. When using small chip inductors, the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value, the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger inductor values cause a slower load transient response. To avoid saturation of the inductor, with the chosen inductance value, the peak current for the inductor in steady state operation can be calculated. \pm 1 and \pm 5 show how to calculate the peak current I_{PEAK} . Only the equation which defines the switch current in boost mode is reported because this is providing the highest value of current and represents the critical current value for selecting the right inductor.

$$I_{PEAK} = \frac{I_{OUT}}{\eta \times (1 - D)} + \frac{V_{IN} \times D}{2 \times f_{SW} \times L}$$
(5)

where

- D is the duty cycle during boost mode operation
- f _{SW} is the converter switching frequency (typical 2.4 MHz)
- L is the selected inductor value
- n is the estimated converter efficiency (use the number from the efficiency curves or 0.80 as an assumption)
- · The calculation must be done for the minimum input voltage which is possible to have in boost mode

Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current of the inductor needed. It's recommended to choose an inductor with a saturation current 20% higher than the value calculated using \pm 5. Possible inductors are listed in \pm 9-3.

9.2.2.3 Step Three: Capacitor Selection

9.2.2.3.1 Input Capacitors

To improve transient behavior of the regulator and EMI behavior of the total power supply circuit, this design suggests a minimum input capacitance of 20 μ F. Place a ceramic capacitor placed as close as possible to the VIN and PGND pins of the device.

9.2.2.3.2 Output Capacitor

For the output capacitor, use of a small ceramic capacitor placed as close as possible to the VOUT and PGND pins of the device is recommended. If, for any reason, the application requires the use of large capacitors which can not be placed close to the device, use a smaller ceramic capacitor in parallel to the large capacitor. The small capacitor should be placed as close as possible to the VOUT and PGND pins of the device. The recommended typical output capacitor value is $66 \, \mu F$ with a variance as outlined in $\frac{1}{5} \, 9-1$.

There is also no upper limit for the output capacitance value. Larger capacitors cause lower output voltage ripple as well as lower output voltage drop during load transients.

When choosing input and output capacitors, it needs to be kept in mind, that the value of capacitance experiences significant losses from their rated value depending on the operating temperature and the operating DC voltage. It is not uncommon for a small surface mount ceramic capacitor to lose 50% and more of its rated capacitance. For this reason, it is important to use a larger value of capacitance or a capacitor with higher voltage rating in order to ensure the required capacitance at the full operating voltage.

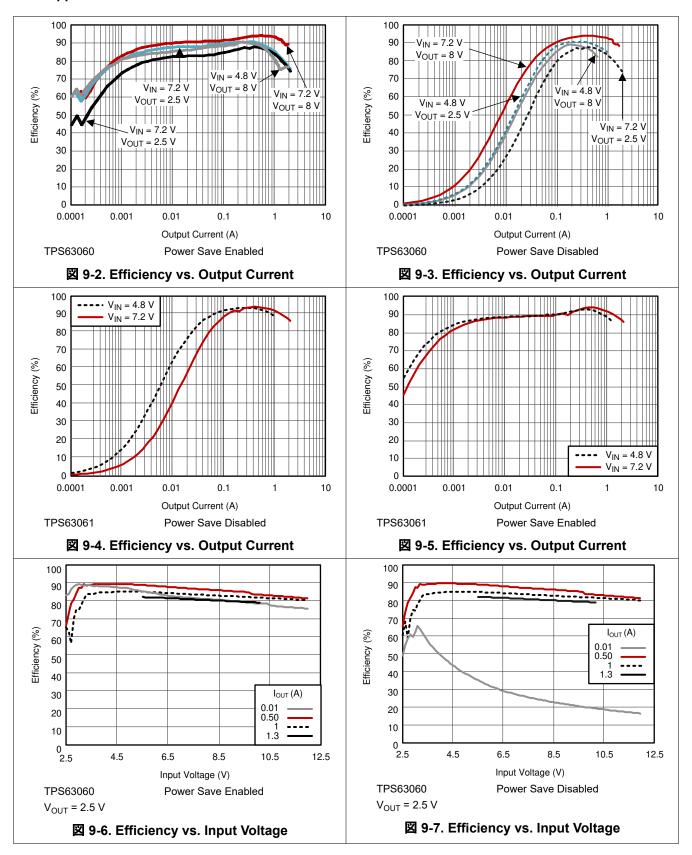
9.2.2.3.3 Bypass Capacitor

To make sure that the internal control circuits are supplied with a stable low noise supply voltage, a capacitor is connected between VAUX and GND. Using a ceramic capacitor with a value of 0.1 μ F is recommended. The capacitor needs to be placed close to the VAUX pin. The value of this capacitor should not be higher than 0.22 μ F.

