TPS562202 4.3V~17V 入力、2A、同期整流式降圧コンバータ、SOT563 パッケージ # 1 特長 - 140mΩ および 84mΩ の FET を内蔵した 2A コン - D-CAP2™ モード制御による高速過渡応答 - 入力電圧範囲:4.3 V~17 V - 出力電圧範囲 0.804 V~7 V - 軽負荷時の ECO モード - 580kHz のスイッチング周波数 - 低いシャットダウン電流:3µA未満 - 帰還電圧精度: 2% (25°C) - プリバイアス・スタートアップをサポート - サイクル単位の過電流制限 - ヒカップ・モードによる過電流保護 - 非ラッチ UVP および TSD 保護 - 固定ソフト・スタート: 1.2ms # 2 アプリケーション - テレビ用 SMPS 電源 - スマート・スピーカ - 有線ネットワーク - デジタル・セットトップ・ボックス (STB) - 監視機器 # 3 概要 TPS562202 は単純で使いやすい 2A 同期整流式降圧 コンバータで、SOT563 パッケージに搭載されていま このデバイスは最小限の外付け部品で動作し、スタン バイ電流が小さくなるように最適化されています。 このスイッチ・モード電源 (SMPS) デバイスは、D-CAP2 モード制御を採用し、高速の過渡応答を実現し ます。また、特殊ポリマーなど ESR (等価直列抵抗) の低い出力コンデンサと、超低 ESR のセラミック・ コンデンサの両方を、外部補償部品なしでサポートし ます。 TPS562202 は ECO モードで動作することで、軽負荷 動作中も高い効率を維持できます。TPS562202 は 6 ピン、1.6mm × 1.6mm の SOT563 (DRL) パッケージ で供給され、接合部温度 -40℃~125℃で動作が規定 されています。 ### 製品情報 | 型番 ⁽¹⁾ (1 ページ) | パッケージ | 本体サイズ(公称) | |---------------------------|---------|---------------| | TPS562202 | DRL (6) | 1.60mm×1.60mm | 利用可能なすべてのパッケージについては、このデータシー トの末尾にある注文情報を参照してください。 TPS562202 の効率 # **Table of Contents** | 1 特長 | . 1 | 8.3 Feature Description | 10 | |--------------------------------------|-----|----------------------------------------------------|--------------------| | 2 アプリケーション | | 8.4 Device Functional Modes | | | 3 概要 | | 9 Application and Implementation | 13 | | 4 Revision History | .2 | 9.1 Application Information | | | 5 Device Comparison Table | | 9.2 Typical Application | | | 6 Pin Configuration and Functions | 3 | 10 Power Supply Recommendations | | | Pin Functions | | 11 Layout | 18 | | 7 Specifications | . 4 | 11.1 Layout Guidelines | | | 7.1 Absolute Maximum Ratings | . 4 | 11.2 Layout Example | 19 | | 7.2 ESD Ratings | . 4 | 12 Device and Documentation Support | 20 | | 7.3 Recommended Operating Conditions | 4 | 12.1 Receiving Notification of Documentation Updat | es <mark>20</mark> | | 7.4 Thermal Information | 4 | 12.2 Support Resources | 20 | | 7.5 Electrical Characteristics | 6 | 12.3 Trademarks | 20 | | 7.6 Typical Characteristics | 7 | 12.4 Electrostatic Discharge Caution | 20 | | 8 Detailed Description | | 12.5 Glossary | 20 | | 8.1 Overview | | 13 Mechanical, Packaging, and Orderable | | | 8.2 Functional Block Diagram | 10 | Information | 20 | | - | | | | # **4 Revision History** | DATE | REVISION | NOTES | |----------------|----------|-----------------| | September 2020 | * | Initial release | # **5 Device Comparison Table** | PART NUMBER | WORK MODE IN LIGHT LOADING | |-------------|----------------------------| | TPS562202 | ECO | | TPS562207 | FCCM | # **6 Pin Configuration and Functions** 図 6-1. 6-Pin SOT563 DRL Package (Top View) # **Pin Functions** | PIN I/O | | 1/0 | DESCRIPTION | | | |---------|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | NAME | NO. | - I/O | DESCRIPTION | | | | VIN | 1 | I | Input voltage supply pin | | | | SW | 2 | 0 | Switch node connection between high-side NFET and low-side NFET | | | | GND | 3 | _ | Ground pin source terminal of low-side power NFET as well as the ground terminal for controller circuit. Connect sensitive FB to this GND at a single point. | | | | BST | 4 | 0 | Supply input for the high-side NFET gate drive circuit. Connect 0.1-µF capacitor between BST and SW pin. | | | | EN | 5 | I | Enable input control. Active high. Must be pulled up to enable the device. | | | | FB | 6 | 1 | Converter feedback input. Connect to output voltage with feedback resistor divider. | | | # 7 Specifications # 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |---------------------------------------|------------------------|------|-----|------| | | VIN, EN | -0.3 | 19 | V | | | BST | -0.3 | 25 | V | | Input voltage | BST (10 ns transient) | -0.3 | 27 | V | | | BST (vs SW) | -0.3 | 6.5 | V | | | FB | -0.3 | 6.5 | V | | | SW | -2 | 19 | V | | | SW (10 ns transient) | -3.5 | 21 | V | | Operating junction tempe | rature, T _J | -40 | 150 | °C | | Storage temperature, T _{sto} |] | -55 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--------------------------------------------------------------------------------|-------|------| | | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±500 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. # 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | | MIN | NOM MAX | UNIT | |-----------------|--------------------------------|-----------------------|------|---------|------| | V _{IN} | Supply input voltage range | | 4.3 | 17 | V | | | | BST | -0.1 | 23 | | | | | BST (10 ns transient) | -0.1 | 26 | | | | | BST (vs SW) | -0.1 | 6 | | | VI | Input voltage range | EN | -0.1 | 17 | V | | | | FB | -0.1 | 5.5 | | | | | SW | -1.8 | 17 | | | | | SW (10 ns transient) | -3.5 | 20 | | | TJ | Operating junction temperature | | -40 | 125 | °C | ### 7.4 Thermal Information | | | TPS562202 | | |----------------------------|-------------------------------------------------------------------------|-----------|------| | | THERMAL METRIC ⁽¹⁾ | | UNIT | | | | 6 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 141.0 | °C/W | | R _{θJA_effective} | Junction-to-ambient thermal resistance with TI EVM board ⁽²⁾ | 75.0 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 42.0 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 25.5 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 1.0 | °C/W | Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated | | THERMAL METRIC ⁽¹⁾ | DRL | | |-----|----------------------------------------------|--------|------| | | | 6 PINS | | | ΨЈВ | Junction-to-board characterization parameter | 25.3 | °C/W | - For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application - This $R_{\theta JA_effective}$ is tested on TPS562202EVM board (2 layer, copper thickness is 2 oz) at V_{IN} = 12 V, V_{OUT} = 5 V, I_{OUT} = 2 A , TA = (2) ## 7.5 Electrical Characteristics $T_J = -40$ °C to 125°C, $V_{IN} = 12$ V (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------|------------------------------------------|-----------------------------------------------------------------|------|------|------|------| | SUPPLY CUR | RRENT | 1 | | | | | | I _{VIN} | Operating – non-switching supply current | V _{IN} current, EN = 5 V, V _{FB} = 1 V | | 380 | 520 | μA | | I _{VINSDN} | Shutdown supply current | V _{IN} current, EN = 0 V | | 1 | 3 | μΑ | | LOGIC THRE | SHOLD | | | | ' | | | V _{ENH} | EN high-level input voltage | EN | | 1.35 | 1.6 | V | | V _{ENL} | EN low-level input voltage | EN | 0.9 | 1.05 | | V | | R _{EN} | EN pin resistance to GND | V _{EN} = 12 V | 225 | 400 | 900 | kΩ | | V _{FB} VOLTAG | E AND DISCHARGE RESISTA | NCE | | | ' | | | V_{FBTH} | V _{FB} threshold voltage | ECO-mode TM operation | | 815 | | mV | | V _{FBTH} | V _{FB} threshold voltage | Continuous mode operation at T _A = 25°C | 788 | 804 | 820 | mV | | I _{FB} | V _{FB} input current | V _{FB} = 1 V | | 0 | ±0.1 | μΑ | | MOSFET | | | | | I. | | | R _{DS(on)h} | High-side switch resistance | T _A = 25°C, V _{BST} – SW = 5.5 V | | 140 | | mΩ | | R _{DS(on)I} | Low-side switch resistance | T _A = 25°C | | 84 | | mΩ | | CURRENT LI | MIT | | | | | | | I _{ocl_I_source} | Low side FET source current limit | Inductor valley current set point | 2.24 | 3.1 | 4 | Α | | THERMAL SI | HUTDOWN | | | | | | | _ Thermal shutdown | | Shutdown temperature | | 160 | | 00 | | T _{SDN} | threshold ⁽¹⁾ | Hysteresis | | 25 | | °C | | ON-TIME TIM | ER CONTROL | 1 | | | · | | | t _{OFF(MIN)} | Minimum off time | V _{FB} = 0.5 V | | 220 | 310 | ns | | SOFT START | | | | | | | | Tss | Soft-start time | Internal soft-start time, test V _{OUT} from 10% to 90% | | 1.2 | | ms | | FREQUENCY | , | 1 | | | l | | | F _{sw} | Switching frequency | VO = 1.05 V, continuous current conditions | | 580 | | kHz | | OUTPUT UNI | DERVOLTAGE | | | | | | | V _{UVP} | Output UVP threshold | Hiccup detect (H > L) | | 65% | | | | T _{HICCUP_WAIT} | Hiccup on time | | | 2.2 | | ms | | T _{HICCUP_RE} | Hiccup time before restart | | | 18 | | ms | | UVLO | | 1 | 1 | | | | | | | Wake up VIN voltage | | 4.0 | 4.3 | | | UVLO | UVLO threshold | Shutdown VIN voltage | 3.3 | 3.6 | | V | | | | Hysteresis VIN voltage | | 0.4 | | 1 | (1) Not production tested. # 7.6 Typical Characteristics V_{IN} = 12 V (unless otherwise noted) # **8 Detailed Description** #### 8.1 Overview The TPS562202 is a 2-A synchronous buck converter. The proprietary D-CAP2 mode control supports low-ESR output capacitors, such as specialty polymer capacitors and multi-layer ceramic capacitors, without complex external compensation circuits. The fast transient response of D-CAP2 mode control can reduce the output capacitance required to meet a specific level of performance. #### 8.2 Functional Block Diagram #### 8.3 Feature Description #### 8.3.1 Adaptive On-Time Control and PWM Operation The main control loop of the TPS562202 is adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP2 mode control. The D-CAP2 mode control combines adaptive on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely proportional to the output voltage, V_O, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2 mode control. #### 8.3.2 ECO Mode Control The TPS562202 is designed with advanced Eco-mode to maintain high light load efficiency. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load current further decreases, the converter runs into discontinuous conduction mode. The ontime is kept almost the same as it was in continuous conduction mode so it takes more time to discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional to the load current, and keeps the light load efficiency high. The transition point to the light load operation $I_{OUT(11)}$ current can be calculated in \vec{x} 1. $$I_{OUT(LL)} = \frac{1}{2 \times L \times f_{SW}} \times \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN}}$$ (1) #### 8.3.3 Soft Start and Pre-Biased Soft Start The TPS562202 has an internal 1.2-ms soft start. When the EN pin becomes high, the internal soft-start function begins ramping up the reference voltage to the PWM comparator. If the output capacitor is pre-biased at start-up, the devices initiate switching and start ramping up only after the internal reference voltage becomes greater than the feedback voltage V FB. This scheme ensures that the converters ramp up smoothly into regulation point. #### **8.3.4 Current Protection** The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored during the OFF state by measuring the low-side FET drain-to-source voltage. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated. During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by Vin, Vout, the on-time, and the output inductor value. During the on-time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current I_{out}. If the monitored current is above the OCL level, the converter keeps the low-side FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner. There are some important considerations for this type of overcurrent protection. The load current is higher than the overcurrent threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being limited, the output voltage tends to fall as the demanded load current can be higher than the current available from the converter. This can cause the output voltage to fall. When the FB voltage falls below the UVP threshold voltage, the UVP comparator detects it. Then, the device will shut down after the UVP delay time (typically 24 µs) and re-start after the hiccup time (typically 18 ms). When the overcurrent condition is removed, the output voltage returns to the regulated value. #### 8.3.5 Undervoltage Lockout (UVLO) Protection UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage, the device is shut off. This protection is non-latching. ### 8.3.6 Thermal Shutdown The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 160°C), the device is shut off. This is a non-latch protection. The device resumes normal working once the temperature return below the recovery threshold value (typically 135°C). #### 8.4 Device Functional Modes #### 8.4.1 Normal Operation When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the TPS562202 can operate in their normal switching modes at heavy loading. In continuous conduction mode (CCM), the TPS562202 operates at a quasi-fixed frequency of 580 kHz. #### 8.4.2 Eco-mode Operation When the TPS562202 is in normal CCM operating mode and the switch inductor current falls to 0 A, the TPS562202 begins operating in Eco-mode. Each switching cycle is followed by a period of energy-saving sleep time. The sleep time ends when the FB voltage falls below the reference voltage. As the output current decreases, the perceived time between switching pulses increases. ## 8.4.3 Standby Operation The TPS562202 can be placed in standby mode by asserting the EN pin low. # 9 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. # 9.1 Application Information The device is a typical buck DC-DC converter. It is typically used to convert a higher dc voltage to a lower dc voltage with a maximum available output current of 2 A. The following design procedure can be used to select component values for the TPS562202. Alternately, the WEBENCH® software may be used to generate a complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of components when generating a design. This section presents a simplified discussion of the design process. ### 9.2 Typical Application The application schematic in 🗵 9-1 was developed to meet the previous requirements. This circuit is available as the evaluation module (EVM). The following sections provide the design procedure. ☑ 9-1 shows the TPS562202 4.3-V to 17-V input, 1.05-V output converter schematics. 図 9-1. 1.05-V/2-A Reference Design ## 9.2.1 Design Requirements 表 9-1 shows the design parameters for this application. 表 9-1. Design Parameters | PARAMETER | EXAMPLE VALUE | |----------------------------------------------------------|---------------| | Input voltage range | 4.3 to 17 V | | Output voltage | 1.05 V | | Transient response, load step: 10% ~ 90% of full loading | ΔVout = ±5% | | Input ripple voltage | 200 mV | | Output ripple voltage | 20 mV | | Output current rating | 2 A | | Operating frequency | 580 kHz | ### 9.2.2 Detailed Design Procedure #### 9.2.2.1 Output Voltage Resistors Selection The output voltage is set with a resistor divider from the output node to the FB pin. TI recommends using 1% tolerance or better divider resistors. Start by using \pm 2 to calculate V_{OUT} . To improve efficiency at very light loads, consider using larger value resistors. Too high of resistance is more susceptible to noise and voltage errors from the FB input current is more noticeable. $$V_{out}=0.804 \times (1 + R_{FBT}/R_{FBB})$$ (2) #### 9.2.2.2 Output Filter Selection The LC filter used as the output filter has double pole at: $$f_{P} = \frac{1}{2\pi\sqrt{L_{OUT} \times C_{OUT}}}$$ (3) At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the device. The low frequency phase is 180° . At the output filter pole frequency, the gain rolls off at a -40 dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that reduces the gain roll off to -20 dB per decade and increases the phase to 90° one decade above the zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of ± 3 is located below the high frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in $\pm 9-2$. 表 9-2. Recommended Component Values | OUTPUT VOLTAGE | R1 (kΩ) | B2 (kO) | TYP L1 (µH) | | C8 + C9 (µF) | | CFF (pF) | |----------------|----------|---------|-------------|-----|--------------|-----|----------| | (V) | KT (KS2) | R2 (kΩ) | ΙΤΡ ΕΙ (μπ) | MIN | TYP | MAX | СРР (рг) | | 0.85 | 0.549 | 10.0 | 1.5 | 20 | 44 | 110 | - | | 0.9 | 1.2 | 10.0 | 1.5 | 20 | 44 | 110 | - | | 1 | 2.4 | 10.0 | 2.2 | 20 | 44 | 110 | - | | 1.05 | 3.0 | 10.0 | 2.2 | 20 | 44 | 110 | - | | 1.2 | 4.87 | 10.0 | 2.2 | 20 | 44 | 110 | - | | 1.5 | 8.66 | 10.0 | 2.2 | 20 | 44 | 110 | - | | 1.8 | 12.4 | 10.0 | 2.2 | 20 | 44 | 110 | - | | 2.5 | 21.0 | 10.0 | 3.3 | 20 | 44 | 110 | - | | 3.3 | 30.9 | 10.0 | 3.3 | 20 | 44 | 110 | 10-220 | | 5 | 52.3 | 10.0 | 4.7 | 20 | 44 | 110 | 10-220 | | 表 9-2. | Recommended | Component | Values | (continued) |) | |--------|-------------|-----------|---------------|-------------|---| | | | | | | | | OUTPUT VOLTAGE | R1 (kΩ) | R2 (kΩ) | TYP L1 (µH) | C8 + C9 (μF) | | | CFF (pF) | |----------------|-----------|------------------------------------------|-------------|--------------|-----|-----|----------| | (V) | IXT (K32) | 1\Z (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 117 Ε1 (μπ) | MIN | TYP | MAX | OII (pi) | | 6.5 | 70.5 | 10.0 | 4.7 | 20 | 44 | 110 | 10-220 | The inductor peak-to-peak ripple current, peak current, and RMS current are calculated using \pm 4, \pm 5, and \pm 6. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. $$II_{P-P} = \frac{V_{OUT}}{V_{IN(MAX)}} \times \frac{V_{IN(MAX)} - V_{OUT}}{L_O \times f_{SW}}$$ (4) $$II_{PEAK} = I_O + \frac{II_{P-P}}{2} \tag{5}$$ $$I_{LO(RMS)} = \sqrt{I_O^2 + \frac{1}{12}II_{P-P}^2}$$ (6) For this design example, the calculated peak current is 2.35 A and the calculated RMS current is 2.01 A. The inductor used is a WE 74437349022. The capacitor value and ESR determine the amount of output voltage ripple. The TPS562202 is intended to be used with ceramic or other low-ESR capacitors. Recommended values range from 20 μ F to 110 μ F. Use \pm 7 to determine the required RMS current rating for the output capacitor. $$I_{CO(RMS)} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{\sqrt{12} \times V_{IN} \times L_O \times f_{SW}}$$ (7) For this design, two MuRata GRM21BR61A226ME44L 22- μ F output capacitors are used. The typical ESR is 2 m Ω each. The calculated RMS current is 0.286 A and each output capacitor is rated for 4 A. ### 9.2.2.3 Input Capacitor Selection The TPS562202 requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An additional 0.1-µF capacitor (C3) from pin 1 to ground is necessary to provide additional high frequency filtering. The capacitor voltage rating needs to be greater than the maximum input voltage. ### 9.2.2.4 Bootstrap Capacitor Selection A typical 0.1-µF ceramic capacitor must be connected between the BST to SW pin for proper operation. TI recommends to use a ceramic capacitor. ## 9.2.3 Application Curves Below waveforms are tested at VIN = 12 V, unless otherwise noted. # 10 Power Supply Recommendations The TPS562202 is designed to operate from input supply voltage in the range of 4.3 V to 17 V. Buck converters require the input voltage to be higher than the output voltage for proper operation. The maximum recommended operating duty cycle is 75%. Using that criteria, the minimum recommended input voltage is VO / 0.75. # 11 Layout # 11.1 Layout Guidelines - 1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of advantage from the view point of heat dissipation. - 2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize trace impedance. - 3. Provide sufficient vias for the input capacitor and output capacitor. - 4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions. - 5. Do not allow switching current to flow under the device. - 6. A separate VOUT path should be connected to the upper feedback resistor. - 7. Make a Kelvin connection to the GND pin for the feedback path. - 8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has ground shield. - 9. The trace of the FB node should be as small as possible to avoid noise coupling. - 10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its trace impedance. # 11.2 Layout Example - O VIA (Connected to GND plane at bottom layer) - O VIA (Connected to SW) 図 11-1. TPS562202 Layout # 12 Device and Documentation Support # 12.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 12.2 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 12.3 Trademarks D-CAP2[™] and TI E2E[™] are trademarks of Texas Instruments. WEBENCH[®] is a registered trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ### 12.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 12.5 Glossary **TI Glossary** This glossary lists and explains terms, acronyms, and definitions. # 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com 24-Jul-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS (3) | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|-------------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------| | TPS562202DRLR | Active | Production | SOT-5X3 (DRL) 6 | 4000 LARGE T&R | Yes | Call TI Sn | Level-1-260C-UNLIM | -40 to 125 | 2202 | | TPS562202DRLR.A | Active | Production | SOT-5X3 (DRL) 6 | 4000 LARGE T&R | Yes | SN | Level-1-260C-UNLIM | -40 to 125 | 2202 | | TPS562202DRLR.B | Active | Production | SOT-5X3 (DRL) 6 | 4000 LARGE T&R | - | SN | Level-1-260C-UNLIM | -40 to 125 | 2202 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE MATERIALS INFORMATION** www.ti.com 2-Mar-2024 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS562202DRLR | SOT-5X3 | DRL | 6 | 4000 | 180.0 | 8.4 | 1.8 | 1.8 | 0.75 | 4.0 | 8.0 | Q3 | | TPS562202DRLR | SOT-5X3 | DRL | 6 | 4000 | 180.0 | 8.4 | 1.8 | 1.8 | 0.75 | 4.0 | 8.0 | Q3 | www.ti.com 2-Mar-2024 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPS562202DRLR | SOT-5X3 | DRL | 6 | 4000 | 210.0 | 185.0 | 35.0 | | TPS562202DRLR | SOT-5X3 | DRL | 6 | 4000 | 210.0 | 185.0 | 35.0 | PLASTIC SMALL OUTLINE #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. 4. Reference JEDEC registration MO-293 Variation UAAD PLASTIC SMALL OUTLINE NOTES: (continued) - 5. Publication IPC-7351 may have alternate designs. - 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria. PLASTIC SMALL OUTLINE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated