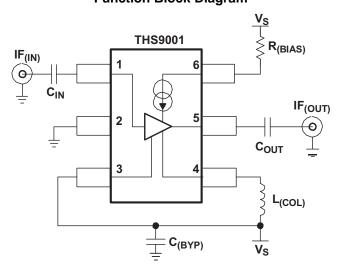


SLOS426C-NOVEMBER 2003-REVISED DECEMBER 2013

50 MHz to 750 MHz CASCADEABLE AMPLIFIER

Check for Samples: THS9001

FEATURES


APPLICATIONS

- IF Amplifiers
 - TDMA: GSM, IS-136, EDGE/UWE-136
 - CDMA: IS-95, UMTS, CDMA2000
 - Wireless Local Loops
 - Wireless LAN: IEEE802.11

- High Dynamic Range
 - OIP₃ = 36 dBm
 - NF < 4.5 dB</p>
- Single-Supply Voltage
- High Speed
 - V_S = 3 V to 5 V
 - I_S = Adjustable
- Input/Output Impedance
 - 50 Ω

DESCRIPTION

The THS9001 is a medium power, cascadeable, gain block optimized for high IF frequencies. The amplifier incorporates internal impedance matching to 50 Ω , and achieves greater than 15-dB input, and output return loss from 50 MHz to 350 MHz with V_S = 5 V, R_(BIAS) = 237 Ω , L_(COL) = 470 nH. Design requires only 2 dc-blocking capacitors, 1 power-supply bypass capacitor, 1 RF choke, and 1 bias resistor.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Function Block Diagram

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

PACKAGED DEVICE ⁽¹⁾	PACKAGE TYPE	TRANSPORT MEDIA, QUANTITY				
THS9001DBVT	SOT 22 6	Tape and Reel, 250				
THS9001DBVR	SOT-23-6	Tape and Reel, 3000				

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature (unless otherwise noted)⁽¹⁾

			UNIT
V_{SS}	Supply voltage, GND to V_S		5.5
VI	Input voltage		GND to V _S
	Continuous power dissipation		See Dissipation Rating table
TJ	Maximum junction temperature		150°C
TJ	Maximum junction temperature, continuous	operation, long term reliability ⁽²⁾	125°C
T _{stg}	Storage temperature		–65 to 150°C
	ESD Ratings	НВМ	2000
:		CDM	1500
		MM	100

(1) The absolute maximum ratings under any condition is limited by the constraints of the silicon process. Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may result in reduced reliability and/or lifetime of the device.

DISSIPATION RATING TABLE

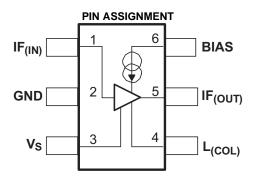
PACKAGE	θ _{JC}	θ _{JA}	POWER RATING ⁽¹⁾			
PACKAGE	(°C/W)	(°C/W)	T _A ≤ 25°C	T _A = 85°C		
DBV ⁽²⁾	70.1	215	463 W	185 mW		

(1) Power rating is determined with a junction temperature of 125°C. Thermal management of the final PCB should strive to keep the junction temperature at or below 125°C for best performance.

(2) This data was taken using the JEDEC standard High-K test PCB.

RECOMMENDED OPERATING CONDITIONS

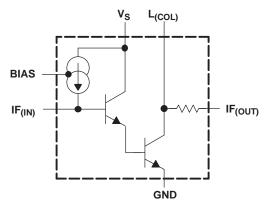
		MIN	NOM MAX	UNIT
V_{SS}	Supply voltage	2.7	5	V
T _A	Operating free-air temperature,	-40	85	°C
I _S	Supply current		100	mA


THS9001

www.ti.com

ELECTRICAL CHARACTERISTICS

Typical Performance (V_S = 5 V, $R_{(B|AS)}$ = 237 Ω , $L_{(COL)}$ = 470 nH) (unless otherwise noted)


PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS	
Oction	f = 50 MHz		15.8			
Gain	f = 350 MHz	f = 50 MHz 15.8		dB		
	f = 50 MHz		35		dD at	
OIP ₃	f = 350 MHz		37		dBm	
1 dD compression	f = 50 MHz		20.6		dBm	
1-dB compression	f = 350 MHz		20.6			
Input return loss	f = 50 MHz	15.4			- dB	
	f = 350 MHz					
	f = 50 MHz				JD	
Output return loss	f = 350 MHz				dB	
Reverse isolation	f = 50 MHz	20.7			dB	
Reverse isolation	f = 350 MHz	20.7				
	f = 50 MHz	3.7				
Noise figure	f = 350 MHz		4		dB	

Terminal Functions

PIN NUMBERS	NAME	DESCRIPTION
1	IF _(IN)	Signal input
2	GND	Negative power-supply input
3	Vs	Positive power-supply input
4	L _(COL)	Output transistor load inductor
5	IF _(OUT)	Signal output
6	BIAS	Bias current input

SIMPLIFIED SCHEMATIC

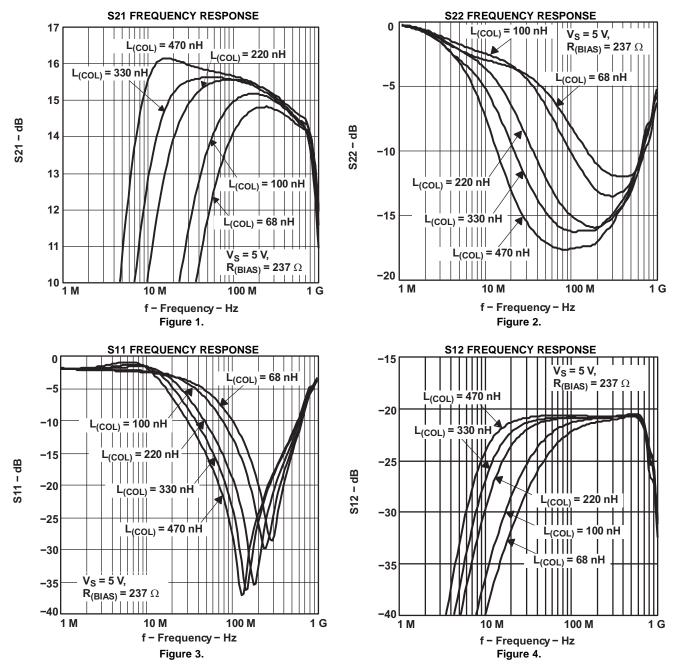
SLOS426C - NOVEMBER 2003 - REVISED DECEMBER 2013

www.ti.com

Texas Instruments

TABLE OF GRAPHS

			FIGURE
	S21 Frequency response		1
	S22 Frequency response		2
	S11 Frequency response	3	
	S12 Frequency response		4
	S21	vs R _(Bias)	5
	Noise figure	vs Frequency	6
6	Supply current	vs R _(Bias)	7
	Output power vs Input power		8
	Adjacent channel (ACPR) and Alternate channel (AltCPR) protection ratios	vs Input power	9
	OIP ₂	vs Frequency	10
	OIP ₃	vs Frequency	11
	S21 Frequency response		12
	S22 Frequency response		13
	S11 Frequency response		14
	S12 Frequency response	vs Frequency	15
	Noise figure		16
	OIP ₂ vs Frequency		17
	Output power	vs Input power	18
	OIP ₃	vs Frequency	19