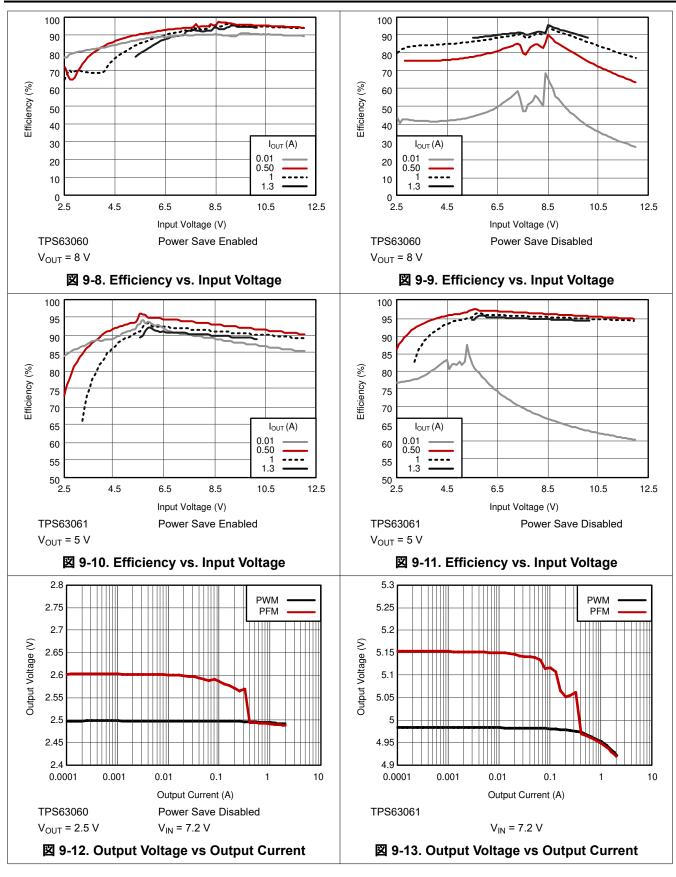
9.2.2.4 Step Four: Setting the Output Voltage

When the adjustable output voltage version TPS63060 is used, the output voltage is set by the external resistor divider. The resistor divider must be connected between VOUT, FB and GND. When the output voltage is regulated properly, the typical value of the voltage at the FB pin is 500mV. The maximum recommended value for the output voltage is 8V. The current through the resistive divider should be about 100 times greater than the current into the FB pin. The typical current into the FB pin is 0.01 μ A, and the voltage across the resistor between FB and GND, R₂, is typically 500 mV. Based on these two values, the recommended value for R2 should be lower than 500 k Ω , in order to set the divider current at 3 μ A or higher. It is recommended to keep the value for this resistor in the range of 200 k Ω . From that, the value of the resistor connected between the VOUT pin and the FB pin, (R1) depending on the needed output voltage can be calculated using \vec{x} 6.

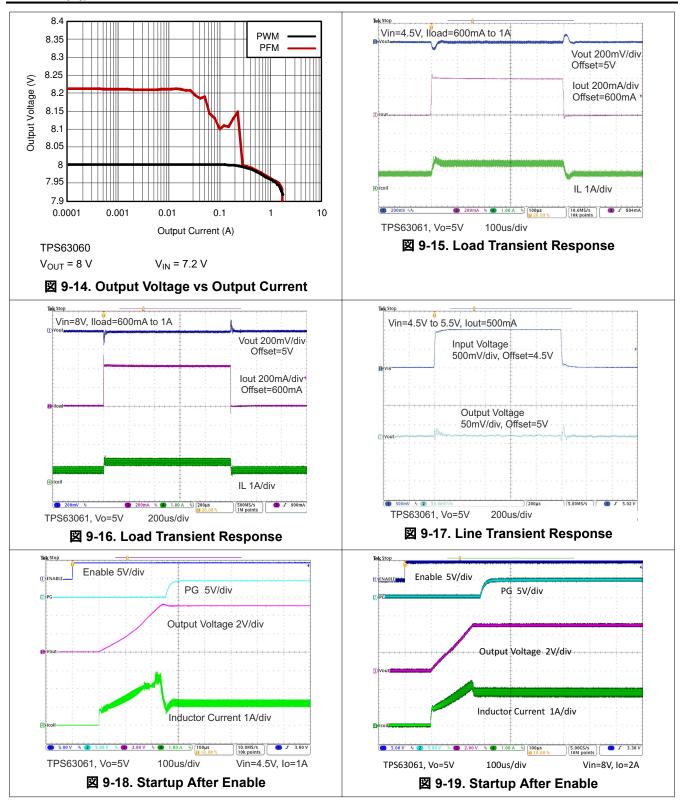
$$R1 = R2 \times \left(\frac{V_{OUT}}{V_{FB}} - 1\right)$$
 (6)

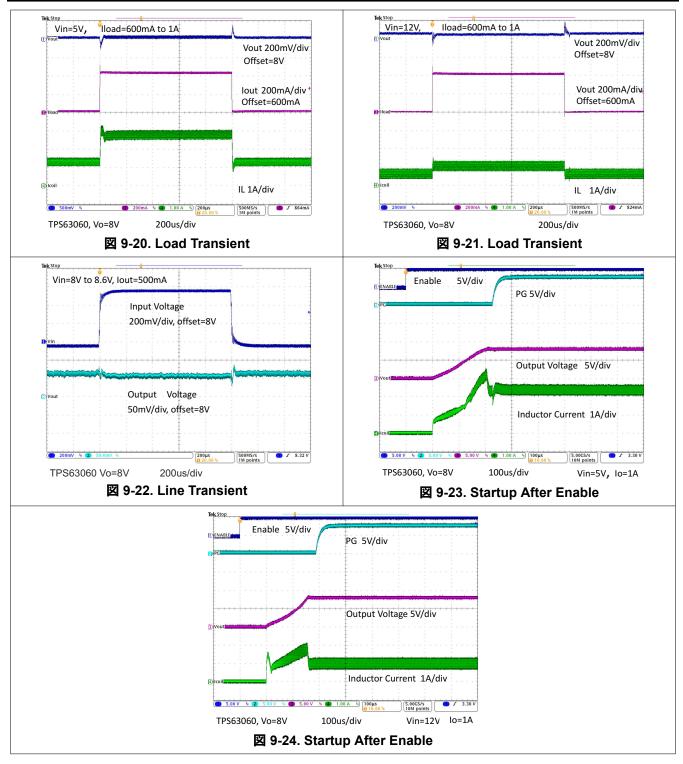

Place a small capacitor (C4, 10 pF) in parallel with R2 when using the power save mode and the adjustable version, to provide filtering and improve the efficiency at light load.

Product Folder Links: TPS63060 TPS63061


Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated


9.2.3 Application Curves



Product Folder Links: TPS63060 TPS63061

10 Power Supply Recommendations

The TPS6306x device family has no special requirements for its input power supply. The input supply output current must be rated according to the supply voltage, output voltage and output current of the TPS6306x.

11 Layout

11.1 Layout Guidelines

For all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the device. Use a common ground node for power ground and a different one for control ground to minimize the effects of ground noise. Connect these ground nodes at any place close to one of the ground pins of the device.

The feedback divider should be placed as close as possible to the control ground pin of the device. To lay out the control ground, short traces are recommended as well, separation from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current.

11.2 Layout Example

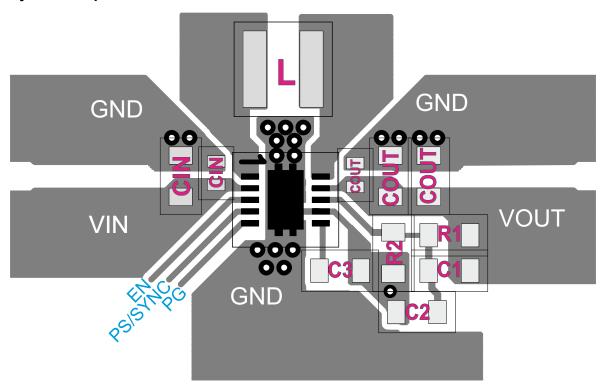


図 11-1. TPS6306x Layout

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

- TPS63060EVM-619 2.25-A, Buck-Boost Converter Evaluation Module (click here)
- TPS63060EVM-619 Gerber Files (SLVC409)
- TPS63060 PSpice Transient Model (SLVM477)

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

- Design Calculations for Buck-Boost Converters (SLVA535)
- Extending the Soft-Start Time in the TPS63010 Buck-Boost Converter (SLVA553)
- Different Methods to Drive LEDs Using TPS63xxx Buck-Boost Converters (SLVA419)

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

12.5 Trademarks

昇降圧オーバーラップ制御™ is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(.,	(=)			(0)	(4)	(5)		(0)
TPS63060DSCR	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	QUJ
TPS63060DSCR.A	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUJ
TPS63060DSCR.B	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUJ
TPS63060DSCRG4	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUJ
TPS63060DSCRG4.A	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUJ
TPS63060DSCRG4.B	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUJ
TPS63060DSCT	Active	Production	WSON (DSC) 10	250 SMALL T&R	Yes	NIPDAU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	QUJ
TPS63060DSCT.B	Active	Production	WSON (DSC) 10	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUJ
TPS63061DSCR	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	QUK
TPS63061DSCR.A	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUK
TPS63061DSCR.B	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUK
TPS63061DSCRG4	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUK
TPS63061DSCRG4.A	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUK
TPS63061DSCRG4.B	Active	Production	WSON (DSC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUK
TPS63061DSCT	Active	Production	WSON (DSC) 10	250 SMALL T&R	Yes	NIPDAU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	QUK
TPS63061DSCT.B	Active	Production	WSON (DSC) 10	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	QUK

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

PACKAGE OPTION ADDENDUM

www.ti.com 9-Nov-2025

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

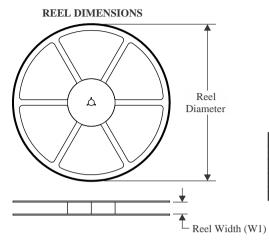
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS63060:

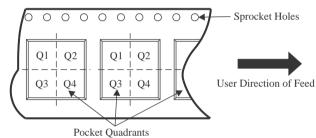
Enhanced Product: TPS63060-EP


NOTE: Qualified Version Definitions:

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

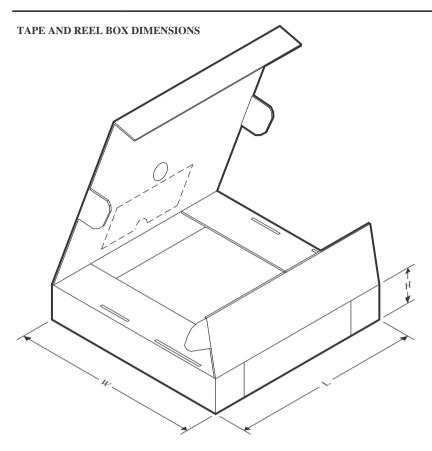
www.ti.com 23-Jul-2025


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

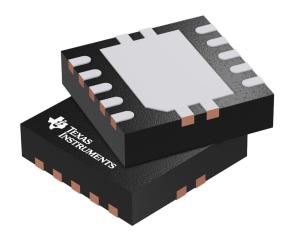
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



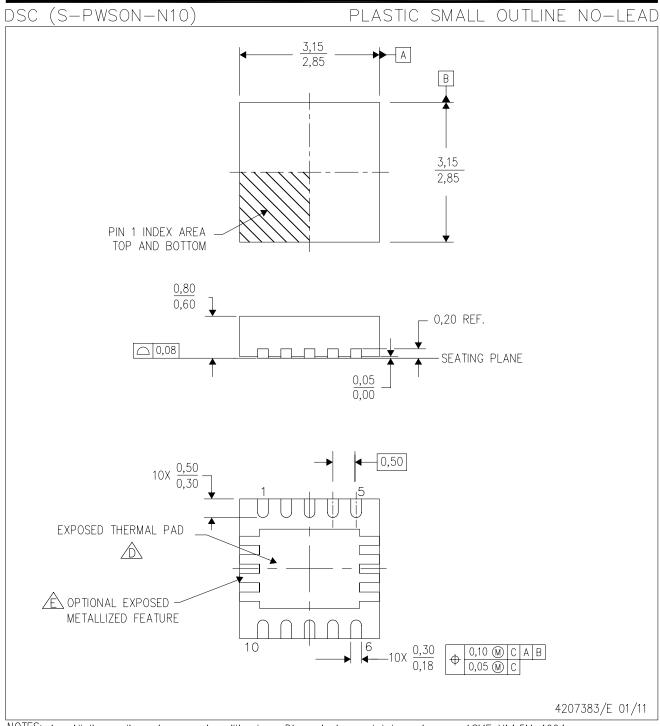
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS63060DSCR	WSON	DSC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS63060DSCRG4	WSON	DSC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS63060DSCT	WSON	DSC	10	250	180.0	12.5	3.3	3.3	1.1	8.0	12.0	Q2
TPS63061DSCR	WSON	DSC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS63061DSCRG4	WSON	DSC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS63061DSCT	WSON	DSC	10	250	180.0	12.5	3.3	3.3	1.1	8.0	12.0	Q2



www.ti.com 23-Jul-2025

*All dimensions are nominal

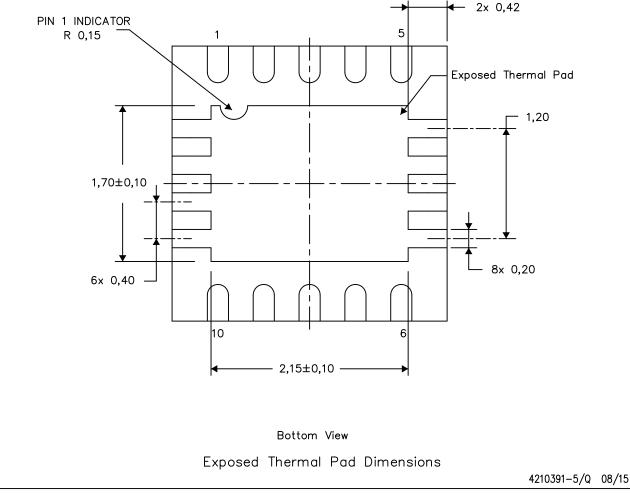

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS63060DSCR	WSON	DSC	10	3000	353.0	353.0	32.0
TPS63060DSCRG4	WSON	DSC	10	3000	353.0	353.0	32.0
TPS63060DSCT	WSON	DSC	10	250	205.0	200.0	33.0
TPS63061DSCR	WSON	DSC	10	3000	353.0	353.0	32.0
TPS63061DSCRG4	WSON	DSC	10	3000	353.0	353.0	32.0
TPS63061DSCT	WSON	DSC	10	250	205.0	200.0	33.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207383/F

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. Small Outline No-Lead (SON) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - See the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

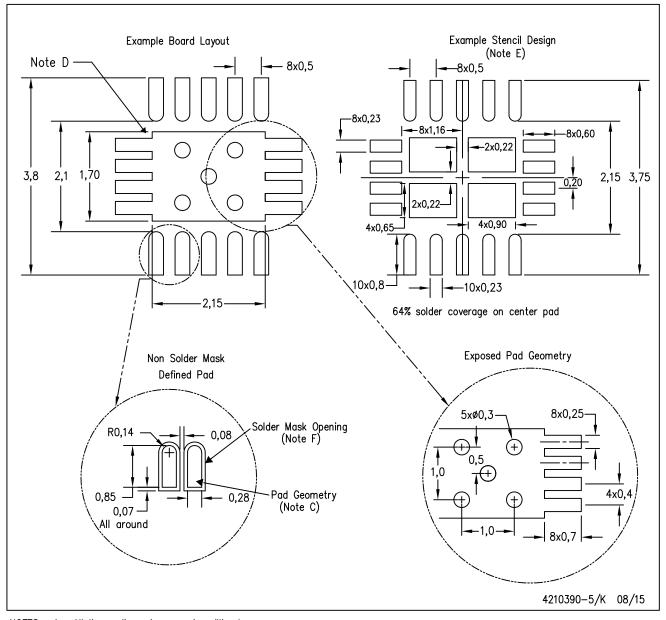
DSC (S-PWSON-N10)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

DSC (S-PWSON-N10)

PLASTIC SMALL OUTLINE NO-LEAD

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月