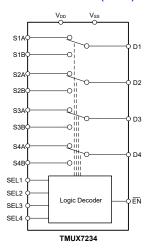


TMUX7234

JAJSLB6G - FEBRUARY 2021 - REVISED JULY 2024


TMUX7234 44V、低 Ron、2:1、4 チャネル高精度スイッチ、 ラッチアップ・フリー、1.8V ロジック

1 特長

- ラッチアップ・フリー
- デュアル電源電圧範囲:±4.5V~±22V
- 単一電源電圧範囲:4.5V~44V
- 低いオン抵抗:3Ω
- 少ない電荷注入:3pC
- 大電流に対応:400mA (最大値)
- -40°C~+125°Cの動作温度範囲
- 1.8V ロジック互換入力
- フェイルセーフ・ロジック
- レール・ツー・レール動作
- 双方向の信号パス
- ブレイク・ビフォー・メイクのスイッチング動作

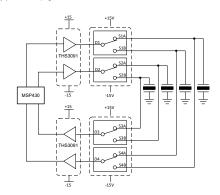
2 アプリケーション

- ファクトリ・オートメーション / 制御
- 流量トランスミッタ
- プログラマブル・ロジック・コントローラ (PLC)
- アナログ入力モジュール
- データ・アクイジション・システム (DAQ)
- 半導体試験用機器
- バッテリ・テスト機器
- 超音波スキャナ
- メディカル・モニタと診断
- 光学ネットワーク機器
- 光学テスト機器
- 有線ネットワーク
- リモート無線ユニット (RRU)
- アクティブ・アンテナ・システム (AAS) の mMIMO

簡略ブロック図

3 概要

TMUX7234 は、ラッチアップ フリーの CMOS マルチプレ クサです。TMUX7234 は、個別に制御できる 4 つの SPDT スイッチを内蔵し、EN ピンで 4 つのチャネルをイ ネーブルまたはディセーブルにします。このデバイスは、 単一電源 (4.5V~44 V)、デュアル電源 (±4.5V~±22V)、 または非対称電源 ($V_{DD} = 12V$ 、 $V_{SS} = -5V$ など) をサポ ートしています。 TMUX7234 は、ソース (Sx) およびドレイ ン (D) ピンで、Vss から VDD までの範囲の双方向アナロ グおよびデジタル信号をサポートします。


すべてのロジック制御入力は、1.8V~V_{DD}のロジックレベ ルをサポートしており、有効な電源電圧範囲で動作してい る場合、TTL ロジックと CMOS ロジックの両方の互換性を 確保できます。フェイルセーフロジック回路により、電源ピ ンよりも先に制御ピンに電圧が印加されるため、デバイス への損傷の可能性が避けられます。

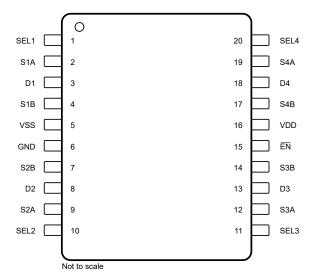
TMUX72xx ファミリはラッチアップ フリーであるため、一般 的に過電圧イベントによって発生するデバイス内の寄生構 造間の好ましくない大電流イベントを防止できます。ラッチ アップ状態は通常、電源レールがオフにされるまで継続す るため、デバイスの障害の原因となる場合があります。この ラッチアップ フリーという特長により、TMUX72xx スイッチ およびマルチプレクサ ファミリは過酷な環境でも使用でき ます。

パッケージ情報

部品番号	パッケージ ⁽¹⁾	パッケージ サイズ ⁽²⁾
	PW (TSSOP, 20)	6.5 mm × 6.4 mm
TMUX7234	RRQ (WQFN, 20)	4 mm × 4 mm

- (1) 利用可能なパッケージについては、データシートの末尾にあるパ ッケージオプションについての付録を参照してください。
- パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。

アプリケーション図


Table of Contents

	特長1
2	アプリケーション1
	概要1
4	Pin Configuration and Functions3
	Specifications4
	5.1 Absolute Maximum Ratings4
	5.2 ESD Ratings
	5.3 Thermal Information4
	5.4 Recommended Operating Conditions5
	5.5 Source or Drain Continuous Current5
	5.6 ±15 V Dual Supply: Electrical Characteristics6
	5.7 ±15 V Dual Supply: Switching Characteristics7
	5.8 ±20 V Dual Supply: Electrical Characteristics8
	5.9 ±20 V Dual Supply: Switching Characteristics9
	5.10 44 V Single Supply: Electrical Characteristics 10
	5.11 44 V Single Supply: Switching Characteristics 11
	5.12 12 V Single Supply: Electrical Characteristics 12
	5.13 12 V Single Supply: Switching Characteristics 13
	5.14 Typical Characteristics14
6	Parameter Measurement Information19
	6.1 On-Resistance
	6.2 Off-Leakage Current
	6.3 On-Leakage Current20
	6.4 Transition Time
	6.5 t _{ON(EN)} and t _{OFF(EN)}
	6.6 Break-Before-Make21
	6.7 t _{ON (VDD)} Time
	6.8 Propagation Delay22
	6.9 Charge Injection23

6.10 Off Isolation	23
6.11 Crosstalk	. 24
6.12 Bandwidth	. 24
6.13 THD + Noise	. 25
6.14 Power Supply Rejection Ratio (PSRR)	. 25
7 Detailed Description	26
7.1 Overview	.26
7.2 Functional Block Diagram	.26
7.3 Feature Description	
7.4 Device Functional Modes	28
7.5 Truth Tables	
8 Application and Implementation	. 29
8.1 Application Information	. 29
8.2 Typical Application	
9 Power Supply Recommendations	
10 Layout	
10.1 Layout Guidelines	
10.2 Layout Example	. 32
11 Device and Documentation Support	33
11.1 Documentation Support	
11.2 Receiving Notification of Documentation Updates.	. 33
11.3 サポート・リソース	
11.4 Trademarks	. 33
11.5 静電気放電に関する注意事項	. 33
11.6 用語集	
12 Revision History	
13 Mechanical, Packaging, and Orderable	
Information	.34
	'

4 Pin Configuration and Functions

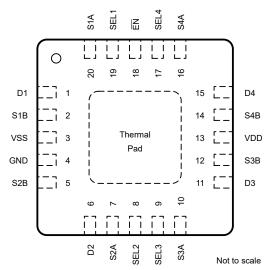


図 4-1. TMUX7234 PW Package, 20-Pin TSSOP (Top View)

図 4-2. TMUX7234 RRQ Package, 20-Pin WQFN (Top View)

表	4-1	. Pin	Functio	ns TM	UX7234

	PIN		TYPE ⁽¹⁾	DESCRIPTION ⁽²⁾		
NAME	PW NO.	RRQ NO.	IYPE(')	DESCRIPTION 47		
SEL1	1	19	I	Logic control input 1; has internal pull-down resistor. Controls switch 1 (see セクション 7.5).		
S1A	2	20	I/O	Source pin 1A. Can be an input or output.		
D1	3	1	I/O	Drain pin 1. Can be an input or output.		
S1B	4	2	I/O	Source pin 1B. Can be an input or output.		
VSS	5	3	Р	Negative power supply. This pin has the most negative power-supply potential. This pin can be connected to ground in single supply applications. Connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND for reliable operation.		
GND	6	4	Р	Ground (0 V) reference.		
S2B	7	5	I/O	Source pin 2B. Can be an input or output.		
D2	8	6	I/O	Drain pin 2. Can be an input or output.		
S2A	9	7	I/O	Source pin 2A. Can be an input or output.		
SEL2	10	8	I	Logic control input 2; has internal pull-down resistor. Controls switch 2 (see セクション 7.5).		
SEL3	11	9	1	Logic control input 3; has internal pull-down resistor. Controls switch 3 (see セクション 7.5).		
S3A	12	10	I/O	Source pin 3A. Can be an input or output.		
D3	13	11	I/O	Drain pin 3. Can be an input or output.		
S3B	14	12	I/O	Source pin 3B. Can be an input or output.		
EN	15	18	ı	Active low logic enable; has internal pull-down resistor. The SELx logic inputs determine switch connections when this pin is low (see セクション 7.5).		
VDD	16	13	Р	Positive power supply. This pin has the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between VDD and GND.		
S4B	17	14	I/O	Source pin 4B. Can be an input or output.		
D4	18	15	I/O	Drain pin 4. Can be input or output		
S4A	19	16	I/O	Source pin 4A. Can be an input or output.		
SEL4	20	17	1	Logic control input 4, has internal pull-down resistor. Controls switch 4 (see セクション 7.5).		
Thermal Pad		_	The thermal pad is not connected internally. There is no requirement to solder this pad. If connected, it is recommended to leave the pad floating or tied to GND.			

- (1) I = input, O = output, I/O = input and output, P = power.
- (2) Refer to セクション 7.4 for what to do with unused pins.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

		MIN	MAX	UNIT
V _{DD} -V _{SS}			48	V
V _{DD}	Supply voltage	-0.5	48	V
V _{SS}		-48	0.5	V
V _{SEL} or V _{EN}	Logic control input pin voltage (SELx, EN)	-0.5	48	V
I _{SEL} or I _{EN}	Logic control input pin current (SELx, EN)	-30	30	mA
V _S or V _D	Source or drain voltage (SxA, SxB, Dx)	V _{SS} -0.5	V _{DD} +0.5	V
I _{IK}	Diode clamp current ⁽³⁾	-30	30	mA
I _S or I _{D (CONT)}	Source or drain continuous current (SxA, SxB, Dx)		I _{DC} ± 10 % ⁽⁴⁾	mA
T _A	Ambient temperature	-55	150	°C
T _{stg}	Storage temperature	-65	150	°C
TJ	Junction temperature		150	°C
P _{tot}	Total power dissipation (QFN package) ⁽⁵⁾		1680	mW

- (1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltages are with respect to ground, unless otherwise specified.
- (3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.
- (4) Refer to Source or Drain Continuous Current table for I_{DC} specifications.
- (5) For QFN package: P_{tot} derates linearly above $T_A = 70^{\circ}$ C by 24.8mW/°C.