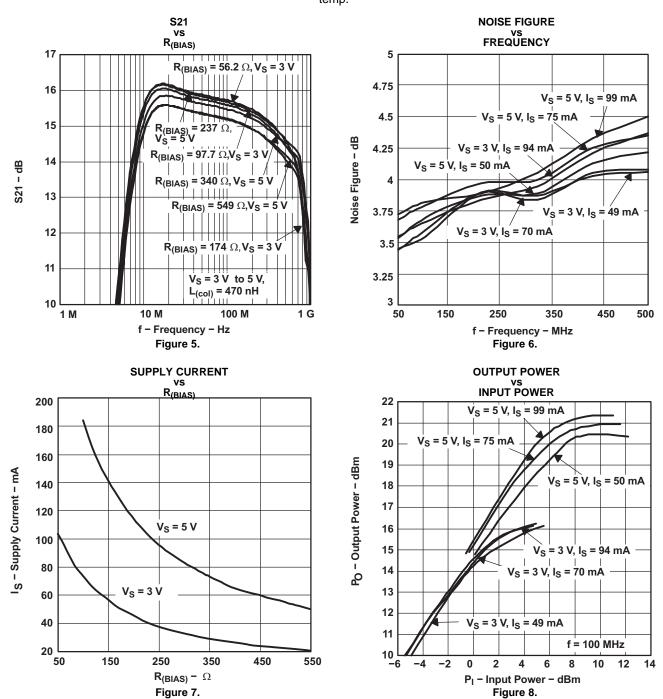

TEXAS INSTRUMENTS

SLOS426C-NOVEMBER 2003-REVISED DECEMBER 2013

www.ti.com

TYPICAL CHARACTERISTICS

S-Parameters of THS9000 as mounted on the EVM with $V_S = 5 V$, $R_{(BIAS)} = 237 \Omega$, and $L_{(COL)} = 68 \text{ nH to } 470 \text{ nH at room temperature.}$

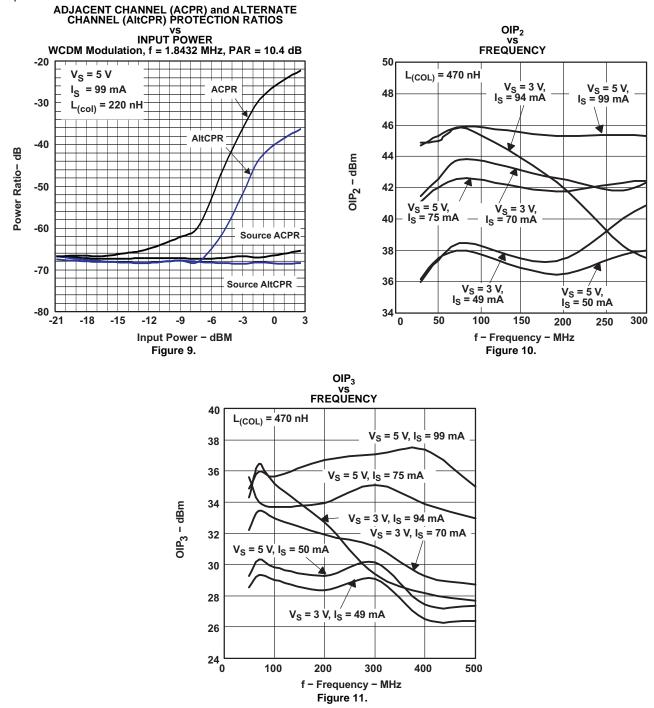

SLOS426C - NOVEMBER 2003 - REVISED DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

TYPICAI CHARACTERISTICS

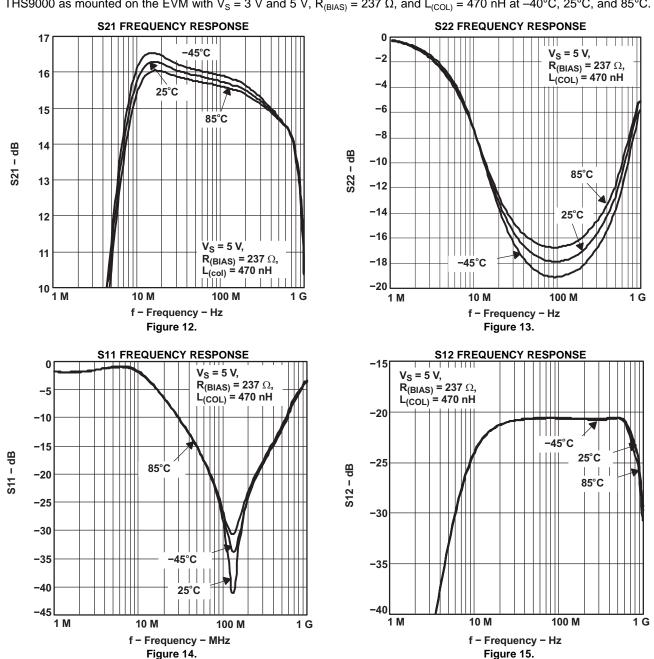
S-Parameters of THS9000 as mounted on the EVM with $V_S = 3 V$ and 5 V, $R_{(BIAS)} =$ various, and $L_{(COL)} = 470$ nH at room temp.


TEXAS INSTRUMENTS

SLOS426C-NOVEMBER 2003-REVISED DECEMBER 2013

www.ti.com

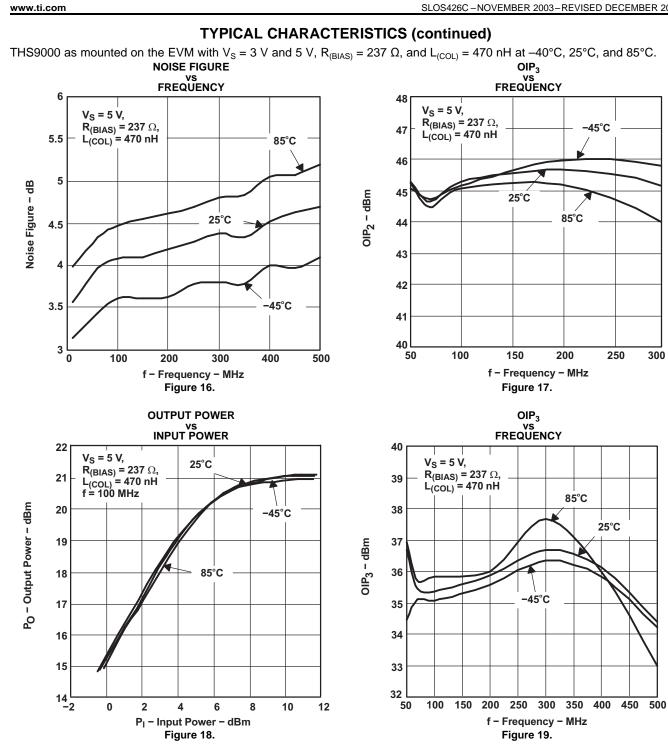
TYPICAI CHARACTERISTICS (continued)


S-Parameters of THS9000 as mounted on the EVM with $V_S = 3 V$ and 5 V, $R_{(BIAS)} =$ various, and $L_{(COL)} = 470$ nH at room temp.

Texas NSTRUMENTS

SLOS426C - NOVEMBER 2003 - REVISED DECEMBER 2013

www.ti.com



TYPICAL CHARACTERISTICS

THS9000 as mounted on the EVM with $V_S = 3 \text{ V}$ and 5 V, $R_{(BIAS)} = 237 \Omega$, and $L_{(COL)} = 470 \text{ nH}$ at -40° C, 25°C, and 85°C.

SLOS426C-NOVEMBER 2003-REVISED DECEMBER 2013

SLOS426C - NOVEMBER 2003 - REVISED DECEMBER 2013

www.ti.com

TYPICAL CHARACTERISTICS

Table 1. S-Parameters Tables of THS9001 with EVM De-Embedded

	S	21	S	11	S	22	S	12
Frequency (MHz)	Gain (dB)	Phase (deg)						
1.0	-3.5	-165.0	-2.3	-1.1	-2.6	174.8	-64.4	-121.7
5.0	11.7	-127.1	-1.5	-14.9	-2.8	140.4	-32.4	123.0
10.2	15.8	-150.1	-2.2	-42.3	-5.3	99.8	-23.6	79.5
19.7	16.3	-170.8	-6.6	-69.3	-10.7	64.5	-21.1	40.7
50.1	15.9	175.7	-16.2	-90.3	-16.2	33.9	-20.6	14.5
69.7	15.8	171.5	-21.1	-95.4	-16.9	26.4	-20.6	9.4
102.4	15.7	165.7	-32.3	-86.5	-17.1	19.9	-20.6	5.3
150.5	15.6	158.2	-28.0	45.9	-16.8	14.7	-20.7	2.1
198.1	15.5	151.1	-21.9	46.8	-16.2	10.8	-20.7	0.1
246.9	15.3	144.1	-18.9	37.2	-15.3	6.0	-20.7	-1.4
307.6	15.2	135.3	-16.0	27.8	-14.2	-1.8	-20.6	-3.9
362.8	15.0	127.8	-14.2	17.4	-13.3	-9.2	-20.6	-5.9
405.0	14.9	121.9	-12.8	10.9	-12.6	-16.0	-20.6	-8.2
452.2	14.7	115.4	-11.6	3.0	-11.8	-23.9	-20.6	-10.8
504.7	14.5	108.4	-10.3	-6.0	-10.9	-33.0	-20.7	-14.2
563.4	14.4	100.3	-8.9	-17.4	-9.8	-45.2	-20.9	-19.3
595.3	14.2	96.0	-8.2	-23.3	-9.2	-52.2	-21.0	-22.6
664.5	14.1	87.0	-6.7	-36.9	-8.0	-68.3	-21.7	-30.5
702.1	14.0	80.9	-5.9	-44.6	-7.3	-79.1	-22.5	-38.6
741.8	13.9	76.5	-5.1	-54.0	-6.8	-91.4	-24.0	-44.9
828.1	13.5	62.2	-4.3	-76.1	-6.3	-113.2	-26.5	-35.0
874.9	13.0	54.0	-4.1	-84.6	-5.9	-126.0	-27.0	-49.0
924.4	12.8	44.9	-3.6	-93.1	-5.1	-136.8	-28.0	-62.9
976.7	11.6	35.9	-3.5	-104.4	-5.3	-157.8	-34.0	-104.4
1031.9	11.1	33.0	-3.4	-115.7	-5.8	-172.3	-37.1	107.9
1090.3	10.4	29.2	-3.3	-122.0	-5.7	-173.4	-37.8	162.5
1151.9	10.3	22.2	-3.0	-131.3	-4.8	179.4	-31.1	169.5
1217.1	9.7	4.7	-2.9	-142.3	-3.9	161.9	-26.3	137.1
1285.9	8.6	0.7	-2.9	-151.7	-3.6	147.6	-22.7	121.9
1358.6	7.3	-8.3	-2.9	-161.2	-3.4	134.6	-20.6	116.5
1435.5	5.8	-14.5	-3.0	-170.1	-3.2	122.6	-18.8	105.2
1516.6	4.6	-22.7	-3.1	-178.6	-3.2	112.1	-17.2	96.0
1602.4	3.2	-28.4	-3.1	173.2	-3.1	101.7	-15.7	87.0
1693.0	1.5	-38.0	-3.1	165.1	-3.0	92.4	-14.3	79.2
1788.8	-0.5	-47.9	-3.1	157.6	-2.9	83.6	-13.1	68.8
1889.9	-2.5	-51.0	-3.2	148.8	-2.7	74.4	-12.4	56.9
1996.8	-4.1	-49.0	-3.4	139.5	-2.3	65.0	-12.2	48.2

APPLICATION INFORMATION

The THS9001 is a medium power, cascadeable, amplifier optimized for high intermediate frequencies in radios. The amplifier is unconditionally stable and the design requires only 2 dc-blocking capacitors, 1 power-supply bypass capacitor, 1 RF choke, and 1 bias resistor. Refer to Figure 25 for the circuit diagram.

The THS901 operates with a power-supply voltage ranging from 2.5 V to 5.5 V.

The value of $R_{(BIAS)}$ sets the bias current to the amplifier. Refer to Figure 14. This allows the designer to trade-off linearity versus power consumption. $R_{(BIAS)}$ can be removed without damage to the device.

Component selection of $C_{(BYP)}$, C_{IN} , and C_{OUT} is not critical. The values shown in Figure 25 were used for all the data shown in this data sheet.

The amplifier incorporates internal impedance matching to 50 Ω that can be adjusted for various frequencies of operation by proper selection of L_(COL).

Figure 20 shows the s-parameters of the part mounted on the standard EVM with $V_S = 5 \text{ V}$, $R_{(BIAS)} = 237 \Omega$, and $L_{(COL)} = 470 \text{ nH}$. With this configuration, the part is very broadband, and achieves greater than 15-dB input and output return loss from 50 MHz to 325 MHz.

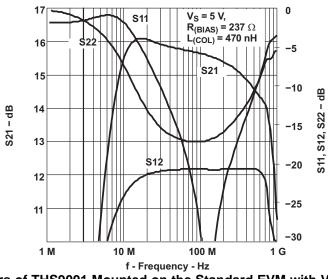


Figure 20. S-Parameters of THS9001 Mounted on the Standard EVM with V_S = 5 V, R_(BIAS) = 237 Ω , and L_(COL) = 470 nH

Figure 21 shows an example of a single conversion receiver architecture and where the THS9001 would typically be used.

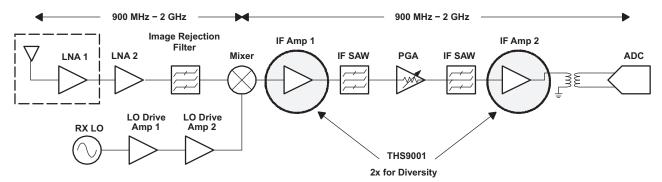


Figure 21. Example Single Conversion Receiver Architecture

Figure 22 shows an example of a dual conversion receiver architecture and where the THS9001 would typically be used.

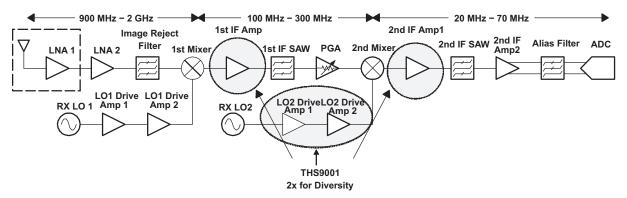
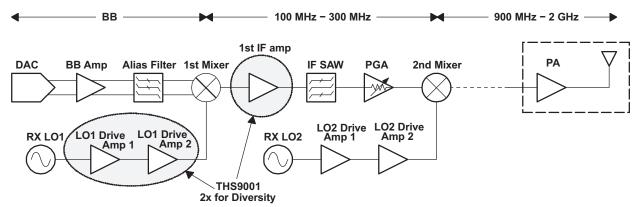
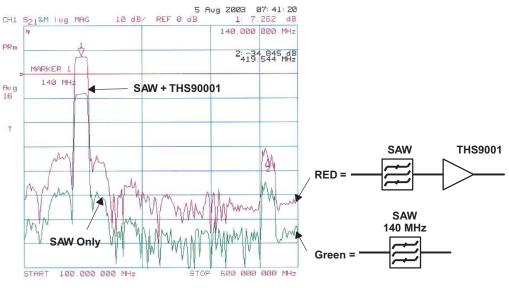



Figure 22. Example Dual Conversion Receiver Architecture

Figure 23 shows an example of a dual conversion transmitter architecture and where the THS9001 would typically be used.



THS9001

www.ti.com

Figure 24 shows the THS9001 and Sawtek #854916 SAW filter frequency response along with the frequency response of the SAW filter alone. The SAW filter has a center frequency of 140 MHz with 10-MHz bandwidth and 8-dB insertion loss. It can be seen that the frequency response with the THS9001 is the same as with the SAW except for a 15-dB gain. The THS9001 is mounted on the standard EVM with $V_S = 5 V$, $R_{(BIAS)} = 237 \Omega$, and $L_{(COL)} = 470$ nH. Note the amplifier does not add artifacts to the signal.

140 MHZ SAW: Sawtek #854916

Figure 24. Frequency Response of the THS9000 and SAW Filter, and SAW Filter Only

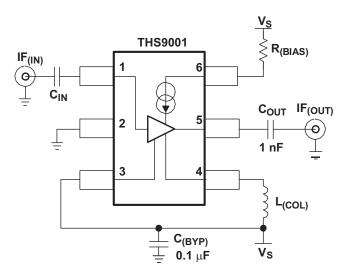


Figure 25. THS9000 Recommended Circuit (used for all tests)

Evaluation Module

Bill Of Materials is the bill of materials, and Figure 26 and Figure 27 show the EVM layout.

Bill Of Materials

ITEM	DESCRIPTION	REF DES	QTY	PART NUMBER ⁽¹⁾
1	Cap, 0.1 µF, ceramic, X7R, 50 V	C1	1	(AVX) 08055C104KAT2A
2	Cap, 1000 pF, ceramic, NPO, 100 V	C2, C3	2	(AVX) 08051A102JAT2A
3	Inductor, 470 nH, 5%	L1	1	(Coilcraft) 0805CS-471XJBC
4	Resistor, 237 Ω, 1/8 W, 1%	R1	1	(Phycomp) 9C08052A2370FKHFT
5	Open	TR1	1	
6	Jack, banana receptance, 0.25" dia.	J3, J4	2	(SPC) 813
7	Connector, edge, SMA PCB jack	J1, J2	2	(Johnson) 142-0701-801
8	Standoff, 4-40 Hex, 0.625" Length		4	(KEYSTONE) 1808
9	Screw, Phillips, 4-40, .250"		4	SHR-0440-016-SN
10	IC, THS90001	U1	1	(TI) THS9001DBV
11	Board, printed-circuit		1	(TI) EDGE # 6453522 Rev.A

(1) The manufacturer's part numbers are used for test purposes only.

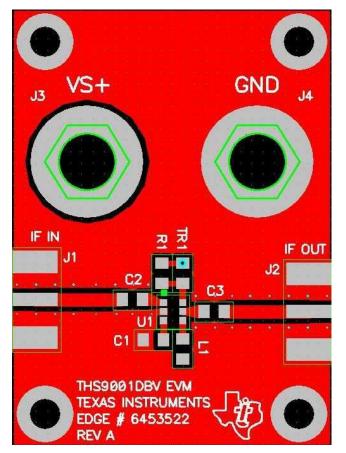


Figure 26. EVM Top Layout

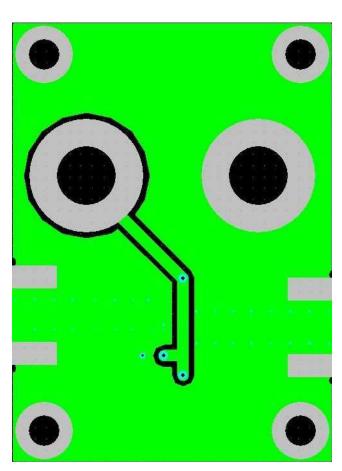


Figure 27. EVM Bottom Layout

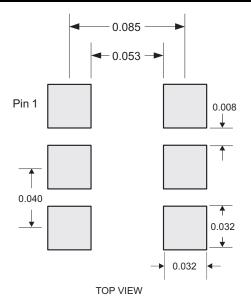


Figure 28. THS9000 Recommended Footprint dimensions are in inches (millimeters)

SLOS426C - NOVEMBER 2003 - REVISED DECEMBER 2013

Changes from Revision B (January 2007) to Revision C

REVISION HISTORY

16 Submit Documentation Feedback

TEXAS INSTRUMENTS

www.ti.com

Page

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
THS9001DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	NWL
THS9001DBVT.B	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	NWL

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

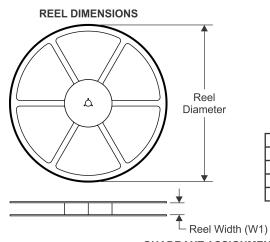
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

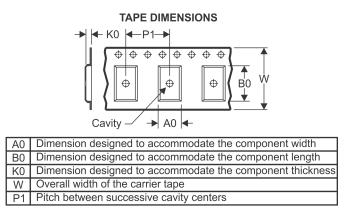
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

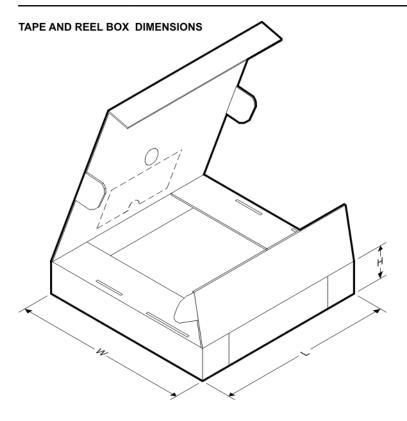
www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	
-----------------------------	--


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
THS9001DBVT	SOT-23	DBV	6	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3

TEXAS INSTRUMENTS

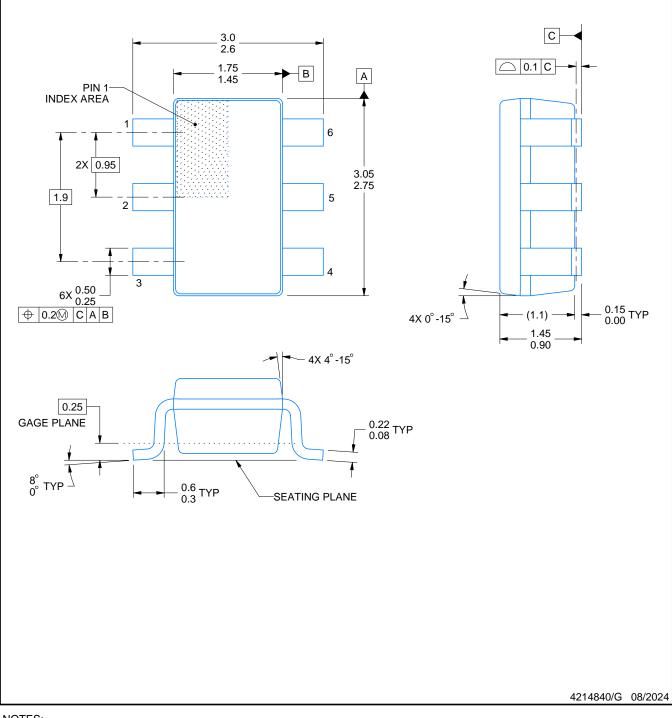
www.ti.com

PACKAGE MATERIALS INFORMATION

22-Nov-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
THS9001DBVT	SOT-23	DBV	6	250	182.0	182.0	20.0


DBV0006A

PACKAGE OUTLINE

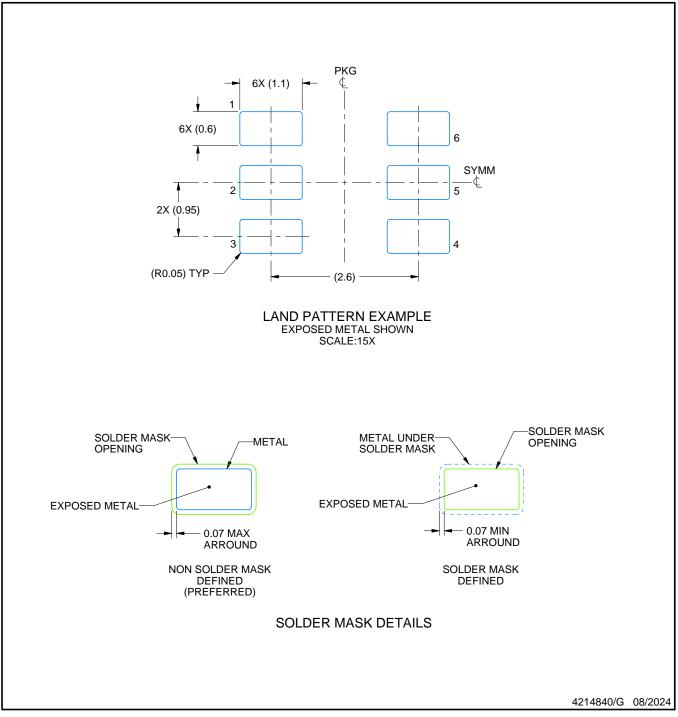
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.



DBV0006A

EXAMPLE BOARD LAYOUT

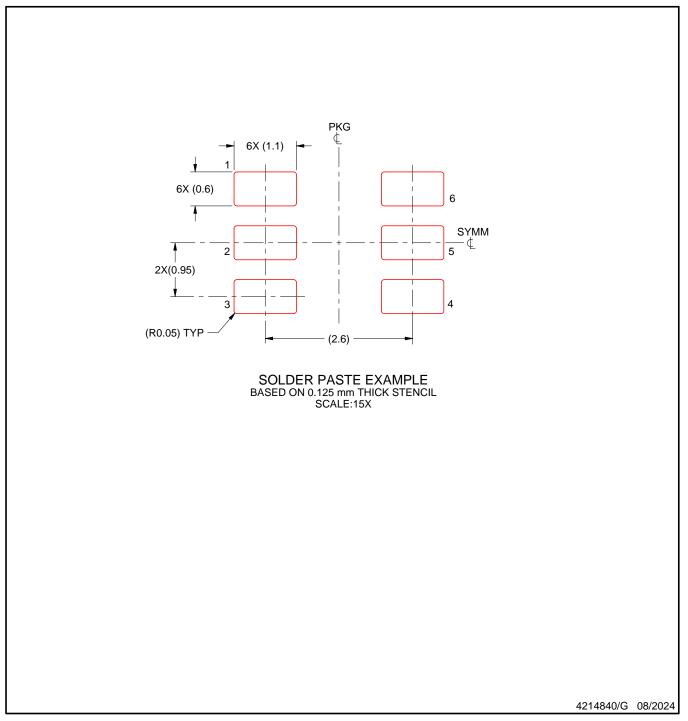
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0006A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated