TPA6404-Q1 # TPA6404-Q1 45W、2MHz アナログ入力、4 チャネル車載対応 Class-D オーディ オアンプ、負荷ダンプ保護および I²C 診断機能搭載 # 1 特長 - 高度な負荷診断機能 - インピーダンスおよび位相応答を使った、ツイータ 検出のための AC 診断 - 統合型の正弦波ジェネレータ - CISPR25-L5 EMC 仕様に容易に適合 - 車載アプリケーション用に AEC-Q100 認定済み: - 温度グレード 1:-40℃~125℃ T_A - デバイス HBM ESD 分類レベル:3A - デバイス CDM ESD 分類レベル: C4B - オーディオ入力 - 差動アナログ入力:4 チャネル - I²C 制御ゲイン オプション:4 つ - 値の小さい AC カップリング コンデンサに対する 高い入力インピーダンス - オーディオ出力 - ブリッジ接続負荷 (BTL):4 チャネル、パラレル BTL (PBTL) オプションあり - 出力スイッチング周波数:最大 2.1MHz - 27W (10% THD、14.4V、4Ω 負荷) - 45W (10% THD、14.4V、2Ω 負荷) - 85W (10% THD、14.4V PBTL、1Ω 負荷) - 1kHz、14.4V、4Ω 負荷でのオーディオ性能 - THD+N < 0.01% - 出力ノイズ:42µV_{RMS} - -90dB クロストーク - 負荷診断 - 出力負荷の開放と短絡 - 出力からバッテリまたはグランドへの短絡 - ライン出力検出:最大 6kΩ - 入力クロックなしで動作 - 保護 - 出力電流制限 - 出力短絡保護 - 40V 負荷ダンプ - 偶発的なグランド オープン / 電源オープンへの耐 - DC のオフセット - 過熱 - 低電圧および過電圧 - 一般的な動作 - 電源電圧:4.5V~18V - 4 つのアドレス オプションを持つ I²C 制御 - クリップ検出およびサーマルフォールドバック # 2 アプリケーション - 車載ヘッド ユニット - 車載用外部アンプ モジュール ### 3 概要 TPA6404-Q1 デバイスは 4 チャネルのアナログ入力 Class-D オーディオ アンプで、2.1MHz の PWM スイッチ ング周波数を実装しているため、4.5cm² という非常に小さ なサイズの PCB でコスト最適化されたソリューションを実 現可能です。最小 4.5V で完全な開始 / 停止動作を行 い、最大 100kHz のオーディオ帯域幅で非常に優れた音 質を提供します。 TPA6404-Q1 Class-D オーディオ アンプは、オーディオ 入力としてアナログ信号を使うように設計されたエントリレ ベルの車載用ヘッドユニット向けに最適設計されていま す。 Class-D トポロジにより、従来のリニア アンプ ソリューショ ンに比べて大幅に効率が向上します。 出力スイッチング周波数は AM 帯域より上で動作するた め、AM 帯域の干渉が排除され、出力フィルタのサイズと コストが削減されます。 このデバイスは、サーマル パッドが上面に露出した 56 ピ ン HSSOP パッケージで供給されます。 ### 製品情報 | 部品番号 | パッケージ ⁽¹⁾ | 本体サイズ (公称) | |------------|----------------------|------------------| | TPA6404-Q1 | HSSOP (56) | 18.41mm × 7.49mm | 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。 ブロック図 # **Table of Contents** | 1 特長 | 1 | 8 Registers | 29 | |--------------------------------------|----|---|-----------------| | 2 アプリケーション | | 8.1 Register Maps | <mark>29</mark> | | 3 概要 | | 9 Application and Implementation | 48 | | 4 Pin Configuration and Functions | | 9.1 Application Information | 48 | | 5 Specifications | | 9.2 Typical Applications | | | 5.1 Absolute Maximum Ratings | | 9.3 Power Supply Recommendations | 53 | | 5.2 ESD Ratings | | 9.4 Layout | | | 5.3 Recommended Operating Conditions | | 10 Device and Documentation Support | | | 5.4 Thermal Information | 6 | 10.1 Documentation Support | | | 5.5 Electrical Characteristics | 7 | 10.2 Receiving Notification of Documentatio | • | | 5.6 Typical Characteristics | 11 | 10.3 静電気放電に関する注意事項 | | | 6 Parameter measurement Information | 15 | 10.4 用語集 | 57 | | 7 Detailed description | 15 | 10.5 Support Resources | | | 7.1 Overview | 15 | 10.6 Trademarks | | | 7.2 Functional Block Diagram | 16 | 11 Revision History | 57 | | 7.3 Feature Description | | 12 Mechanical, Packaging, and Orderable | | | 7.4 Device Functional Modes | 25 | Information | | | 7.5 Programming | 26 | 12.1 Package Option Addendum | 60 | # 4 Pin Configuration and Functions 図 4-1. DKQ Package 56-Pin HSSOP With Exposed Thermal Pad Top View 表 4-1. Pin Functions | Р | IN | TYPE(1) | DESCRIPTION | |--------|-----|---------|---| | NAME | NO. | ITPE | DESCRIPTION | | AVDD | 5 | PWR | Voltage regulator bypass. Connect 1µF capacitor from AVDD to AVSS | | AVSS | 4 | PWR | AVDD bypass capacitor return | | BST_1M | 31 | PWR | Bootstrap capacitor connection pins for high-side gate driver | | BST_1P | 35 | PWR | Bootstrap capacitor connection pins for high-side gate driver | | BST_2M | 37 | PWR | Bootstrap capacitor connection pins for high-side gate driver | | BST_2P | 41 | PWR | Bootstrap capacitor connection pins for high-side gate driver | | BST_3M | 44 | PWR | Bootstrap capacitor connection pins for high-side gate driver | | BST_3P | 48 | PWR | Bootstrap capacitor connection pins for high-side gate driver | | BST_4M | 50 | PWR | Bootstrap capacitor connection pins for high-side gate driver | Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 3 # 表 4-1. Pin Functions (続き) | Р | PIN | | | | | | |-------------|--|---------------------|--|--|--|--| | NAME | NO. | TYPE ⁽¹⁾ | DESCRIPTION | | | | | BST_4P | 54 | PWR | Bootstrap capacitor connection pins for high-side gate driver | | | | | DVDD | 18 | PWR | DVDD supply input. Connect 1 µF capacitor from DVDD to DVSS | | | | | DVSS | 17 | GND | DVDD Ground Reference | | | | | FAULT | 26 | DO | Reports a fault (active low, open drain), 100-kΩ internal pull-up resistor | | | | | GND | 1, 8, 28, 33,
36, 39, 46,
49, 52 | GND | Ground | | | | | GVDD_34 | 6 | PWR | Gate drive voltage regulator for channel 3 and 4, derived from VBAT input pins. Connect 2.2µF capacitor to GND | | | | | GVDD_12 | 7 | PWR | Gate drive voltage regulator for channel 1 and 2, derived from VBAT input pins. Connect 2.2µF capacitor to GND | | | | | I2C_ADDR0 | 22 | DI | I/C address nine Defects # 7.7 | | | | | I2C_ADDR1 | 23 | וט | I ² C address pins. Refer to 表 7-7 | | | | | IN_1M | 16 | Al | Negative input for the channel | | | | | IN_1P | 15 | Al | Positive input for the channel | | | | | IN_2M | 14 | Al | Negative input for the channel | | | | | IN_2P | 13 | Al | Positive input for the channel | | | | | IN_3M | 12 | Al | Negative input for the channel | | | | | IN_3P | 11 | Al | Positive input for the channel | | | | | IN_4M | 10 | Al | Negative input for the channel | | | | | IN_4P | 9 | Al | Positive input for the channel | | | | | MUTE | 25 | DI | Mutes the device outputs (active low), 100-kΩ internal pull-down resistor | | | | | OUT_1M | 32 | NO | Negative output for the channel | | | | | OUT_1P | 34 | PO | Positive output for the channel | | | | | OUT_2M | 38 | NO | Negative output for the channel | | | | | OUT_2P | 40 | РО | Positive output for the channel | | | | | OUT_3M | 45 | NO | Negative output for the channel | | | | | OUT_3P | 47 | РО | Positive output for the channel | | | | | OUT_4M | 51 | NO | Negative output for the channel | | | | | OUT_4P | 53 | РО | Positive output for the channel | | | | | PVDD | 2, 29, 30, 42,
43, 55, 56 | PWR | PVDD voltage input (can be connected to battery) | | | | | SCL | 20 | DI | I ² C clock input | | | | | SDA | 21 | DI/O | I ² C data input and output | | | | | STANDBY | 24 | DI | Enables low power standby state (active Low), 1MΩ internal pull-down resistor | | | | | SYNC | 19 | DI/O | Sync clock input or output | | | | | VBAT | 3 | PWR | Battery voltage input | | | | | WARN | 27 | DO | Clip and overtemperature warning (active low, open drain), 100kΩ internal pull-up resistor | | | | | Thermal Pad | | GND | Provides both electrical and thermal connection for the device. Heatsink must be connected to GND. | | | | ⁽¹⁾ AI = analog input, GND = ground, PWR = power, PO = positive output, NO = negative output, DI = digital input, DO = digital output, DI/O = digital input and output, NC = No Connection 4 # 5 Specifications ## 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |-------------------------|---|---------------------|------|------------|------| | PVDD, VBAT | DC supply-voltage range relative to GND | | -0.3 | 30 | V | | V_{MAX} | Transient supply-voltage range - PVDD, VBAT | t ≤ 400 ms exposure | -1 | 40 | V | | V_{RAMP} | Supply-voltage ramp rate - PVDD, VBAT | | | 75 | V/ms | | V _{IN} | Audio differential input pins: IN_xP, IN_xM | | -0.3 | 6.5 | V | | DVDD | DC supply voltage range relative to GND | | -0.3 | 3.5 | V | | I _{MAX} | Maximum current per pin (PVDD, VBAT, Out xP, Out xM, GND) | | | ±8 | A | | I _{MAX_PULSED} | Pulsed supply current per PVDD pin (one shot) | t < 100 ms | | ±12 | | | V _{LOGIC} | Input voltage for logic pins (SCL, SDA, MUTE, STANDBY, I2C ADDRx) | | -0.3 | DVDD + 0.5 | V | | V_{GND} | Maximum voltage between GND pins | | | ±0.3 | | | TJ | Maximum operating junction temperature range | | -55 | 150 | °C | | T _{stg} | Storage temperature range | | -55 | 150 | | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. # 5.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------|--|---|----------|-------|------| | | | Human-body model (HBM), per AEC Q100-002 ⁽¹⁾ | | ±4000 | | | V _(ESD) | V _(ESD) Electrostatic discharge | Charged-device model (CDM), per AEC | All pins | ±500 | V | | | Q100-011 | Corner pins (1, 28, 29 and 56) | ±1000 | | | (1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 5 # **5.3 Recommended Operating Conditions** | | | | MIN | TYP | MAX | UNIT | |---------------------|--|--|-----|------|-----|------| | PVDD | Output FET Supply Voltage Range | Relative to GND | 4.5 | 14.4 | 18 | V | | VBAT | Battery Supply Voltage Input | Relative to GND | 4.5 | 14.4 | 18 | V | | DVDD | DC Logic supply | Relative to GND | 3.0 | 3.3 | 3.5 | V | | T _A | Ambient temperature | | -40 | | 125 | | | T _J | Junction temperature | An adequate thermal design is required | -40 | | 150 | °C | | _ | Naminal anadray land impadance | BTL Mode | 2 | 4 | | Ω | | R_L | Nominal speaker load impedance | PBTL Mode | 1 | 2 | | 12 | | R _{PU_I2C} | I ² C pullup resistance
on SDA and SCL pins | | 1 | 4.7 | 10 | kΩ | | C _{Bypass} | External capacitance on bypass pins | Pin 2, 3, 5, 18 | | 1 | | μF | | C _{GVDD} | External capacitance on GVDD pins | Pin 6, 7 | | 2.2 | | μF | | C _{OUT} | External capacitance to GND on OUT pins | Limit set by DC-diagnostic timing | | 1 | 3.3 | μF | | L _O | Output filter inductance - I _{SD} | Minimum output filter inductance at I _{SD} current levels. Applies to short to ground or short to power protection. | 1 | | | μН | | L _O | Output filter inductance - I-LIMIT | Minimum output filter inductance at I-LIMIT current levels. Applies to current limiting. | 2 | | | μH | # **5.4 Thermal Information** | | | TPA6404-Q1 ⁽²⁾ | | |------------------------|--|---------------------------|------| | | THERMAL METRIC ⁽¹⁾ | DKQ (HSSOP) | UNIT | | | | 56 PINS | | | R _{0JA} | Junction-to-ambient thermal resistance | - | °C/W | | R ₀ JC(top) | Junction-to-case (top) thermal resistance | 0.7 | °C/W | | R _{0JB} | Junction-to-board thermal resistance | - | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | - | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 10 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | _ | °C/W | ⁽¹⁾ For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application report. Product Folder Links: TPA6404-Q1 Copyright © 2025 Texas Instruments Incorporated 6 English Data Sheet: SLOS970 ⁽²⁾ JEDEC standard 4 layer PCB. ### **5.5 Electrical Characteristics** Test conditions (unless otherwise noted): T_C = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, R_L = 4 Ω , P_{out} = 1 W/ch, f_{out} = 1 kHz, F_{sw} = 2.1 MHz, AES17 Filter, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, default I²C settings, see application diagram | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|---|--|------|------|------|------| | OPERATING CURRENT | | | | | | | | PVDD_IDLE | PVDD idle current | All channels playing, no audio input | | 65 | 80 | mA | | PVDD+VBAT_IDLE | PVDD+VBAT idle current | All channels playing, no audio input | | 155 | 190 | mA | | VBAT_IDLE | VBAT idle current | All channels playing, no audio input | | 90 | 110 | mA | | I _{PVDD_STBY} | PVDD standby current | STANDBYActive, DVDD= 0 V | | 0.08 | | μΑ | | I _{VBAT_STBY} | VBAT standby current | STANDBYActive, DVDD= 0 V | , | 3.0 | | μΑ | | TOTAL_STBY | PVDD+VBAT standby current | STANDBYActive, DVDD = 0 V | | 3.0 | 7.0 | μA | | I _{DVDD} | DVDD supply current | All channels playing, -60 dB Signal | | 6.2 | 7.0 | mA | | OUTPUT POWER | | | | | | | | _ | Output power per | 4 Ω, PVDD = 14.4 V, THD+N = 1%, T _C = 75°C | 20 | 22 | | | | P _{O_BTL} | channel, BTL | 4 Ω, PVDD = 14.4 V, THD+N = 10%, T _C = 75°C | 24 | 27 | | W | | | Output power per | 2 Ω, PVDD = 14.4 V, THD+N = 1%, T _C = 75°C | 31 | 38 | | | | P _{O_BTL} | channel, BTL | 2 Ω, PVDD = 14.4 V, THD+N = 10%, T _C = 75°C | 40 | 45 | | W | | | Output power per | 4 Ω, PVDD = 18 V, THD+N = 1%, T _C = 75°C | 32 | 35 | | | | P _{O_BTL} | channel, BTL | 4 Ω, PVDD = 18 V, THD+N = 10%, T _C = 75°C | 40 | 44 | | W | | Output nower per ch | Output power per channel | 2 Ω, PVDD = 14.4 V, THD+N = 1%, T _C = 75°C | 40 | 44 | | | | | in parallel mode, PBTL | 2 Ω, PVDD = 14.4 V, THD+N = 10%, T _C = 75°C | 50 | 54 | | W | | | 0 | 1 Ω, PVDD = 14.4 V, THD+N = 1%, T _C = 75°C | 62 | 70 | | | | P _{O_PBTL} | Output power per channel in parallel mode, PBTL | 1 Ω, PVDD = 14.4 V, THD+N = 10%, T _C = 75°C | 78 | 85 | | W | | | • | 1Ω , PVDD = 14.4 V, THD+N = 10%, T _C = 75 °C | 63 | 68 | | | | P _{O_PBTL} | Output power per channel in parallel mode, PBTL | 2Ω , PVDD = 18 V, THD+N = 10%, T _C = 75°C | 78 | 83 | | w | | | | · | 76 | | | | | EFF _P | Power efficiency | 4 channels operating, 25 W output power/ch 4 Ω load, PVDD = 14.4 V, T_C = 25°C; (includes output filter losses) | | 86% | | | | AUDIO PERFORMANCE | | | | | | | | | | Zero input, A-weighting, 10 dB gain, PVDD = 14.4 V | | 42 | | | | W | Output Naine Valters | Zero input, A-weighting, 16 dB gain, PVDD = 14.4 V | | 48 | | / | | V _n | Output Noise Voltage | Zero input, A-weighting, 22 dB gain, PVDD = 18 V | | 58 | | μV | | | | Zero input, A-weighting, 28 dB gain, PVDD = 18 V | | 79 | | | | Crosstalk | Channel crosstalk | PVDD = 14.4 Vdc + 1 V _{RMS} , f = 1 kHz | | 90 | | dB | | PSRR | Power-supply rejection ratio | PVDD = 14.4 Vdc + 1 V _{RMS} , f = 1 kHz | | 75 | | dB | | THD+N | Total harmonic distortion + noise | | | 0.01 | | % | | | | Level 1 | 9.0 | 9.5 | 10.0 | | | 0 | Cain | Level 2 | 15.0 | 15.5 | 16.0 | -10 | | G | Gain | Level 3 (default) | 21.0 | 21.5 | 22.0 | dB | | | | Level 4 | 27.0 | 27.5 | 28.0 | | | G _{CH} | Channel-to-channel gain variation | | -0.5 | 0 | 0.5 | dB | | G _{MUTE} | Output Attenuation | Assert $\overline{\text{MUTE}}$ and compare to amp playing 1W audio into 4 Ω | 100 | 110 | | dB | | V _{CLICK} | Click & Pop | Zero input, ITU-filter, 22dB gain, PVDD = 14.4 V | | 5 | | mV | | LINE OUTPUT PERFORM | ANCE | | , | , | | | | V _{n_LINEOUT} | LINE Output Noise