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±2000	V
V _(ESD) Electrostatic discharge	Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±500	V	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Thermal Information

		TMU	X7234	
	THERMAL METRIC(1)	PW (TSSOP)	RRQ (WQFN)	UNIT
		20 PINS	20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	74.7	40.5	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	19.9	24.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	32.3	16.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.7	0.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	31.7	16.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	2.8	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{DD} – V _{SS} (1)	Power supply voltage differential	4.5	44	V
V_{DD}	Positive power supply voltage	4.5	44	V
V _S or V _D	Signal path input/output voltage (source or drain pin) (SxA, SxB, Dx)	V _{SS}	V_{DD}	V
V _{SEL} or V _{EN}	Address or enable pin voltage	0	44	V
I _S or I _{D (CONT)}	Source or drain continuous current (SxA, SxB, Dx)		I _{DC} (2)	mA
T _A	Ambient temperature	-40	125	°C

 V_{DD} and V_{SS} can be any value as long as 4.5 V \leq ($V_{DD} - V_{SS}$) \leq 44 V, and the minimum V_{DD} is met. Refer to *Source or Drain Continuous Current* table for I_{DC} specifications.

5.5 Source or Drain Continuous Current

at supply voltage of V_{DD} ± 10%, V_{SS} ± 10 % (unless otherwise noted)

CON	TINUOUS CURRENT PER CHANNEL	T - 25°C	T _A = 85°C	T _A = 125°C	UNIT
PACKAGE	TEST CONDITIONS	T _A = 25°C T 350 230 360 235 260 177 255 175 170 129 400 230 400 230 300 180	1A - 65 C	1A - 129 C	ONII
	+44 V Single Supply ⁽¹⁾	350	230	129	mA
PW (TSSOP)	±15 V Dual Supply	360	235	130	mA
	+12 V Single Supply	260	177	108	mA
	±5 V Dual Supply	255	175	105	mA
	+5 V Single Supply	170	129	80	mA
	+44 V Single Supply ⁽¹⁾	400	230	120	mA
	±15 V Dual Supply	400	230	120	mA
RRQ (WQFN)	+12 V Single Supply	300	180	100	mA
	±5 V Dual Supply	300	180	100	mA
	+5 V Single Supply	240	150	85	mA

Specified for nominal supply voltage only.

5.6 ±15 V Dual Supply: Electrical Characteristics

 V_{DD} = +15 V ± 10%, V_{SS} = -15 V ±10%, GND = 0 V (unless otherwise noted)

Typical at $V_{DD} = +15 \text{ V}$, $V_{SS} = -15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = -10 V to +10 V	25°C		3.6	5.5	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	–40°C to +85°C			7.1	Ω
		Refer to On-Resistance	-40°C to +125°C			8.4	Ω
		V _S = -10 V to +10 V	25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	I _D = -10 mA	-40°C to +85°C			0.8	Ω
	GIGIIIGIS	Refer to On-Resistance	-40°C to +125°C			0.9	Ω
		V _S = -10 V to +10 V	25°C		0.4	1.5	Ω
R _{ON FLAT}	On-resistance flatness	I _S = -10 mA	-40°C to +85°C			1.7	Ω
		Refer to On-Resistance	-40°C to +125°C			1.9	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA Refer to On-Resistance	-40°C to +125°C		0.015		Ω/°C
		V _{DD} = 16.5 V, V _{SS} = –16.5 V	25°C	-0.4	0.01	0.4	nA
1	Source off leakage current ⁽¹⁾	Switch state is off $V_S = +10 \text{ V} / -10 \text{ V}$	-40°C to +85°C	-1		1	nA
I _{S(OFF)}	Source on leakage current	V _D = -10 V / + 10 V Refer to セクション 6.2	-40°C to +125°C	-8		1 8	nA
		V _{DD} = 16.5 V, V _{SS} = –16.5 V	25°C	-0.5	0.02	0.5	nA
lavore:	Drain off leakage current ⁽¹⁾	Switch state is off $V_S = +10 \text{ V} / -10 \text{ V}$ $V_D = -10 \text{ V} / + 10 \text{ V}$ Refer to セクション 6.2	-40°C to +85°C	-4		4	nA
I _{D(OFF)}			-40°C to +125°C	-12		12	nA
		V _{DD} = 16.5 V, V _{SS} = –16.5 V	25°C	-0.5	0.02	0.5	nA
I _{S(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = \pm 10 \text{ V}$	-40°C to +85°C	-4		4	nA
I _{D(ON)}		Refer to セクション 6.3	-40°C to +125°C	-8		8	nA
LOGIC IN	IPUTS (SEL / EN pins)						
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		44	V
V _{IL}	Logic voltage low		-40°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		-40°C to +125°C		0.6	2	μA
I _{IL}	Input leakage current		-40°C to +125°C	-0.1	-0.005		μA
C _{IN}	Logic input capacitance		-40°C to +125°C		3		pF
POWER S	SUPPLY						
			25°C		45	70	μA
I_{DD}	V _{DD} supply current	V_{DD} = 16.5 V, V_{SS} = -16.5 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			80	μA
		20g.5 mpaio 0 v, 0 v, or v DD	-40°C to +125°C			95	μA
			25°C		8	25	μA
I _{SS}	V _{SS} supply current	V_{DD} = 16.5 V, V_{SS} = -16.5 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			30	μA
			-40°C to +125°C			40	μΑ

⁽¹⁾ When V_S is positive, V_D is negative. Or when V_S is negative, V_D is positive.

⁽²⁾ When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

5.7 ±15 V Dual Supply: Switching Characteristics

 V_{DD} = +15 V ± 10%, V_{SS} = -15 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +15 V, V_{SS} = -15 V, T_A = 25°C (unless otherwise noted)

71	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 10 V	25°C		90	180	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			190	ns
		Refer to Transition Time	-40°C to +125°C			200	ns
		V _S = 10 V	25°C		110	180	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			190	ns
		Refer to セクション 6.5	-40°C to +125°C			210	ns
		V _S = 10 V	25°C		80	140	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			150	ns
		Refer to セクション 6.5	-40°C to +125°C			180 190 200 180 190 210 140	ns
		V _S = 10 V,	25°C		50		ns
t_{BBM}	Break-before-make time delay	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	1			ns
		Refer to Break-Before-Make	-40°C to +125°C	1			ns
	_ , , ,	V _{DD} rise time = 1µs	25°C		0.16		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C		0.16		ms
	(DD to catpany	Refer to Turn-on (VDD) Time	-40°C to +125°C		0.16		ms
t _{PD}	Propagation delay	R _L = 50Ω , C _L = $5 pF$ Refer to セクション 6.8	25°C		450		ps
Q _{INJ}	Charge injection	V _D = 0 V, C _L = 100 pF Refer to セクション 6.9	25°C		3		рС
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Off Isolation	25°C		-82		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		-62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Crosstalk	25°C		-105		dB
BW	–3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$ Refer to Bandwidth	25°C		100		MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$	25°C		-0.3		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 10 $M\Omega$, C_L = 5 pF, f = 1 MHz Refer to セクション 6.14	25°C		-48		dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} = 15 V, V_{BIAS} = 0 V R_{L} = 10 k Ω , C_{L} = 5 pF, f = 20 Hz to 20 kHz Refer to セクション 6.13	25°C		0.0004		%
C _{S(OFF)}	Source off capacitance	V _S = 0 V, f = 1 MHz	25°C		16		pF
C _{D(OFF)}	Drain off capacitance	V _S = 0 V, f = 1 MHz	25°C		28		pF
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 0 V, f = 1 MHz	25°C		77		pF

5.8 ±20 V Dual Supply: Electrical Characteristics

 $V_{DD} = +20 \text{ V} \pm 10\%, \ V_{SS} = -20 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +20 \text{ V}, \ V_{SS} = -20 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

71	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = -15 V to +15 V	25°C		3.2	5.4	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	-40°C to +85°C			6.7	Ω
		Refer to On-Resistance	-40°C to +125°C			5.4	Ω
		V _S = -15 V to +15 V	25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.8	Ω
	CHAINEIS	Refer to On-Resistance	-40°C to +125°C			0.9	Ω
		V _S = -15 V to +15 V	25°C		0.6	1.5	Ω
R _{ON FLAT}	On-resistance flatness	$I_S = -10 \text{ mA}$	-40°C to +85°C			1.7	Ω
		Refer to On-Resistance	-40°C to +125°C			1.9	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA Refer to On-Resistance	-40°C to +125°C		0.014		Ω/°C
		V _{DD} = 22 V, V _{SS} = -22 V	25°C	-1	0.02	1	nA
ı	Source off leakage current ⁽¹⁾	Switch state is off V _S = +15 V / –15 V	-40°C to +85°C	-2		2	nA
I _{S(OFF)}	Course on leakage current	V _D = -15 V / + 15 V Refer to セクション 6.2	-40°C to +125°C	-12		12	nA
		V _{DD} = 22 V, V _{SS} = -22 V	25°C	-1	0.04	1	nA
	Drain off leakage current ⁽¹⁾	Switch state is off $V_S = +15 \text{ V} / -15 \text{ V}$	-40°C to +85°C	-4		4	nA
I _{D(OFF)}		V _D = -15 V / + 15 V Refer to セクション 6.2	-40°C to +125°C	-30		30	nA
		V _{DD} = 22 V, V _{SS} = -22 V	25°C	-1	0.04		nA
I _{S(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = \pm 15 \text{ V}$	-40°C to +85°C	-4		4	nA
I _{D(ON)}		Refer to セクション 6.3	-40°C to +125°C	-30		30	nA
LOGIC IN	PUTS (SEL / EN pins)	<u> </u>		l			
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		44	V
V _{IL}	Logic voltage low		-40°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		-40°C to +125°C		0.6	2	μΑ
I _{IL}	Input leakage current		-40°C to +125°C	-0.1	-0.005		μΑ
C _{IN}	Logic input capacitance		-40°C to +125°C		3		pF
POWER S	SUPPLY						
			25°C		50	80	μA
I_{DD}	V _{DD} supply current	V_{DD} = 22 V, V_{SS} = -22 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			95	μA
			-40°C to +125°C			110	μA
			25°C		10	30	μA
I _{SS}	V _{SS} supply current	V_{DD} = 22 V, V_{SS} = -22 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			35	μA
		Logio iliputo – o v, o v, oi vDD	-40°C to +125°C			45	μΑ

When V_S is positive, V_D is negative. Or when V_S is negative, V_D is positive.

When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

5.9 ±20 V Dual Supply: Switching Characteristics

 $V_{DD} = +20 \text{ V} \pm 10\%, \ V_{SS} = -20 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +20 \text{ V}, \ V_{SS} = -20 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 10 V	25°C		90	190	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			200	ns
		Refer to Transition Time	-40°C to +125°C			190	ns
		V _S = 10 V	25°C		110	10 190 200 210 75 140 150 160 50 3 3 32	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			200	ns
		Refer to セクション 6.5	-40°C to +125°C			210	ns
		V _S = 10 V	25°C		75	140	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			150	ns
		Refer to セクション 6.5	-40°C to +125°C			160	ns
		V _S = 10 V,	25°C		50		ns
t_{BBM}	Break-before-make time delay	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	1			ns
		Refer to Break-Before-Make	-40°C to +125°C	1		190 200 210 190 200 210 140 150	ns
	D : ("	V _{DD} rise time = 1µs	25°C		0.16		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C		0.16	150 160 50 0.16 0.16 0.16 0.16 0.16 470 3 -82 -62	ms
	7	Refer to セクション 6.5	-40°C to +125°C		0.16		ms
t _{PD}	Propagation delay	R _L = 50Ω , C _L = 5 pF Refer to セクション 6.8	25°C		470		ps
Q _{INJ}	Charge injection	V _D = 0 V, C _L = 100 pF Refer to セクション 6.9	25°C		3		рС
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 100 kHz$ Refer to Off Isolation	25°C		-82		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		-62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$ Refer to Crosstalk	25°C		-105		dB
BW	-3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$ Refer to Bandwidth	25°C		95		MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 0 V$, $f = 1 MHz$	25°C		-0.25		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 10 $M\Omega$, C_L = 5 pF, f = 1 MHz Refer to セクション 6.14	25°C		-48		dB
THD+N	Total Harmonic Distortion + Noise	$V_{PP} = 20 \text{ V}, V_{BIAS} = 0 \text{ V}$ $R_L = 10 \text{ k}\Omega$, $C_L = 5 \text{ pF}$, $f = 20 \text{ Hz}$ to 20 kHz Refer to セクション 6.13	25°C		0.002		%
C _{S(OFF)}	Source off capacitance	V _S = 0 V, f = 1 MHz	25°C		16		pF
C _{D(OFF)}	Drain off capacitance	V _S = 0 V, f = 1 MHz	25°C		26		pF
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 0 V, f = 1 MHz	25°C		77		pF

5.10 44 V Single Supply: Electrical Characteristics

 V_{DD} = +44 V, V_{SS} = 0 V, GND = 0 V (unless otherwise noted)

Typical at V_{DD} = +44 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted)

	$\frac{\mathbf{v}_{DD} = +44 \text{ V, } \mathbf{v}_{SS} = 0 \text{ V, } \mathbf{I}_{A} = 2}{\mathbf{PARAMETER}}$	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = 0 V to 40 V	25°C		3	5.8	Ω
R _{ON}	On-resistance	$I_{D} = -10 \text{ mA}$	-40°C to +85°C			7.2	Ω
		Refer to On-Resistance	-40°C to +125°C			8.9	Ω
		V _S = 0 V to 40 V	25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.8	Ω
	CHAINICIS	Refer to On-Resistance	-40°C to +125°C			0.9	Ω
		V _S = 0 V to 40 V	25°C		1.5	2	Ω
R _{ON FLAT}	On-resistance flatness	$I_{D} = -10 \text{ mA}$	-40°C to +85°C			2.5	Ω
		Refer to On-Resistance	-40°C to +125°C			3.3	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 22 V, I _S = -10 mA Refer to On-Resistance	-40°C to +125°C		0.012		Ω/°C
		V _{DD} = 44 V, V _{SS} = 0 V	25°C	-1	0.02	1	nA
I _{S(OFF)}	Source off leakage current ⁽¹⁾	Switch state is off V _S = 40 V / 1 V	-40°C to +85°C	-4		4	nA
		V _D = 1 V / 40 V Refer to セクション 6.2	-40°C to +125°C	-20		20	nA
		V _{DD} = 44 V, V _{SS} = 0 V	25°C	-1	0.04	1	nA
la (acc)	Drain off leakage current ⁽¹⁾		-40°C to +85°C	-8		8	nA
'D(OFF)		V _D = 1 V / 40 V Refer to セクション 6.2	-40°C to +125°C	-40		40	nA
		V _{DD} = 44 V, V _{SS} = 0 V	25°C	-1	0.04	1	nA
Refer to 279 ± 0.2 Second Refer to 279 ± 0.2 Since Property Property	-40°C to +85°C	-8		8	nA		
'D(ON)		_ = =	-40°C to +125°C	-40		40	nA
LOGIC IN	PUTS (SEL / EN pins)					l	
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		44	V
V _{IL}	Logic voltage low		-40°C to +125°C	0		0.8	V
I _{IH}	Input leakage current		-40°C to +125°C		0.6	2	μA
I _{IL}	Input leakage current		-40°C to +125°C	-0.1	-0.005		μA
C _{IN}	Logic input capacitance		-40°C to +125°C		3		pF
POWER S	SUPPLY	1	1	•			
		.,	25°C		70	110	μΑ
I_{DD}	V _{DD} supply current	V_{DD} = 44 V, V_{SS} = 0 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			118	μΑ
IS(OFF) ID(OFF) IS(ON) ID(ON) LOGIC INI VIH VIL IIH IL CIN POWER S			-40°C to +125°C			140	μA

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

10

Product Folder Links: TMUX7234

When V_S is 40 V, V_D is 1 V. Or when V_S is 1 V, V_D is 40 V. When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

5.11 44 V Single Supply: Switching Characteristics

 $\begin{aligned} &V_{DD} = +44 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V} \text{ (unless otherwise noted)} \\ &\text{Typical at V}_{DD} = +44 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = 25 ^{\circ}\text{C} \text{ (unless otherwise noted)} \end{aligned}$

<u> </u>	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT		
		V _S = 18 V	25°C		90	200	ns		
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega, C_L = 35 pF$	25°C 90 200 10 -40°C to +85°C 220 10 -40°C to +125°C 240 10 25°C 100 200 10 -40°C to +85°C 220 10 -40°C to +125°C 240 10 25°C 90 180 10 -40°C to +85°C 200 10 -40°C to +125°C 220 10 -40°C to +125°C 220 10 -40°C to +125°C 1 1 10 -40°C to +125°C 1 10 -40°C	ns					
		Refer to Transition Time	-40°C to +125°C			200 220 240 200 220 240 180 200	ns		
		V _S = 18 V	25°C		100	200	ns		
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	-40°C to +85°C			220	ns		
		Refer to セクション 6.5	-40°C to +125°C			220 240 200 180 200 220 85 83 13 13 10 3	ns		
		V _S = 18 V	25°C		90	180	ns		
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega$, $C_L = 35 pF$	-40°C to +85°C			200	ns		
		Refer to セクション 6.5	-40°C to +125°C			0 200 220 240 0 220 240 0 180 200 220 5 3 3 3 3 3 5 5 6 6	ns		
		V _S = 18 V,	25°C		45		ns		
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	1			ns		
		Refer to Break-Before-Make	-40°C to +125°C	1			ns		
		V _{DD} rise time = 1μs	25°C		0.13		ms		
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C		0.13				
, ,	(VDD to output)	Refer to Turn-on (VDD) Time	-40°C to +125°C		0.13		ms		
t _{PD}	Propagation delay	R _L = 50Ω , C _L = $5 pF$ Refer to セクション 6.8	25°C		570		ps		
Q _{INJ}	Charge injection	V _D = 22 V, C _L = 100 pF Refer to セクション 6.9	25°C		3		рС		
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF V_S = 6 V, f = 100 kHz Refer to Off Isolation	25°C		-82		dB		
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		-62		dB		
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Crosstalk	25°C		-105		dB		
BW	–3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$ Refer to Bandwidth	25°C		92		MHz		
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF V_S = 6 V, f = 1 MHz	25°C		-0.3		dB		
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 10 $M\Omega$, C_L = 5 pF, f = 1 MHz Refer to セクション 6.14	25°C	-45			dB		
C _{S(OFF)}	Source off capacitance	V _S = 22 V, f = 1 MHz	25°C		16		pF		
C _{D(OFF)}	Drain off capacitance	V _S = 22 V, f = 1 MHz	25°C		28		pF		
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 22 V, f = 1 MHz	25°C		77		pF		

5.12 12 V Single Supply: Electrical Characteristics

 V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted)

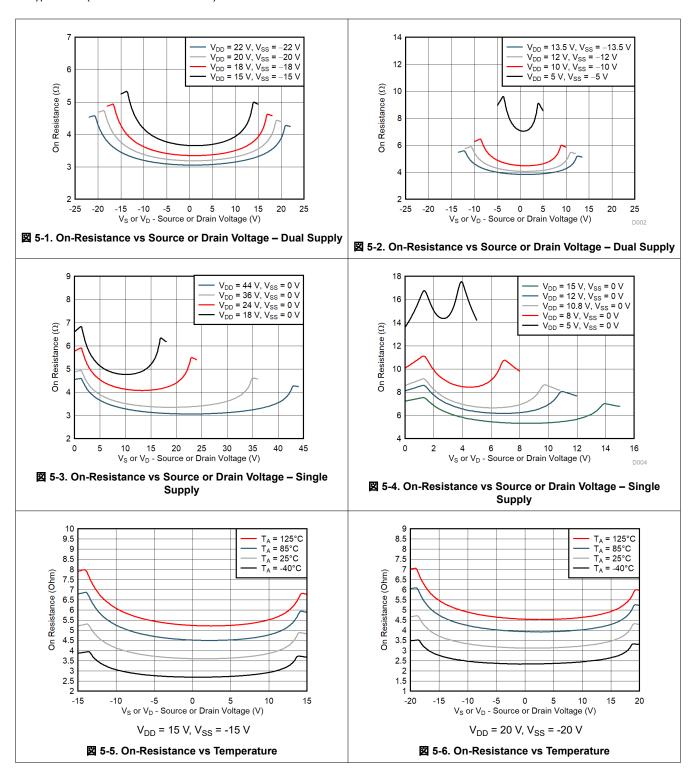
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
		V _S = 0 V to 10 V	25°C		6.2	12	Ω
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	-40°C to +85°C			15	Ω
		Refer to On-Resistance	-40°C to +125°C			18	Ω
		V _S = 0 V to 10 V	25°C		0.2	0.7	Ω
ΔR_{ON}	On-resistance mismatch between channels	I _D = -10 mA	-40°C to +85°C			8.0	Ω
	Ondrinois	Refer to On-Resistance	-40°C to +125°C			15 18 2 0.7 0.8 0.9 4 3.6 3.9 4.8 5 1 0.4 1 8 2 0.5 4 12 2 0.5 4 8	Ω
		V _S = 0 V to 10 V	25°C		2.4	3.6	Ω
R _{ON FLAT}	On-resistance flatness	I _S = -10 mA	-40°C to +85°C			3.9	Ω
		Refer to On-Resistance	-40°C to +125°C			3.9 4.8 5 1 0.4 1 8 2 0.5	Ω
R _{ON DRIFT}	On-resistance drift	V _S = 6 V, I _S = -10 mA Refer to On-Resistance	-40°C to +125°C		0.025		Ω/°C
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	-0.4	0.01	0.4	nA
lovore:	Source off leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	-40°C to +85°C	-1		1	nA
'S(OFF)	Source of loakage carroin	V _D = 1 V / 10 V Refer to セクション 6.2	-40°C to +125°C	-8		8	nA
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	-0.5	0.02	0.5	nA
la (oss)	Drain off leakage current ⁽¹⁾	Switch state is off V _S = 10 V / 1 V	-40°C to +85°C	-4		4	nA
'D(OFF)		V _D = 1 V / 10 V Refer to セクション 6.2	-40°C to +125°C	-12		12	nA
		V _{DD} = 13.2 V, V _{SS} = 0 V	25°C	-0.5	0.02	0.5	nA
I _{D(OFF)} I _{S(ON)} I _{D(ON)} I	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = 10 \text{ V}$ or 1 V	-40°C to +85°C	-4		4	nA
'D(ON)		Refer to セクション 6.3	-40°C to +125°C	-8		8	nA
LOGIC IN	PUTS (SEL / EN pins)		1				
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		44	V
V _{IL}	Logic voltage low		-40°C to +125°C	0		8.0	V
I _{IH}	Input leakage current		-40°C to +125°C		0.6	2	μA
I _{IL}	Input leakage current		-40°C to +125°C	-0.1	-0.005		μA
C _{IN}	Logic input capacitance		-40°C to +125°C		3		pF
POWER S	SUPPLY						
		40.07/7/	25°C		36	55	μA
I_{DD}	V _{DD} supply current	V_{DD} = 13.2 V, V_{SS} = 0 V Logic inputs = 0 V, 5 V, or V_{DD}	-40°C to +85°C			65	μΑ
		, , , , , , ,	-40°C to +125°C			12 15 18 0.7 0.8 0.9 3.6 3.9 4.8 0.4 1 8 0.5 4 12 0.5 4 8	μΑ

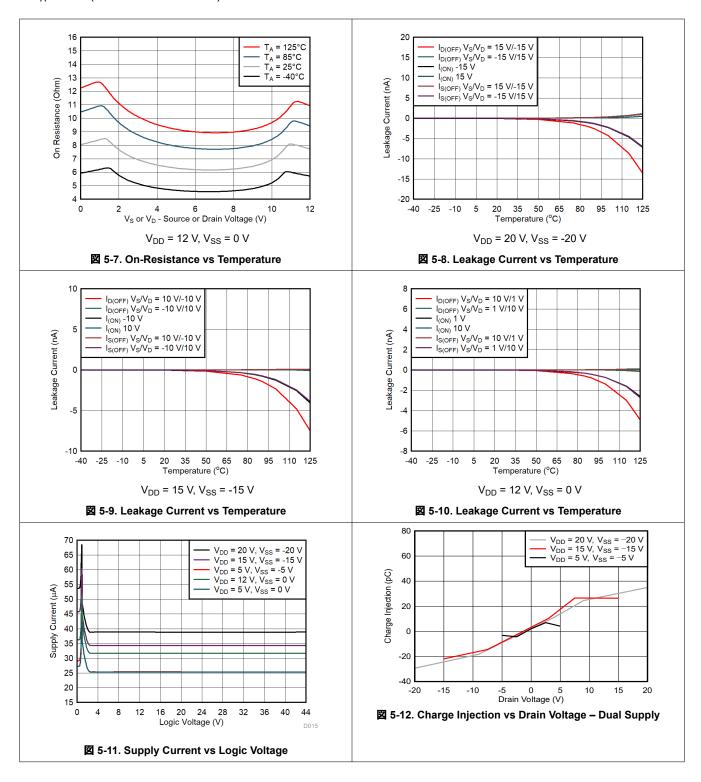
⁽¹⁾ When V_S is 10 V, V_D is 1 V. Or when V_S is 1 V, V_D is 10 V.

When V_S is at a voltage potential, V_D is floating. Or when V_D is at a voltage potential, V_S is floating.

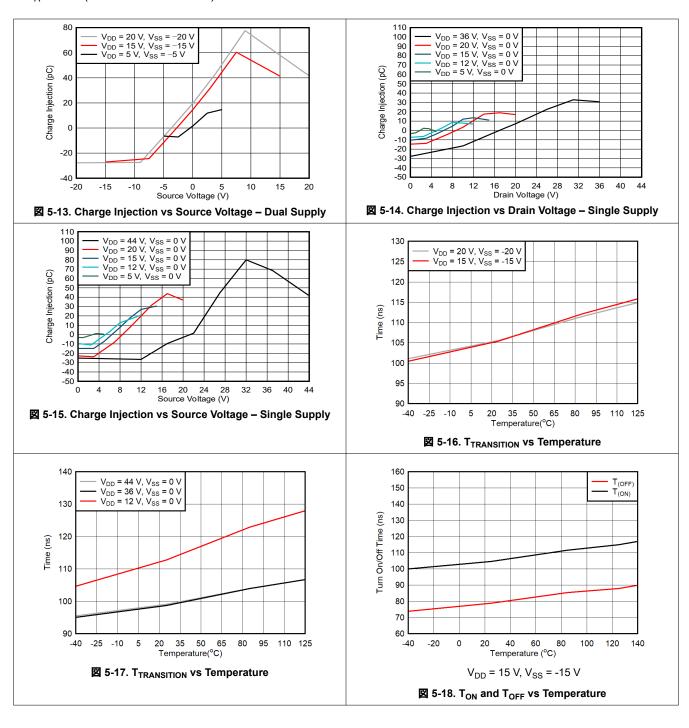
5.13 12 V Single Supply: Switching Characteristics

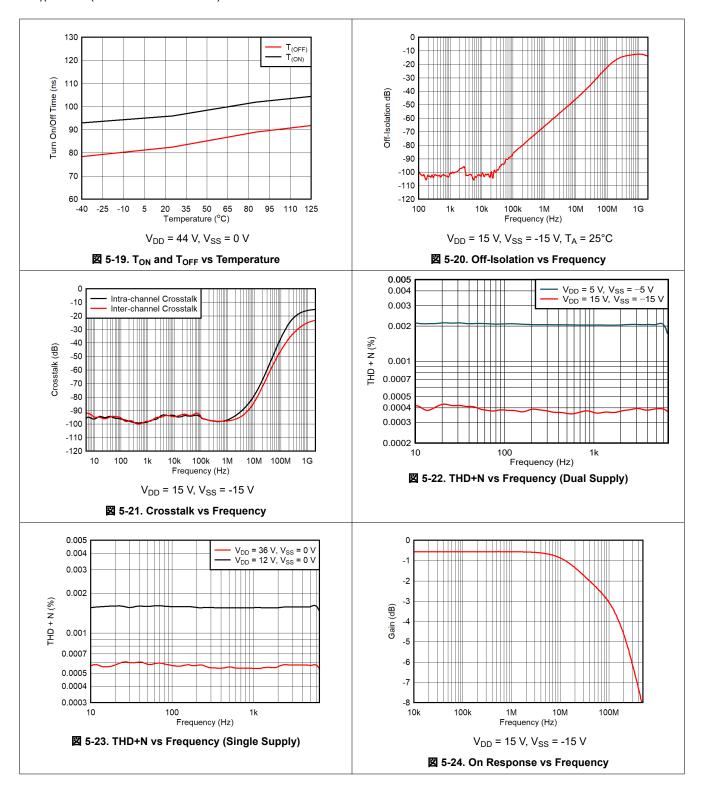
 $\begin{aligned} &V_{DD} = +12 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V} \text{ (unless otherwise noted)} \\ &\text{Typical at V}_{DD} = +12 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C} \text{ (unless otherwise noted)} \end{aligned}$

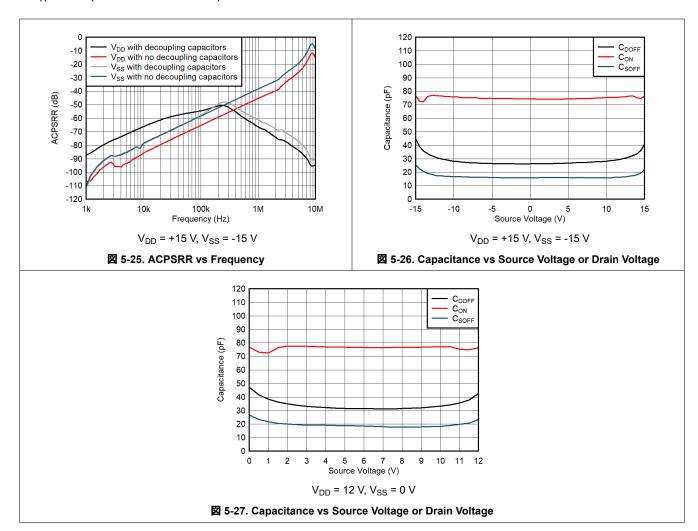

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
		V _S = 8 V	25°C		105	200	ns
t _{TRAN}	Transition time from control input	$R_L = 300 \Omega, C_L = 35 pF$	–40°C to +85°C			220 250 10 200 220 250 05 190 210 240 60	ns
		Refer to Transition Time	–40°C to +125°C			250	ns
		V _S = 8 V	25°C		110	200	ns
t _{ON (EN)}	Turn-on time from enable	$R_L = 300 \Omega, C_L = 35 pF$	–40°C to +85°C			220	ns
		Refer to セクション 6.5	-40°C to +125°C			250	ns
		V _S = 8 V	25°C		105	190	ns
t _{OFF (EN)}	Turn-off time from enable	$R_L = 300 \Omega, C_L = 35 pF$	–40°C to +85°C			210	ns
		Refer to セクション 6.5	–40°C to +125°C			240	ns
		V _S = 8 V,	25°C		60	200 220 250 200 220 250 190 210	ns
t _{BBM}	Break-before-make time delay	$R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C	1		200 220 250 200 250 190 210 240	ns
		Refer to Break-Before-Make	-40°C to +125°C	1	-		ns
		V _{DD} rise time = 1μs	25°C		0.16		ms
T _{ON (VDD)}	Device turn on time (V _{DD} to output)	$R_L = 300 \Omega, C_L = 35 pF$	–40°C to +85°C		0.16		ms
	(VDD to output)	Refer to Turn-on (VDD) Time	-40°C to +125°C		0.16		ms
t _{PD}	Propagation delay	R _L = 50Ω , C _L = 5 pF Refer to セクション 6.8	25°C		490		ps
Q _{INJ}	Charge injection	V_D = 6 V, C_L = 100 pF Refer to セクション 6.9	25°C		1		рС
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 100 kHz$	25°C		-82		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$ Refer to Off Isolation	25°C		-62		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1MHz$ Refer to Crosstalk	25°C		-105		dB
BW	–3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$ Refer to Bandwidth	25°C		130		MHz
IL	Insertion loss	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 6 V$, $f = 1 MHz$	25°C		-0.5		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 10 M Ω , C_L = 5 pF, f = 1 MHz Refer to セクション 6.14	25°C		-50		dB
THD+N	Total Harmonic Distortion + Noise	V_{PP} = 6 V, V_{BIAS} = 6 V R_L = 10 kΩ , C_L = 5 pF, f = 20 Hz to 20 kHz Refer to セクション 6.13	25°C	0.0016		%	
C _{S(OFF)}	Source off capacitance	V _S = 6 V, f = 1 MHz	25°C		19		pF
C _{D(OFF)}	Drain off capacitance	V _S = 6 V, f = 1 MHz	25°C		33		pF
C _{S(ON),} C _{D(ON)}	On capacitance	V _S = 6 V, f = 1 MHz	25°C		78		pF


13

Product Folder Links: TMUX7234




5.14 Typical Characteristics



6 Parameter Measurement Information

6.1 On-Resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. \boxtimes 6-1 shows the measurement setup used to measure R_{ON} . Voltage (V) and current (I_{SD}) are measured using this setup, and R_{ON} is computed with $R_{ON} = V / I_{SD}$.

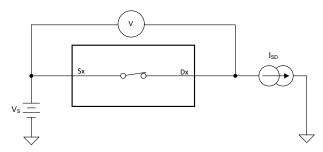


図 6-1. On-Resistance Measurement Setup

6.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- · Source off-leakage current
- Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol $I_{S(OFF)}$.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$.

☑ 6-2 shows the setup used to measure both off-leakage currents.

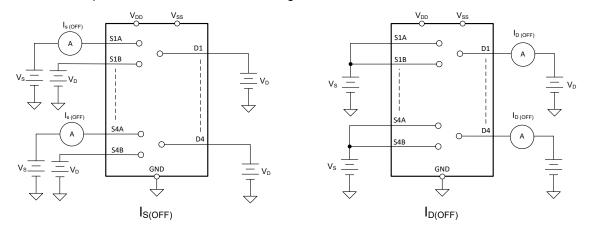


図 6-2. Off-Leakage Measurement Setup

6.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. \boxtimes 6-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

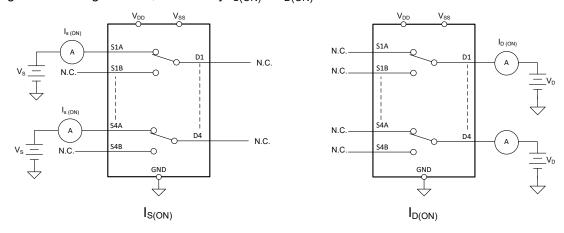


図 6-3. On-Leakage Measurement Setup

6.4 Transition Time

Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. \boxtimes 6-4 shows the setup used to measure transition time, denoted by the symbol treatment.

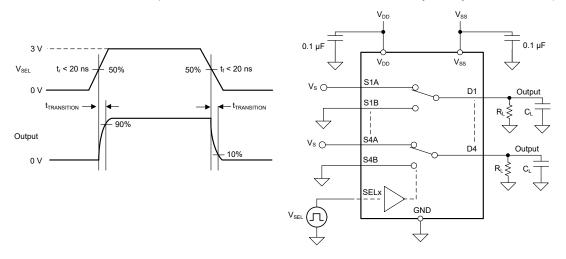


図 6-4. Transition-Time Measurement Setup

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated

6.5 t_{ON(EN)} and t_{OFF(EN)}

Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. \boxtimes 6-5 shows the setup used to measure turn-on time, denoted by the symbol $t_{ON(EN)}$.

Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. \boxtimes 6-5 shows the setup used to measure turn-off time, denoted by the symbol $t_{OFF(EN)}$.

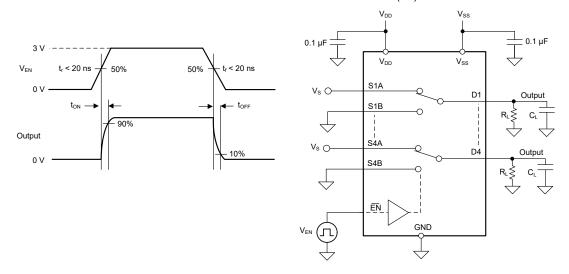


図 6-5. Turn-On and Turn-Off Time Measurement Setup

6.6 Break-Before-Make

Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is switching. The output first breaks from the on-state switch before making the connection with the next on-state switch. The time delay between the *break* and the *make* is known as break-before-make delay. \boxtimes 6-6 shows the setup used to measure break-before-make delay, denoted by the symbol $t_{OPEN(BBM)}$.

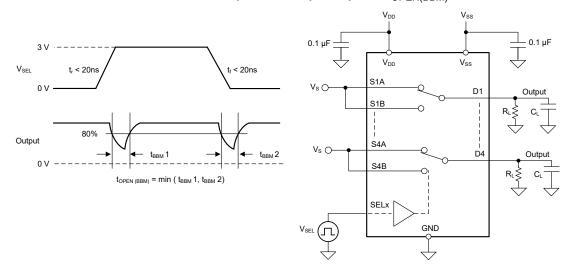


図 6-6. Break-Before-Make Delay Measurement Setup

21

Product Folder Links: TMUX7234

6.7 t_{ON (VDD)} Time

The $t_{ON\ (VDD)}$ time is defined as the time taken by the output of the device to rise to 90% after the supply has risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in the system. \boxtimes 6-7 shows the setup used to measure turn on time, denoted by the symbol $t_{ON\ (VDD)}$.

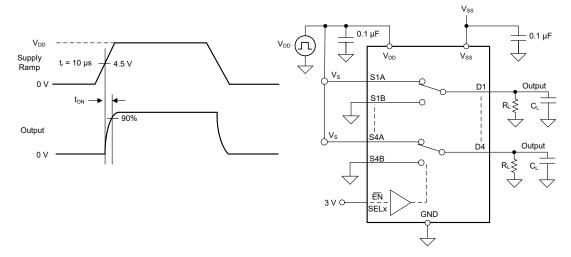


図 6-7. t_{ON (VDD)} Time Measurement Setup

6.8 Propagation Delay

Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal has risen or fallen past the 50% threshold. \boxtimes 6-8 shows the setup used to measure propagation delay, denoted by the symbol t_{PD} .

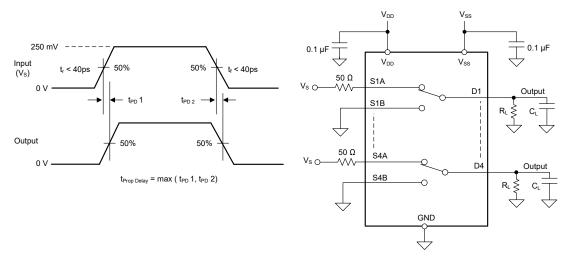


図 6-8. Propagation Delay Measurement Setup

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated

6.9 Charge Injection

The TMUX7234 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_{INJ} . \boxtimes 6-9 shows the setup used to measure charge injection from source (Sx) to drain (D).

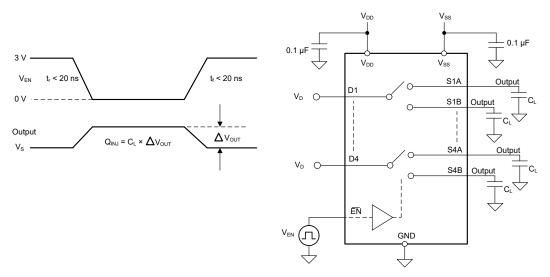


図 6-9. Charge-Injection Measurement Setup

6.10 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the source pin (Sx) of an off-channel. \boxtimes 6-10 shows the setup used to measure, and the equation used to calculate off isolation.

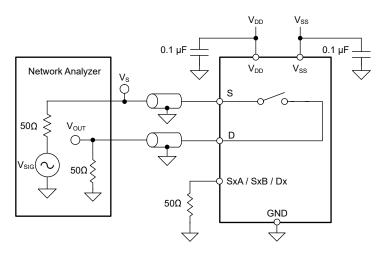


図 6-10. Off Isolation Measurement Setup

23

Product Folder Links: TMUX7234

6.11 Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. \boxtimes 6-11 shows the setup used to measure and the equation used to calculate crosstalk.

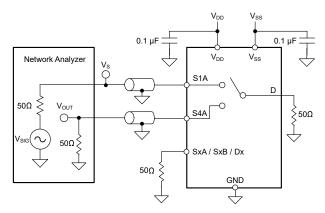


図 6-11. Crosstalk Measurement Setup

6.12 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. \boxtimes 6-12 shows the setup used to measure bandwidth.

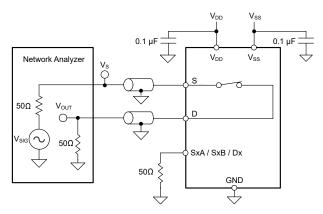


図 6-12. Bandwidth Measurement Setup

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SCDS429

6.13 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD.

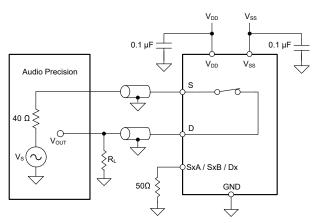


図 6-13. THD Measurement Setup

6.14 Power Supply Rejection Ratio (PSRR)

PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave of 620mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.

The below shows how the decoupling capacitors reduce high frequency noise on the supply pins. This helps stabilize the supply and immediately filter as much of the supply noise as possible.

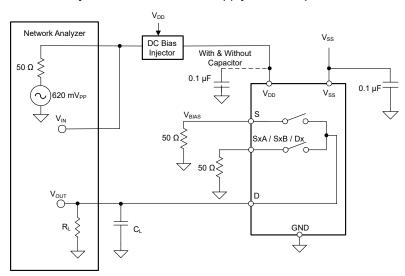
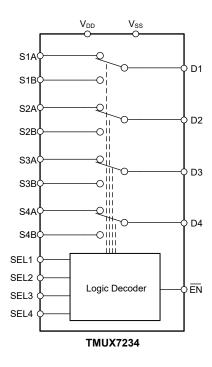


図 6-14. ACPSRR Measurement Setup

25


Product Folder Links: TMUX7234

7 Detailed Description

7.1 Overview

The TMUX7234 contains four independently controlled SPDT switches with an $\overline{\text{EN}}$ pin to enable or disable all four switches.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Bidirectional Operation

The TMUX7234 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals.

7.3.2 Rail-to-Rail Operation

The valid signal path input or output voltage for the TMUX7234 ranges from V_{SS} to V_{DD} .

7.3.3 1.8 V Logic Compatible Inputs

The TMUX7234 has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the switch to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches .

Product Folder Links: TMUX7234

Copyright © 2024 Texas Instruments Incorporated

7.3.4 Fail-Safe Logic

TMUX7234 supports Fail-Safe Logic on the control input pins ($\overline{\text{EN}}$ and SELx) allowing it to operate up to 44 V, regardless of the state of the supply pins. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the TMUX7234 logic input pins to ramp up to +44 V while V_{DD} and $V_{SS}=0$ V. The logic control inputs are protected against positive faults of up to +44 V in powered-off condition, but do not offer protection against negative overvoltage conditions.

7.3.5 Latch-Up Immune

Latch-Up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX72xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX72xx family of switches and multiplexers to be used in harsh environments. For more information on latch-up immunity refer to *Using Latch Up Immune Multiplexers to Help Improve System Reliability*.

7.3.6 Ultra-Low Charge Injection

The TMUX7234 has a transmission gate topology, as shown in 🗵 7-1. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.

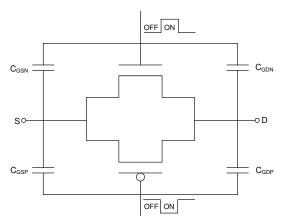


図 7-1. Transmission Gate Topology

The TMUX7234 contains specialized architecture to reduce charge injection on the source (Sx). To further reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D). This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on the drain (D) instead of the source (Sx). As a general rule of thumb, Cp should be 20x larger than the equivalent load capacitance on the source (Sx). Z 7-2 shows charge injection variation with different compensation capacitors on the drain side. This plot was captured on the TMUX7219 as part of the TMUX72xx family with a 100pF load capacitance.

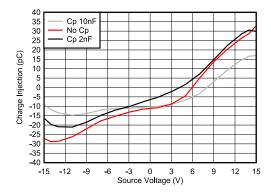


図 7-2. Charge Injection Compensation

7.4 Device Functional Modes

The enable \overline{EN} pin is an active-low logic pin that controls the connection between the source (SxA and SxB) and drain (Dx) pins of the device. The TMUX7234 SELx logic control inputs determine which source pin is connected to the drain pin for each channel. When the \overline{EN} pin of the TMUX7234 is pulled low, the SELx logic control inputs determine which source input is selected. When the \overline{EN} pin is pulled high, all of the switches are in an open state regardless of the state of the SELx logic control inputs. The control pins can be as high as 44 V.

The TMUX7234 can be operated without any external components except for the supply decoupling capacitors. The \overline{EN} and SELx pins have internal pull-down resistors of 4 M Ω . If unused, \overline{EN} and SELx pins should be tied to GND in order to ensure the device does not consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (Sx or Dx) should be connected to GND.

7.5 Truth Tables

表 7-1 shows the truth tables for the TMUX7234.

Selected Source Pins Connected to EN SEL1 SEL₂ SEL3 SEL4 **Drain Pins** 0 0 X(1) Х Х S1B to D1 0 1 Χ Χ Х S1A to D1 Χ Χ S2B to D2 0 0 Χ 0 Х 1 Х Х S2A to D2 Χ Χ 0 Χ S3B to D3 0 Χ Χ Χ S3A to D3 0 1 0 Χ Χ Χ 0 S4B to D4 0 Х Χ Х 1 S4A to D4 1 Х Х Х Х Hi-Z (OFF)

表 7-1. TMUX7234 Truth Table

(1) X means do not care.

English Data Sheet: SCDS429

8 Application and Implementation

注

以下のアプリケーション情報は、TI の製品仕様に含まれるものではなく、TI ではその正確性または完全性を 保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことに なります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

The TMUX7234 is part of the precision switches and multiplexers family of devices. This device operates with dual supplies ($\pm 4.5 \text{ V}$ to $\pm 22 \text{ V}$), a single supply (4.5 V and 44 V), or asymmetric supplies (such as, V_{DD} = 12 V and $V_{SS} = -5$ V), and offers rail-to-rail input and output. The TMUX7234 offers low R_{ON} , low on and off leakage currents and ultra-low charge injection performance. These features makes the TMUX7234 a precision, robust, high-performance analog multiplexer for high-voltage, industrial applications.

8.2 Typical Application

One key application of the TMUX7234 is in the ultrasonic water flow measurement system. Ultrasonic flow meters use time of flight (ToF) of an ultrasonic wave and its dependency and behavior in the medium using two transducer pairs for upstream and downstream paths. The signal waveforms are transmitted between two adjacent transducers. One transducer transmits an upstream path signal and the other transducer receives a downstream signal path. The flight time for the signal can be calculated using the known velocity of sound and length between the transducers. The upstream and downstream waveforms are processed on the main MCU to obtain the volume. 🗵 8-1 shows a circuit example utilizing the MSP430FR66047 MCU, high voltage low distortion operational amplifiers (THS3091), along with TMUX7234, 2:1, 4 channel precision switches. The TMUX7234 is used to select the Rx and Tx path of the transducer. The TMUX7234 offers low on-state resistance, flat capacitance performance, and low propagation delay which leads to very low signal distortion. The break-before-make feature allows transferring of a signal from one port to another, without shorting the inputs together. This device also offers low charge injection which makes this device suitable for high precision data acquisition systems.

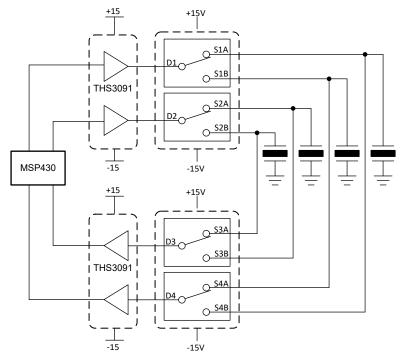


図 8-1. Ultrasonic Water Flow Measurement System

29

English Data Sheet: SCDS429

8.2.1 Design Requirements

For this design example, use the parameters listed in $\frac{1}{2}$ 8-1.

表 8-1. Design Parameters

PARAMETERS	VALUES
Supply (V _{DD})	15 V
Supply (V _{SS})	-15 V
MUX I/O signal range	-15 V to 15 V (Rail-to-Rail)
Control logic thresholds	1.8 V compatiable (up to V _{DD})
EN	EN pulled low to enable the switch

8.2.2 Detailed Design Procedure

8.2.3 Application Curve

The low on and off leakage currents of TMUX7234 and ultra-low charge injection performance make this device ideal for implementing high precision industrial systems. The TMUX7234 contains specialized architecture to reduce charge injection on the Source side (Sx) (For more details, see セクション 7.3.6). 図 8-2 shows the plot for the charge injection versus drain voltage for the TMUX7234.

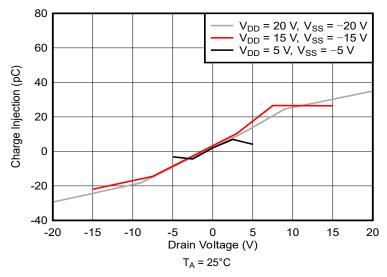


図 8-2. Charge Injection vs Drain Voltage

9 Power Supply Recommendations

TMUX7234 operates across a wide supply range of ± 4.5 V to ± 22 V (4.5 V to 44 V in single-supply mode). TMUX7234 also perform well with asymmetrical supplies such as V_{DD} = 12 V and V_{SS} = -5 V.

Product Folder Links: TMUX7234

Copyright © 2024 Texas Instruments Incorporated

Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails to other components. Good power-supply decoupling is important to achieve optimum performance. Use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at both the V_{DD} and V_{SS} pins to ground for an improved supply noise immunity. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes. Always ensure the ground (GND) connection is established before supplies are ramped.

10 Layout

10.1 Layout Guidelines

A reflection can occur when a PCB trace turns a corner at a 90° angle. A reflection occurs primarily because of the change of width of the trace. The trace width increases to 1.414 times the width at the apex of the turn. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners.

10-1 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

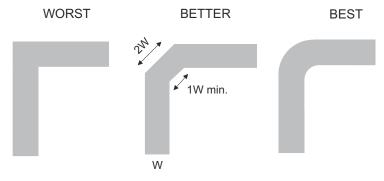


図 10-1. Trace Example

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

☑ 10-2 and ☑ 10-3 illustrate an example of a PCB layout with the TMUX7234. Some key considerations are:

- Decouple the supply pins with a 0.1 μF and 1 μF capacitor, placed lowest value capacitor as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.
- Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground planes.

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

31

10.2 Layout Example

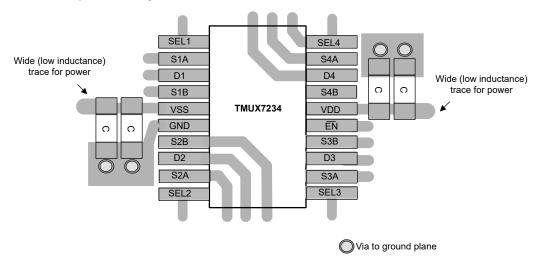


図 10-2. TMUX7234PW Layout Example

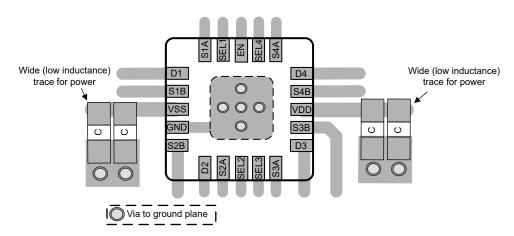


図 10-3. TMUX7234RRQ Layout Example

Product Folder Links: TMUX7234

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

- Texas Instruments, Using Latch Up Immune Multiplexers to Help Improve System Reliability application report
- Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief
- Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief
- Texas Instruments, Sample & Hold Glitch Reduction for Precision Outputs Reference Design reference guide
- Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief
- Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report
- Texas Instruments, *True Differential*, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit application report
- Texas Instruments, QFN/SON PCB Attachment application report
- Texas Instruments, Quad Flatpack No-Lead Logic Packages application report

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

11.4 Trademarks

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

11.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

11.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

12 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

(Changes from Revision F (November 2022) to Revision G (July 2024)	Page
•	Updated ESD HBM value	4
	Updated IIH max specification	

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

33

Changes from Revision E (August 2021) to Revision F (November 2022)	Page
• PW パッケージのステータスをプレビューからアクティブに変更	1
Changes from Revision D (August 2021) to Revision E (August 2021)	Page
Updated ESD HBM spec	
Changes from Revision C (June 2021) to Revision D (August 2021)	Page
ステータスを事前情報から量産データに変更	

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 8-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
TMUX7234PWR	Active	Production	TSSOP (PW) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	T234
TMUX7234PWR.B	Active	Production	TSSOP (PW) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	T234
TMUX7234RRQR	Active	Production	WQFN (RRQ) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TMUX X234
TMUX7234RRQR.B	Active	Production	WQFN (RRQ) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TMUX X234

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

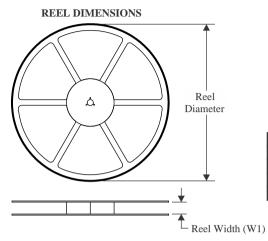
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

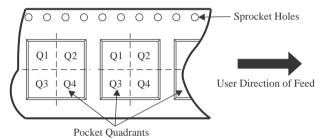
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

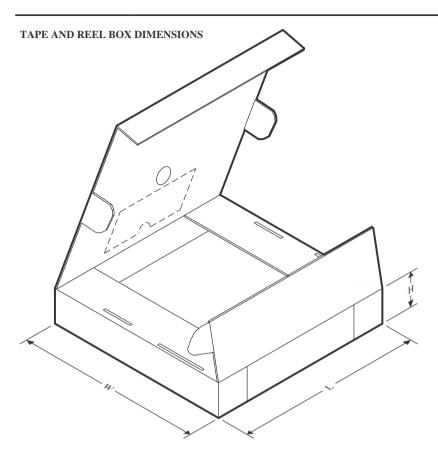
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

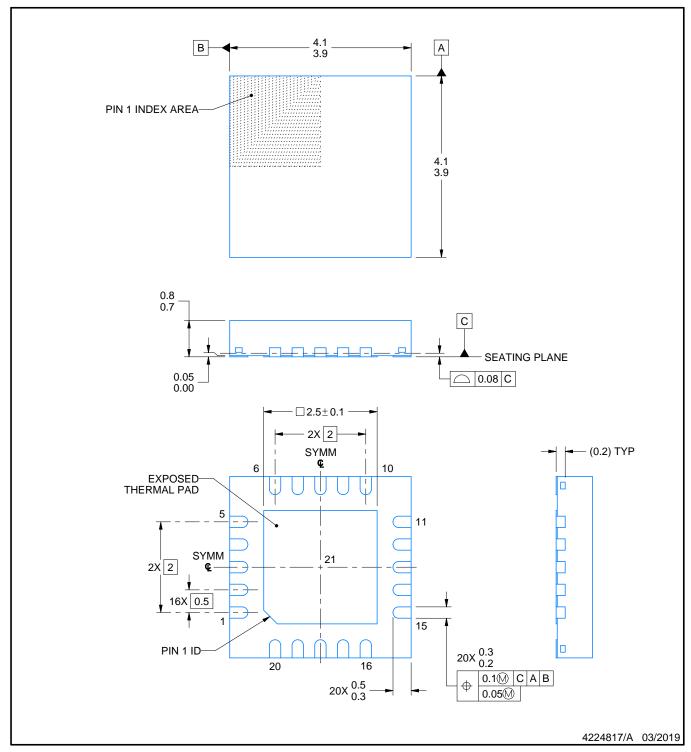
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUX7234PWR	TSSOP	PW	20	3000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
TMUX7234RRQR	WQFN	RRQ	20	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

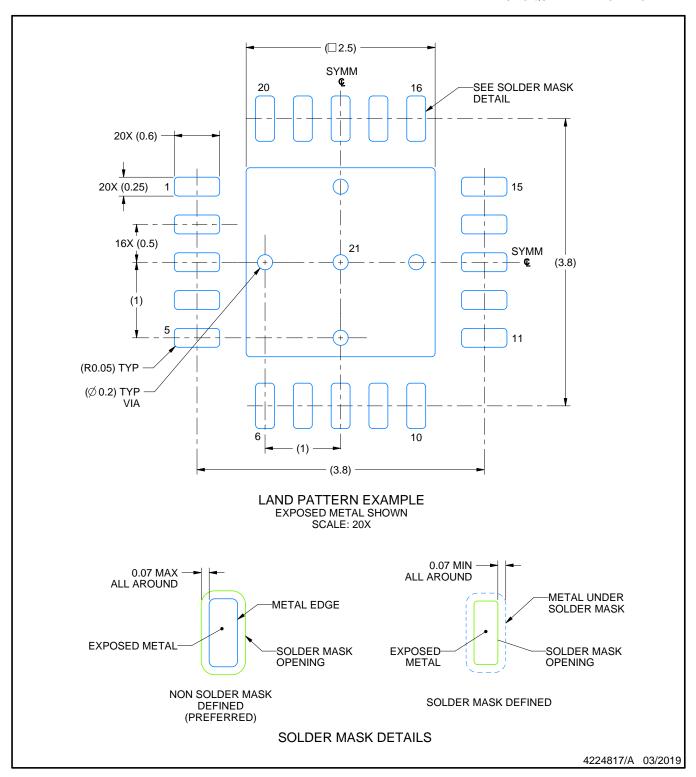
www.ti.com 24-Jul-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUX7234PWR	TSSOP	PW	20	3000	353.0	353.0	32.0
TMUX7234RRQR	WQFN	RRQ	20	3000	367.0	367.0	35.0

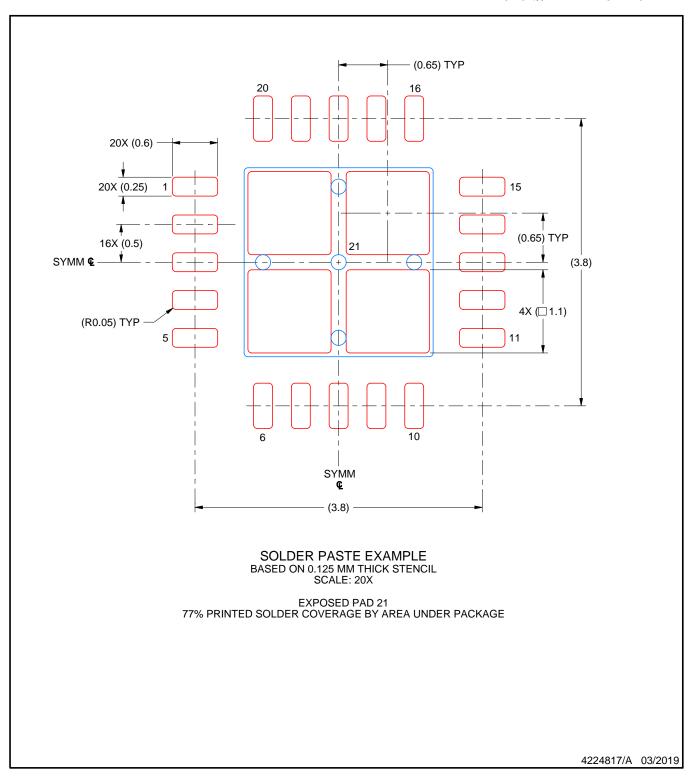
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

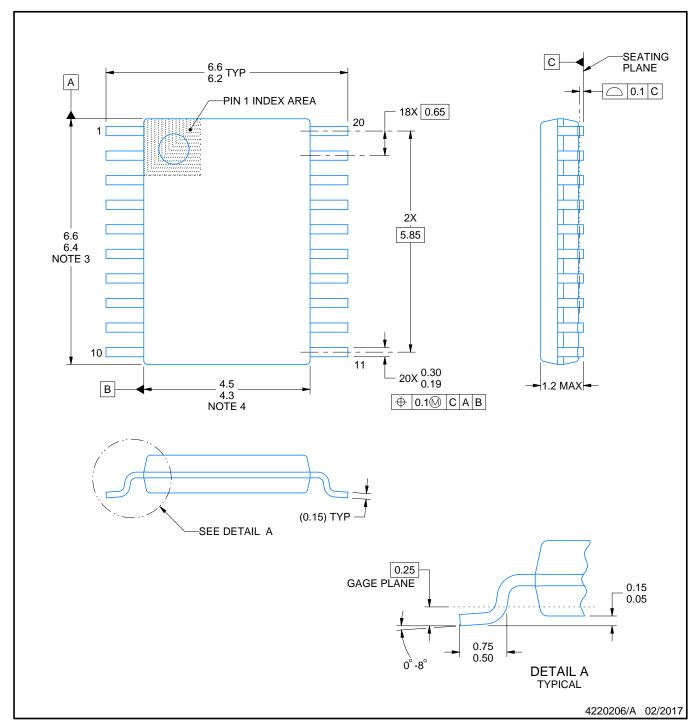
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

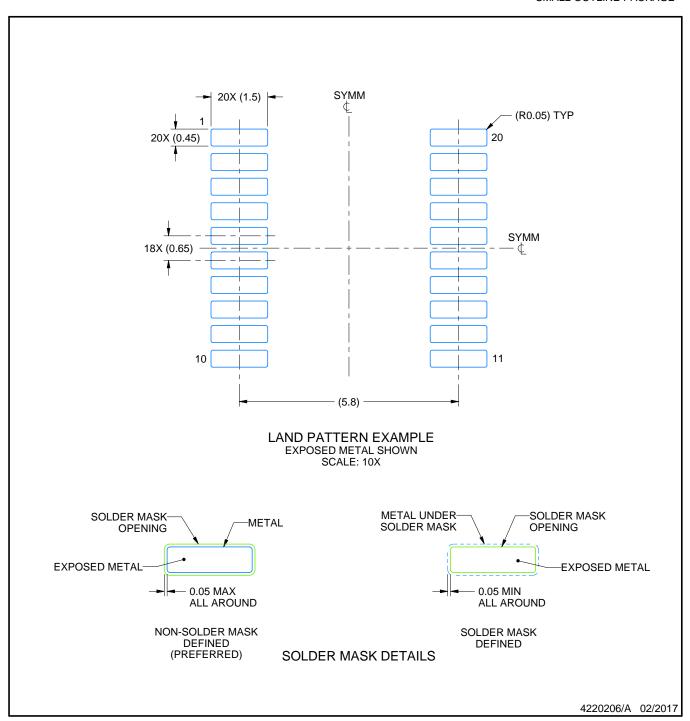
PLASTIC QUAD FLATPACK - NO LEAD


NOTES: (continued)

^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

SMALL OUTLINE PACKAGE

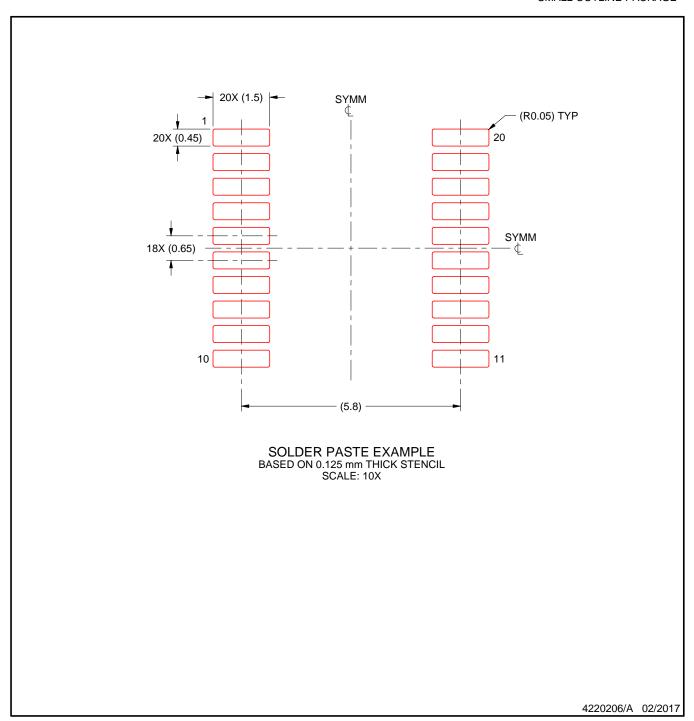
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月