

TPD4F202, TPD6F202

JAJSLY9B - JUNE 2010 - REVISED MAY 2021

TPDxF202 LCD ディスプレイ用 4 または 6 チャネル EMI フィルタ、ESD 保護付き

1 特長

- データ・ラインのための 4 または 6 チャネル EMI フィルタリングおよび ESD 保護
- 優れたフィルタ性能
 - 40dB を超える減衰量 (1GHz~3GHz 時)
 - 108MHz の -3dB 帯域幅
 - 70dB の クロストーク減衰量 (100MHz 時)
- IEC 61000-4-2 (レベル 4) ESD 保護要件を上回る耐性
 - ±25kV IEC 61000-4-2 接触放電
 - ±25kV IEC 61000-4-2、エアギャップ放電
 - ±15kV 人体モデル (HBM)
- 対称的なフィルタ性能を示す π型 C-R-C フィルタ構成

 $(R = 100\Omega, C_{TOTAL} = 30pF)$

- 10nA の小さなリーク電流
- 省スペースの DSBGA パッケージとフロースルー型の ピン配置により、携帯型アプリケーションで最適な性能 を実現

2 アプリケーション

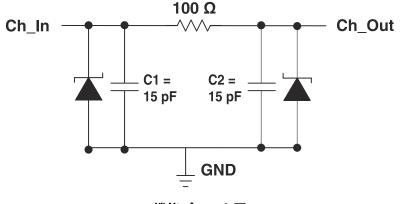
- 最終製品:
 - LCD ディスプレイ
 - メモリ・インターフェイス
 - キーパッド
 - 携帯機器
- インターフェイス:
 - DVI
 - VGA, SVGA
 - SIM カード
 - データ・ライン

3 概要

TPDxF202 デバイスは 4 または 6 チャネル EMI フィルタ であり、携帯電話とその他の携帯型アプリケーションの EMI ノイズを抑制するために特に設計されています。これらのフィルタは、IEC 61000-4-2 (レベル 4) をはるかに超える ESD ストレスが印加されてもアプリケーションに対する損傷を防止する静電気放電 (ESD) 保護のための過渡電圧サプレッサ (TVS) ダイオード回路も備えています。π型の C-R-C フィルタは、フィルタのどちら側のデータ・ラインに対しても対称的なフィルタ性能を示します。

DSBGA パッケージの寄生素子は非常に小さいため、TPDxF202 フィルタは、一般的な携帯電話のキャリア周波数範囲で非常に優れた信号減衰特性 (1GHz で -40dB)を示します。

超薄型 (基板実装時のパッケージ高さ 0.3mm) の省スペース YFU パッケージを採用しているため、TPDxF202 デバイスは高さの制約が厳しいプリント基板にも実装できます。


TPDxF202 デバイスは -40℃~85℃で動作が規定されています。

TPDxF202 デバイスの代表的なアプリケーションは、 DVI、VGA、SVGA、SIM カード、その他のデータ・インタ ーフェイスを備えた携帯型機器です。

製品情報(1)

部品番号	パッケージ	本体サイズ (公称)
TPD4F202	DSBGA (10)	1.06mm × 1.57mm
TPD6F202	DSBGA (15)	1.06mm × 2.36mm

(1) 利用可能なすべてのパッケージについては、このデータシートの 末尾にある注文情報を参照してください。

機能ブロック図

Table of Contents

1 特長	1 7.4 Device Functional Modes	8
2 アプリケーション		
3 概要		
4 Revision History		
5 Pin Configuration and Functions		
6 Specifications	40.1	
6.1 Absolute Maximum Ratings		
6.2 ESD Ratings — JEDEC	40.01	
6.3 ESD Ratings — IEC		
6.4 Recommended Operating Conditions	44.4.5	
6.5 Thermal Information	44.0 D-1-411:1	
6.6 Electrical Characteristics		
6.7 Typical Characteristics		
7 Detailed Description	44 5 EL 1 1 1 E D. 1 0 11	
7.1 Overview	***************************************	
7.1 Overview		
7.3 Feature Description		10
4 Revision History 資料番号末尾の英字は改訂を表しています。そ		
		Dogg
Changes from Revision A (November 2015		Page
文書全体にわたって表、図、相互参照の採番	 方法を更新	1
「製品情報」表の DSBGA (15) パッケージの	寸法を 1.06mm × 2.63mm から 1.06mm × 2.36mm に変更	₹1

Changes from Revision * (June 2010) to Revision A (November 2015)

Page

5 Pin Configuration and Functions

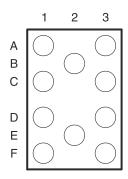


図 5-1. YFU Package 10-Pin DSBGA Top View

表 5-1. Pin Functions — TPD4F202

PIN			DESCRIPTION	
NO.	NAME	ITPE	DESCRIPTION	
A1	Ch1_ln	I/O	ESD-protected channel, route to connector. Corresponds with CH1_Out.	
A3	Ch1_Out	I/O	ESD-protected channel, route to system. Corresponds with CH1_In.	
B2	GND	G	Ground	
C1	Ch2_ln	I/O	ESD-protected channel, route to connector. Corresponds with CH2_Out.	
C3	Ch2_Out	I/O	ESD-protected channel, route to system. Corresponds with CH2_In.	
D1	Ch3_ln	I/O	ESD-protected channel, route to connector. Corresponds with CH3_Out.	
D3	Ch3_Out	I/O	ESD-protected channel, route to system. Corresponds with CH3_In.	
E2	GND	G	Ground	
F1	Ch4_In	I/O	ESD-protected channel, route to connector. Corresponds with CH4_Out.	
F3	Ch4_Out	I/O	ESD-protected channel, route to system. Corresponds with CH4_In.	

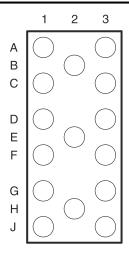


図 5-2. YFU Package 15-Pin DSBGA Top View

表 5-2. Pin Functions — TPD6F202

	PIN	TVDE	DESCRIPTION	
NO.	NAME	TYPE	DESCRIPTION	
A1	Ch1_In	I/O	ESD-protected channel, route to connector. Corresponds with CH1_Out.	
A3	Ch1_Out	I/O	ESD-protected channel, route to system. Corresponds with CH1_In.	
B2	GND	G	Ground	
C1	Ch2_In	I/O	ESD-protected channel, route to connector. Corresponds with CH2_Out.	
C3	Ch2_Out	I/O	ESD-protected channel, route to system. Corresponds with CH2_In.	
D1	Ch3_In	I/O	ESD-protected channel, route to connector. Corresponds with CH3_Out.	
D3	Ch3_Out	I/O	ESD-protected channel, route to system. Corresponds with CH3_In.	
E2	GND	G	Ground	
F1	Ch4_In	I/O	ESD-protected channel, route to connector. Corresponds with CH4_Out.	
F3	Ch4_Out	I/O	ESD-protected channel, route to system. Corresponds with CH4_In.	
G1	Ch5_In	I/O	ESD-protected channel, route to connector. Corresponds with CH5_Out.	
G3	Ch5_Out	I/O	ESD-protected channel, route to system. Corresponds with CH5_In.	
H2	GND	G	Ground	
J1	Ch6_In	I/O	ESD-protected channel, route to connector. Corresponds with CH6_Out.	
J3	Ch6_Out	I/O	ESD-protected channel, route to system. Corresponds with CH6_In.	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{IO}	IO to GND	-0.3	6	V
	Continuous power dissipation (T _A = 70°C)		100	mW
TJ	Junction temperature		150	°C
	Lead temperature (soldering, 10 s)		300	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings — JEDEC

			VALUE	UNIT	
V.===	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±15000	V	
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings — IEC

			VALUE	UNIT
\/	Electrostatic	IEC 61000-4-2 contact discharge	±25000	\/
V _(ESD)	discharge	IEC 61000-4-2 air-gap discharge	±25000	v

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

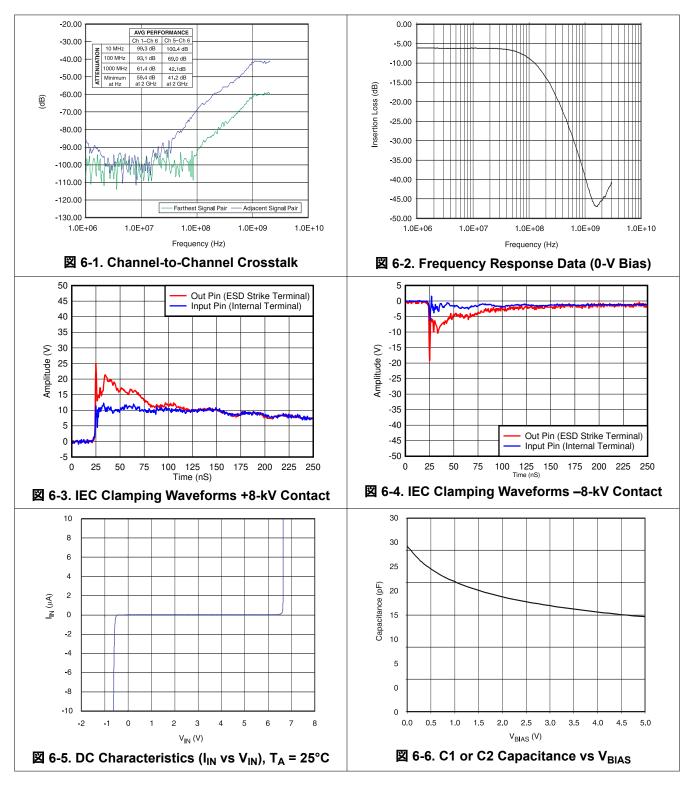
		MIN	MAX	UNIT
V _{IO}	I/O to GND	0	5.5	V
T _A	Ambient temperature	-40	85	°C

6.5 Thermal Information

		TPD4F202	TPD6F202	
	THERMAL METRIC ⁽¹⁾	YFU (DSBGA)	YFU (DSBGA)	UNIT
		10 PINS	15 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	91.8	72	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	1	0.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	19.7	14.1	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.5	0.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	19.7	14.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

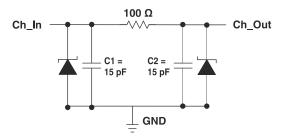
6.6 Electrical Characteristics


 $T_A = -40$ °C to 85°C (Unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{BR}	DC breakdown voltage	I _{IO} = 10 μA	6			V
R	Resistance		85	100	115	Ω
С	Capacitance (C1 or C2)	V _{IO} = 3.3 V, f = 1 MHz		15		pF
I _{IO}	Channel leakage current	V _{IO} = 3.3 V		10		nA
f _C	Cut-off frequency	$Z_{SOURCE} = 50 \Omega, Z_{LOAD} = 50 \Omega$		108		MHz

⁽¹⁾ Typical values are at $T_A = 25$ °C.

6.7 Typical Characteristics



7 Detailed Description

7.1 Overview

The TPDxF202 family is a series of highly integrated devices designed to provide EMI filtering in all systems subjected to electromagnetic interference. These filters also provide a Transient Voltage Suppressor (TVS) diode circuit for ESD protection which prevents damage to the application when subjected to ESD stress far exceeding IEC 61000-4-2 (Level 4).

7.2 Functional Block Diagram

7.3 Feature Description

The TPDxF202 family is a line of ESD and EMI filtering devices designed to reduce EMI emissions and provide system level ESD protection. Each device can dissipate ESD strikes above the maximum level specified by IEC 61000-4-2 international standard. Additionally, the EMI filtering structure reduces EMI emissions by providing high frequency roll-off.

7.3.1 Exceeds IEC61000-4-2 (Level 4) ESD Protection Requirements

The ESD protection on all pins exceeds the IEC 61000-4-2 level 4 standard. Contact and Air-Gap ESD are rated at ±25 kV.

7.3.2 Pi-Style C-R-C Filter Configuration

This family of devices has a pi-style filtering configuration composed of a series resistor and two capacitors in parallel with the I/O pins. The typical resistor value is 100 Ω and the typical capacitor values are 15 pF each. Signal attenuation is above 40 dB at 1 GHz to 3 GHz, which provides significant reduction in spurious emissions, with a bandwidth (3-dB loss) of 108 MHz. Crosstalk is attenuated 70 dB at 100 MHz.

7.3.3 Low 10-nA Leakage Current

The I/O pins feature an ultra-low leakage current of 10 nA (typical) with a bias of 3.3 V.

7.3.4 Space-Saving DSBGA Package

The DSBGA package is characterized by a minimal footprint for savings in board space, fitting the design philosophy of portable devices.

7.3.4.1 Flow-Through Pin Mapping

The pinout of this device makes it easy to add protection to existing board layouts. The packages offer flow-through routing which requires minimal changes to existing board layout for addition of these devices.

7.4 Device Functional Modes

The TPDxF202 family of devices are passive-integrated circuits that passively filter EMI and trigger when voltages are above V_{BR} or below the lower diode voltage (-0.6 V). During IEC 61000-4-2 ESD events, transient voltages as high as ± 25 kV can be directed to ground through the internal diode network. Once the voltages on the protected line falls below the trigger levels, the device reverts to passive.

8 Application and Implementation

Note

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

The TPDxF202 family are diode-type TVSs integrated with series resistors and parallel capacitors for filtering emitted EMI. As a signal passes through the device, higher frequency components are filtered out. This device also provides a path to ground during ESD events and isolates the protected IC. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected IC. In particular, these filters are ideal for EMI filtering and protecting data lines from ESD at display, keypad, and memory interfaces.

8.2 Typical Application

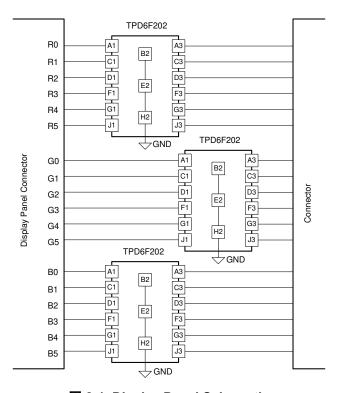


図 8-1. Display Panel Schematic

8.2.1 Design Requirements

For this design example, three TPD6F202 devices are used in an 18-bit display panel application. This application provides a complete ESD and EMI protection solution for the display connector. For the display panel application, the following parameters are in shown 表 8-1.

表 8-1. Design Parameters

DESIGN PARAMETER	VALUE
Signal range on all pins except GND	0 V to 5 V
Data Rate	200 Mbps
ESD Protection Level	IEC 61000-4-2 Level 4

8.2.2 Detailed Design Procedure

To begin the design process, some design parameters must be decided; the designer needs to know the operating frequency and the signal range on all the protected lines.

8.2.2.1 Signal Range on All Protected Lines

The TPD6F202 has 6 identical protection channels for signal lines. All I/O pins will support a signal range from 0 to 5.5 V.

8.2.2.2 Data Rate

The TPD6F202 has a 108-MHz, -3-dB bandwidth, which supports the data rate for this display.

8.2.2.3 ESD Protection Level

The contact and air-gap ratings of \pm 25 kV for TPD6F202 exceeds the IEC 61000-4-2 Level 4 rating of \pm 8-kV contact and \pm 15-kV air-gap ratings.

8.2.3 Application Curve



図 8-2. Frequency Response Data (0-V Bias)

9 Power Supply Recommendations

The TPDxF202 device is a passive ESD-protection device, and therefore, does not require a power supply. Take care to avoid violating the maximum-voltage specification to ensure that the device functions properly. The IO lines can tolerate up to 6-V DC.

10 Layout

10.1 Layout Guidelines

Typically, there are multiple EMI filters being used in portable applications to suppress the EMI interference. This means the total board area consumed by EMI filters are relatively large. One example of space-saving innovation is to place the EMI filters right under the connectors so that the main PCB space is not used. The YFU packages of the TPDxF202 series offer ultra low-profile package height which enables such innovative component placement in portable applications. Package under-fill is recommended while using the YFU packages in flex boards.

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer needs to minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- · Route the protected traces as straight as possible.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

For maximum efficiency of filtering and ESD protection, while doing the board layout, take care to reduce board parasitic series inductances from package GND pins to board GND plane. The TPDxF202 devices must be connected to a ground plane with a micro via adjacent to the device GND pad. If this is not possible, the connection to the ground plane must be as direct as possible to minimize the inductance. Due to flow-through pin mapping, the signal pins routing is easily achieved in a single layer.

10.2 Layout Example

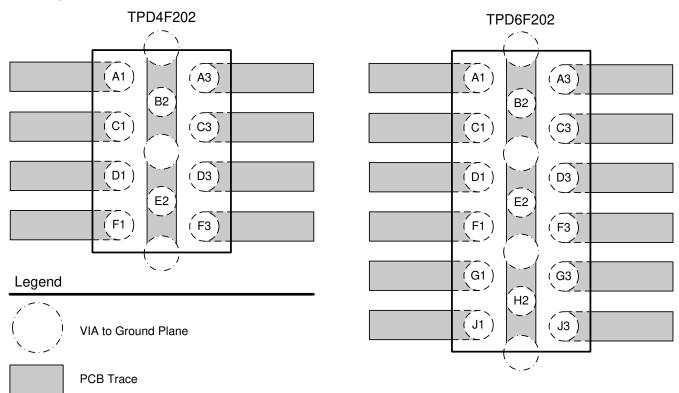


図 10-1. Board Layout With TPDxF202

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

The following documents contain additional information related to the use of the TPDxF202 device:

- Texas Instruments, ESD Protection Layout Guide application report
- Texas Intruments, Reading and Understanding an ESD Protection Data Sheet application report

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

表 11-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPD4F202	Click here	Click here	Click here	Click here	Click here
TPD6F202	Click here	Click here	Click here	Click here	Click here

11.3 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

11.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TPD4F202YFUR	Obsolete	Production	DSBGA (YFU) 10	-	-	Call TI	Call TI	-40 to 85	
TPD6F202YFUR	Obsolete	Production	DSBGA (YFU) 15	-	-	Call TI	Call TI	-40 to 85	

⁽¹⁾ Status: For more details on status, see our product life cycle.

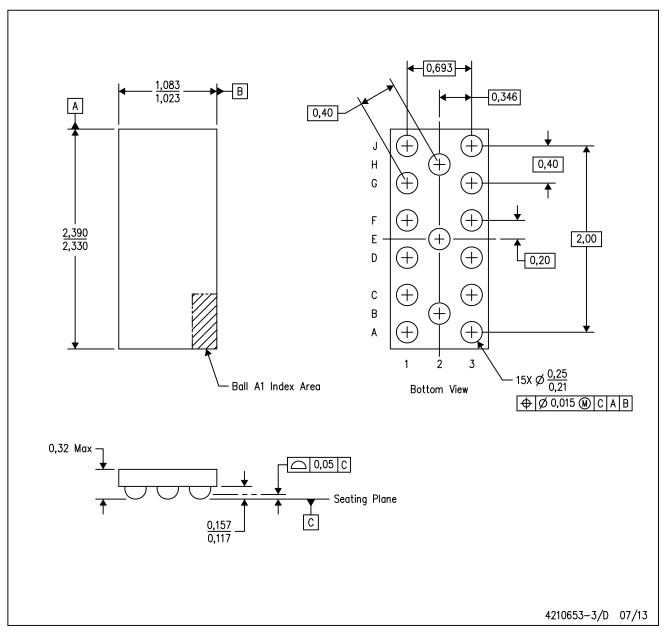
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.


⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

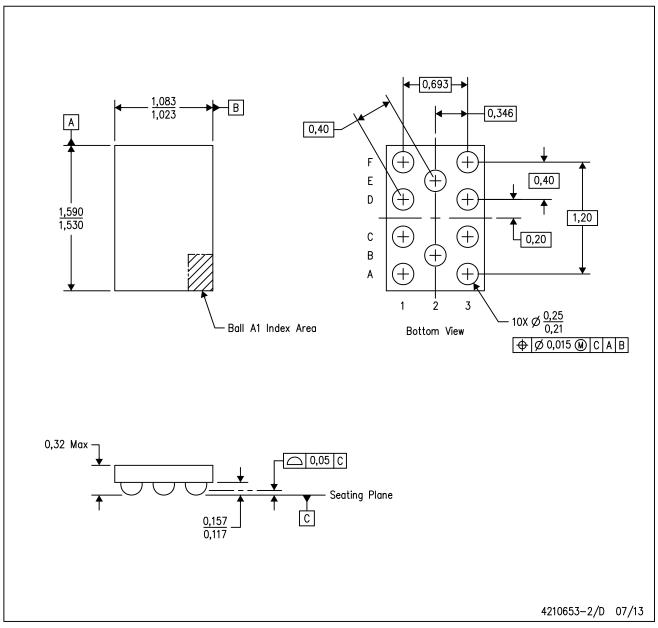
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

YFU (R-XBGA-N15)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

YFU (R-XBGA-N10)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日:2025 年 10 月