Voltage | Zero input, A-weighting, channel set to LINE MODE, PVDD = 14.4 V, RL = $600~\Omega$ | | 42 | | μV | | THD+N | Line output Total harmonic distortion + noise | V _O = 2Vrms , channel set to LINE MODE, PVDD = 14.4 V | | 0.02 | | % | | ANALOG INPUT PINS | | | | | | | | | | 10 dB gain | | 80 | | kΩ | | D | In and in a | 16 dB gain | | 40 | | kΩ | | R _{IN} | Input impedance | 22 dB gain | | 20 | | kΩ | | | | | | | | | 1 Test conditions (unless otherwise noted): T_C = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, R_L = 4 Ω , P_{out} = 1 W/ch, f_{out} = 1 kHz, F_{sw} = 2.1 MHz, AES17 Filter, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, default I^2C settings, see application diagram | PARAME | TER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------------|---|--|------|-----|-----|-----------| | V _{IN} | Maximum input voltage swing, Single Ended | | | 1 | | V_{RMS} | | V IN | Maximum input voltage swing, Differential | Positive input equals negative input | | 2 | | * RMS | | I _{IN} | Maximum input current | | | | ±1 | mA | | DIGITAL INPUT PINS | | | | | | | | V _{IH} | Input logic level high | | 70 | | | %DVDD | | V _{IL} | Input logic level low | | | | 30 | | | I _{IH} | Input logic current | V _I = DVDD | | | 15 | uA | | I _{IL} | | V _I = 0 | | | -15 | | | PWM OUTPUT STAGE | T | 1 | | | | | | R _{DS(on)} | FET drain-to-source resistance | 25°C, Including bond wire and package resistance | | 120 | | mΩ | | R _{DS(on)} | FET drain-to-source resistance | 25°C, Not including bond wire and package resistance | | 90 | | $m\Omega$ | | OVERVOLTAGE (OV) PROTECT | TION | ' | | | • | | | V _{PVDD_OV} | PVDD overvoltage shutdown | | 18.5 | 21 | 23 | V | | V _{PVDD_OV_HYS} | PVDD overvoltage shutdown hysteresis | | | 0.5 | | V | | V _{VBAT_OV} | VBAT overvoltage shutdown | | 18.5 | 21 | 23 | V | | V _{VBAT_OV_HYS} | VBAT overvoltage shutdown hysteresis | | | 0.5 | | V | | UNDERVOLTAGE (UV) PROTEC | CTION | | | | | | | VBAT _{UV_SET} | VBAT undervoltage shutdown set | | | 4 | 4.5 | | | VBAT _{UV_CLEAR} | VBAT undervoltage shutdown clear | | | 4.2 | | V | | PVDD _{UV_SET} | PVDD undervoltage shutdown set | | | 4 | 4.5 | V | | PVDD _{UV_CLEAR} | PVDD undervoltage shutdown clear | | | 4.2 | | | | BYPASS VOLTAGES | | | | | | | | V_{GVDD} | Gate Drive Bypass pin voltage | | | 7 | | V | | V _{AVDD} | Analog Bypass Pin
Voltage | | | 6 | | V | | POWER-ON RESET (POR) | | | | | | | | V _{POR} | DVDD voltage for POR | | | 1.8 | 2.1 | | | V _{POR_HY} | DVDD POR recovery hysteresis voltage | | | 0.5 | | V | | OVERTEMPERATURE (OT) PRO | OTECTION | | | | | | | OTW(i) | Channel Over-
Temperature Warning | | | 150 | | | | OTSD(i) | Channel Over-
Temperature Shutdown | | | 175 | | | | отw | Global Junction Over-
Temperature Warning | set by register 0x01 bit 5-6, default value | | 130 | | °C | | OTSD | Global Junction Over-
Temperature Shutdown | | | 160 | | | | OT _{HYS} | Over-Temperature
Hysterisis | | | 15 | | | | LOAD OVER CURRENT PROTE | ECTION | | | - | | | English Data Sheet: SLOS970 Test conditions (unless otherwise noted): T_C = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, R_L = 4 Ω , P_{out} = 1 W/ch, f_{out} = 1 kHz, F_{sw} = 2.1 MHz, AES17 Filter, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, default I^2C settings, see application diagram | PAF | RAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|--|--|-----|-------|-----|-------| | LIM | Overcurrent limit | OC Level 1, Load current | | 4.8 | | | | LIM | Overedirent innit | OC Level 2, Load current | 6 | 6.5 | | | | | Overcurrent Shutdown | OC Level 1, Any short to supply, ground, or other channels | | 7 | | Α | | SD | Overcurrent Shutdown | OC Level 2, Any short to supply, ground, or other channels | | 9 | | | | OC DETECT | - | | | | | | | OC _{FAULT} | Output DC Fault
Protection | PVDD = 14.4 V | | 2 | 2.5 | V | | DIGITAL OUTPUT PINS | | | | 1 | | | | /он | Output voltage for logic level high | | 90 | | | | | / _{OL} | Output voltage for logic level low | - I = ±2mA | | , | 10 | %DVDD | | SYNC | | | | | | | | | | Reg 0x02 bit 6-4: 101 | | 1.8 | | Mhz | | sync | Supported SYNC
Frequencies, controller
mode | Reg 0x02 bit 6-4: 110 | | 2.1 | | Mhz | | -y | | Reg 0x02 bit 6-4: 111 | |
2.3 | | Mhz | | | Supported SYNC | J | | | | | | Δf _{sync} | Frequency
deviation, target mode | | -10 | | 10 | % | | D _{sync} | Supported SYNC dutycycle, target mode | | 45% | 50% | 55% | | | OAD DIAGNOSTICS | | | | | | | | S2P | Maximum resistance to detect a short from OUT pin(s) to PVDD | | | | 500 | | | S2G | Maximum resistance to detect a short from OUT pin(s) to ground | | | | 200 | Ω | | SL | Shorted Load Detection
Tolerance | R_L = 4 Ω, Other Channels in Hi-Z | | ±0.5 | | | | OL | Minimum Impedance
Detected as Open Load | Other Channels in Hi-Z | | 70 | | | | T _{DC_DIAG} | DC Diagnostic time | 4 channels, no faults | | 231 | | ms | | .0 | Line Output Maximum
Detectable Impedance | For load resistance below this value, the device will report the LO load | | | 6 | kΩ | | T _{LINE_DIAG} | Line output Diagnostic time | | | 40 | | ms | | | | f = 19 kHz, R _L = 4 Ω | | ±0.75 | | Ω | | AC _{IMP} | AC Impedance Accuracy | Z _{OUT} (including LC filter), f = 19 kHz | | 25% | | | | T _{AC_DIAG} | AC Diagnostic time | 4 channels, f = 19 kHz | | 550 | | ms | | AC | AC Diagnostic Test frequency | Default | | 18.75 | | kHz | | 2C_ADDR PINS | <u> </u> | | | - | | | | I2C_ADDR | Time delay needed for I2C Address set-up | From release of Standby pin until Address set-up | 300 | | | μs | | 2C CONTROL PORT | | | | | | | | BUS | Bus free time between start and stop conditions | | 1.3 | | | μs | | HOLD1 | Hold Time, SCL to SDA | | 0 | | + | ns | | HOLD2 | Hold Time, start condition to SCL | | 0.6 | | | μs | | START | I2C Startup Time After
DVDD Power On Reset | | | | 12 | ms | | RISE | Rise Time, SCL and SDA | | | | 300 | ns | | FALL | Fall Time, SCL and SDA | | | | 300 | ns | | SU1 | Setup, SDA to SCL | | 100 | | 300 | ns | | 301 | Setup, SCL to Start | | | | | | | SU2 | Condition | | 0.6 | | | μs | English Data Sheet: SLOS970 Test conditions (unless otherwise noted): T_C = 25°C, PVDD = VBAT = 14.4 V, DVDD = 3.3 V, R_L = 4 Ω , P_{out} = 1 W/ch, f_{out} = 1 kHz, F_{sw} = 2.1 MHz, AES17 Filter, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, default I^2C settings, see application diagram | PARAMETER | | TEST CONDITIONS | MIN | TYP MAX | UNIT | |-------------------|--------------------------------------|-----------------|-----|---------|------| | t _{SU3} | Setup, SCL to Stop
Condition | | 0.6 | | μs | | t _{W(H)} | Required Pulse Duration SCL "High" | | 0.6 | | μs | | t _{W(L)} | Required Pulse Duration
SCL "Low" | | 1.3 | | μs | Copyright © 2025 Texas Instruments Incorporated 10 # **5.6 Typical Characteristics** T_A = 25 °C, DVDD = 3.3 V, VBAT = PVDD = 14.4 V, R_L = 4 Ω , f_{IN} = 1 kHz, f_{SW} = 2.1 MHz, AES17 filter, default I²C settings, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, see application diagram in セクション 9.2.1.4 \boxtimes 9-2 (unless otherwise noted) English Data Sheet: SLOS970 T_A = 25 °C, DVDD = 3.3 V, VBAT = PVDD = 14.4 V, R_L = 4 Ω , f_{IN} = 1 kHz, f_{SW} = 2.1 MHz, AES17 filter, default I²C settings, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, see application diagram in セクション 9.2.1.4 \boxtimes 9-2 (unless otherwise noted) T_A = 25 °C, DVDD = 3.3 V, VBAT = PVDD = 14.4 V, R_L = 4 Ω , f_{IN} = 1 kHz, f_{SW} = 2.1 MHz, AES17 filter, default I²C settings, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, see application diagram in セクション 9.2.1.4 \boxtimes 9-2 (unless otherwise noted) 13 T_A = 25 °C, DVDD = 3.3 V, VBAT = PVDD = 14.4 V, R_L = 4 Ω , f_{IN} = 1 kHz, f_{SW} = 2.1 MHz, AES17 filter, default I²C settings, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, see application diagram in セクション 9.2.1.4 \boxtimes 9-2 (unless otherwise noted) T_A = 25 °C, DVDD = 3.3 V, VBAT = PVDD = 14.4 V, R_L = 4 Ω , f_{IN} = 1 kHz, f_{SW} = 2.1 MHz, AES17 filter, default I²C settings, reconstruction filter inductor used: DFEG7030D-3R3M from MuRata Toko, see application diagram in セクション 9.2.1.4 \boxtimes 9-2 (unless otherwise noted) ### **6 Parameter measurement Information** The parameters for the TPA6404-Q1 device were measured using the circuit in セクション 9.2.1. # 7 Detailed description #### 7.1 Overview The TPA6404-Q1 device is a four-channel analog input Class-D audio amplifier, specifically tailored for use in the automotive industry. The device is designed for vehicle battery operation. The ultra-efficient Class-D technology allows for reduced power consumption, reduced PCB area, heat, and peak currents in the electrical system. The device realizes an audio sound system design with smaller size and lower weight than traditional Class-AB solutions. Product Folder Links: TPA6404-Q1 The core design blocks are: - Differential Analog Input - Clock management - · Pulse width modulator (PWM) with output stage feedback - Gate drive - Power FETs - Diagnostics - Protection - Power supply - I²C serial communication bus 資料に関するフィードバック(ご意見やお問い合わせ)を送信 15 ### 7.2 Functional Block Diagram Copyright © 2017, Texas Instruments Incorporated English Data Sheet: SLOS970 ### 7.3 Feature Description ### 7.3.1 Differential Analog inputs The TPA6404-Q1 features balanced analog audio inputs to optimize audio performance. The differential inputs give maximum hum and noise suppression. With a single-ended analog input it is recommended to connect the inputs as pseudo balanced for best hum and noise suppression. \boxtimes 7-1 shows the proposed balanced and single ended connections. 図 7-1. Differential Analog Input Connections ### 7.3.2 Gain Control and AC-Coupling The gain of the TPA6404-Q1 is configurable in the gain control register through I^2C . There are four gain settings of 10 dB, 16 dB, 22 dB, and 28 dB. 22 dB is the default setting. It is recommended to select the lowest possible gain for the expected PVDD operation and input voltage range to minimize output noise and optimize dynamic range performance. The combination of input voltage range and supply voltage sets the requirement for the chosen gain setting. 表 7-1 below shows examples: | INPUT VOLTAGE | SUPPLY VOLTAGE | GAIN | |-----------------------|----------------|------| | 0.5 Vrms Single ended | 14.4V | 28dB | | 1 Vrms Single ended | 14.4V | 22dB | | 1 Vrms Differential | 14.4V | 16dB | | 2 Vrms Single ended | 14.4V | 16dB | | 2 Vrms Differential | 14.4V | 10dB | | 1 Vrms Single ended | 18V | 28dB | | 1 Vrms Differential | 18V | 22dB | | 2 Vrms Single ended | 18V | 22dB | | 2 Vrms Differential | 18V | 16dB | 表 7-1. Input Voltage Gain Setting The input impedance is a function of the selected gain, see $\frac{1}{8}$ 7-2. 表 7-2. Input Impedance | GAIN | INPUT IMPEDANCE | INPUT CAPACITOR | HIGH-PASS FILTER | |------|-----------------|-----------------|------------------| | 10dB | 80kΩ | 1µF | 2Hz | | 16dB | 40kΩ | 1µF | 4Hz | | 22dB | 20kΩ | 1µF | 8Hz | | 28dB | 10kΩ | 1µF | 16Hz | Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 The inputs need to be AC-coupled to minimize the output DC-offset and ensure correct ramping of the output voltages during power-ON and power-OFF. The input AC-coupling capacitor together with the input impedance forms a high-pass filter with the following cut-off frequency: $$f = \frac{1}{2 \pi R_{in} C_{in}}$$ ### 図 7-2. Input High Pass Filter Calculation If a flat frequency response is required down to 20Hz the recommended cut-off frequency is a tenth of that, 2Hz. \pm 7-2 lists the high-pass filter frequency when using a 1 μ F AC-coupling capacitor. If lower high-pass filter frequencies are needed then larger capacitor values should be used. It is recommenced to use AC-coupling capacitors with low leakage current, like ceramic-, film- or quality electrolytic-capacitors. The TPA6404-Q1 has an output DC detection built it to protect the attached speaker in case an input AC-coupling capacitor fails or has too high leakage current. ### 7.3.3 High-Frequency Pulse-Width Modulator (PWM) The PWM converts the input audio data into a switched signal of varying duty cycle. The PWM modulator is an advanced design with high bandwidth, low noise, low distortion, and excellent stability. The output switching rate is selectable via I^2C , register 0x02, and is synchronous to sync-clock input in target mode. In controller mode the sync-clock is an output. When the device is operated in target mode, the sync pin is used to control the output stage switching frequency while in either MUTE or PLAY mode. The external clock must be applied before Hi-Z mode is exited and remain present until Hi-Z mode is entered again. During Hi-Z mode, the external clock signal is optional. The four channels can be set to switch with 4 different phase to each other: 0, 30, 45 and 60 degree. The 45 degree setting is default and should be used unless a different phase setting is needed. With 30, 45 and 60 degree the supply ripple current will be minimum. This enables the use of smaller and lower cost external filtering components due to lower power supply ripple. #### 7.3.4 Gate Drive The gate driver accepts the low-voltage PWM signal and level shifts it to drive a high-current, full-bridge, power-FET stage. The device uses proprietary techniques to optimize EMI and audio performance. The gate driver power supply voltage, GVDD, is internally generated and a decoupling capacitor must be connected at pin 6 and pin 7. #### 7.3.5 Power FETs The BTL output for each channel comprises four N-channel 90 m Ω FETs for high efficiency and maximum power transfer to the load. These FETs are designed to handle large voltage transients during load dump. #### 7.3.6 Load Diagnostics The device incorporates both DC- and AC-load diagnostics which are used to determine the status of the load. The DC-diagnostics are turned on by default. However, if a fast startup without diagnostics is required, the diagnostics can be
bypassed through I²C. The DC-diagnostics run when any channel is directed to leave the Hi-Z state and enter the MUTE or PLAY state. The diagnostics can also be enabled manually to run on any or all channels even if the other channels are playing audio. Diagnostics can be started from any operating condition, but if the channel is in PLAY state then the time to complete the diagnostic is longer because the device must go to the Hi-Z state. The diagnostics are available as soon as the device supplies are within the recommended operating range. The diagnostics do not rely on the audio input signals or sync frequency to be available to 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated function since the internal oscillator is used for the diagnostic block. Diagnostic results are reported for each channel separately through the I²C registers. ### 7.3.6.1 DC Load Diagnostics The DC load diagnostics are used to verify the load is connected properly. The DC diagnostics consists of four tests: short-to-power (S2P), short-to-ground (S2G), open-load (OL), and shorted-load (SL). The S2P and S2G tests trigger if the impedance to ground or the impedance to power is below that specified in the $\frac{1}{2}$ section. The diagnostic also detects a short to vehicle battery when the supply is boosted. The SL test has an I^2 C-configurable threshold depending on the expected load to be connected. Because the speakers and cable impedance connected to each channel might be different, each channel can be assigned a unique threshold value. The OL test reports if the selected channel has a load impedance greater than the limits in the $\frac{1}{2}$ section. The duration of DC load diagnostics can be as short as 250ms and as long as 600ms depending on any fault conditions. The time extension is due to retesting the fault conditions to reduce false positives. Additional time will be added by changing the buffer time or settling time parameters in register 0x09. Buffer time is a delay before the test starts. This is added before the S2G and S2P tests and also added before the SL and the OL tests. The Ramp time is the time that the output is ramped up and down for the SL and OL tests. The settling time is the duration of the SL and OL test. ### 7.3.6.1.1 Automatic DC Load Diagnostics The DC load diagnostic is run automatically when the STANDBY pin is pulled high. This assumes that the 3.3Vdc (DVDD) for the device has already been applied. The DC diagnostics will be run on all four channels. If there is a fault on a channel or channels this test will be run again after approximately one second. It will repeat indefinitely until the fault is eliminated, the STANDBY pin is pulled low, or the diagnostics function is turned off by I²C control. This function will also be run after a channel fault. ### 7.3.6.1.2 I²C Controlled DC Load Diagnostics Automatic DC load diagnostics may not be a desired function at power up, therefore, it can be bypassed by writing a one to bit 0 in register 0x09. This register must be written before the **STANDBY** pin is pulled high. Product Folder Links: TPA6404-Q1 DC diagnostics can be used as follows to test all four channels: - 1. For DC diagnostics, the output must be placed in Hi-Z mode by writing a 0x55 to register 0x04. This will place all four channels in Hi-Z mode - 2. Write any control parameters for DC load diagnostics in Register 0x09 - 3. Write 0xFF to Register 0x04 to place all channels into load diagnostics mode - 4. Monitor (read) register 0x0F continuously until the it changes from 0xFF to 0x55 to indicate that load diagnostics is finished - 5. The load diagnostic results are stored in registers 0x0C and 0x0D Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 19 図 7-3. DC Load Diagnostic Reporting Thresholds ### 7.3.6.2 Line Output Diagnostics The device also includes an optional test to detect a line output load. A line output load is a high-impedance load that is above the open-load (OL) threshold such that the DC-load diagnostics report an OL condition. If the line output detection bit is set to 1, when an OL condition is detected during the DC Diagnostic test, the system also checks if a line output load is present. This test may not be pop free, so if an external amplifier is connected it should be muted. #### 7.3.6.3 AC Load Diagnostics The AC load diagnostic is used to determine the proper connection of a capacitive coupled speaker or tweeter when used with a passive crossover. The AC load diagnostic is controlled through I²C. The TPA6404-Q1 provides a required signal source to determine the AC impedance and reports the approximate load impedance and phase to I²C registers. The I²C selected test frequency should create current flow through the desired speaker for proper detection. If multiple channels are to be tested, the diagnostics must be run in each channel separately as the results share the same I²C reporting register. When testing a channel multiple times, it is required to wait at least 200ms before rerunning AC load diagnostics on the same channel. 注 If an Undervoltage, Overvoltage or Overtemperature fault occurs during AC diagnostics, the AC diagnostics is stopped. AC Diagnostics will not be allowed to be performed again until the DC Diagnostics are performed. This is to ensure the fault is not potentially a hazard during AC diagnostics. For load-impedance detection, there are three separate groups of processes that must be performed. - · Impedance phase reference measurement - Impedance phase measurement of the load and calculation - Impedance magnitude measurement and calculation #### 7.3.6.3.1 Impedance Phase Reference Measurement The first stage is to utilize the built-in loopback mode to determine the reference value for the phase measurement. This reference will nullify any phase offset in the device and measure only the phase of the load. This is measured for channels 1 and 3 only. Channel 2 will use the results of channel 1 for the calculations. Channel 4 will use the results of channel 3 for the calculations. Measure channel 1 and channel 3 sequentially, they cannot be measured at the same time. For loopback delay detection, use the following test procedure: ### **BTL Mode** Copyright © 2025 Texas Instruments Incorporated - 1. Set the AC DIAGS LOOPBACK bit (bit 7 in register 0x16) to 1 to enable loopback mode - 2. Set the appropriate test frequency in register 0x2A, the default is set for 18.75kHz - 3. For channel 1 set bit 3 in register 0x15 to 1. For channel 3 set bit 1 in register 0x15 to 1 - 4. Read back the hexadecimal, AC LDG PHASE1 value. Register 0x1B holds the MSB and register 0x1C holds the LSB - 5. For channel 1 set bit 3 in register 0x15 to 0. For channel 3 set bit 1 in register 0x15 to 0 #### **PBTL Mode** - 1. Set the AC DIAGS LOOPBACK bit (bit 7 in register 0x16) to 1 to enable AC loopback mode - 2. Set the PBTL CH12 and PBTL CH34 bits (bits 5 and 4 in register 0x00) to 0. This must be performed while the device is in the STANDBY state to enter BTL mode only for load diagnostics - 3. Set the appropriate test frequency in register 0x2A, the default is set for 18.75kHz - 4. For channel 1 set bit 3 in register 0x15 to 1. For channel 3 set bit 1 in register 0x15 to 1 - 5. Read back the hexadecimal, AC LDG PHASE1 value. Register 0x1B hold the MSB and register 0x1C holds the LSB - 6. Set the PBTL CH12 and PBTL CH34 bits (bits 5 and 4 in register 0x00) to 1 to go back to PBTL mode for load diagnostics - 7. For channel 1 set bit 3 in register 0x15 to 0. For channel 3 set bit 1 in register 0x15 to 0 When the test is complete, the channel reporting register (0x0F) indicates the status change from the AC diagnostic mode to the Hi-Z state. The detected reference phase is stored in the appropriate I²C register when the device transitions to the Hi-Z state. #### 7.3.6.3.2 Impedance Phase Measurement After performing the phase reference measurements, measure the phase of the speaker load. This is performed in the same manner as the reference measurements, except the loopback is disabled in bit 7 register 0x16. Previously, the phase reference is measured on channel 1 and channel 3 and in this test stage; all four channels will be measured. Measure the channels sequentially as they cannot be measured at the same time. - 1. Set the channel to be tested into the Hi-Z state - 2. Set the AC DIAGS LOOPBACK bit (bit 7 in register 0x16) to 0 - 3. Set the appropriate test frequency in register 0x2A, the default is set for 18.75kHz - 4. Set the device into the AC diagnostic mode (set bit 3 through bit 0 as needed in register 0x15 to 1 for CH1 to CH4. (For PBTL mode, test channel 1 for PBTL12 and channel 3 for PBTL34)) - 5. Read back the 16bit hexadecimal, AC LDG PHASE value. Register 0x1B holds the MSB and register 0x1C holds the LSB - 6. Read back the hexadecimal stimulus value, STI. Register 0x1D holds the MSB and register 0x1E holds the - 7. Disable the AC diagnostic mode (set bit 3 through bit 0 as needed in register 0x15 to 0 for CH1 to CH4. (For PBTL mode, disable channel 1 for PBTL12 and channel 3 for PBTL34)) When the test is complete the channel reporting register indicates the status change from the AC diagnostic mode to the Hi-Z state. The detected phase is stored in the appropriate I2C register when the device transitions to the Hi-Z state. The AC phase in degrees is calculated with the following equation: $$Phase_CHx = 360(\frac{Phase_CHx(LBK) - Phase_CHx(LDM)}{STI_CHx(LDM)})$$ 図 7-4. AC Phase Calculation Where: Phase CHx(LBK) is the reference phase measurement 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Product Folder Links: TPA6404-Q1 Phase CHx(LDM) is the phase measure of the load STI_CHx(LDM) is the stimulus value #### 7.3.6.3.3 Impedance Magnitude Measurement The impedance magnitude value was measured during the second stage or phase measurement stage. These values are stored in register 0x17 through 0x1A, one register per
channel. The hexadecimal value must be converted to decimal and used to calculate the impedance magnitude using the following equation: Channelx Impedance = $$\frac{Impedance _CHx \times 2.371mV}{(Gain)(I\ mA)} \ (Ohms)$$ ### 図 7-5. AC Magnitude Calculation Where: Gain is the value chosen in register 0x15 I is the current chosen in register 0x16 An alternative is to use the values in $\frac{1}{2}$ 7-3 to determine the magnitude of the impedance using the ohms / code value. Change the code to decimal for this calculation. | 表 7-3. AC impedance code to magnitude | | | | | | | | | |--|---------------------------------------|--------|-----------------|----------------------|--|--|--|--| | Setting | Gain at 18.75kHz Ohm / Code (decimal) | I (mA) | Impedance Range | Ohm / Code (decimal) | | | | | | Reg 0x15 bit 7, 5
= 1 Reg 0x16 bit
2 = 1 | 4 | 20 | 0 to 6Ohms | 0.029643 | | | | | | Reg 0x15 bit 7, 5
= 1 Reg 0x16 bit
2 = 0 | 4 | 10 | 0 to 120hms | 0.059287 | | | | | | Reg 0x15 bit 7, 5
= 0 Reg 0x16 bit
2 = 1 | 1 | 20 | 0 to 240hms | 0.11857 | | | | | | Reg 0x15 bit 7, 5
= 0 Reg 0x16 bit
2 = 0 | 1 | 10 | 0 to 480hms | 0.23714 | | | | | 表 7-3. AC Impedance Code to Magnitude #### 7.3.7 Protection and Monitoring #### 7.3.7.1 Over current Limit (I_{LIMIT}) The over current limit terminates each PWM pulse to limit the output current flow when the current limit (I_{LIMIT}) is exceeded. Power is limited but operation continues without disruption and prevents undesired shutdown for transient music events. If the current is limited for 45% of the PWM cycles in a 200ms window, I_{LIMIT_WARN} is reported. If the current limit warning is triggered for 400ms, I_{LIMIT_FAULT} is reported and the channel is set in Hi-Z. Each channel is independently monitored and limited. There are two programmable levels that can be set by the miscellaneous control 1 register, 0x01 bit 4. The current limit values can be seen in セクション 5.5. ### 7.3.7.2 Over current Shutdown (I_{SD}) If the output load current reaches I_{SD}, such as an output short to GND or power supply, then a peak current limit occurs which shuts down the channel. The time to shutdown the channel varies depending on the severity of the short condition. The affected channel is placed into the Hi-Z state, the fault is reported to the register, and the FAULT pin is asserted. The device will remain in this state until the CLEAR FAULT bit is set in Miscellaneous Control 3 Register, 0x21 bit 7. After clearing this bit and if the diagnostics are enabled, the device will automatically start diagnostics on the channel and, if no load failure is found, the device will restart. If a load fault Product Folder Links: TPA6404-Q1 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2025 Texas Instruments Incorporated is found the device continues to rerun the diagnostics once per second. Because this hiccup mode is using the diagnostics, no high current is created. If the diagnostics are disabled the device sets the state for that channel to Hi-Z and requires the MCU to take the appropriate action, setting the CLEAR FAULT bit after the fault got removed, in order to return to Play state. There are two programmable levels that can be set by the miscellaneous control 1 register, 0x01 bit 4. #### 7.3.7.3 DC Detect This circuit detects a DC offset continuously during normal operation in PLAY mode at the output of the amplifier. If the DC offset exceeds the threshold, that channel is placed in the Hi-Z state, the fault is reported to the I²C register, and the FAULT pin is asserted. A register bit can be used to mask reporting to the FAULT pin if needed. #### 7.3.7.4 Clip Detect The clip detect reporting level can be set to 1%, 2%, 5% or 10%; and the reporting can be programmed over I^2C . If any channel is in clipping, it is reported to the internal I^2C channel register and the register reporting is latched. By default all channels also report to the \overline{WARN} pin. It can be split into two sections: channel 1 and 2 on the \overline{WARN} pin, and channels 3 and 4 on \overline{FAULT} pin. All pin reporting can be set to latched or non-latched. It is also possible to mask the clip reporting to the pin through I^2C . As an example, a sine wave signal that is clipped with a THD at the reporting level would provide a pulse at each part of the waveform that is clipped. The duty cycle of the pulse will be between 2% and 6% when the THD is at the reporting level. This assumes the Clip Reporting Latch is disabled by setting register 0x27, bit 0 to 0. #### 7.3.7.5 Global Over Temperature Warning (OTW), Over Temperature Shutdown (OTSD) and Thermal Foldback (TFB) Four over temperature warning levels are available in the device that can be selected (see the $\frac{t}{V}$) 8.1 section for thresholds). When the junction temperature exceeds the warning level, the \overline{WARN} pin is asserted unless the mask bit has been set to disable reporting. The device functions until OTSD value is reached at which point all channels are placed in the Hi-Z state and the \overline{FAULT} pin is asserted. When the junction temperature returns to normal levels, the device automatically recovers and places all channels into the state indicated by value in the Channel State Control Register (address = 0x04). The tolerance of the warning levels and OTSD temperatures track each other. When Thermal Foldback (TFB) is enabled, register 0x28 bit 5, the device automatic reduces the gain and thereby output power when either the global thermal warning, OTW, or the channel thermal warning, OTW(i) signals an over temperature. The attack and release time of the TFB can be programmed from by the register 0x28. The gain is stepped in 1 dB steps with a max attenuation of 12 dB. ### 7.3.7.6 Channel Over Temperature Warning [OTW(i)] and Shutdown [OTSD(i)] In addition to the global OTW, each channel also has an individual over temperature warning and shutdown. If a channel exceeds the OTW(i) threshold, the warning register bit is set as the WARN pin is asserted unless the mask bit has been set to disable reporting. If the channel temperature exceeds the OTSD(i) threshold, then that channel goes to the Hi-Z state until the temperature drops below the OTW(i) threshold at which point the channel changes state as indicated by the state control register. #### 7.3.7.7 Thermal Foldback The thermal foldback (TFB) circuitry is designed to protect the TPA6404-Q1 from excessive die temperature. This can be caused by being operated beyond the recommended operating temperature or with a weaker thermal system than recommended. The TFB reduces the on die power dissipation by reducing the closed loop gain in steps of 1.0dB, when the temperature exceeds the TFB temperature specification. The gain will increase as the temperature is reduced by the same gain step. The rate of gain reduction (attack) is controlled in register 0x28 bits 2 and 3. The rate of gain increase or recovery (release) is controlled in register 0x28 bits 0 and 1. Pop free gain changes are control by enabling a zero crossing detector, which is enabled by default in register 0x28 bit 4. The zero crossing has a wait time before the gain can change. The default is 20µs and can be increased in register 0x28 bits 7 and 8. The TFB is enabled by default and can be disabled in register 0x28 bit 5. Copyright © 2025 Texas Instruments Incorporated *資料に関す*Product Folder Links: *TPA6404-Q1* 資料に関するフィードバック(ご意見やお問い合わせ)を送信 23 図 7-6. Thermal Foldback Attack and Release #### 7.3.7.8 Undervoltage (UV) and Power-On-Reset (POR) The undervoltage (UV) protection detects low voltages on the PVDD and VBAT pins. In the event of an undervoltage condition, the \overline{FAULT} pin is asserted and the I²C register is updated. A POR on the DVDD pin causes the I²C to go into a high-impedance (Hi-Z) state and all registers are reset to default values. At power-on or after a POR event, the POR warning bit and \overline{WARN} pin are asserted. #### 7.3.7.9 Over Voltage (OV) and Load Dump The OV protection detects high voltages on the PVDD pin. If the PVDD pin reaches the over voltage threshold, the $\overline{\text{FAULT}}$ pin is asserted and the I²C register is updated. The device can withstand 40V load-dump voltage spikes. #### 7.3.8 Power Supply The device has three power supply inputs: DVDD, PVDD, and VBAT, which are described as follows: - DVDD This pin is a 3.3V supply pin that provides power to the digital circuitry - VBAT This pin is a higher voltage supply that can be connected to the vehicle battery or the regulated voltage rail in a boosted system within the recommended limits. For best performance, this rail should be 10V or higher. See the セクション 5.3 table for the maximum supply voltage. This supply rail is used for higher voltage analog circuits but not the output FETs - PVDD This pin is a high-voltage supply that can either be connected to the vehicle battery or to another voltage rail in a boosted system. The PVDD pin supplies the power to the output FETs and can be within the recommended operating limits, even if that is below the VBAT supply, to allow for dynamic voltage systems On-chip regulators are included, generating the GVDD_X voltages necessary for the gate drive circuitry. The GVDD supply pins are provided only for bypass capacitors to filter the supply and should not be used to power other circuits. The device can withstand fortuitous open ground and power conditions within the 29935.1 ratings for the device. Fortuitous open ground usually occurs when a speaker wire is shorted to ground, allowing for a second ground path through the body diode in the output FETs. ### 7.3.8.1 Power-Supply Sequence No special power supply sequence is required. #### 7.3.9 Hardware Control Pins The device has two control pins: MUTE and STANDBY, and two status pins: WARN and FAULT. つせ) を送信 Copyright © 2025 Texas Instruments Incorporated
Product Folder Links: *TPA6404-Q1* #### 7.3.9.1 **FAULT** The FAULT pin reports faults and is active low under any of the following conditions: - · Any channel faults (over current or DC detection) - Over temperature shutdown - Over voltage or undervoltage conditions on the VBAT or PVDD pins - Clock errors - Clip Detection indicators can also be routed to the FAULT pin. This indicator can be configured as latching or non-latching. The FAULT pin is latching, and can be cleared by writing to register 0x21 bit 7. Register bits are available to mask fault categories from reporting to the FAULT pin. These bits only mask the setting of the pin and do not affect the register reporting or protection of the device. By default all faults are reported to the pin. See the \$\frac{1}{2} \times 8.1\$ section for a description of the mask settings. The FAULT pin can also be programmed to show clip detect for channel 3 and 4. This pin is an open-drain output with an internal $100k\Omega$ pull-up resistor to DVDD. #### 7.3.9.2 WARN This active low output pin reports audio clipping, over temperature warnings and POR events. - Clip Detect is reported if any channel is above the programmed THD threshold - Over temperature warning (OTW) is reported if the general temperature or any of the channel temperature warnings are set. The warning temperature can be set in register 0x01 bit 5-6 - Register bits are available to mask either Clip Detect or OTW reporting to the pin. These bits only mask the setting of the pin and do not affect the register reporting. By default both Clip Detect and OTW are reported - This pin is an open-drain output with an internal 100kΩ pull-up resistor to DVDD #### 7.3.9.3 **MUTE** This active low input pin is used for hardware control of the mute and un-mute function for all channels. When the $\overline{\text{Mute}}$ pin is set low, all channels stop switching and are set to Hi-Z mode. All internal analog circuitry is biased and enabled, and the input AC-coupling capacitors are charged. The hardware $\overline{\text{Mute}}$ function is ORed with the I²C $\overline{\text{Mute}}$ functioned. If either function is set, the $\overline{\text{Mute}}$ function is asserted. This pin has a $100k\Omega$ internal pull-down resistor. #### 7.3.9.4 **STANDBY** The $\overline{\text{STANDBY}}$ pin is active low. The device is in a low current mode on the PVDD and VBAT pins while the output pins are placed into a Hi-Z state. All internal analog bias is disabled. In $\overline{\text{STANDBY}}$ and while DVDD is present, the I²C bus is active and the internal registers are active. This pin has a $1M\Omega$ internal pull-down resistor. #### 7.4 Device Functional Modes ### 7.4.1 Operating Modes and Faults The operating modes and faults are listed in 表 7-4, 表 7-5, and 表 7-6. ### 表 7-4. Operating Modes | STATE NAME | STATE NAME OUTPUT FETS | | I ² C | | |--------------|---------------------------|---------|------------------|--| | STANDBY Hi-Z | | Stopped | Active | | | Hi-Z | Hi-Z Hi-Z | | Active | | | MUTE | Hi-Z | Active | Active | | | PLAY | PLAY Switching with audio | | Active | | Product Folder Links: TPA6404-Q1 Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 25 #### 表 7-5. Global Faults and Actions | FAULT/
EVENT | FAULT/EVENT
CATEGORY | MONITORING
MODES | REPORTING
METHOD | ACTION
RESULT | |------------------------------|-------------------------|---------------------|------------------------------|------------------| | POR | | All | I ² C + WARN pin | Standby | | VBAT UV | Voltage fault | | | | | PVDD UV | | Hi-Z, MUTE, PLAY | I ² C + FAULT pin | Hi-Z | | VBAT or PVDD OV | | | | | | OTW | Thermal warning | Hi-Z, MUTE, PLAY | I ² C + WARN pin | None | | OTSD | Thermal shutdown | Hi-Z, MUTE, PLAY | I ² C + FAULT pin | Hi-Z | | INVALID CLOCK ⁽¹⁾ | Sync Clock Fault | MUTE and PLAY | I ² C + FAULT pin | Hi-Z | (1) Monitored only when the device is configured in TARGET mode ### 表 7-6. Channel Faults and Actions | FAULT/
EVENT | FAULT/EVENT
CATEGORY | MONITORING
MODES | REPORTING
METHOD | ACTION
TYPE | | |----------------------|---------------------------------------|---------------------|------------------------------|----------------|--| | Clipping | Warning (can be latched or unlatched) | | WARN pin + FAULT pin | None | | | Overcurrent limiting | Protection | MUTE and PLAY | WARN pin | Current limit | | | Overcurrent fault | Output channel fault | | I ² C + FAULT pin | Hi-Z | | | DC detect | Output Charmer lauit | | I-C + FAULT PIII | 1 II-Z | | ### 7.5 Programming #### 7.5.1 I²C Serial Communication Bus The device communicates with the system processor via the I^2C serial communication bus as an I^2C target-only device. The processor can poll the device via I^2C to determine the operating status, configure settings, or run diagnostics. For a complete list and description of all I^2C controls, see the $2/2 \times 8.1$ section. The device includes two I^2C address pins, so up to four devices can be used together in a system with no additional bus switching hardware. The I^2C ADDRx pins set the target address of the device as listed in $\gtrsim 7-7$. 表 7-7. I²C Addresses | DESCRIPTION | I ² C ADDR1 | I ² C ADDR0 | I ² C Write | I ² C Read | |-------------|------------------------|------------------------|------------------------|-----------------------| | Device 0 | 0 | 0 | 0x54 | 0x55 | | Device 1 | 0 | 1 | 0x56 | 0x57 | | Device 2 | 1 | 0 | 0x58 | 0x59 | | Device 3 | 1 | 1 | 0x5A | 0x5B | #### 7.5.2 I²C Bus Protocol The device has a bidirectional serial control interface that is compatible with the Inter IC (I^2C) bus protocol and supports 100 and 400-kbps data transfer rates for random and sequential write and read operations. This is a target-only device that does not support a multicontroller bus environment or wait-state insertion. The control interface is used to program the registers of the device and to read device status. The I²C bus uses two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data is transferred on the bus serially, one bit at a time. The address and data are transferred in byte (8-bit) format with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the controller device driving a start condition on the bus and ends with the controller device driving a stop condition on the bus. The bus uses transitions on the data terminal (SDA) while the clock is HIGH to indicate a start and stop conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop. Normal data bit transitions must occur within the low time of the clock period. The controller generates the Product Folder Links: TPA6404-Q1 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated 7-bit target address and the read/write (R/W) bit to open communication with another device and then wait for an acknowledge condition. The device holds SDA LOW during the acknowledge-clock period to indicate an acknowledgment. When this occurs, the controller transmits the next byte of the sequence. Each device is addressed by a unique 7-bit target address plus R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external pull-up resistor must be used for the SDA and SCL signals to set the HIGH level for the bus. There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the controller generates a stop condition to release the bus. 図 7-7. Typical I²C Sequence 図 7-8. SCL and SDA Timing Use the I²C ADDRx pins to program the device target address. Read and write data can be transmitted using single-byte or multiple-byte data transfers. ### 7.5.3 Random Write As shown in $\[mu]$ 7-9, a single-byte data-write transfer begins with the controller device transmitting a start condition followed by the I²C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I²C device address and the read/write bit, the device responds with an acknowledge bit. Next, the controller transmits the address byte or bytes corresponding to the internal memory address being accessed. After receiving the address byte, the device again responds with an acknowledge bit. Next, the controller device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the device again responds with an acknowledge bit. Finally, the controller device transmits a stop condition to complete the single-byte data-write transfer. 図 7-9. Random Write Transfer Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 27 English Data Sheet: SLOS970 ### 7.5.4 Sequential Write A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are transmitted by the controller to the device as shown in \boxtimes 7-10. After receiving each data byte, the device responds with an acknowledge bit and the I^2C subaddress is automatically incremented by one. 図 7-10. Sequential Write Transfer #### 7.5.5 Random Read As shown in \boxtimes 7-11, a single-byte data-read transfer begins with the controller device transmitting a start condition followed by the I²C device address and the read/write bit. For the data-read transfer, both a write followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory address to be read. As a result, the read/write bit is a 0. After receiving the address and the read/write bit, the device responds with an acknowledge bit. In
addition, after sending the internal memory address byte or bytes, the controller device transmits another start condition followed by the address and the read/write bit again. This time the read/write bit is a 1, indicating a read transfer. After receiving the address and the read/write bit, the device again responds with an acknowledge bit. Next, the device transmits the data byte from the memory address being read. After receiving the data byte, the controller device transmits a not-acknowledge followed by a stop condition to complete the single-byte data-read transfer. 図 7-11. Random Read Transfer ### 7.5.6 Sequential Read A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are transmitted by the device to the controller device as shown in \boxtimes 7-12. Except for the last data byte, the controller device responds with an acknowledge bit after receiving each data byte and automatically increments the I²C subaddress by one. After receiving the last data byte, the controller device transmits a not-acknowledge followed by a stop condition to complete the transfer. 図 7-12. Sequential Read Transfer Copyright © 2025 Texas Instruments Incorporated # 8 Registers # 8.1 Register Maps # 表 8-1. I²C Address Register Definitions | Address | Туре | Register Description | Section | |---------|------|---|------------------------| | 0x00 | R/W | Mode control | Mode control | | 0x01 | R/W | Miscellaneous control 1 | Misc control 1 | | 0x02 | R/W | Miscellaneous control 2 | Misc control 2 | | 0x03 | R | RESERVED | | | 0x04 | R/W | Channel state control | Ch state control | | 0x05 | R | RESERVED | | | 0x06 | R | RESERVED | | | 0x07 | R | RESERVED | | | 80x0 | R | RESERVED | | | 0x09 | R/W | DC diagnostic control 1 | DC diag control 1 | | 0x0A | R/W | DC diagnostic control 2 | DC diag control 2 | | 0x0B | R/W | DC diagnostic control 3 | DC diag control 3 | | 0x0D | R | DC load diagnostic report channels 3 and 4 | DC diag rprt Ch 3,4 | | 0x0E | R | DC load diagnostic report: line output | DC diag rprt LO | | 0x0F | R | Channel state reporting | Ch state rprt | | 0x10 | R | Channel faults (over current, DC detection) | Ch faults | | 0x11 | R | Global faults 1 | Global faults 1 | | 0x12 | R | Global faults 2 | Global faults 2 | | 0x13 | R | Warnings | Warnings | | 0x14 | R/W | Pin control | Pin Control | | 0x15 | R/W | AC load diagnostic control 1 | AC diag control 1 | | 0x16 | R/W | AC load diagnostic control 2 | AC diag control 2 | | 0x17 | R | AC load diagnostic report channel 1 | AC diag reprt Ch1 | | 0x18 | R | AC load diagnostic report channel 2 | AC diag reprt Ch2 | | 0x19 | R | AC load diagnostic report channel 3 | AC diag reprt Ch3 | | 0x1A | R | AC load diagnostic report channel 4 | AC diag reprt Ch4 | | 0x1B | R | AC load diagnostic Phase High | AC diag Phase Hi | | 0x1C | R | AC load diagnostic Phase Low | AC diag phase lo | | 0x1D | R | AC load diagnostic STI High | AC diag STI hi | | 0x1E | R | AC load diagnostic STI Low | AC diag STI lo | | 0x1F | R | RESERVED | | | 0x20 | R | RESERVED | | | 0x21 | R/W | Miscellaneous control 3 | Misc control 3 | | 0x22 | R/W | Clip control | Clip control | | 0x23 | R | RESERVED | | | 0x24 | R/W | Clip warning | Clip warn | | 0x25 | R/W | Current Limit Status | I-Limit status | | 0x26 | R | RESERVED | | | 0x27 | R/W | Fault and Warning Pin Control | Fault/Warn pin control | | 0x28 | R/W | Thermal Foldback Control | Therm Fb control | | 0x29 | R | RESERVED | | 29 English Data Sheet: SLOS970 # 表 8-1. I²C Address Register Definitions (続き) | Address | Type | Register Description | Section | |---------|------|---------------------------------|----------------------| | 0x2A | R/W | AC Diagnostic Frequency Control | AC diag freq control | | 0x2B | R/W | SYNC PIN CONTROL | Sync pin control | Product Folder Links: TPA6404-Q1 English Data Sheet: SLOS970 # 8.1.1 Mode Control Register (address = 0x00) [default = 0x00] The Mode Control register is shown in 図 8-1 and described in 表 8-2. ### 図 8-1. Mode Control Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------|----------|---------|---------|-------------|-------------|-------------|-------------| | RESET | RESERVED | PBTL_34 | PBTL_12 | CH1 LO MODE | CH2 LO MODE | CH3 LO MODE | CH4 LO MODE | | R/W | R | R/W | R/W | R/W | R/W | R/W | R/W | ### 表 8-2. Mode Control Field Descriptions | Bit | Field | | Reset | Description | |-----|-------------|------|-------|--| | DIL | rieid | Туре | Reset | Description | | 7 | RESET | R/W | 0 | 0: Normal operation | | | | | | 1: Resets the device | | 6 | RESERVED | R | 0 | | | 5 | PBTL_34 | R/W | 0 | 0: BTL mode | | | | | | 1: PBTL mode | | 4 | PBTL_12 | R/W | 0 | 0: BTL mode | | | | | | 1: PBTL mode | | 3 | CH1 LO MODE | R/W | 0 | 0: Channel 1 is in normal/speaker mode | | | | | | 1: Channel 1 is in line output mode | | 2 | CH2 LO MODE | R/W | 0 | 0: Channel 2 is in normal/speaker mode | | | | | | 1: Channel 2 is in line output mode | | 1 | CH3 LO MODE | R/W | 0 | 0: Channel 3 is in normal/speaker mode | | | | | | 1: Channel 3 is in line output mode | | 0 | CH4 LO MODE | R/W | 0 | 0: Channel 4 is in normal/speaker mode | | | | | | 1: Channel 4 is in line output mode | ### 8.1.2 Miscellaneous Control 1 Register (address = 0x01) [default = 0x32] The Miscellaneous Control 1 register is shown in 図 8-2 and described in 表 8-3. ### 図 8-2. Miscellaneous Control 1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------|-------------|-----|------------|----------|---|------|-----| | PI_EN | OTW CONTROL | | OC CONTROL | RESERVED | | GAIN | | | R/W | R/W | R/W | R/W | R | R | R/W | R/W | ## 表 8-3. Misc Control 1 Field Descriptions | | 2 (0 0)00 00 | | | | | | | | | |-----|---------------------|------|-------|---|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | 7 | PI_EN | R/W | 0 | 0: Pulse Injector disabled 1: Pulse Injector enabled | | | | | | | 6–5 | OTW CONTROL | R/W | 01 | 00: Global over temperature warning set to 140°C 11: Global over temperature warning set to 130C 10: Global over temperature warning set to 120°C 11: Global over temperature warning set to 110°C | | | | | | | 4 | OC CONTROL | R/W | 1 | 0: Over current is level 1 1: Over current is level 2 | | | | | | | 3–2 | RESERVED | | 00 | | | | | | | Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 31 表 8-3. Misc Control 1 Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|-------|------|-------|-------------| | 1–0 | GAIN | R/W | 10 | 00: 10dB | | | | | | 01: 16dB | | | | | | 10: 22dB | | | | | | 11: 28dB | ### 8.1.3 Miscellaneous Control 2 Register (address = 0x02) [default = 0x62] The Miscellaneous Control 2 register is shown in 図 8-3 and described in 表 8-4. # 図 8-3. Miscellaneous Control 2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|---------------|-----|-----|-----------|------------|--------|--------| | RESERVED | PWM FREQUENCY | | | RAMP_SYNC | _PHASE_SEL | OUTPUT | ΓPHASE | | R | R/W 表 8-4. Misc Control 2 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------------------------|------|---------|--| | 7 | RESERVED | R | 0 | | | 6–4 | PWM FREQUENCY | R/W | R/W 110 | 000: RESERVED | | | | | | 001: RESERVED | | | | | | 010: RESERVED | | | | | | 011: RESERVED | | | | | | 100: RESERVED | | | | | | 101: 1.8 MHz | | | | | | 110: 2.1 MHz | | | | | | 111: 2.3 MHz | | 3-2 | Ramp Sync Phase Select in | R/W | 00 | 00: CH 4 | | | Controller Mode (Ramp phase is | | | 01: CH 3 | | | referenced to selected channel) | | | 10: CH 2 | | | | | | 11: CH 1 | | 1–0 | PWM OUTPUT PHASE | R/W | 10 | 00: 0 degrees output-phase switching offset | | | | | | 01: 30 degrees output-phase switching offset | | | | | | 10: 45 degrees output-phase switching offset | | | | | | 11: 60 degrees output-phase switching offset | ## 8.1.4 Channel State Control Register (address = 0x04) [default = 0x55] The Channel State Control register is shown in 図 8-4 and described in 表 8-5. ### 図 8-4. Channel State Control Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-----------|-------------------------------------|-----|-----------|---------|-------------------|-----|-----| | CH1 STATE | CH1 STATE CONTROL CH2 STATE CONTROL | | CH3 STATE | CONTROL | CH4 STATE CONTROL | | | | R/W ### 表 8-5. Channel State Control Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------------|------|-------|-------------------------| | 7–6 | CH1 STATE CONTROL | R/W | 01 | 00: PLAY | | | | | | 01: Hi-Z | | | | | | 10: MUTE | | | | | | 11: DC load diagnostics | Product Folder Links: TPA6404-Q1 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated 表 8-5. Channel State Control Field Descriptions (続き) | | & 0-3. Chamier State Control Field Descriptions (MLC) | | | | | | | | | | |-----|---|------|-------|-------------------------|--|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | | 5–4 | CH2 STATE CONTROL | R/W | 01 | 00: PLAY | | | | | | | | | | | | 01: Hi-Z | | | | | | | | | | | | 10: MUTE | | | | | | | | | | | | 11: DC load diagnostics | | | | | | | | 3–2 | CH3 STATE CONTROL | R/W | 01 | 00: PLAY | | | | | | | | | | | | 01: Hi-Z | | | | | | | | | | | | 10: MUTE | | | | | | | | | | | | 11: DC load diagnostics | | | | | | | | 1–0 | CH4 STATE CONTROL | R/W | 01 | 00: PLAY | | | | | | | | | | | | 01: Hi-Z | | | | | | | | | | | | 10: MUTE | | | | | | | | | | | | 11: DC load diagnostics | | | | | | | ### 8.1.5 DC Load Diagnostic Control 1 Register (address = 0x09) [default = 0x00] The DC Diagnostic Control 1
register is shown in 図 8-5 and described in 表 8-6. ### 図 8-5. DC Load Diagnostic Control 1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-----------------|------|--------|-----|-----|--------|------------------|------------| | DC LDG
ABORT | RAMP | SETTLE | BU | FF | REPORT | LDG LO
ENABLE | LDG BYPASS | | R/W ### 表 8-6. DC Load Diagnostics Control 1 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------------------|------|-------|--| | 7 | DC LDG ABORT | R/W | 0 | Default state, clear after abort Aborts the load diagnostics in progress | | 6 | RAMP TIME - DC DIAG | R/W | 0 | 0: Default ramp time = 10ms 1: Half ramp time = 5ms | | 5 | SETTLING TIME - DC DIAG | R/W | 0 | 0: Default Settle time = 15ms 1: Double settling time = 30ms | | 4–3 | BUFFER TIME - DC DIAG | R/W | 00 | 00: 1ms
01: 10ms
10: 5ms | | 2 | REPORT | R/W | 0 | Do not report DC diagnostic fault on fault pin Report DC diagnostic fault on fault pin | | 1 | LDG LO ENABLE | R/W | 0 | O: Line output diagnostics are disabled 1: Line output diagnostics are enabled | | 0 | LDG BYPASS | R/W | 0 | O: Automatic diagnostics when leaving Hi-Z and after channel fault 1: Diagnostics are not run automatically | ### 8.1.6 DC Load Diagnostic Control 2 Register (address = 0x0A) [default = 0x11] The DC Diagnostic Control 2 register is shown in 図 8-6 and described in 表 8-7. ### 図 8-6. DC Load Diagnostic Control 2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|--------|---|---|---|--------|---| | | | LDG SL | | | | LDG SL | | Product Folder Links: TPA6404-Q1 Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 33 # 図 8-6. DC Load Diagnostic Control 2 Register (続き) R/W R/W # 表 8-7. DC Load Diagnostics Control 2 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------|------|-------|--| | 7–4 | CH1 DC LDG SL | R/W | 0001 | DC load diagnostics shorted-load threshold | | | | | | 0000: 0.5 Ω | | | | | | 0001: 1 Ω | | | | | | 0010: 1.5 Ω | | | | | | | | | | | | 1001: 5 Ω | | 3–0 | CH2 DC LDG SL | R/W | 0001 | DC load diagnostics shorted-load threshold | | | | | | 0000: 0.5 Ω | | | | | | 0001: 1 Ω | | | | | | 0010: 1.5 Ω | | | | | | | | | | | | 1001: 5 Ω | ### 8.1.7 DC Load Diagnostic Control 3 Register (address = 0x0B) [default = 0x11] The DC Diagnostic Control 3 register is shown in 図 8-7 and described in 表 8-8. ### 図 8-7. DC Load Diagnostic Control 3 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |---|--------|--------|---|---------------|----|---|---|--| | | CH3 DC | LDG SL | | CH4 DC LDG SL | | | | | | | R | /W | | | R/ | W | | | ## 表 8-8. DC Load Diagnostics Control 3 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------|------|-------|--| | 7–4 | CH3 DC LDG SL | R/W | 0001 | DC load diagnostics shorted-load threshold 0000: 0.5 Ω 0001: 1 Ω 0010: 1.5 Ω | | | | | |
1001: 5 Ω | | 3–0 | CH4 DC LDG SL | R/W | 0001 | DC load diagnostics shorted-load threshold 0000: 0.5 Ω 0001: 1 Ω 0010: 1.5 Ω 1001: 5 Ω | ### 8.1.8 DC Load Diagnostic Report 1 Register (address = 0x0C) [default = 0x00] DC Load Diagnostic Report 1 register is shown in 図 8-8 and described in 表 8-9. ### 図 8-8. DC Load Diagnostic Report 1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---------|---------|--------|--------|---------|---------|--------|--------| | CH1 S2G | CH1 S2P | CH1 OL | CH1 SL | CH2 S2G | CH2 S2P | CH2 OL | CH2 SL | | R | R | R | R | R | R | R | R | *資料に関するフィードバック (ご意見やお問い合わせ) を送信*Product Folder Links: *TPA6404-Q1* 表 8-9. DC Load Diagnostics Report 1 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------|------|-------|--| | 7 | CH1 S2G | R | 0 | 0: No short-to-GND detected 1: Short-To-GND Detected | | 6 | CH1 S2P | R | 0 | 0: No short-to-power detected 1: Short-to-power detected | | 5 | CH1 OL | R | 0 | 0: No open load detected 1: Open load detected | | 4 | CH1 SL | R | 0 | 0: No shorted load detected 1: Shorted load detected | | 3 | CH2 S2G | R | 0 | 0: No short-to-GND detected 1: Short-to-GND detected | | 2 | CH2 S2P | R | 0 | 0: No short-to-power detected 1: Short-to-power detected | | 1 | CH2 OL | R | 0 | 0: No open load detected 1: Open load detected | | 0 | CH2 SL | R | 0 | 0: No shorted load detected 1: Shorted load detected | # 8.1.9 DC Load Diagnostic Report 2 Register (address = 0x0D) [default = 0x00] The DC Load Diagnostic Report 2 register is shown in 図 8-9 and described in 表 8-10. # 図 8-9. DC Load Diagnostic Report 2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---------|---------|--------|--------|---------|---------|--------|--------| | CH3 S2G | CH3 S2P | CH3 OL | CH3 SL | CH4 S2G | CH4 S2P | CH4 OL | CH4 SL | | R | R | R | R | R | R | R | R | 表 8-10. DC Load Diagnostics Report 2 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------|------|-------|--| | 7 | CH3 S2G | R | 0 | 0: No short-to-GND detected 1: Short-to-GND detected | | 6 | CH3 S2P | R | 0 | 0: No short-to-power detected 1: Short-to-power detected | | 5 | CH3 OL | R | 0 | 0: No open load detected 1: Open load detected | | 4 | CH3 SL | R | 0 | 0: No shorted load detected 1: Shorted load detected | | 3 | CH4 S2G | R | 0 | 0: No short-to-GND detected 1: Short-to-GND detected | | 2 | CH4 S2P | R | 0 | 0: No short-to-power detected 1: Short-to-power detected | | 1 | CH4 OL | R | 0 | 0: No open load detected 1: Open load detected | | 0 | CH4 SL | R | 0 | 0: No shorted load detected 1: Shorted load detected | 35 # 8.1.10 DC Load Diagnostics Report 3—Line Output—Register (address = 0x0E) [default = 0x00] The DC Load Diagnostic Report, Line Output, register is shown in 図 8-10 and described in 表 8-11. ### 図 8-10. DC Load Diagnostics Report 3—Line Output—Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|------|------|---|------------|------------|------------|------------| | | RESE | RVED | | CH1 LO LDG | CH2 LO LDG | CH3 LO LDG | CH4 LO LDG | | R | R | R | R | R | R | R | R | ### 表 8-11. DC Load Diagnostics Report 3—Line Output—Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------|------|-------|--| | 7–4 | RESERVED | R | 0000 | | | 3 | CH1 LO LDG | R | 0 | 1: Line output detected on channel 1 1: Line output detected on channel 1 | | 2 | CH2 LO LDG | R | 0 | 0: No line output detected on channel 2 1: Line output detected on channel 2 | | 1 | CH3 LO LDG | R | 0 | 0: No line output detected on channel 3 1: Line output detected on channel 3 | | 0 | CH4 LO LDG | R | 0 | 0: No line output detected on channel 4 1: Line output detected on channel 3 | ### 8.1.11 Channel State Reporting Register (address = 0x0F) [default = 0x55] The Channel State Reporting register is shown in 図 8-11 and described in 表 8-12. # 図 8-11. Channel State-Reporting Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|----------|----------|----------|----------|----------|----------|----------| | CH1 STAT | E REPORT | CH2 STAT | E REPORT | CH3 STAT | E REPORT | CH4 STAT | E REPORT | | R | R | R | R | R | R | R | R | ### 表 8-12. State-Reporting Field Descriptions | Bit | Field | Type | Reset | Description | |-----|------------------|------|-------|---| | 7–6 | CH1 STATE REPORT | R | 01 | 00: PLAY 01: Hi-Z 10: MUTE 11: DC load diagnostics | | 5–4 | CH2 STATE REPORT | R | 01 | 00: PLAY 01: Hi-Z 10: MUTE 11: DC load diagnostics | | 3–2 | CH3 STATE REPORT | R | 01 | 00: PLAY 01: Hi-Z 10: MUTE 11: DC load diagnostics | | 1–0 | CH4 STATE REPORT | R | 01 | 00: PLAY 01: Hi-Z 10: MUTE 11: DC load diagnostics | Product Folder Links: TPA6404-Q1 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2025 Texas Instruments Incorporated ## 8.1.12 Channel Faults (Over current, DC Detection) Register (address = 0x10) [default = 0x00] The Channel Faults (overcurrent, DC detection) register is shown in 図 8-12 and described in 表 8-13. #### 図 8-12. Channel Faults Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|--------|--------|--------|--------|--------|--------|--------| | CH1 OC | CH2 OC | CH3 OC | CH4 OC | CH1 DC | CH2 DC | CH3 DC | CH4 DC | | R | R | R | R | R | R | R | R | #### 表 8-13. Channel Faults Field Descriptions | | | | | s i leiu Descriptions | |-----|--------|------|-------|--| | Bit | Field | Туре | Reset | Description | | 7 | CH1 OC | R | 0 | O: No over current fault detected O: Overcurrent fault detected | | 6 | CH2 OC | R | 0 | No over current fault detected Overcurrent fault detected | | 5 | CH3 OC | R | 0 | No over current fault detected Overcurrent fault detected | | 4 | CH4 OC | R | 0 | O: No over current fault detected O: Overcurrent fault detected O: No over current fault detected | | 3 | CH1 DC | R | 0 | 0: No DC fault detected 1: DC fault detected | | 2 | CH2 DC | R | 0 | 0: No DC fault detected 1: DC fault detected | | 1 | CH3 DC | R | 0 | 0: No DC fault detected 1: DC fault detected | | 0 | CH4 DC | R | 0 | 0: No DC fault detected 1: DC fault detected | ## 8.1.13 Global Faults 1 Register (address = 0x11) [default = 0x00] The Global Faults 1 register is shown in 図 8-13 and described in 表 8-14. #### 図 8-13. Global Faults 1 Register | | | | | _ | | | | |---|----------|---|------------------|---------|---------|---------|---------| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | RESERVED | | INVALID
CLOCK | PVDD OV | VBAT OV | PVDD UV | VBAT UV | | | R | | R | R | R | R | R | #### 表 8-14. Global Faults 1 Field
Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------|------|-------|--| | 7–5 | RESERVED | | 0 | 0 | | 4 | INVALID CLOCK | R | 0 | 0: No sync clock fault detected 1: Clock fault detected | | 3 | PVDD OV | R | 0 | No PVDD over voltage fault detected PVDD overvoltage fault detected | | 2 | VBAT OV | R | 0 | No VBAT over voltage fault detected VBAT overvoltage fault detected | | 1 | PVDD UV | R | 0 | No PVDD undervoltage fault detected PVDD undervoltage fault detected | Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 表 8-14. Global Faults 1 Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|---------|------|-------|--| | 0 | VBAT UV | R | 0 | 0: No VBAT undervoltage fault detected | | | | | | 1: VBAT undervoltage fault detected | #### 8.1.14 Global Faults 2 Register (address = 0x12) [default = 0x00] The Global Faults 2 register is shown in \boxtimes 8-14 and described in 8 8-15. #### 図 8-14. Global Faults 2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|----------|---|------|----------|----------|----------|----------| | | RESERVED | | OTSD | CH1 OTSD | CH2 OTSD | CH3 OTSD | CH4 OTSD | | | R | | R | R | R | R | R | 表 8-15. Global Faults 2 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 7–5 | RESERVED | R | 0 | | | 4 | OTSD | R | 0 | No global over temperature shutdown Global over temperature shutdown | | 3 | CH1 OTSD | R | 0 | No over temperature shutdown on Ch1 Over temperature shutdown on Ch1 | | 2 | CH2 OTSD | R | 0 | No over temperature shutdown on Ch2 Over temperature shutdown on Ch2 | | 1 | CH3 OTSD | R | 0 | 0: No over temperature shutdown on Ch4 1: Over temperature shutdown on Ch3 | | 0 | CH4 OTSD | R | 0 | 0: No over temperature shutdown on Ch4 1: Over temperature shutdown on Ch4 | ## 8.1.15 Warnings Register (address = 0x13) [default = 0x20] The Warnings register is shown in \boxtimes 8-15 and described in \bigstar 8-16. #### 図 8-15. Warnings Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|----------|-----|---------|---------|---------|---------| | RESE | RVED | DVDD POR | OTW | OTW CH1 | OTW CH2 | OTW CH3 | OTW CH4 | | I | R | R | R | R | R | R | R | ## 表 8-16. Warnings Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|--| | 7-6 | RESERVED | R | 00 | | | 5 | DVDD POR | R | 0 | 0: No DVDD POR has occurred 1 DVDD POR occurred | | 4 | ОТW | R | 0 | No global over temperature warning Global over temperature warning | | 3 | OTW CH1 | R | 0 | No over temperature warning on channel 1 Over temperature warning on channel 1 | | 2 | OTW CH2 | R | 0 | No over temperature warning on channel 2 Over temperature warning on channel 2 | | 1 | отw снз | R | 0 | 0: No over temperature warning on channel 3 1: Over temperature warning on channel 3 | 表 8-16. Warnings Field Descriptions (続き) | В | 3it | Field | Туре | Reset | Description | |---|-----|---------|------|-------|---| | (| 0 | OTW CH4 | R | 0 | 0: No over temperature warning on channel 4 | | | | | | | 1: Over temperature warning on channel 4 | #### 8.1.16 Pin Control Register (address = 0x14) [default = 0x00] The Pin Control register is shown in 図 8-16 and described in 表 8-17. #### 図 8-16. Pin Control Register | | | | | _ | | | | | |---------|-----------|---------|---------|---------|--------------|-----------|----------|--| | 7 | 6 | 5 | 4 | 4 3 | | 1 | 0 | | | MASK OC | MASK OTSD | MASK UV | MASK OV | MASK DC | MASK I-LIMIT | MASK CLIP | MASK OTW | | | R/W | ## 表 8-17. Pin Control Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|--| | 7 | MASK OC | R/W | 0 | O: Report over current faults on the FAULT pin 1: Do not report over current faults on the FAULT Pin | | 6 | MASK OTSD | R/W | 0 | O: Report over temperature faults on the FAULT pin 1: Do not report over temperature faults on the FAULT pin | | 5 | MASK UV | R/W | 0 | O: Report undervoltage faults on the FAULT pin 1: Do not report over voltage faults on the FAULT pin | | 4 | MASK OV | R/W | 0 | O: Report overvoltage faults on the FAULT pin 1: Do not report undervoltage faults on the FAULT pin | | 3 | MASK DC | R/W | 0 | 0: Report DC faults on the FAULT pin 1: Do not report DC faults on the FAULT pin | | 2 | MASK I-LIMIT | R/W | 0 | 0: Report I-Limit faults on the FAULT pin 1: Do not report I-Limit faults on the FAULT pin | | 1 | MASK CLIP DETECT | R/W | 0 | 0: Report CLIP Detect on the WARN pin 1: Do not report CLIP Detect on the WARN pin | | 0 | MASK OTW | R/W | 0 | O: Report over temperature warnings on the WARN pin 1: Do not report over temperature warnings on the WARN pin | ## 8.1.17 AC Load Diagnostic Control 1 Register (address = 0x15) [default = 0x00] The AC Load Diagnostic Control 1 register is shown in 図 8-17 and described in 表 8-18. ## 図 8-17. AC Load Diagnostic Control 1 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------------|----------|------------|----------|------------|------------|------------|------------| | CH1/2 GAIN | RESERVED | CH3/4 GAIN | RESERVED | CH1 ENABLE | CH2 ENABLE | CH3 ENABLE | CH4 ENABLE | | R/W | R | R/W | R | R/W | R/W | R/W | R/W | ## 表 8-18. AC Load Diagnostic Control 1 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------------|------|-------|-------------| | 7 | CH1 and CH2 GAIN | R/W | 0 | 0: Gain 1 | | | | | | 1: Gain 4 | | 6 | RESERVED | R | 0 | | | 5 | CH3 and CH4 GAIN | R/W | 0 | 0: Gain 1 | | | | | | 1: Gain 4 | | 4 | RESERVED | R | 0 | | Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 39 # 表 8-18. AC Load Diagnostic Control 1 Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|------------|------|-------|---| | 3 | CH1 ENABLE | R/W | 0 | 0: AC diagnostics disabled 1: Enable AC diagnostics | | 2 | CH2 ENABLE | R/W | 0 | 0: AC diagnostics disabled 1: Enable AC diagnostics | | 1 | CH3 ENABLE | R/W | 0 | 0: AC diagnostics disabled 1: Enable AC diagnostics | | 0 | CH4 ENABLE | R/W | 0 | 0: AC diagnostics disabled 1: Enable AC diagnostics | #### 8.1.18 AC Load Diagnostic Control 2 Register (address = 0x16) [default = 0x00] The AC Load Diagnostic Control 2 register is shown in 図 8-17 and described in 表 8-19. #### 図 8-18. AC Load Diagnostic Control 2 Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------------------------------|---|------|------|---|-------|------|------| | AC
DIAGNOSTICS
LOOPBACK | | RESE | RVED | | DRIVE | RESE | RVED | | R/W | | F | ₹ | | R/W | F | ₹ | #### 表 8-19. AC Load Diagnostic Control 2 Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-------------------------|------|-------|--| | 7 | AC DIAGNOSTICS LOOPBACK | R/W | | Disable LOOPBACK Measure phase delay of load and signal path. Enable LOOPBACK. Measure phase delay of signal path only | | 6-3 | RESERVED | R | 0000 | | | 2 | DRIVE | R/W | 0 | 0: 10 mA
1: 20 mA | | 1-0 | RESERVED | R | 00 | | ## 8.1.19 AC Load Diagnostic Report Ch1 through CH4 Registers (address = 0x17-0x1A) [default = 0x00] The AC Load Diagnostic Report Ch1 through CH4 registers are shown in 図 8-19 and described in 表 8-20. #### 図 8-19. AC Load Diagnostic Report Chx Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---------|--------|---|---|---| | | | | CHx IMP | EDANCE | | | | | | | | F | ₹ | | | | #### 表 8-20. Chx AC LDG Impedance Report Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------|------|----------|---| | 7–0 | CHx IMPEDANCE | R | 00000000 | 8 bit AC load diagnostic impedance report for each channel. See | | | | | | 表 7-3 for impedance calculation | | | | | | 0x00: 0 Ω | | | | | | 0x01: 0.059 Ω | | | | | | | | | | | | 0xFF: 15.045 Ω | #### 8.1.20 AC Load Diagnostic Report Phase High Register (address = 0x1B) [default = 0x00] The AC Load Diagnostic Report Ch1 through CH4 registers are shown in 図 8-19 and described in 表 8-21. #### 図 8-20. AC Load Diagnostic Report Phase High Register #### 表 8-21. AC LDG report Phase High Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------|------|----------|-------------| | 7–0 | Phase High | R | 00000000 | bit 15:8 | Product Folder Links: TPA6404-Q1 Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 #### 8.1.21 AC Load Diagnostic Report Phase Low Register (address = 0x1C) [default = 0x00] The AC Load Diagnostic Report Ch1 through CH4 registers are shown in 図 8-21 and described in 表 8-22. #### 図 8-21. AC Load Diagnostic Report Phase Low Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-----------|---|---|---|---|---|---|---| | Phase Low | | | | | | | | | | | | | R | | | | #### 表 8-22. AC LDG report Phase Low Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------|------|----------|-------------| | 7–0 | Phase Low | R | 00000000 | bit 7:0 | ## 8.1.22 AC Load Diagnostic Report STI High Register (address = 0x1D) [default = 0x00] The AC Load Diagnostic Report Ch1 through CH4 registers are shown in 図 8-22 and described in 表 8-23. ## 図 8-22. AC Load Diagnostic Report STI High Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----------|---|---|---|---|---|---|---| | STI High | | | | | | | | | | | | 1 | R | | | | #### 表 8-23. AC LDG report STI High Field Descriptions |
Bit | Field | Туре | Reset | Description | |-----|----------|------|----------|-------------| | 7–0 | STI High | R | 00000000 | bit 15:8 | ## 8.1.23 AC Load Diagnostic Report STI Low Register (address = 0x1E) [default = 0x00] The AC Load Diagnostic Report Ch1 through CH4 registers are shown in 図 8-23 and described in 表 8-24. #### 図 8-23. AC Load Diagnostic Report STI Low Register | | | | | | • | | | | | |-------|---------|--|--|---|---|---|---|---|--| | 7 6 5 | | | | 4 | 3 | 2 | 1 | 0 | | | | STI Low | | | | | | | | | | | R | | | | | | | | | #### 表 8-24. AC LDG report STI Low Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------|------|----------|-------------| | 7–0 | STI Low | R | 00000000 | bit 7:0 | #### 8.1.24 Miscellaneous Control 3 Register (address = 0x21) [default = 0x00] The Miscellaneous Control 3 register is shown in 図 8-24 and described in 表 8-25. #### 図 8-24. Miscellaneous Control 3 Register | | | | | | 3 | | | |-------------|----------|-------------------------|----------|-----------------------|---|----------|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | CLEAR FAULT | RESERVED | MASK I-LIMIT
WARNING | RESERVED | OTSD AUTO
RECOVERY | | RESERVED | | | R/W | R | R/W | R | R/W | | R | | #### 表 8-25. Misc Control 3 Field Descriptions | | 2 | | | | | | | | | |-----|-------------|------|-------|------------------------------------|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | 7 | CLEAR FAULT | R/W | 0 | 0: Normal operation 1: Clear fault | | | | | | | 6 | RESERVED | R | 0 | | | | | | | #### 表 8-25. Misc Control 3 Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|----------------------|------|-------|---| | 5 | MASK I-LIMIT WARNING | R/W | 0 | 0: Report I-LIMIT on the WARN pin I-LIMIT warning occurs when internal current limiting flags occur at >45% density over a 200 ms window. If the warning window persists for more than four 200 ms windows, the I-LIMIT FAULT is issued and all channels will go Hi-Z 1: Do not report I-LIMIT on the WARN pin | | 4 | RESERVED | R | 0 | | | 3 | OTSD AUTO RECOVERY | R/W | 0 | Over temperature faults Latches Automatic over temperature protection recovery | | 2–0 | RESERVED | R | 000 | | ## 8.1.25 Clip Control Register (address = 0x22) [default = 0x01] The Clip Detect register is shown in 図 8-25 and described in 表 8-26. #### 図 8-25. Clip Control Register | 7 | 7 6 5 | | 4 | 3 | 2 | 1 | 0 | |----------|-------|--------|----------|-----|-----|------------|---| | RESERVED | | REPORT | RESERVED | LE\ | /EL | CLIPDET_EN | | | R | | R/W | R | R/ | R/W | | | ## 表 8-26. Clip Control Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|------------|--------------------------------|-------|--| | 7-5 | RESERVED | R | 000 | | | 4 | REPORT | R/W 0 0: CH1-4 Clip Detect Rep | | 0: CH1-4 Clip Detect Report to WARN pin | | | | | | 1: CH1-2 Clip Detect Report to WARN pin, CH3-4 Clip Detect | | | | | | Report to FAULT pin | | 3 | RESERVED | R | 0 | | | 2-1 | LEVEL | R/W | 00 | 00: 2 % THD | | | | | | 01: 5 % THD | | | | | | 10: 10 % THD | | | | | | 11: 1 % THD | | 0 | CLIPDET_EN | R/W | 1 | 0: Clip detect disable | | | | | | 1: Clip Detect Enable | ## 8.1.26 Clip Warning Register (address = 0x24) [default = 0x00] The Clip Window register is shown in 図 8-26 and described in 表 8-27. ## 図 8-26. Clip Warning Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|------|------|---|----------|----------|----------|----------| | | RESE | RVED | | CH4_CLIP | CH3_CLIP | CH2_CLIP | CH1_CLIP | | | F | ₹ | | R | R | R | R | #### 表 8-27. Clip Warning Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|----------------------------------| | 7-4 | RESERVED | | 0 | 0 | | 3 | CH4_CLIP | R | 0 | 0: No Clip Detect 1: Clip Detect | Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 43 表 8-27. Clip Warning Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|----------|------|-------|----------------------------------| | 2 | CH3_CLIP | R | 0 | 0: No Clip Detect 1: Clip Detect | | 1 | CH2_CLIP | R | 0 | 0: No Clip Detect 1: Clip Detect | | 0 | CH1_CLIP | R | 0 | 0: No Clip Detect 1: Clip Detect | ## 8.1.27 Current LIMIT Status Register (address = 0x25) [default = 0x00] The Current Limit Status register is shown in 図 8-27 and described in 表 8-28. 図 8-27. Current Limit Status Register ## 表 8-28. Current Limit Status Field Descriptions | | 32 0-20. Guitent Limit Otatus Field Descriptions | | | | | | | | | |-----|--|------|-------|--|--|--|--|--|--| | Bit | Field | Туре | Reset | Description | | | | | | | 7 | CH4_I_LIMIT_FAULT | R | 0 | 0: No Current Limit Fault 1: Current Limit Fault | | | | | | | 6 | CH3_I_LIMIT_FAULT | R | 0 | 0: No Current Limit Fault 1: Current Limit Fault | | | | | | | 5 | CH2_I_LIMIT_FAULT | R | 0 | 0: No Current Limit Fault 1: Current Limit Fault | | | | | | | 4 | CH1_I_LIMIT_FAULT | R | 0 | 0: Current Limit Fault 1: Current Limit Fault | | | | | | | 3 | CH4_I_LIMIT_WARN | R | 0 | 0: No Current Limit Warning 1: Current Limit Warning | | | | | | | 2 | CH3_I_LIMIT_WARN | R | 0 | 0: No Current Limit Warning 1: Current Limit Warning | | | | | | | 1 | CH2_I_LIMIT_WARN | R | 0 | 0: No Current Limit Warning 1: Current Limit Warning | | | | | | | 0 | CH1_I_LIMIT_WARN | R | 0 | 0: No Current Limit Warning 1: Current Limit Warning | | | | | | #### 8.1.28 Fault and Warning Pin Control Register (address = 0x27) [default = 0x7F] The Warning PIN Control register is shown in \boxtimes 8-28 and described in \not 8-29. # 図 8-28. Fault and Warning PIN Control Register | | | | | 3 | | | | |----------|---------------------------|-------------------------------------|--------------------------|------------------|------------------|------------------------------|-----| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | RESERVED | OT_FAULT_LA
TCH_ENABLE | I_LIMIT_STATU
S_LATCH_ENA
BLE | DVDD_UV_LAT
CH_ENABLE | POR_LATCH_E
N | OTW_LATCH_
EN | I_LIMIT_WARNI
NG_LATCH_EN | _ | | R | R/W Product Folder Links: TPA6404-Q1 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated # 表 8-29. Fault and Warning PIN Control Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|-----------------------------|------|-------|--| | 7 | RESERVED | R | 0 | | | 6 | OT_FAULT_LATCH_ENABLE | R/W | 1 | Disable Latching of Over Temperature Report on FAULT pin Enable Latching of Over Temperature Report on FAULT pin | | 5 | I_LIMIT_STATUS_LATCH_ENABLE | R/W | 1 | Disable Latching of Current Limit Fault report on FAULT pin Enable Latching of Current Limit Fault report on FAULT pin | | 4 | DVDD_UV_LATCH_ENABLE | R/W | 1 | 0: Disable Latching of DVDD Under Voltage Reporting on WARN pin 1: Enable latching of DVDD Under Voltage Report on WARN pin | | 3 | POR_LATCH_EN | R/W | 1 | 0: Disable Latching of DVDD POR Report on WARN pin 1: Enable Latching of DVDD POR Report on WARN pin | | 2 | OTW_LATCH_EN | R/W | 1 | 0: Disable Latching of Over Temperature Warning Reporting on WARN pin 1: Enable Latching of Over Temperature Warning Report on WARN pin | | 1 | I_LIMIT_WARNING_LATCH_EN | R/W | 1 | 0: Disable Latching of Current Limit Warning Reporting on WARN pin 1: Enable Latching of Current Limit Warning Report on WARN pin | | 0 | CLIP_WARNING_LATCH_ENABLE | R/W | 1 | Disable pin latching of CLIP Reporting Enable pin latching of CLIP Reporting | ## 8.1.29 Thermal Foldback Control Register (address = 0x28) [default = 0x00] The Thermal Foldback Control register is shown in 図 8-29 and described in 表 8-30. ## 図 8-29. Thermal Foldback Control Register | | | | | | • | | | |-----|-------------|--------|-----------|-----|-----|------|------| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Z | C_WAIT_TIME | BYPASS | ZC_BYPASS | ATT | ACK | RELE | EASE | | R/W ## 表 8-30. Thermal Foldback Control Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|--------------|------|-------|--| | 7-6 | ZC_WAIT_TIME | R/W | 00 | 00: 20 μS System waits this period for Zero Crossing, then | | | | | | changes gain regardless. | | | | | | 01: 80 μS | | | | | | 10: 320 μS | | | | | | 11: 1280 µS | | 5 | BYPASS | R/W | 0 | 0: Enable Thermal Foldback | | | | | | 1: Disable Thermal Foldback | | 4 | ZC_BYPASS | R/W | 0 | 0: Enable Zero Crossing detection | | | | | | 1: Disable Zero Crossing detection. Gain changes as soon as | | | | | | thermal condition is met without waiting for zero detection. | Product Folder Links: TPA6404-Q1 資料に関するフィードバック(ご意見やお問い合わせ)を送信 45 #### 表 8-30. Thermal Foldback Control Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|---------|------|-------|-----------------| | 3-2 | ATTACK | R/W | 00 | 00: 1dB/100 mS | | | | | | 01: 1dB/ 200 mS | | | | | | 10: 1dB/400 mS | | | | | | 11: 1dB/ 800 mS | | 1-0 | RELEASE | R/W | 00 | 00: 1dB/200 mS | | | | | | 01: 1dB/400 mS | | | | | | 10:1dB/800 mS | | | | | | 11: 1dB/1600 mS | ## 8.1.30 AC Diagnostic Frequency Control Register (address = 0x2A) [default = 0x32] The AC Diagnostic Frequency Control register is shown in 🗵 8-30 and described in . ## 図 8-30. AC Diagnostic Frequency Control Register | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------------------|-----|-----|-----|-----|-----|-----|-----| | STIMULUS FREQUENCY | |
 | | | | | | R/W #### 表 8-31. AC Diagnostic Frequency Control Field Descriptions | Bit | Field | Туре | Reset | Description | |-----|---------------------------------|------|----------|--| | 7-0 | STIMULUS FREQUENCY (375 Hz/bit) | R/W | 00110010 | 00000000 - 00000010: Reserved
00000011: 1125 Hz

00110010: 18.75 kHz

00111100: 22.50 kHz
00111101 - 11111111: Reserved | ## 8.1.31 SYNC PIN Control Register (address = 0x2B) [default = 0x02] The SYNC PIN Control register is shown in 図 8-31 and described in 表 8-32. #### 図 8-31. SYNC PIN Control Register | | | | | | • | | | |--------------------------|------|------|--------------------------|------|------|---------------------------|-----------------------| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SYNC ERROR
DET BYPASS | RESE | RVED | SYNC CLOCK
ERROR MASK | RESE | RVED | SYNC CLOCK
ERROR LATCH | CONTROLLER/
target | | R/W | R | R | R/W | R | R | R/W | R/W | #### 表 8-32. SYNC PIN Control Field Descriptions | Bit | Field | Type | Reset | Description | |-----|------------------------|------|-------|--| | 7 | SYNC ERROR DET BYPASS | R/W | 0 | O: SYNC Clock Error detection 1: Bypass SYNC Clock Error detection - this setting may result in abnormal behavior of the device | | 6-5 | RESERVED | R | 00 | | | 4 | SYNC CLOCK ERROR MASK | R/W | 0 | 0: Report SYNC Clock Error 1: Mask SYNC Clock Error | | 3-2 | RESERVED | R | 00 | | | 1 | SYNC CLOCK ERROR LATCH | R/W | 1 | 0: Non-latch SYNC Clock Error 1: Latch SYNC Clock Error | Product Folder Links: TPA6404-Q1 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2025 Texas Instruments Incorporated 表 8-32. SYNC PIN Control Field Descriptions (続き) | Bit | Field | Туре | Reset | Description | |-----|-------------------|------|-------|--| | 0 | CONTROLLER/TARGET | R/W | 0 | 0: Target Mode - external clock into SYNC pin required | | | | | | 1: Controller Mode | 47 # 9 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 #### 9.1 Application Information The TPA6404-Q1 is a four-channel analog input class-D audio-amplifier design for use in automotive head units and external amplifier modules. The TPA6404-Q1 incorporates the necessary functionality to perform in demanding OEM applications. #### 9.1.1 AM Radio Avoidance AM-radio frequency interference is avoided by setting the switching frequency of the device above the AM band. The switching frequency options available are 1.8MHz, 2.1MHz, and 2.3MHz. ## 9.1.2 Parallel BTL Operation (PBTL) The device has the capability of placing two channels into a parallel configuration that allows for twice the current drive capability for low impedance loads. BTL and PBTL modes can be me mixed. Channels 1 and 2 can be placed in PBTL, channels 3 and 4 can be placed into PBTL, or both pairs can be placed in PBTL. Follow the Typical application schematic for proper input and output connections for PBTL configuration utilizing both pairs. The speaker output connections must be made on the speaker side of the LC filter. The device can drive more current with paralleling BTL channels on the load side of the LC output filter. The input connections on channel 2 and channel 4 should be connected to ground. The proper I2C register settings must be made while the STANDBY pin is asserted. Register 0x00, shown in the Mode Control Field Descriptions has two bits, 4 and 5 that needs to be set for PBTL operation. Bit 4 sets channels 1 and 2 to PBTL and bit 5 sets channels 3 and 4 to PBTL. BTL and PBTL modes can be mixed. CH1/2 in PBTL or CH3/4 in PBTL or both. Load diagnostics is supported for parallel BTL channels. #### 9.1.3 Reconstruction Filter Design The amplifier outputs are driven by high-current LDMOS transistors in an H-bridge configuration. These transistors are either fully off or on. The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the audio signal. An LC reconstruction filter is used to recover the audio signal. The filter attenuates the high-frequency components of the output signals that are out of the audio band. Design of the reconstruction filter significantly affects the audio performance of the power amplifier. Therefore, to meet the system THD+N requirements, the selection of the inductors used in the output filter should be carefully considered. #### 9.1.4 Line Driver Applications In many automotive audio applications, the same head unit must drive either a speaker (with several Ω of impedance) or an external amplifier input (with several kilo Ω of impedance). The design is capable of supporting both applications and has special line drive gain and diagnostics. Coupled with the high switching frequency the device is well suited for this type of application. Set the desired channel in line driver mode via the mode control I^2C register 0x00, the external connected amplifier need to have a differential impedance between 600 Ω and 4.7k Ω for the DC line diagnostic to detect the connected external amplifier. The next figure shows the recommended external amplifier input configuration, balanced capacitor coupled. のせ) を送信 Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TPA6404-Q1* 図 9-1. Line Driver External Amplifier Input Configuration 49 English Data Sheet: SLOS970 ## 9.2 Typical Applications #### 9.2.1 BTL Application 図 9-2. Typical 4-Channel BTL Application Schematic #### 9.2.1.1 Design Requirements This head unit example is focused on the smallest solution size for 4 times 25W output power into 4Ω with a battery supply of 14.4V. The switching frequency is set above the AM-band with a switch frequency of 2.1MHz. The selection of a 2.1 MHz switch frequency enables the use of a small output inductor value of $3.3 \mu H$ which leads to a very small footprint. #### 9.2.1.2 Detailed Design Procedure #### 9.2.1.2.1 Hardware Design Use the following procedure for the hardware design: • Determine the input mode. The input mode can be either balanced or single-ended. The value for the coupling capacitors will be determined by the gain setting to be used and the frequency response required. Product Folder Links: TPA6404-Q1)を送信 Copyright © 2025 Texas Instruments Incorporated #### www.ti.com/ja-jp - Determine the output power that is required into the load. The output power requirement determines the required power supply voltage and current. The output reconstruction filter components that are required are also driven by the output power. - With the requirements, adjust the typical application schematic in \boxtimes 9-2. #### 9.2.1.2.2 Bootstrap Capacitors The bootstrap capacitors provide the gate-drive voltage of the upper N-channel FET. These capacitors must be sized appropriately for the system specification. For typical applications use 1µF. #### 9.2.1.2.3 Output Reconstruction Filter The output FETs drive the amplifier outputs in an H-Bridge configuration. These transistors are either fully off or fully on. The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the audio signal. The amplifier outputs require a reconstruction filter that comprises a series inductor and a capacitor to ground on each output, generally called an LC filter. The LC filter attenuates the PWM frequency and reduces electromagnetic emissions, allowing the reconstructed audio signal to pass to the speakers, refer to the Class-D LC Filter Design, SLAA701A, application report for a detailed description of proper component description and design of the LC filter based upon the specified load and frequency response. The recommended low-pass cutoff frequency of the LC filter is dependent on the selected switching frequency. The low-pass cutoff frequency can be as high as 100kHz for a PWM frequency of 2.1MHz. Certain specifications must be understood for a proper inductor. See the application note TAS6424-Q1 Inductor Selection Guide, SLOA242, for information on selection the proper inductor. The inductance value is given at zero current, but the inductors will have current through them as the TPA6404-Q1 drives current into the load. Use the inductance versus current curve for the inductor to made sure the inductance does not drop below 2uH (for f_{sw} = 2.1MHz) at the maximum current for the system design during normal operation. The DCR of the inductor directly affects the output power of the system design. The lower the DCR, the more power is provided to the speakers. The typical inductor DCR for a 4Ω system is 40 to $50 \text{m}\Omega$ and for a 2Ω system is 15 to $25 \text{m}\Omega$. #### 9.2.1.3 Application Curves Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 #### 9.2.1.4 PBTL Application \boxtimes 9-5 shows a schematic of a typical 2-channel solution for a head unit or external amplifier application where high power into 2 Ω is required. 図 9-5. 2-Channel PBTL Application Schematic #### 9.2.1.4.1 Design Requirements This head unit example is focused on the smallest solution size for 2 times 50W output power into 2Ω with a battery supply of 14.4V. The switching frequency is set above the AM-band with a switch frequency of 2.1MHz. The selection of a 2.1 MHz switch frequency enables the use of a small output inductor value of $3.3 \mu H$ which leads to a very small footprint. #### 9.2.1.4.2 Detailed Design Procedure #### 9.2.1.4.2.1 Hardware Design Use the following procedure for the hardware design: 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2025
Texas Instruments Incorporated - Instruments - Determine the input mode. The input mode can be either balanced or single-ended. The value for the coupling capacitors will be determined by the gain setting to be used and the frequency response required. - Determine the output power that is required into the load. The output power requirement determines the required power supply voltage and current. The output reconstruction filter components that are required are also driven by the output power. - With the requirements, adjust the typical application schematic in 29-5 #### 9.2.1.4.3 Application Curves #### 9.3 Power Supply Recommendations The TPA6404-Q1 requires two power supply rails. The PVDD supply is the high-current supply in the recommended supply range. The VBAT supply is a lower current that must be in the recommended supply range. The PVDD and VBAT pins can be connected to the same supply if the recommended supply range for VBAT is maintained. The DVDD supply is the 3.3V logic supply and must be maintained in the tolerance as shown in the セクション 5.3 table. #### 9.4 Layout #### 9.4.1 Layout Guidelines The pinout of the TPA6404-Q1 was selected to provide flow through layout with all high-power connections on the right side, and all low-power signals and supply decoupling on left side. セクション 9.4.2 shows the area for the components in the application example (see the セクション 9.2 section). This layout example is taken from the EVM PCB. The TPA6404-Q1 EVM uses a four-layer PCB. The copper thickness was selected as 70 µm to optimize power loss. The small value of the output filter provides a small size and, in this case, the low height of the inductor enables double sided mounting #### 9.4.1.1 Electrical Connection of Thermal pad and Heat Sink For the DKQ package, the heat sink connected to the thermal pad of the device should be connected to GND. The heat slug must not be connected to any other electrical node. #### 9.4.1.2 EMI Considerations Automotive-level EMI performance depends on both careful integrated circuit design and good system-level design. Controlling sources of electromagnetic interference (EMI) was a major consideration in all aspects of the Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 design. The design has minimal parasitic inductances because of the short leads on the package. This reduces the EMI that results from current passing from the die to the system PCB. Each channel also operates at a different phase. The design also incorporates circuitry that optimizes output transitions which cause EMI. For optimizing the EMI a solid ground layer plane is recommended, for a PCB design that fulfills the CISPR25 level 5 requirements, see the TPA6404-Q1 EVM layout. #### 9.4.1.3 General Considerations The EVM layout is optimized for low noise and EMC performance. The TPA6404-Q1 has an exposed thermal pad that is up, away from the PCB. The layout must consider an external heat sink. Refer to 🗵 9-8 for the following guidelines: - A ground plane, A, on the same side as the device pins helps reduce EMI by providing a very-low loop impedance for the high-frequency switching current. - The decoupling capacitors on PVDD, B, are very close to the device with the ground return close to the ground pins. - The ground connections for the capacitors in the LC filter, C, have a direct path back to the device and also the ground return for each channel is the shared. This direct path allows for improved common mode EMI rejection. - The traces from the output pins to the inductors, D, should have the shortest trace possible to allow for the smallest loop of large switching currents. - Heat-sink mounting screws, E, should be close to the device to keep the loop short from the package to - Many vias, F, stitching together the ground planes can create a shield to isolate the amplifier and power supply. Copyright © 2025 Texas Instruments Incorporated Product Folder Links: TPA6404-Q1 #### 9.4.2 Layout Example 図 9-8. Layout Example #### 9.4.3 Thermal Considerations The thermally enhanced PowerPAD package has an exposed pad up for connection to a heat sink. The output power of any amplifier is determined by the thermal performance of the amplifier as well as limitations placed on it by the system such as the ambient operating temperature. The heat sink absorbs heat from the TPA6404-Q1 and transfers it to the air. With proper thermal management this process can reach equilibrium and heat can be continually transferred from the device. Heat sinks can be smaller than that of classic linear amplifier design because of the excellent efficiency of class-D amplifiers. This device is intended for use with a heat sink, therefore, R θ JC will be used as the thermal resistance from junction to the exposed metal package. This resistance will dominate the thermal management, so other thermal transfers will not be considered. The thermal resistance of R θ JA (junction to ambient) is required to determine the full thermal solution. The thermal resistance is comprised of the following components: - RθJC of the TPA6404-Q1 - · Thermal resistance of the thermal interface material - · Thermal resistance of the heat sink The thermal resistance of the thermal interface material can be determined from the manufacturer's value for the area thermal resistance (expressed in °C/mm²W) and the area of the exposed metal package. For example, a typical, white, thermal grease with a 0.0254mm (0.001-inch) thick layer is approximately 4.52°Cmm²/W. The TPA6404-Q1 in the DKQ package has an exposed area of 47.6mm². By dividing the area thermal resistance by the exposed metal area determines the thermal resistance for the thermal grease. The thermal resistance of the thermal grease is 0.094°C/W 55 English Data Sheet: SLOS970 \pm 9-1 lists the modeling parameters for one device on a heat sink. The junction temperature is assumed to be 115°C while delivering and average power of 10 watts per channel into a 4Ω load. The thermal-grease example previously described is used for the thermal interface material. Use Equation 1 to design the thermal system. $$R_{\theta JA}$$ = $R_{\theta JC}$ + thermal interface resistance + heat sink resistance (1) # 表 9-1. Thermal Modeling | Description | Value | |---|--| | Ambient Temperature | 25°C | | Average Power to load | 40W (4x 10w) | | Power dissipation | 8W (4x 2w) | | Junction Temperature | 115°C | | ΔT inside package | 5.6°C (0.7°C/W × 8W) | | ΔT through thermal interface material | 0.75°C (0.094°C/W × 8W) | | Required heat sink thermal resistance | 10.45°C/W ([115°C – 25°C – 5.6°C – 0.75°C] / 8W) | | System thermal resistance to ambient R _{0JA} | 11.24°C/W | # 10 Device and Documentation Support #### **10.1 Documentation Support** #### 10.1.1 Related Documentation For related documentation see the following: PurePath™ Console 3 Graphical Development Suite #### 10.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ## 10.3 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ## 10.4 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## 10.5 Support Resources #### 10.6 Trademarks PurePath[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ## 11 Revision History | Changes from Revision A (February 2018) to Revision B (January 2025) | Page | |---|-----------| | -
・ データシートの最初の公開リリース | 1 | | Added disclaimer under Absolute Maximum Ratings | | | Updated gain values to more accurately reflect device performance | | | Added minimum value for VBATUV_SET | | | Added information regarding target mode operation | 18 | | Updated decoupling capacitor pin connections to the correct value | 18 | | Changed From: at 250ms To: as 250ms for minimum load diagnostics duration | | | Added information regarding 200ms wait time requirement | 20 | | Added clarification of fault types | | | Added additional step for BTL and PBTL modes | | | Added information regarding CLEAR FAULT bit | <u>22</u> | | Added clarification that DC detection runs while device is in PLAY mode | <u>23</u> | | Updated internal pull-down resistor value | 25 | | Updated internal pull-down resistor value | | | Added bit 7 information | 31 | | Updated bit 3 description to show correct values | 42 | | Updated bit 0 description for additional clarification | | | Updated Packaging Information table | | | | | Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 | Changes from Revision * (January 2018) to Revision A (February 2018) | Page | |--|------| | • データシートを制造データレーア!!!!ース | 1 | Product Folder Links: TPA6404-Q1 # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: TPA6404-Q1 Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 # 12.1 Package Option Addendum #### 12.1.1 Packaging Information | Orderable Device | Status (1) | Packag
e Type | Packag
e
Drawing | Pins | Packag
e Qty | Eco Plan |
Lead/Ball
Finish ⁽⁴⁾ | MSL Peak
Temp ⁽³⁾ | Op Temp
(°C) | Device Marking ^{(5) (6)} | |------------------|------------|------------------|------------------------|------|-----------------|-------------------------------|------------------------------------|---------------------------------|-----------------|-----------------------------------| | TPA6404QDKQRQ1 | ACTIV
E | HSSOP | DKQ | 56 | 1000 | Green
(RoHS &
no Sb/Br) | CU NIPDAU | Level-3-260C-1
68 HR | -40 to 125 | TPA6404 | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PRE PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) - (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. - (5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device - (6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 ## 12.1.2 Tape and Reel Information # TAPE DIMENSIONS KO P1 BO W Cavity AO | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPA6404QDKQRQ1 | HSSOP | DKQ | 56 | 1000 | 330.0 | 32.4 | 11.35 | 18.87 | 3.1 | 16.0 | 32.0 | Q1 | Product Folder Links: TPA6404-Q1 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2025 Texas Instruments Incorporated | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPA6404QDKQRQ1 | HSSOP | DKQ | 56 | 1000 | 367.0 | 367.0 | 55.0 | 63 English Data Sheet: SLOS970 # **DKQ0056A** ## **PACKAGE OUTLINE** # PowerPAD™ SSOP - 2.475 mm max height PLASTIC SMALL OUTLINE #### NOTES: - PowerPAD is a trademark of Texas Instruments. - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. This drawing is subject to change without notice. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not accept 0.15 mm per cities. - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. The exposed thermal pad is designed to be attached to an external heatsink. www.ti.com ## **EXAMPLE BOARD LAYOUT** # **DKQ0056A** ## PowerPAD™ SSOP - 2.475 mm max height PLASTIC SMALL OUTLINE NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.8. Size of metal pad may vary due to creepage requirement. www.ti.com ## **EXAMPLE STENCIL DESIGN** # **DKQ0056A** ## PowerPAD™ SSOP - 2.475 mm max height PLASTIC SMALL OUTLINE NOTES: (continued) www.ti.com ^{9.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.10. Board assembly site may have different recommendations for stencil design. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|------------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | . , | () | | | · , | (4) | (5) | | , , | | TPA6404QDKQQ1.B | Active | Production | HSSOP (DKQ) 56 | 20 TUBE | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 125 | TPA6404 | | TPA6404QDKQRQ1 | Active | Production | HSSOP (DKQ) 56 | 1000 LARGE T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 125 | TPA6404 | | TPA6404QDKQRQ1.A | Active | Production | HSSOP (DKQ) 56 | 1000 LARGE T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 125 | TPA6404 | | TPA6404QDKQRQ1.B | Active | Production | HSSOP (DKQ) 56 | 1000 LARGE T&R | Yes | NIPDAU | Level-3-260C-168 HR | -40 to 125 | TPA6404 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and
accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated