TPS61378-Q1

TPS61378-Q1 負荷切断機能搭載、25µA 静止電流、同期整流昇圧コンバータ

1 特長

- 車載アプリケーション向けに AEC-Q100 認証済み
 - デバイス温度グレード 1:動作時周囲温度範囲 -40°C~125°C
- TPS61378-Q1 ウェッタブル フランク
- TPS61378L-Q1 無電解スズ メッキ
 - 生産サイクルタイムの短縮と保管期間の延長を実 現
- 機能安全対応
 - 機能安全システムの設計に役立つ資料を利用可
- 柔軟な入出力動作範囲
 - 入力電圧範囲:2.3V~14V
 - プログラマブルな出力電圧:4.0V~18.5V
 - → 入力電圧範囲:2.3V~14V
 - 固定出力オプション:5V、5.25V、5.5V
 - プログラム可能なピーク電流制限:1A~4.8A
- AM 帯域の干渉およびクロストークを回避
 - 動的にプログラム可能なスイッチング周波数: 200kHz∼2.2MHz
 - スペクトラム拡散周波数変調 (FPWM モード)
 - (オプション) クロック同期
- スペースの制約が厳しいアプリケーションのためにソリ ューション サイズを最小化
 - 内蔵 LS/HS/ISO FET: $R_{DS(ON)} 50 m\Omega/50 m\Omega/100 m\Omega$
 - 小さい L-C で最大 2.2MHz をサポート
- 軽負荷とアイドル状態の消費電流を最小化
 - VIN ピンへの静止電流 25µA
 - VIN ピンへのシャットダウン電流 0.5µA
 - 自動 PFM モードと強制 PWM モードから選択可
 - シャットダウンまたはフォルト状態時の真の負荷接 続解除
- 保護機能内蔵
 - VIN が VOUT に近づいても動作可能
 - 入力低電圧誤動作防止と出力過電圧保護
 - ヒカップ出力短絡保護機能
 - パワー グッド インジケータ
 - 165℃のサーマル シャットダウン保護
- 3.3V から 9V への変換で、0.8A 未満の負荷において 90% 以上の効率

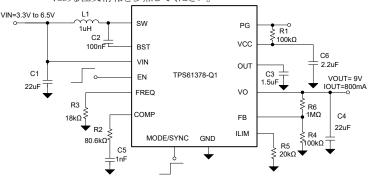
2 アプリケーション

- 先進運転支援システム (ADAS)
- 車載インフォテインメントおよびクラスタ
- ボディ・エレクトロニクス/照明

緊急通話 (eCall)

3 概要

TPS61378-Q1 は負荷接続解除機能を搭載したフル統合 型同期整流昇圧コンバータです。入力電圧は 2.3V~ 14V、最大出力電圧は 18.5V です。 スイッチング電流制 限は、1A~4.8A の範囲でプログラム可能です。 V_{IN} から 25µA の静止電流を消費します。


TPS61378-Q1 は、スイッチング周波数を 200kHz~ 2.2MHz に設定できるピーク電流モード制御を採用してい ます。本デバイスは、中負荷から重負荷では固定周波数 PWM で動作します。軽負荷時には、効率とノイズ耐性を 両立させるため、MODE ピンを設定することで 2 つのモ ード (自動 PFM モード、強制 PWM モード) のどちらかを 選択できます。スイッチング周波数は、外部クロックに同期 させることができます。 FPWM モードでの EMI を低減する ため、TPS61378-Q1 は内部クロックのスペクトラム拡散を 採用しています。また、内部ソフトスタート時間によって突 入電流を制限することもできます。

TPS61378-Q1 には各種の固定出力電圧バージョンがそ ろっているため、外付け帰還抵抗を省略できます。より広 い V_{OUT}/V_{IN} 範囲で安定性と過渡応答を最適化できるよう に、本デバイスは外部ループ補償をサポートしています。 出力短絡保護、出力過電圧保護、サーマル シャットダウ ン保護などの堅牢な保護機能も内蔵しています。 TPS61378-Q1 は、ウェッタブル フランク付きの 3mm × 3mm 16 ピン QFN パッケージで供給されます。

製品情報

部品番号	パッケージ ⁽¹⁾	本体サイズ (公称)		
TPS61378-Q1	WQFN-16	3.0mm × 3.0mm		

利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。

代表的なアプリケーション

Table of Contents

1 特長	1	8 Application and Implementation	17
2 アプリケーション		8.1 Application Information	17
3 概要		8.2 Typical Application	17
4 Device Comparison Table		9 Power Supply Recommendations	27
5 Pin Configuration and Functions		10 Layout	28
6 Specifications		10.1 Layout Guidelines	28
6.1 Absolute Maximum Ratings		10.2 Layout Example	28
6.2 ESD Ratings		11 Device and Documentation Support	29
6.3 Recommended Operating Conditions		11.1 Device Support	<mark>29</mark>
6.4 Thermal Information		11.2ドキュメントの更新通知を受け取る方法	29
6.5 Electrical Characteristics		11.3 サポート・リソース	29
6.6 Typical Characteristics		11.4 Trademarks	<mark>29</mark>
7 Detailed Description		11.5 用語集	29
7.1 Overview		11.6 静電気放電に関する注意事項	
7.2 Functional Block Diagram	12	12 Revision History	
7.3 Feature Description		13 Mechanical, Packaging, and Orderable	
7.4 Device Functional Modes		Information	30

English Data Sheet: SLVSET0

4 Device Comparison Table

PART NUMBER	OUTPUT VOLTAGE (V)	OUTPUT VOLTAGE SELECTION RESISTOR (R _{FB}) ⁽²⁾	SPREAD SPECTRUM
	5	0Ω≤ R _{FB} ≤ 2.4 kΩ	
TPS61378-Q1	5.25	3.6 k $\Omega \le R_{FB} \le 4.8$ k Ω	Enable
1F301376-Q1	5.5	$7.2k\Omega \le R_{FB} \le 9.6k\Omega$	Eliable
	Adjustable	R _{FB} ≥ 14.4kΩ	
	5.7	0Ω≤ R _{FB} ≤ 2.4 kΩ	
TPS613781-Q1 ⁽¹⁾	6.2	3.6 k $\Omega \le R_{FB} \le 4.8$ k Ω	Enable
1P3013761-Q107	7	$7.2k\Omega \le R_{FB} \le 9.6k\Omega$	Enable
	8	R _{FB} ≥ 14.4kΩ	
	9	0Ω≤ R _{FB} ≤ 2.4 kΩ	
TPS613782-Q1 ⁽¹⁾	10	3.6 k $\Omega \le R_{FB} \le 4.8$ k Ω	Enable
1P3013/02-Q107	11	$7.2k\Omega \le R_{FB} \le 9.6k\Omega$	Enable
	12	R _{FB} ≥ 14.4kΩ	
	5	0Ω≤ R _{FB} ≤ 2.4 kΩ	
TD0040700 O4	5.25	3.6 k $\Omega \le R_{FB} \le 4.8$ k Ω	Disable
TPS613783-Q1	5.5	$7.2k\Omega \le R_{FB} \le 9.6k\Omega$	Disable
	Adjustable	R _{FB} ≥ 14.4kΩ	
	5.7	0Ω≤ R _{FB} ≤ 2.4 kΩ	
TPS613784-Q1 ⁽¹⁾	6.2	3.6 k $\Omega \le R_{FB} \le 4.8$ k Ω	Disable
1P5613784-Q1**	7	$7.2k\Omega \le R_{FB} \le 9.6k\Omega$	Disable
	8	R _{FB} ≥ 14.4kΩ	
	9	0Ω≤ R _{FB} ≤ 2.4 kΩ	
TD064070F O4	10	3.6 k $\Omega \le R_{FB} \le 4.8$ k Ω	Disable
TPS613785-Q1	11	$7.2k\Omega \le R_{FB} \le 9.6k\Omega$	Disable
	12	R _{FB} ≥ 14.4kΩ	

⁽¹⁾ Product Preview. Contact TI factory for more information.

3

Product Folder Links: TPS61378-Q1

⁽²⁾ R_{FB} is the sensed resistor from FB pin. Please refer to セクション 8.2.2.1 for details. Avoid using resistors other than the recommended values, otherwise the output voltage value cannot be guaranteed.

5 Pin Configuration and Functions

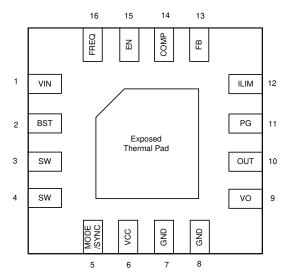


図 5-1. 16-Pin WQFN RTE Package (Transparent Top View)

表 5-1. Pin Functions

PI	IN	I/O	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
VIN	1	I	IC power supply input	
BST	2	I	Power supply for high-side N-MOSFET gate drivers. A capacitor must be connected between this pin and the SW pin.	
sw	3, 4	PWR	The switching node pin of the converter. It is connected to the drain of the internal low-side FET and the source of the high-side FET.	
MODE/SYNC	5	I	Mode selection pin. MODE = high, forced PWM mode MODE = low or floating, auto PFM mode This pin can also be used to synchronize the external clock. Refer to 表 7-2 for details.	
VCC	6	0	Output of internal regulator. A ceramic capacitor with more than 1 μF must be connected between this pin and GND.	
GND	7, 8	PWR	Power ground of the IC. It is connected to the source of the low-side FET.	
VO	9	PWR	Output of the isolation FET. Connect load to this pin to achieve input/output isolation.	
OUT	10	PWR	Output of the drain of the HS FET. Connect this pin because the output can disable the load disconnect/short protection feature (or short this pin with the VO pin).	
PG	11	0	Power good indicator and open drain output	
ILIM	12	I	Current limit setting pin. Use a resistor to set the desired peak current limit. Refer to セクション7.3.7 for details.	
FB	13	I	Feedback pin. Use a resistor divider to set the desired output voltage. Refer to セクション 8.2.2.1 for details.	
COMP	14	I	Output of the internal transconductance error amplifier. An external RC network is connecte to this pin to optimize the loop stability and response time.	
EN	15	I	Enable logic input	
FREQ	16	I	Frequency setting pin. Connect a resistor between this pin and GND pin to set the desired frequency.	
Thermal Pad	-	-	The thermal pad must be connected to the power ground plane for good power dissipation.	

Copyright © 2024 Texas Instruments Incorporated

4

Product Folder Links: TPS61378-Q1

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage range at terminals (2)	VIN	-0.3	16	V
	VO, SW, OUT	-0.3	23	V
Voltage range at terminals (2)	BST	-0.3	SW + 6	V
voltage range at terminals (=)	MODE/SYNC, FB, FREQ, ILIM, VCC, COMP, EN	-0.3	6	V
	PG	-0.3	20	V
T ¹ (3)	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to network ground terminal.
- (3) High junction temperatures degrade operating lifetime. Operating lifetime is de-rated for junction temperatures greater than 125°C

6.2 ESD Ratings

				VALUE	UNIT
	V _(ESD) (1) Electrostatic discharge		Human-body model (HBM), per AEC Q100-002 ⁽²⁾	±2000	V
V _{(E}	V _(ESD) (1)	Liectiostatic discharge	Charged-device model (CDM), per AEC Q100-011, all pins ⁽³⁾	±500	V
	V _(ESD) (1)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011, corner pins (1,4,5,8,9,12,13,16) ⁽³⁾	±750	V

- (1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in to the device.
- (2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.
- (3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{IN}	Input voltage	2.3		14	٧
V _{OUT}	Outputvoltage	4		18.5	V
TJ	Operating junction temperature ⁽¹⁾	-40		150	°C

(1) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.

6.4 Thermal Information

		TPS61378-Q1	
	THERMAL METRIC ⁽¹⁾	RTE	UNIT
		16 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	46.2	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	43.5	°C/W
R _{0JB}	Junction-to-board thermal resistance	18.5	°C/W
Ψлт	Junction-to-top characterization parameter	1.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	18.5	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	8.8	°C/W

(1) For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC Package Thermal Metrics</u> application report.

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

5

6.5 Electrical Characteristics

 $T_J = -40$ to 125°C, L = 1 μ H, $V_{IN} = 3.3$ V and $V_{OUT} = 9$ V (VO pin). Typical values are at $T_J = 25$ °C, (unless otherwise noted)

	0.125° C, L = 1 μ H, V_{IN} = 3.3 V and V_{IN}	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SU	PPLY					
V _{IN}	Input voltage range		2.3		14	V
		V _{IN} rising		2.2	2.3	V
V _{IN_UVLO}	VIN under voltage lockout threshold	V _{IN} falling		2.04	2.2	V
V _{IN_HYS}	VIN UVLO hysteresis			160		mV
V _{CC_UVLO}	VCC UVLO threshold	V _{CC} rising		2.2		V
V _{CC_HYS}	VCC UVLO hysteresis	V _{CC} hysteresis		150		mV
V _{CC}	VCC regulation	I _{VCC} = 6 mA, V _{OUT} = 9V		4.8		V
I _Q	Quiescent current into V _{IN} pin	IC enabled, no load, V _{IN} = 3.3 V, V _{OUT} = 18.5 V, V _{FB} = V _{REF} + 0.1 V,		25	35	μА
IQ	Quiescent current into OUT pin	IC enabled, no load, V_{IN} = 3.3 V, V_{OUT} = 18.5 V, V_{FB} = V_{REF} + 0.1 V,		10	20	μΑ
I _{SD}	Shutdown current into VIN pin	IC disabled, V _{IN} =14 V, EN = GND		0.6	5	μA
I _{SW_LKG}	Leakage current into SW	IC disabled, V _{IN} = OUT = SW =14 V			5	μA
I _{VO_LKG}	Reverse leakage current into VO	IC disabled, OUT= VO = 5 V, SW = 0			5	μA
OUTPUT V	DLTAGE				'	
V _{OVP}	Output over-voltage protection threshold	V _{IN} = 3.3 V, V _{OUT} rising	19.3	20	20.5	V
V _{OVP_HYS}	Output over-voltage protection hysteresis	V _{IN} = 3.3 V, OVP threshold		0.5		V
VOLTAGE F	REFERENCE				'	
V _{REF}	Reference Voltage at FB pin	T_J = -40 to 125°C, R_{FB} = 16.0kΩ	0.788	0.800	0.812	V
V _{OUT_5V}		T_J = -40 to 125°C, R_{FB} = 2.0 kΩ	4.85	5.00	5.15	V
V _{OUT_5.25V}		T_J = -40 to 125°C, R_{FB} = 4.0 kΩ	5.10	5.25	5.35	V
V _{OUT_5.5V}		T_J = -40 to 125°C, R_{FB} = 8.0 kΩ	5.35	5.50	5.65	V
V _{OUT_5V}		TPS613783Q1, T_J = -40 to 125°C, R_{FB} = 2.0 kΩ	4.85	5.00	5.15	V
V _{OUT_5.25V}		TPS613783Q1, T_J = -40 to 125°C, R_{FB} = 4.0 k Ω	5.10	5.25	5.35	V
V _{OUT_5.5V}		TPS613783Q1, T_J = -40 to 125°C, R_{FB} = 8.0 kΩ	5.35	5.50	5.65	V
V _{OUT_9V}		TPS613785Q1, T_J = -40 to 125°C, R_{FB} = 2.0 kΩ	8.75	9.00	9.15	V
V _{OUT_10V}		TPS613785Q1, T_J = -40 to 125°C, R_{FB} = 4.0 kΩ	9.75	10.00	10.20	V
V _{OUT_11V}		TPS613785Q1, T_J = -40 to 125°C, R_{FB} = 8.0 kΩ	10.70	11.00	11.20	V
V _{OUT_12V}		TPS613785Q1, T_J = -40 to 125°C, R_{FB} = 16.0 kΩ	11.70	12.00	12.22	V
I _{FB_LKG} POWER SW	Leakage current into FB pin				50	nA
R _{DS(on)}	Low-side MOSFET on resistance	V _{CC} = 4.85 V		50		mΩ
R _{DS(on)}	High-side MOSFET on resistance	V _{CC} = 4.85 V		50		mΩ
R _{DS(on)}	Isolation MOSFET on resistance	V _{CC} = 4.85 V		100	+	mΩ
CURRENT I		1	1			
I _{LIM SW}	Peak switching current limit FPWM	R _{LIM} = 20 kΩ , Duty cycle = 65%	4	4.8	5.55	Α
I _{LIM_SW}	Peak switching current limit Auto PFM	$R_{\text{LIM}} = 20 \text{ k}\Omega$, Duty cycle = 65%	4	4.8	5.55	Α
I _{LIM SW}	Peak switching current limit FPWM	$R_{LIM} = 102 \text{ k}\Omega$, Duty cycle = 65%, 4.7uH		0.75	-	Α
LIM SW	Peak switching current limit Auto PFM	R_{LIM} = 102 kΩ, Duty cycle = 65%, 4.7uH		0.75	+	Α
I _{LIM SS 1}	Peak switching current limit at softstart	$V_{IN} = 3.3 \text{ V, } V_{OUT} = 0 \text{ V, } R_{LIM} = 20 \text{ k}\Omega$	0.9	1.15	1.4	Α
	FREQUENCY	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1			
Fsw	Switching frequency	R _{FREQ} = 18 kΩ	2050	2200	2400	kHz

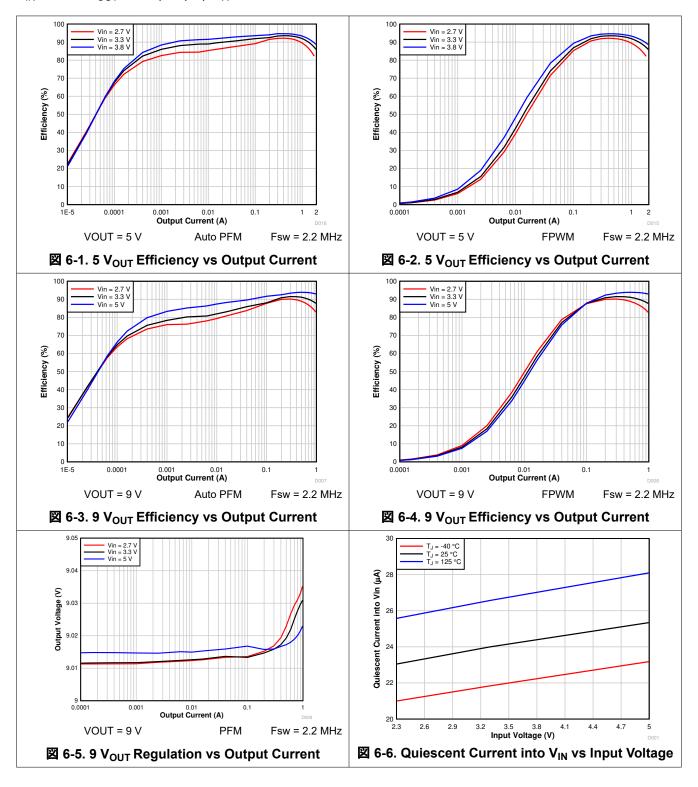
Copyright © 2024 Texas Instruments Incorporated

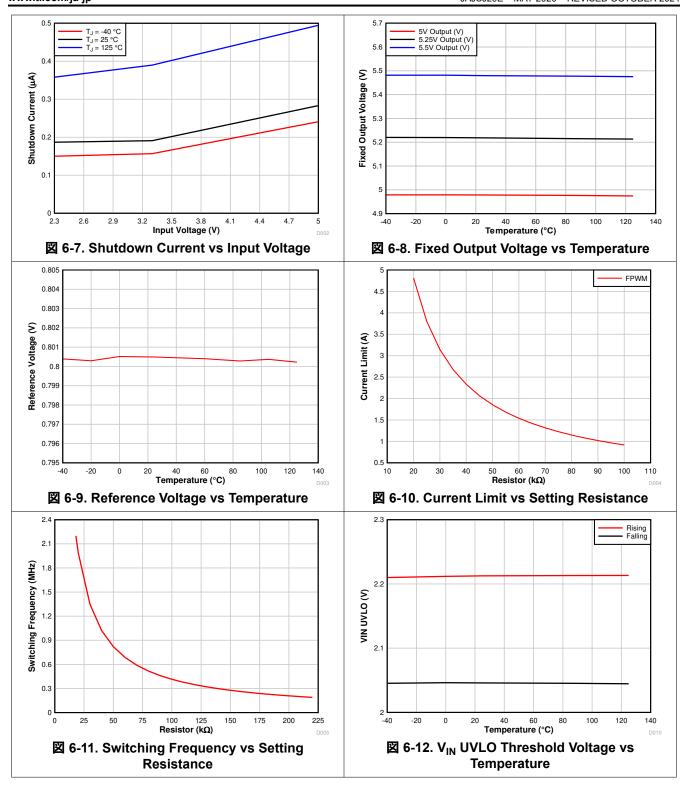
6

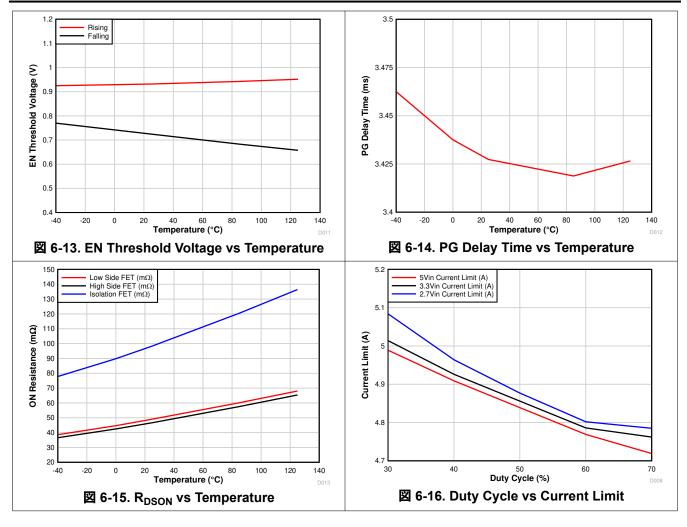
Product Folder Links: TPS61378-Q1

 T_J = -40 to 125°C, L = 1 μ H, V_{IN} = 3.3 V and V_{OUT} = 9 V (VO pin). Typical values are at T_J = 25°C, (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP N	AX	UNIT
Fsw	Switching frequency	$R_{FREQ} = 218 \text{ k}\Omega$	180	200	230	kHz
D _{max}	Maximum Duty Cycle	$R_{FREQ} = 18 \text{ k}\Omega$	78			%
ON_min	Minimal on time			70		ns
F _{DITHER}				10%		Fsw
F _{pattern}				0.4%		Fsw
ERROR AM	IPLIFIER	ı				
SINK	COMP pin sink current	$V_{FB} = V_{REF} + 0.2V$		6		μA
SOURCE	COMP pin source current	$V_{FB} = V_{REF} - 0.2V$		6		μA
V _{CCLPH}	COMP pin high clamp voltage	V _{FB} = V _{REF} - 0.2V, ILIM = 4.8 A		1.3		V
V _{CCLPL}	COMP pin high low voltage	$V_{FB} = V_{REF} + 0.2V,$		0.6		V
G _{mEA}	Error amplifier trans conductance	V _{COMP} = 1.0 V		70		μS
POWER GO	OOD					
V _{PG_TH}	PG threhold for rising FB voltage	Reference to V _{REF}		90%		
V _{PG_HYS}	PG hysteresis	Reference to V _{REF}		5%		
PG SINK	PG pin sink current capability	V _{PG} = 0.4 V		20		mA
PG DELAY	PG delay time		2.5	3.4	4.3	ms
DOWN MOI	DE					
t _{EN_DELAY}	Delay time between EN high and device working			0.4		ms
tss	Softstart time			2.5		ms
t _{HCP_ON}	Hiccup on time			1.8		ms
HCP_OFF	Hiccup off time			67		ms
SYNC TIMII	NG					
SYNC_MIN				200		kHz
SYNC_MAX				2200		kHz
EN/SYNC L	OGIC					
VI _H	EN, MODE/SYNC pins Logic high threshold				1.2	V
VIL	EN, MODE/SYNC pins Logic Low threshold		0.4			V
R _{DOWN}	EN, MODE/SYNC pins internal pull down resistor			800		kΩ
THERMAL	SHUTDOWN		'			
SD_R	Thermal shutdown rising threshold	TJ rising		165		°C
t _{SD F}	Thermal shutdown falling threshold	TJ falling		145		°C


7


Product Folder Links: TPS61378-Q1


6.6 Typical Characteristics

 V_{IN} = 3.3 V, V_{OUT} = 9 V (VO pin), T_A = 25°C, Fsw = 2.2 MHz, unless otherwise noted.

7 Detailed Description

7.1 Overview

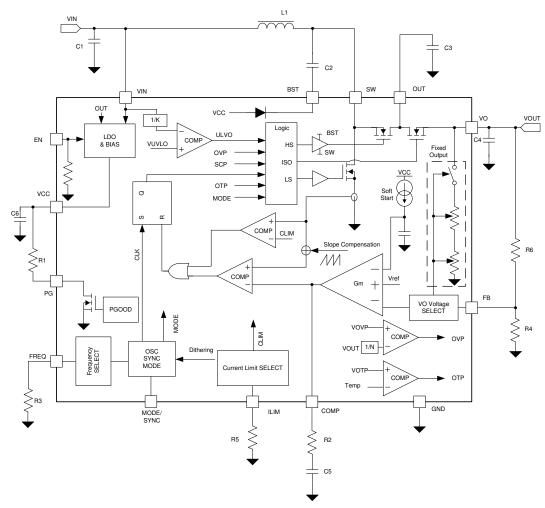
The TPS61378-Q1 is a fully-integrated synchronous boost converter with load disconnect function. It supports output voltage up to 18.5 V with a maximum of a 4.8-A programmable switching peak current limit. The input voltage ranges from 2.3 V to 14 V while consuming 25-µA quiescent current.

The TPS61378-Q1 utilizes the fixed-frequency peak current control scheme, which has an internal oscillator and supports adjustable switching frequency from 200 kHz to 2.2 MHz.

The TPS61378-Q1 operates with fixed-frequency pulse width modulation (PWM) from medium to heavy load. At the beginning of each switching cycle, the low-side N-MOSFET switch is turned on. The inductor current ramps up to a peak current that is determined by the output of the internal error amplifier (EA). Once the switching peak current triggers the output of the EA, the low-side N-MOSFET is turned off and the high-side N-MOSFET is turned on after a short dead time. The high-side N-MOSFET switch is not turned off until the next cycle as determined by the internal oscillator. The low-side switch turns on again after a short dead time and the switching cycle is repeated.

The TPS61378-Q1 provides either auto PFM or forced PWM for the light load operation by configuring the MODE/SYNC pin. In forced PWM mode, the switching frequency remains constant across the entire load range, which helps avoid frequency variation with load. The internal oscillator can be synchronized to an external clock applied on the MODE/SYNC pin. Spread spectrum modulation of the frequency in forced PWM mode helps optimize the EMI performance for automotive applications. In auto PFM mode, the switching frequency can decrease, resulting in higher efficiency.

The TPS61378-Q1 implements a cycle-by-cycle current limit to protect the device from overload during the boost operation phase. If the output current further increases and triggers the output voltage to fall below the input voltage, the TPS61378-Q1 enters into hiccup mode short protection.


There is a built-in soft-start time, which prevents the inrush current during the start-up. The TPS61378-Q1 also provides a power good (PG) indicator to enable the power sequence control for start-up.

The TPS61378-Q1 also has a number of protection features including output short protection, output overvoltage protection (OVP), and thermal shutdown protection (OTP).

English Data Sheet: SLVSET0

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 VCC Power Supply

The internal LDO in the TPS61378-Q1 outputs a regulated voltage of 4.8 V with 10-mA output current capability. A ceramic capacitor is connected between the VCC pin and GND pin to stabilize the VCC voltage and also decouple the noise on the VCC pin. The value of this ceramic capacitor should be above 1 μ F. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating higher than 10 V is recommended.

7.3.2 Input Undervoltage Lockout (UVLO)

An undervoltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below the UVLO threshold of 2.04 V (typical). A hysteresis of 160 mV (typical) is added so that the device cannot be enabled again until the input voltage exceeds 2.2 V (typical). This function is implemented to prevent the device from malfunctioning when the input voltage is between 2.04 V and 2.2 V.

7.3.3 Enable and Soft Start

When the input voltage is above the UVLO threshold and the EN pin is pulled above 1.2 V, the TPS61378-Q1 is enabled. The device starts to monitor the FB pin. With a typical 400-µs delay time after EN is pulled high, the TPS61378-Q1 starts switching. There is an internal built-in start-up time, typically 2.5 ms, to limit the inrush current during start-up.

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLVSET0

7.3.4 Shut Down

When the input voltage is below the UVLO threshold or the EN pin is pulled low, The TPS61378-Q1 is in shutdown mode and all the functions are disabled. The input voltage is isolated from the output to minimize the leakage currents.

7.3.5 Switching Frequency Setting

The TPS61378-Q1 uses a fixed-frequency control scheme. The switching frequency can be programmed between 200kHz and 2.2Mhz using a resistor from the FREQ pin to GND. The resistor must be connected when the oscillator is synchronized by external clock. The resistance is defined by 式 1.

$$F_{SW}(MHz) = \frac{41.9}{R_{FREQ}(k\Omega) + 1.05} \tag{1}$$

where

• R_{FRQE} is the resistance between the FREQ pin and the GND pin

For example, the switching frequency is 2.2 MHz if the resistance between FREQ pin and GND is $18k\Omega$. This pin cannot be left floating or tied to VCC.

7.3.6 Spread Spectrum Frequency Modulation

The TPS61378-Q1 uses a triangle waveform to spread the switching frequency with ±10% of normal frequency. The frequency of the triangle waveform is typically 0.4% of the switching frequency. For example, if the normal switching frequency of the TPS61378-Q1 is programmed to 2.2MHz, the spread spectrum function modulates the switching frequency in the range of 1.98MHz to 2.42MHz in a triangle behavior with an 8.8kHz rate.

The spread spectrum is only available while the clock of the TPS61378-Q1 is free running at its natural frequency in FPWM mode. Any of the following conditions overrides spread spectrum, turning it off:

- An external clock is applied to the MODE/SYNC pin.
- The MODE/SYNC pin is configured to be logic low or floating.

7.3.7 Adjustable Peak Current Limit

The TPS61378-Q1 adopts a cycle-by-cycle peak current limit internally and changes its current limit with different working conditions. The low-side switch is turned off immediately as soon as the switch peak current triggers the peak current limit. The peak switch current limit can be set by a resistor from the ILIM pin to ground. The relationship between the peak current limit and the resistor is shown in 式 2.

$$R_{LIM}(k\Omega) = 1.184 + \frac{90.56}{I_{LIM}(A)}$$
 (2)

where

- R_{ILIM} is the resistance between the ILIM pin and the GND. This pin cannot be left floating or connected to VCC.
- I_{LIM} is switch peak current limit

For instance, the current limit is set to 4.8 A if the R_{LIM} is 20 k Ω .

表 7-1 summarizes the peak current limit under various conditions. The current limit applies to the start-up phase.

表 7-1. Switch Peak Current Limit

Behavior	Switch Peak Current Limit
Vin < VO (Not in Down Mode)	I _{LIM} ⁽¹⁾
Vin < VO (In Down Mode)	2/3 I _{LIM}
3V > Vin - VO > 0V	4/9 I _{LIM}

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

13

表 7-1. Switch Peak Current Limit (続き)

Behavior	Switch Peak Current Limit
6V > Vin - VO > 3V	1/4 I _{LIM}
Vin - VO > 6V	1/4 I _{LIM} & Fsw Clamp to 1.1MHz if FREQ pin setting is > 1.1MHz
FB ≤ 0.1V	1/5 I _{LIM} & Fsw Clamp to 1.1MHz if FREQ pin setting is > 1.1MHz

⁽¹⁾ I_{LIM} is switch peak current limit programmed in ± 2 .

7.3.8 Bootstrap

The TPS61378-Q1 has an integrated bootstrap regulator circuit. A small ceramic capacitor is needed between the BST pin and SW pin to provide the gate drive supply voltage for high-side switches. The bootstrap capacitor is charged during the time when the low-side switch is in the ON state. The value of this ceramic capacitor should be above $0.1~\mu F$. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating higher than 6.3~V is recommended.

7.3.9 Load Disconnect

The TPS61378-Q1 integrates a load disconnect function when the input source is DC, completely cutting off the path between the input side and output side during shutdown.

The output disconnect function also allows the output short protection and minimizes the inrush current at startup.

7.3.10 MODE/SYNC Configuration

表 7-2 summarizes the MODE/SYNC function and the entry condition.

表 7-2. MODE/SYNC Configuration

MODE/SYNC PIN CONFIGURATION	MODE
Logic Low or Floating	Auto PFM Mode
Logic High	Forced PWM Mode
External Synchronization	Forced PWM Mode

The TPS61378-Q1 can be synchronized to an external clock applied to the MODE/SYNC pin.

7.3.11 Overvoltage Protection (OVP)

If the output voltage exceeds the OVP threshold (typically 20 V), the TPS61378-Q1 immediately stops switching until the output voltage drops below the recovery threshold (typically 19.5 V). This function protects the device against excessive voltage.

7.3.12 Output Short Protection/Hiccup

In addition to the cycle-by-cycle current limit function, the TPS61378-Q1 also has output short protection.

During normal working condition, when output draws an excessive amount of current, causing the low-side FET to reach peak current limit and the output voltage is pulled below the input voltage, the device enters short circuit protection mode, triggering the hiccup timer. When the hiccup timer is active, the device limits the current for 1.8 ms and then shuts down. After 67 ms, it restarts.

During start-up, whether normal start-up or hiccup restart, the device can trigger short protection. The device has limited loading capacity at start up phase because of smaller peak current limit, which is list in 表 7-1.

Starting up with heavy load or very large capacitors at output side may causes short hiccup protection.

7.3.13 Power-Good Indicator

The TPS61378-Q1 integrates a power-good function. The power-good output consists of an open-drain NMOS, requiring an external pullup resistor connect to a suitable voltage supply like VCC. The PG pin goes high with a

かせ) を送信 Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TPS61378-Q1*

typical 3.4-ms delay time after VOUT reaches 90% of the target output voltage. When the output voltage drops below 85% of the target output voltage, the PG pin immediately goes low without delay.

7.3.14 Thermal Shutdown

A thermal shutdown is implemented to prevent damage due to excessive heat and power dissipation. Typically, the thermal shutdown occurs at junction temperatures exceeding 165°C. When the thermal shutdown is triggered, the device stops switching and recovers when the junction temperature falls below 145°C (typical).

7.4 Device Functional Modes

7.4.1 Forced PWM Mode

The TPS61378-Q1 enters forced PWM mode by pulling the MODE/SYNC pin to logic high for more than five switching cycles. In forced PWM mode, the TPS61378-Q1 keeps the switching frequency constant at light load condition. When the load current decreases, the output of the internal error amplifier also decreases to keep the inductor peak current down. When the output current decreases further, the high-side switch is not turned off even if the current of the high-side switch goes negative to keep the frequency constant.

7.4.2 Auto PFM Mode

The TPS61378-Q1 enters auto PFM Mode by pulling the MODE/SYNC pin to logic low for more than five switching cycles or leaving the pin floating. The TPS61378-Q1 improves the efficiency at light load when operating in PFM mode. When the output current decreases to a certain level, the output voltage of the error amplifier is clamped by the internal circuit. If the output current reduces further, the inductor current through the high-side switch will be clamped but not lowered further. Pulses are skipped to improve the efficiency at light load.

7.4.3 External Clock Synchronization

The TPS61378-Q1 supports external clock synchronization with a range of 200 kHz to 2.2 MHz. The external clock needs to be within -+20% of the setting frequency to ensure a reliable synchronization. The TPS61378-Q1 remains in forced PWM mode and operates in CCM across the entire load range if the oscillator is synchronized by an external clock. The spread spectrum feature is disabled when external synchronization is used.

7.4.4 Down Mode

The TPS61378-Q1 features down mode operation when input voltage is close to or higher than output voltage. In down mode, output voltage is regulated at target value, even when $V_{\text{IN}} > V_{\text{O}}$. The TPS61378-Q1 high-side and low-side FETs are switching devices that always work in boost operation, where the isolation FET always works as a linear device.

For boost circuits, on-time or duty cycle is reduced as input voltage approaches output voltage. The TPS61378-Q1 enters down mode when V_{IN} reaches 85% (typical) of V_O voltage at 2.2 MHz. Exiting down mode requires V_{IN} to be reduced below 85% (typical) of V_O voltage at 2.2 MHz.

In normal operation, the isolation FET is fully on.

When down mode is triggered and V_{IN} is less than VO pin voltage, the OUT pin has a fixed 2 V (typical) above VO pin voltage. An isolation FET works in LDO mode to regulate VO pin voltage with a 2-V constant voltage drop.

When down mode is triggered and V_{IN} is 100 mV (typical) higher than VO pin voltage, the OUT pin has an approximated 3 V (typical) above the V_{IN} pin voltage. As V_{IN} keeps rising, the OUT pin continues rising with 3 V on top of V_{IN} . In addition, an isolation FET works in LDO mode to regulate VO pin voltage with a voltage differential of the OUT pin and VO pin.

Refer to 🗵 7-1.

English Data Sheet: SLVSET0

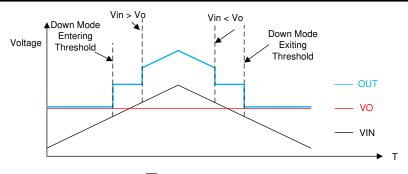


図 7-1. Down Mode

Take care during short-to-ground condition when operation V_{IN} is above 6 V. During hiccup on, the device operates in down mode and the isolation FET voltage drop is V_{IN} + 3 V (OUT pin to VO pin).

English Data Sheet: SLVSET0

8 Application and Implementation

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

The TPS61378-Q1 is a 25-μA quiescent current boost converter that supports a 2.3-V to 14-V input voltage range. The device also supports load disconnect to minimize the leakage current. The following design procedure can be used to select component values for the TPS61378-Q1.

8.2 Typical Application

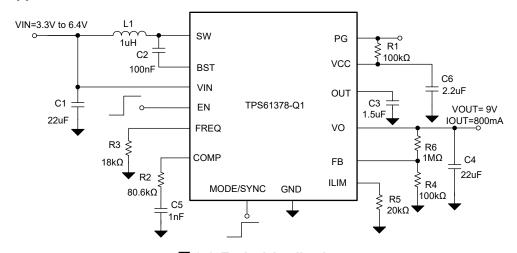


図 8-1. Typical Application

8.2.1 Design Requirements

A typical application example is dual cameras powered through a coax cable, which normally requires 9.0-V output as its bias voltage and consumes less than 600 mA current. 800-mA load current is designed to provide margin. The following design procedure can be used to select external component values for the TPS61378-Q1.

PARAMETERS	VALUES						
Input Voltage	3.3 V to 6.4 V						
Output Voltage	9.0 V						
Switching Frequency	2.2 MHz						
Output Current	800 mA						
Output Voltage Ripple	± 25 mV						

表 8-1. Design Requirements

8.2.2 Detailed Design Procedure

8.2.2.1 Programming the Output Voltage

The output voltage is determined by the resistor sensed from FB pin before device is enabled.

There are two ways to set the output voltage of the TPS61378-Q1, adjustable output voltage(for TPS61378-Q1 and TPS613783-Q1 only) and fixed output voltage.

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

17

Product Folder Links: TPS61378-Q1

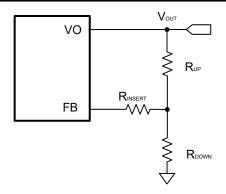


図 8-2. Typical Connection of FB Pin For Adjustable Output Voltage

図 8-2 shows the typical circuit of the FB pin conncetion for adjustable output voltage. The FB resistor R_{FB} is defined as 式 3:

$$R_{FB} = R_{INSERT} + \frac{R_{UP} \times R_{DOWN}}{R_{UP} + R_{DOWN}} \tag{3}$$

When selected for adjustable output voltage, R_{FB} must be above 14.4k Ω . The FB pin is connected to the negative input of the internal error amplifier directly. The output voltage can be programmed by adjusting the external resistor divider R_{UP} and R_{DOWN} according to $\not \equiv 4$.

$$V_{OUT} = V_{REF} \times \frac{(R_{UP} + R_{DOWN})}{R_{DOWN}} \tag{4}$$

 \pm 4 shows that the output voltage setting is only influenced by R_{UP} and R_{DOWN}. In normal application, R_{INSERT} can be 0 Ω , that is, directly connect FB pin to middle point of feedback voltage divider.

For automotive application that do not prefer to use resistors more than 100 k Ω , R_{INSERT} (>15k Ω) can be used so that calculated R_{UP} and R_{DOWN} feedback resistor value could be less than 100k Ω .

When working with adjustable voltage, for the best accuracy, R_{DOWN} is recommended to be smaller than 160 k Ω to ensure that the current flowing through R_{DOWN} is at least 100 times larger than FB pin leakage current. Changing R_{DOWN} towards the lower value increases the robustness against noise injection. Changing R_{DOWN} to higher values reduces the quiescent current to achieve higher efficiency at light load.

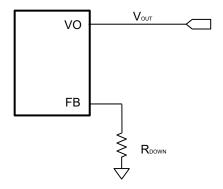


図 8-3. Typical Connection of FB Pin For Fixed Output Voltage

図 8-3 shows the typical circuit of the FB pin conncetion for fixed output voltage. The FB resistor R_{FB} is defined as 式 5:

$$R_{FB} = R_{DOWN} \tag{5}$$

When designed for fixed output voltage, the TPS61378-Q1 uses the internal resistor divider and works with fixed output voltage. The TPS61378-Q1 subdivides the voltage due to R_{FB} and device part number. See Device Comparison Table for detailed information.

8.2.2.2 Setting the Switching Frequency

The switching frequency of the TPS61378-Q1 is set at 2.2 MHz. Use \pm 1 to calculate the required resistor value. The calculated value is 18 k Ω to get the frequency of 2.2 MHz.

8.2.2.3 Setting the Current Limit

The current limit of the TPS61378-Q1 can be programmed by an external resistor. For a target current limit of 4.8 A, use $\gtrsim 2$. The calculated resistor value is 20 k Ω .

8.2.2.4 Selecting the Inductor

A boost converter normally requires two main passive components for storing energy during power conversion: an inductor and an output capacitor. The inductor affects the steady state efficiency (including the ripple and efficiency), transient behavior, and loop stability, which makes the inductor the most critical component in application.

When selecting the inductor and the inductance, the other important parameters are:

- The maximum current rating (RMS and peak current should be considered)
- · The series resistance
- · Operating temperature

The TPS61378-Q1 has built-in slope compensation to avoid subharmonic oscillation associated with current mode control. If the inductor value is too low and makes the inductor peak-to-peak ripple higher than 2 A, the slope compensation may not be adequate, and the loop can be unstable. Therefore, it is recommended to make the peak-to-peak current ripple between 800 mA to 2 A when selecting the inductor.

The inductance can be calculated by 式 6, 式 7, and 式 8:

$$\Delta I_{L} = \frac{V_{IN} \times D}{L \times f_{SW}}$$
(6)

$$\Delta I_{L_R} = Ripple\% \times \frac{V_{OUT} \times I_{OUT}}{\eta \times V_{IN}}$$
(7)

$$L = \frac{1}{\text{Ripple }\%} \times \frac{\eta \times V_{\text{IN}}}{V_{\text{OUT}} \times I_{\text{OUT}}} \times \frac{V_{\text{IN}} \times D}{f_{\text{SW}}}$$
(8)

where

- Δ_{IL} is the peak-peak inductor current ripple
- V_{IN} is the input voltage
- D is the duty cycle
- · L is the inductor
- f_{SW} is the switching frequency
- Ripple % is the ripple ration versus the DC current
- V_{OUT} is the output voltage
- I_{OUT} is the output current
- η is the efficiency

The current flowing through the inductor is the inductor ripple current plus the average input current. During power up, load faults, or transient load conditions, the inductor current can increase above the peak inductor current calculated.

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

19

Inductor values can have $\pm 20\%$, or even $\pm 30\%$, tolerance with no current bias. When the inductor current approaches the saturation level, the inductance can decrease 20% to 35% from the value at 0-A bias current, depending on how the inductor vendor defines saturation. When selecting an inductor, make sure the rated current, especially the saturation current, is larger than its peak current during the operation.

The inductor peak current varies as a function of the load, switching frequency, and input and output voltages. The peak current can be calculated with ± 9 and ± 10 .

$$I_{PEAK} = I_{IN} + \frac{1}{2} \times \Delta I_{L}$$
(9)

where

- · IPEAK is the peak current of the inductor
- · I_{IN} is the input average current
- Δ_{IL} is the ripple current of the inductor

The input DC current is determined by the output voltage. The output current can be calculated by:

$$I_{IN} = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times \eta}$$
(10)

where

- · I_{IN} is the input current of the inductor
- V_{OUT} is the output voltage
- V_{IN} is the input voltage
- η is the efficiency

While the inductor ripple current depends on the inductance, the frequency, the input voltage, and duty cycle are calculated by \pm 6. Replace \pm 6 and \pm 10 into \pm 9 and get the inductor peak current:

$$I_{PEAK} = \frac{I_{OUT}}{(1-D) \times \eta} + \frac{1}{2} \times \frac{V_{IN} \times D}{L \times f_{SW}}$$
(11)

where

- I_{PEAK} is the peak current of the inductor
- · IOUT is the output current
- · D is the duty cycle
- η is the efficiency
- V_{IN} is the input voltage
- · L is the inductor
- f_{SW} is the switching frequency

The heat rating current (RMS) is can be calculated with 式 12:

$$I_{L_{RMS}} = \sqrt{I_{IN}^2 + \frac{1}{12} (\Delta I_L)^2}$$
 (12)

where

- I_{L RMS} is the RMS current of the inductor
- I_{IN} is the input current of the inductor
- Δ_{IL} is the ripple current of the inductor

It is important that the peak current does not exceed the inductor saturation current and the RMS current is not over the temperature-related rating current of the inductors.

For a given physical inductor size, increasing inductance usually results in an inductor with lower saturation current. The total losses of the coil consists of the DC resistance (DCR) loss and the following frequency-dependent loss:

- The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)
- Additional losses in the conductor from the skin effect (current displacement at high frequencies)
- Magnetic field losses of the neighboring windings (proximity effect)

For a certain inductor, the larger current ripple (smaller inductor) generates the higher DC and also the frequency-dependent loss. An inductor with lower DCR is basically recommended for higher efficiency. However, it is usually a tradeoff between the loss and foot print. 表 8-2 lists some recommended inductors.

表 8-2. Recommended inductors									
PART NUMBER	L (µH)			SIZE (L × W × H mm)	VENDOR ⁽¹⁾				
XEL4030-471MEB	0.47	4.1	15.5	4 x 4 x 3	Coilcraft				
XEL4030-102MEB	1	8.9	9	4 x 4 x 3	Coilcraft				
DFE2HCAHR47MJ0L	0.47	25	5.1	2.5 x 2 x 1.2	Murata				
DFE322520FD-1R0M	1	22	7.5	3.2 x 2.5 x 2	Murata				
TFM322512ALMAR47MTAA	0.47	16	7.6	3.2 x 2.5 x 1.2	TDK				
TFM322512ALMA1R0MTAA	1	30	5.1	3.2 x 2.5 x 1.2	TDK				

表 8-2. Recommended Inductors

8.2.2.5 Selecting the Output Capacitors

The output capacitor is mainly selected to meet the requirements at load transient or steady state. The loop is compensated for the output capacitor selected. The output ripple voltage is related to the equivalent series resistance (ESR) of the capacitor and its capacitance. Assuming a capacitor with zero ESR, the minimum capacitance needed for a given ripple can be calculated by \pm 13:

$$C_{OUT} = \frac{I_{OUT} \times (V_{OUT} - V_{IN})}{f_{SW} \times \Delta V \times V_{OUT}}$$
(13)

where

- C_{OUT} is the output capacitor
- I_{OUT} is the output current
- V_{OUT} is the output voltage
- V_{IN} is the input voltage
- Δ_V is the output voltage ripple required
- f_{SW} is the switching frequency

The additional output ripple component caused by ESR is calculated by 式 14:

$$\Delta V_{ESR} = I_{OUT} \times R_{ESR} \tag{14}$$

where

- ΔV_{ESR} is the output voltage ripple caused by ESR
- R_{ESR} is the resistor in series with the output capacitor

For the ceramic capacitor, the ESR ripple can be neglected. However, for the tantalum or electrolytic capacitors, it must be considered if used.

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

21

⁽¹⁾ See the Third-party Products Disclaimer.

The minimum ceramic output capacitance needed to meet a load transient requirement can be estimated using 式 15:

$$C_{OUT} = \frac{\Delta I_{STEP}}{2\pi \times f_{BW} \times \Delta V_{TRAN}}$$
(15)

where

- ΔI_{STEP} is the transient load current step
- ΔV_{TRAN} is the allowed voltage dip for the load current step
- f_{BW} is the control loop bandwidth (that is, the frequency where the control loop gain crosses zero)

For the output capacitor on the OUT pin, the effective capacitance is recommended between 0.22 µF to 1 µF.

Take care when evaluating the derating of a ceramic capacitor under the DC bias. Ceramic capacitors can derate by as much as 70% of the capacitance at the respective rated voltage. Therefore, enough margins on the voltage rating must be considered to ensure adequate capacitance at the required output voltage.

8.2.2.6 Selecting the Input Capacitors

Multilayer ceramic capacitors are an excellent choice for the input decoupling of the step-up converter since they have extremely low ESR and are available in small footprints. Input capacitors must be located as close as possible to the device. While a 22-µF input capacitor or equivalent is sufficient for the most applications, larger values can be used to reduce input current ripple.

Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or can even damage the device. Additional "bulk" capacitance (electrolytic or tantalum) in this circumstance, must be placed between C_{IN} and the power source lead to reduce ringing that can occur between the inductance of the power source leads and C_{IN} .

8.2.2.7 Loop Stability and Compensation

8.2.2.7.1 Small Signal Model

The TPS61378-Q1 uses the fixed frequency peak current mode control. There is an internal adaptive slope compensation to avoid subharmonic oscillation. With the inductor current information sensed, the small-signal model of the power stage reduces from a two-pole system, created by L and C_{OUT} , to a single-pole system, created by R_{OUT} and R_{OUT} . The single-pole system is easily used with the loop compensation. 28 8-4 shows the equivalent small signal elements of a boost converter.

Product Folder Links: TPS61378-Q1

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLVSET0

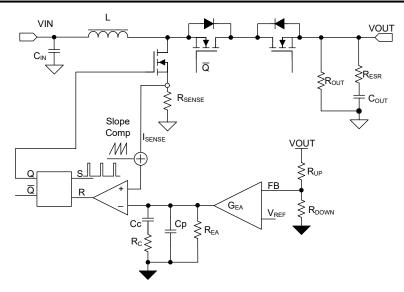


図 8-4. TPS61378-Q1 Control Equivalent Circuitry Model

The small signal of power stage is:

$$K_{PS}(S) = \frac{R_{OUT} \times (1 - D)}{2 \times R_{SENSE}} \times \frac{(1 + \frac{S}{2\pi \times f_{ESR}})(1 - \frac{S}{2\pi \times f_{RHP}})}{(1 + \frac{S}{2\pi \times f_{P}})}$$
(16)

where

- · D is the duty cycle
- R_{OUT} is the output load resistor
- R_{SENSE} is the equivalent internal current sense resistor, which is typically 118 m Ω

The single pole of the power stage is:

$$f_{P} = \frac{2}{2\pi \times R_{OUT} \times C_{OUT}}$$
(17)

where

• C_{OUT} is the output capacitance. For a boost converter having multiple identical output capacitors in parallel, simply combine the capacitors with the equivalent capacitance

The zero created by the ESR of the output capacitor is:

$$f_{ESR} = \frac{1}{2\pi \times R_{ESR} \times C_{OUT}}$$
 (18)

where

R_{ESR} is the equivalent resistance in series of the output capacitor

The right-hand plane zero is:

$$f_{RHP} = \frac{R_{OUT} \times (1 - D)^2}{2\pi \times L} \tag{19}$$

where

- · D is the duty cycle
- R_{OUT} is the output load resistor
- · L is the inductance

式 20 shows the equation for feedback resistor network and the error amplifier.

$$H_{EA}(S) = G_{EA} \times R_{EA} \times \frac{R_{DOWN}}{R_{UP} + R_{DOWN}} \times \frac{1 + \frac{S}{2 \times \pi \times f_Z}}{(1 + \frac{S}{2 \times \pi \times f_{P1}}) \times (1 + \frac{S}{2 \times \pi \times f_{P2}})}$$
(20)

where

- R_{EA} is the output impedance of the error amplifier, typically R_{EA} = 500 M Ω
- f_{P1} , f_{P2} is the pole's frequency of the compensation
- f_Z is the zero's frequency of the compensation network

$$f_{P1} = \frac{1}{2\pi \times R_{EA} \times C_c} \tag{21}$$

where

C_C is the zero capacitor compensation

$$f_{P2} = \frac{1}{2\pi \times R_C \times C_P} \tag{22}$$

where

- C_P is the pole capacitor compensation
- R_C is the resistor of the compensation network

$$f_Z = \frac{1}{2\pi \times R_C \times C_C} \tag{23}$$

8.2.2.7.2 Loop Compensation Design Steps

With the small signal models coming out, the next step is to calculate the compensation network parameters with the given inductor and output capacitance.

1. Set the Crossover Frequency, f_C .

The first step is to set the loop crossover frequency, $f_{\rm C}$. The higher the crossover frequency, the faster the loop response is. It is generally accepted that the loop gain crosses over no higher than the lower of either 1/10 of the switching frequency, $f_{\rm SW}$, or 1/5 of the RHPZ frequency, $f_{\rm RHPZ}$. Then, calculate the loop compensation network values of $R_{\rm C}$, $C_{\rm C}$, and $C_{\rm P}$ by the following equations.

2. Set the Compensation Resistor, R_C.

By placing f_Z below f_C , for frequencies above f_C , $R_C \mid R_{EA} = R_C$, so $R_C \times G_{EA}$ sets the compensation gain. Setting the compensation gain, $R_{COMP-dB}$, at $R_{COMP-dB}$,

Therefore, to approximate a single-pole rolloff up to f_{P2} , rearrange $\not\equiv$ 20 to solve for RC so that the compensation gain, K_{EA} , at f_C is the negative of the gain, K_{PS} . Read at frequency f_C for the power stage bode plot or more simply:

$$K_{EA}(f_C) = 20 \times \log(G_{EA} \times R_C \times \frac{R_{DOWN}}{R_{UP} + R_{DOWN}}) = -K_{PS}(f_C)$$
(24)

where

- K_{EA} is gain of the error amplifier network
- K_{PS} is the gain of the power stage
- G_{EA} is the transconductance of the amplifier, the typical value of G_{EA} = 70 μ A / V

3. Set the Compensation Zero capacitor, C_C.

Place the compensation zero at the power stage R_{OUT} ,C_{OUT} pole's position to get:

$$f_{Z} = \frac{1}{2\pi \times R_{C} \times C_{C}} \tag{25}$$

$$C_{C} = \frac{R_{OUT} \times C_{OUT}}{2R_{C}}$$
 (26)

4. Set the Compensation Pole Capacitor, Cp.

Place the compensation pole at the zero produced by R_{ESR} and C_{OUT} . It is useful for canceling unhelpful effects of the ESR zero.

$$f_{P2} = \frac{1}{2\pi \times R_C \times C_P} \tag{27}$$

$$f_{ESR} = \frac{1}{2\pi \times R_{ESR} \times C_{OUT}}$$
 (28)

Set $f_{P2} = f_{ESR}$, and get:

$$C_{P} = \frac{R_{ESR} \times C_{OUT}}{R_{C}}$$
 (29)

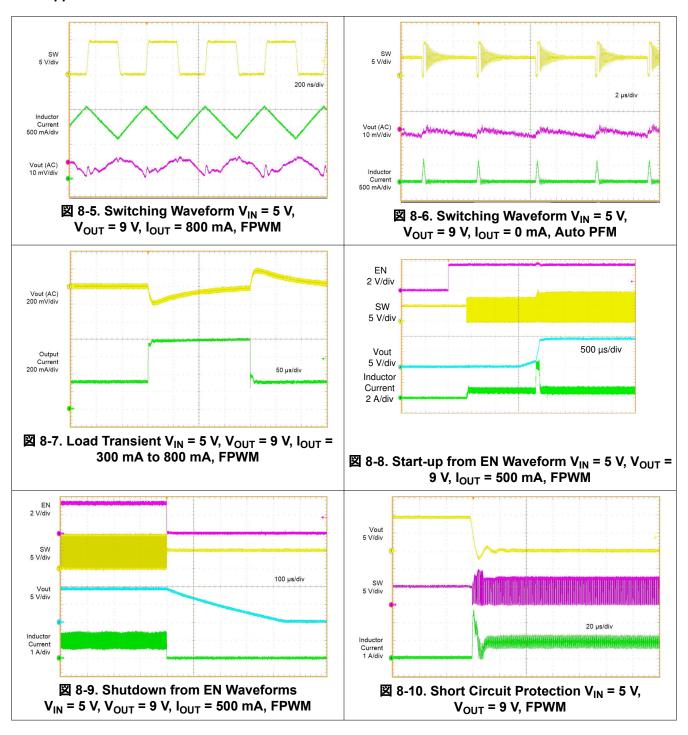
8.2.2.7.3 Selecting the Bootstrap Capacitor

The bootstrap capacitor between the BST and SW pin supplies the gate current to charge the high-side FET device gate during the turnon of each cycle. The gate current also supplies charge for the bootstrap capacitor. The recommended value of the bootstrap capacitor is 0.1 μ F to 1 μ F. C_{BST} must be a good quality, low-ESR ceramic capacitor located at the pins of the device to minimize potentially damaging voltage transients caused by trace inductance. A value of 0.1 μ F was selected for this design example.

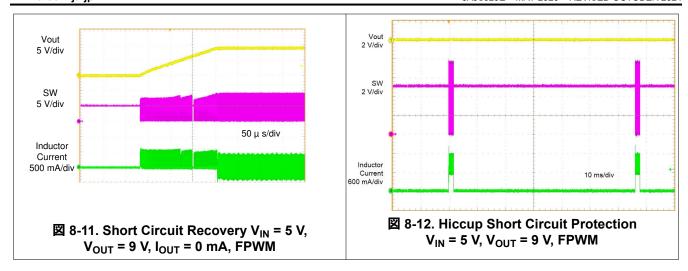
8.2.2.7.4 V_{CC} Capacitor

The primary purpose of the V_{CC} capacitor is to supply the peak transient currents of the driver and bootstrap capacitor and provide stability for the V_{CC} regulator. The value of C_{VCC} must be at least 10 times greater than the value of C_{BST} , and must be a good quality, low-ESR ceramic capacitor. C_{VCC} must be placed close to the pins of the IC to minimize potentially damaging voltage transients caused by the trace inductance. A value of 2.2 μ F was selected for this design example.

Product Folder Links: TPS61378-Q1


Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信


25

8.2.3 Application Curves

English Data Sheet: SLVSET0

9 Power Supply Recommendations

The TPS61378-Q1 is designed to operate from an input voltage supply range between 2.3 V to 14 V. This input supply must be well regulated. If the input supply is located more than a few inches from the device, the bulk capacitance can be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of $47 \, \mu F$ is a typical choice.

27

Product Folder Links: TPS61378-Q1

10 Layout

10.1 Layout Guidelines

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator can show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground paths. The input and output capacitor, as well as the inductor must be placed as close as possible to the IC.

10.2 Layout Example

The bottom layer is a large GND plane connected by vias.

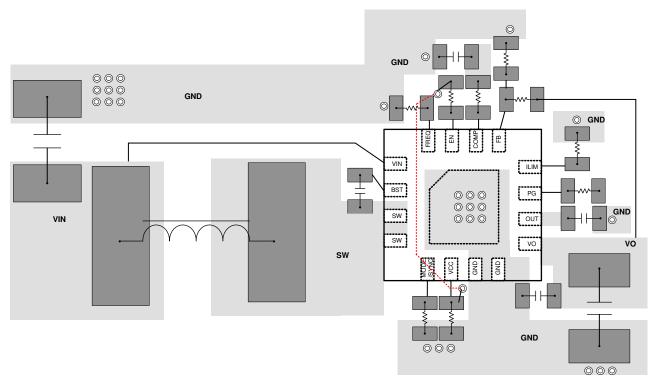


図 10-1. Recommended Layout

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLVSET0

11 Device and Documentation Support

11.1 Device Support

11.1.1 サード・パーティ製品に関する免責事項

サード・パーティ製品またはサービスに関するテキサス・インスツルメンツの出版物は、単独またはテキサス・インスツルメンツの製品、サービスと一緒に提供される場合に関係なく、サード・パーティ製品またはサービスの適合性に関する是認、サード・パーティ製品またはサービスの是認の表明を意味するものではありません。

11.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

11.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

11.4 Trademarks

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

11.5 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

11.6 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

12 Revision History

C	hanges from Revision D (October 2021) to Revision E (October 2024)	Page
•	TPS61378L を追加	1
•	追加機能を追加	1
•	パッケージを WQFN-16 に更新	1
	Updated Output Voltage Selection Resistor in the Device Comparison Table	
•	Updated Error Amplifier units	6
•	Updated 🗵 6-8	8
	Added additional information to Spread Spectrum Frequency Modulation	
•	Added 表 7-1	13
•	Added additional information to Output Short Protection/Hiccup	14
•	Added "The external clock needs to be within -+20% of the setting frequency to ensure a reliable	
	synchronization."	15
	Updated 🗵 8-1	
•	Added additional information and 🗵 8-2 and 🗵 8-3	17

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

29

Changes from Revision C (June 2021) to Revision D (October 2021)	Page
• Updated セクション 7.3.13	14
Updated セクション 7.3.13	22
Changes from Revision B (February 2021) to Revision C (June 2021)	Page
Updated resistor from FB to GND values	3
• Updated セクション 8.2.2.1	17

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
TPS613783QWRTERQ1	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2G8H
TPS613783QWRTERQ1.A	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2G8H
TPS613785QWRTERQ1	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2G9H
TPS613785QWRTERQ1.A	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2G9H
TPS61378LQWRTERQ1	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	61378L
TPS61378LQWRTERQ1.A	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	61378L
TPS61378QWRTERQ1	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2ELH
TPS61378QWRTERQ1.A	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2ELH

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

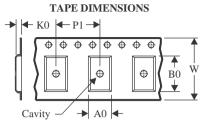
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM


www.ti.com 7-Oct-2025

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 28-Jun-2025

TAPE AND REEL INFORMATION

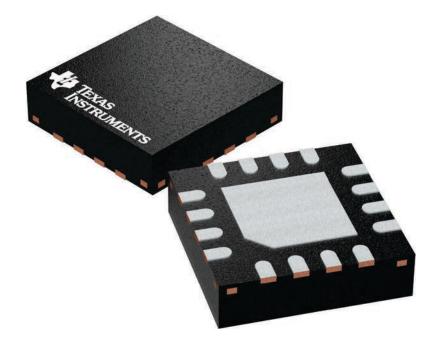
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

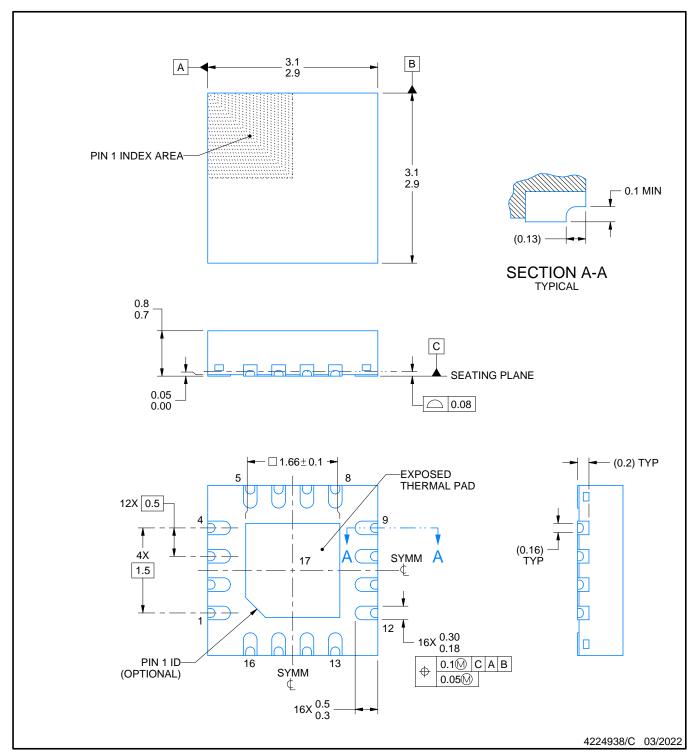
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS613783QWRTERQ1	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS613785QWRTERQ1	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61378LQWRTERQ1	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61378QWRTERQ1	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 28-Jun-2025

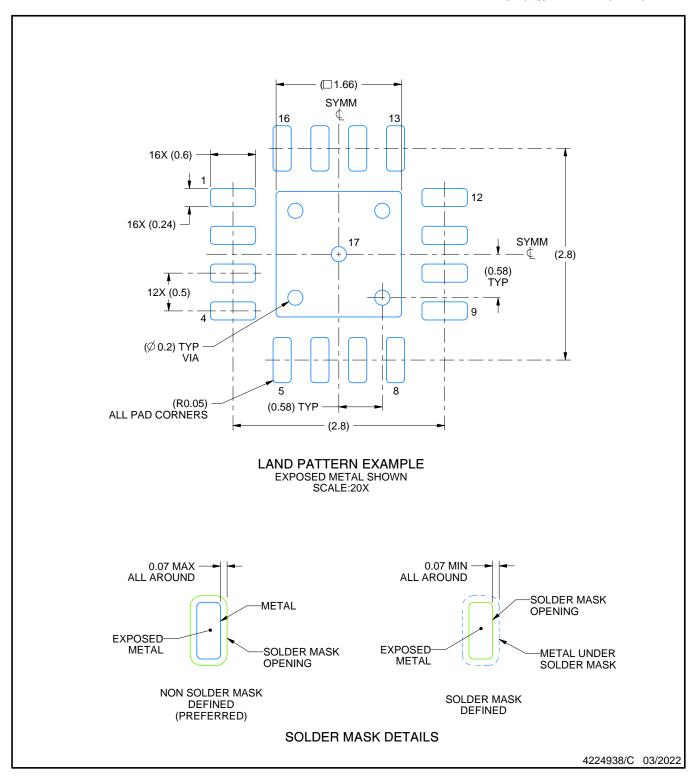

*All dimensions are nominal

7 till dillitoriolorio di o riorimidi							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS613783QWRTERQ1	WQFN	RTE	16	3000	367.0	367.0	35.0
TPS613785QWRTERQ1	WQFN	RTE	16	3000	367.0	367.0	35.0
TPS61378LQWRTERQ1	WQFN	RTE	16	3000	367.0	367.0	35.0
TPS61378QWRTERQ1	WQFN	RTE	16	3000	367.0	367.0	35.0


3 x 3, 0.5 mm pitch

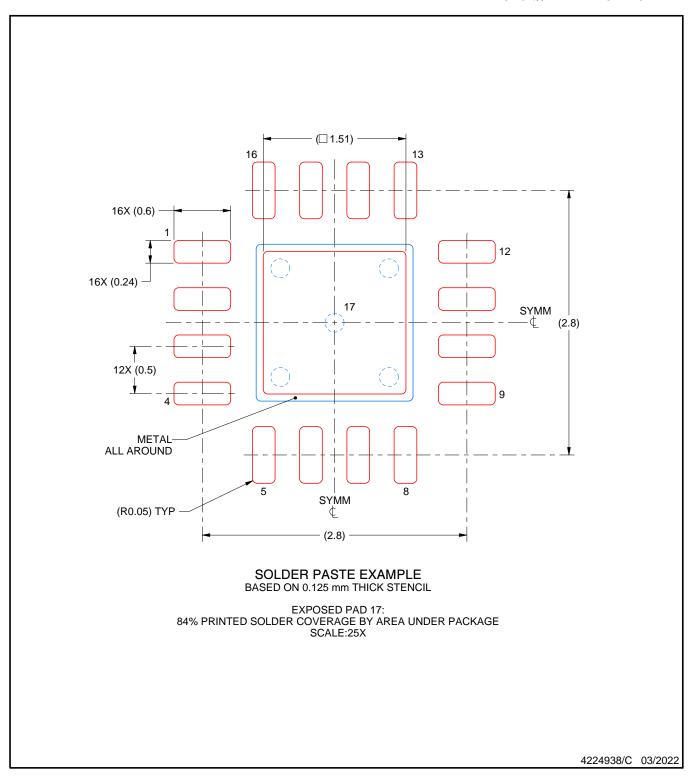
PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



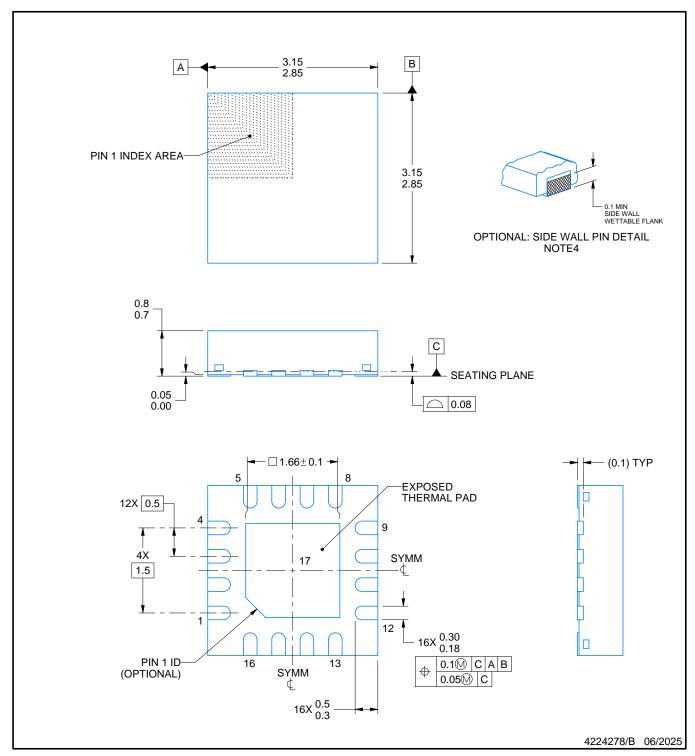
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



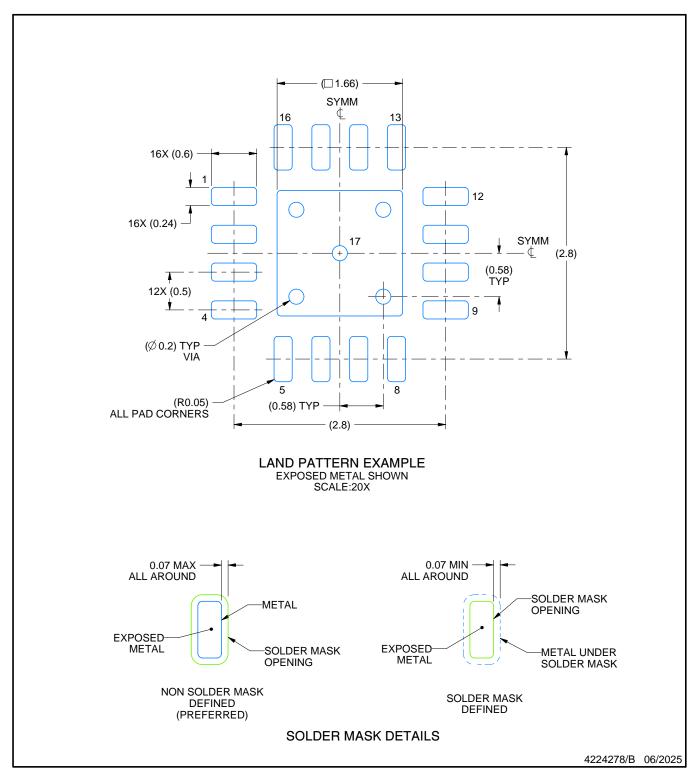
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



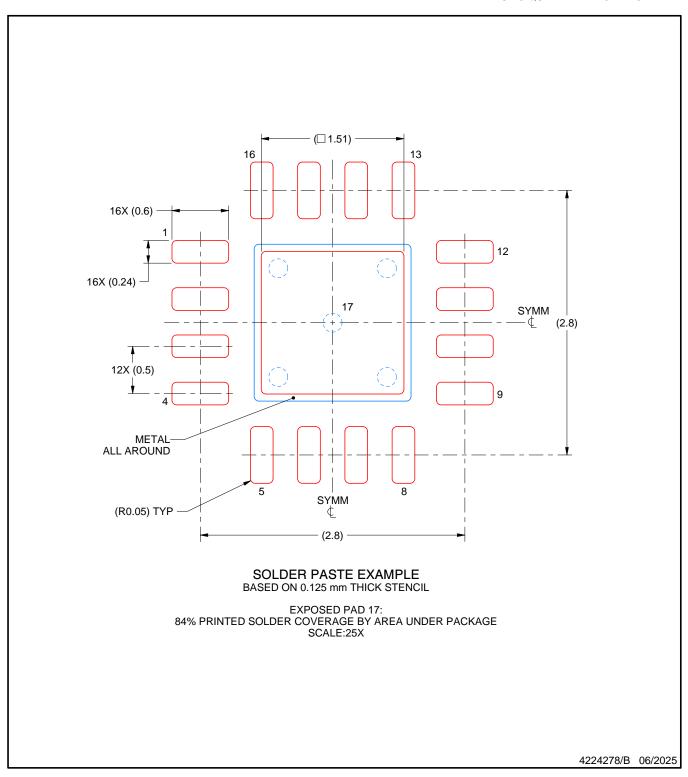
NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
- 4. Minimum 0.1 mm solder wetting on pin side wall. Available for wettable flank version only.



NOTES: (continued)

- 5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated