

TAS5441-Q1 JAJSIU0C - APRIL 2020 - REVISED SEPTEMBER 2023

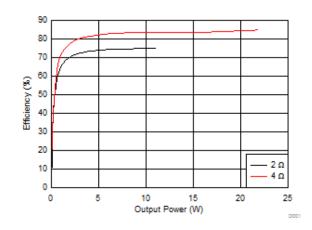
TAS5441-Q1 22W 負荷ダンプおよび I²C 診断機能を備えた車載用アナログ入 カ、1 チャネル Class-D オーディオ アンプ

1 特長

- 車載アプリケーション向けに AEC-Q100 認定済み
 - 温度グレード 1:-40℃~125℃、T_A
- モノラル BTL デジタル パワー アンプ
- 22 出力電力: W (THD+N = 10%、4Ω 負荷時)
- 動作電圧範囲:4.5V~18V
- 効率:85% (4Ω 負荷時)
- 差動アナログ入力
- Speaker Guard™ によるスピーカー保護機能、可変 出力電力リミッタ付き
- 75dB の電源電圧除去比 (PSRR)
- 負荷診断機能
 - 出力負荷の開放と短絡
 - 出力と電源、出力とグランドの間の短絡
- 保護および監視機能
 - 短絡保護
 - ISO-7637-2 準拠の 40V 負荷ダンプ保護
 - 音楽再生中の出力 DC レベル検出
 - 過熱保護
 - 過電圧および低電圧保護
- PowerPAD™ (裏面露出パッド) で熱特性を強化した 16 ピン HTSSOP (PWP) パッケージ
- 車載用 EMC 要件に合わせて設計
- ISO9000: 2002 TS16949 認定済み
- スタンバイ時の負荷ダンプ保護:40V
- スタンバイ時も遮断されない I²C

2 アプリケーション

- 車載用緊急通報(eCall)アンプ
- テレマティクス・システム
- 計器クラスタ・システム
- インフォテインメント・オーディオ


3 概要

TAS5441-Q1 は、車載用緊急通報 (eCall)、テレマティク ス、インストルメント クラスタ、インフォテインメント アプリケ ーションで使用するために設計されたモノラル Class-D オ ーディオ アンプです。このデバイスは、DC 14.4V の車載 用バッテリから 4Ω 負荷へ THD+N 10% 未満で最大 22W を供給できます。広い動作電圧範囲と優れた効率に より、アイドリング ストップ システムのサポートや必要に応 じたバックアップバッテリからの駆動の優れた選択肢となり ます。負荷ダンプ保護が搭載されているため、外付け電圧 クランプのコストとサイズを減らすことができ、オンボードの 負荷診断機能により I2C インターフェイス経由でスピーカ 一の状態が報告されます。

魁品情報

	4DCHH IFI TIX	
部品番号	パッケージ ⁽¹⁾	本体サイズ (公称)
TAS5441-Q1	HTSSOP (16)	5.00mm × 4.40mm

利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。

出力電力効率

Table of Contents

1 特長	1	7.5 Register Maps	19
2アプリケーション		8 Application and Implementation	
3 概要		8.1 Application Information	
4 Revision History		8.2 Typical Application	
5 Pin Configuration and Functions		9 Layout	
6 Specifications		9.1 Layout Guidelines	
6.1 Absolute Maximum Ratings		9.2 Layout Examples	
6.2 ESD Ratings		10 Device and Documentation Support	
6.3 Recommended Operating Conditions		10.1 Device Support	
6.4 Thermal Information		10.2 Documentation Support	
6.5 Electrical Characteristics.		10.3 ドキュメントの更新通知を受け取る方法	
6.6 Timing Requirements for I ² C Interface Signals		10.4 サポート・リソース	
6.7 Typical Characteristics		10.5 Trademarks	
7 Detailed Description		10.6 静電気放電に関する注意事項	
7.1 Overview			
		10.7 用語集	21
7.2 Functional Block Diagram		11 Mechanical, Packaging, and Orderable	07
7.3 Feature Description	12	Information	27
4 Revision History 資料番号末尾の英字は改訂を表しています。その改	訂履歴	は英語版に準じています。	
Changes from Revision B (January 2023) to Re	evisio	n C (September 2023)	Page
Update test conditions of specifications			4
Changes from Revision A (June 2020) to Revis		· · · · · · · · · · · · · · · · · · ·	Page
• Changed Voltage gain minimum/maximum val	ues in	Electrical Characteristics table	<mark>5</mark>
		n Protection in Electrical Characteristics table	
Changes from Revision * (April 2020) to Revis	ion A	(Juno 2020)	Page

- データシート*のステータスを「事前情報」から「量産データ」に変更*.....1

Product Folder Links: TAS5441-Q1

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

5 Pin Configuration and Functions

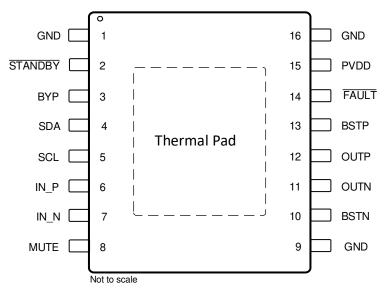


図 5-1. PWP Package, 16-Pin, TSSOP With Exposed Thermal Pad (Top View)

表 5-1. Pin Functions Table

PIN TYPE(1)		TVDE(1)	DESCRIPTION
NAME	NO.	I I I F E \ /	DESCRIPTION
BSTN	10	Al	Bootstrap for negative-output high-side FET
BSTP	13	Al	Bootstrap for positive-output high-side FET
BYP	3	PBY	Voltage-regulator bypass-capacitor pin
FAULT	14	DO	Active-low open-drain output used to report faults
GND	1, 9, 16	GND	Ground
IN_N	7	Al	Inverting analog input
IN_P	6	Al	Non-inverting analog input
MUTE	8	DI	Mute input, active-high (no internal pullup or pulldown)
OUTN	11	PO	Output (–)
OUTP	12	PO	Output (+)
PVDD	15	PWR	Power supply
SCL	5	DI	I ² C clock
SDA	4	DI/DO	I ² C data
STANDBY	2	DI	Active-low STANDBY pin (no internal pullup or pulldown)
Thermal pad	_	_	Must be soldered to ground

⁽¹⁾ DI = digital input, DO = digital output, AI = analog input, PWR = power supply, PBY = power bypass, PO = power output, GND = ground

3

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
	DC supply voltage range, V _(PVDD)	Relative to GND	-0.3	30	V
	Pulsed supply voltage range, V _(PVDD_MAX)	t ≤ 400 ms exposure	-1	40	V
	Supply voltage ramp rate, ΔV _(PVDD_RAMP)			15	V/ms
	For SCL, SDA, and STANDBY, FAULT pins Relative to GND		-0.3	5	
Input voltage	For IN_N, IN_P, , and MUTE pins	Relative to GND	-0.3	6.5	
	ВҮР	Relative to GND	-0.3	7	V
	BSTN, BSTP	Relative to BYP	-0.3	30	V
	BSTN, BSTP	Relative to GND	-0.3	36.3	
	OUTN, OUTP	Relative to GND	-0.3	30	
	tut voltage For SCL, SDA, and STANDBY, FAULT pins Relative to GND For IN_N, IN_P, , and MUTE pins Relative to GND BYP Relative to GND BSTN, BSTP Relative to BYP BSTN, BSTP Relative to GND OUTN, OUTP Relative to GND DC current on PVDD, GND and OUTx pins, I _(PVDD) , I _O Maximum current, on all input pins, I _(IN_MAX) (2) Maximum sink current for open-drain pin, I _(IN_ODMAX)		±4	Α	
Current	Maximum current, on all input pins, I _(IN_MAX) (2)			±1	A
	Maximum sink current for open-drain pin, I _(IN_ODMAX)			7	mA
Storage temperatu	Maximum current, on all input pins, I _(IN_MAX) (2) Maximum sink current for open-drain pin, I _(IN_ODMAX)				°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
V		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level H2	±3500	V	
	V _(ESD)	Charged-device model (CDM), per AEC Q100-011 CDM ESD Classification Level C5		±1000	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V	Supply voltage range relative to GND. Includes	4-Ω ±20% load (or higher)	4.5	14.4	18	V
V _(PVDD_OP)	ac transients, requires proper decoupling. (3)	2-Ω ±20% load	5	14.4	18	V
V _(PVDD_RIPPLE)	Maximum ripple on PVDD	V _(PVDD) < 8 V			1	V_{pp}
V _(MUTE)	MUTE pin voltage range relative to GND		-0.3	3.3	5.5	V
V _(AIN) (1)	Analog audio input-signal level	AC-coupled input voltage	0		0.25-1 ⁽²⁾	Vrms
V _(IH_STANDBY)	MUTE and STANDBY pins input voltage for logic-level high		2			V
V _(IL_STANDBY)	MUTE and STANDBY pins input voltage for logic-level low				0.7	V
V _(IH_SCL)	SCL pin input voltage for logic-level high	$R_{(PU_12C)}$ = 4.7-k Ω pullup, supply voltage = 3.3 V or 5 V	2.1			V
V _(IH_SDA)	SDA pin input voltage for logic-level high	$R_{(PU_12C)}$ = 4.7-kΩ pullup, supply voltage = 3.3 V or 5 V	2.1			V
V _(IL_SCL)	SCL pin input voltage for logic-level low	$R_{(PU_12C)}$ = 4.7-kΩ pullup, supply voltage = 3.3 V or 5 V			1.1	V
V _(IL_SDA)	SDA pin input voltage for logic-level low	$R_{(PU_12C)}$ = 4.7-kΩ pullup, supply voltage = 3.3 V or 5 V			1.1	V
T _A	Ambient temperature		-40		125	°C
R _(L)	Nominal speaker load impedance	When using low-impedance loads, do not exceed overcurrent limit.	2	4	16	Ω

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

⁽²⁾ See the section for information on analog input voltage and ac coupling.

6.3 Recommended Operating Conditions (続き)

			MIN	NOM	MAX	UNIT
V _(PU)	Pullup voltage supply (for open-drain logic outputs)	V _(PU) must be less than (V _(PVDD) - 1V) during normal operation.	3	3.3	5.5	V
R _(PU_EXT)	External pullup resistor on open-drain logic outputs	Resistor connected between open-drain logic output and V _(PU) supply.	10		50	kΩ
R _(PU_I2C)	I ² C pullup resistance on SDA and SCL pins		1	4.7	10	kΩ
C _(PVDD)	External capacitor on the PVDD pin, typical value ± 20% ⁽³⁾			10		μF
C _(BYP)	External capacitor on the BYP pin, typical value ± 10%			1		μF
C _(OUT)	External capacitance to GND on OUT_X pins				4	μF
C _(IN)	External capacitance to analog input pin in series with input signal			1		μF
C _(BSTN) , C _(BSTP)	External boostrap capacitor, typical value ± 20%			220		nF

- (1) Signal input for full unclipped output with gains of 36 dB, 32 dB, 26 dB, and 20 dB
- (2) Maximum recommended input voltage is determined by the gain setting.
- See the section. (3)

6.4 Thermal Information

		TAS5441	
	THERMAL METRIC ⁽¹⁾	PWP (HTSSOP)	UNIT
		16 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	39.4	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	24.9	°C/W
R _{0JB}	Junction-to-board thermal resistance	20	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	19.8	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	2	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

 T_C = 25°C, PVDD = 14.4 V, R_L = 4 Ω , $P_{(O)}$ = 1 W/ch, AES17 filter, default I²C settings (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
OPERATING CURRENT				
PVDD idle current	In PLAY mode, no audio present	16		mA
PVDD standby current	STANDBY mode, MUTE = 0 V	5	20	μA
OUTPUT POWER				
Outnut navor nor channel	4 Ω, THD+N ≤ 1%, 1 kHz, T _C = 75°C	18		
Output power per channel	4 Ω, THD+N = 10%, 1 kHz, T _C = 75°C	22		W
Power efficiency	4 Ω, P _(O) = 22 W (10% THD)	85%		
AUDIO PERFORMANCE				
Noise voltage at output	G = 20 dB, zero input, and A-weighting	65		μV
Common-mode rejection ratio	f = 1 kHz, 100 mVrms referenced to GND, G = 20 dB	63		dB
Power-supply rejection ratio	PVDD = 14.4 Vdc + 1 Vrms, f = 1 kHz	75		
Total harmonic distortion + noise	P _(O) = 1 W, f = 1 kHz	0.05%		
Constability of the second	Switching frequency selectable for AM interference	400		1.11=
Switching frequency	avoidance	500		kHz
Internal common-mode input bias voltage	Internal bias applied to IN_N, IN_P pins	3		V

Product Folder Links: TAS5441-Q1

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

6.5 Electrical Characteristics (続き)

 $T_C = 25^{\circ}C$, PVDD = 14.4 V, $R_L = 4 \Omega$, $P_{(O)} = 1$ W/ch, AES17 filter, default I²C settings (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Source impedance = 0 Ω , register 0x03 bits 7–6 = 00 T_C = -40°C - 125°C	19.25	20	20.75	
Voltage gain (V _O / V _{IN})	Source impedance = 0 Ω , register 0x03 bits 7–6 = 01 T_C = -40 $^{\circ}$ C - 125 $^{\circ}$ C	25.25	26	26.75	dB
voltage gain (vo / vin)	Source impedance = 0 Ω , register 0x03 bits 7–6 = 10 T_C = -40°C - 125°C	31.25	32	32.75	uВ
	Source impedance = 0 Ω , register 0x03 bits 7–6 = 11 T_C = -40 $^{\circ}$ C - 125 $^{\circ}$ C	35.25	36	36.75	
PWM OUTPUT STAGE					
FET drain-to-source resistance	$T_J = 25$ °C		180		mΩ
Output offset voltage	Zero input signal, G = 20 dB			±25	mV
PVDD OVERVOLTAGE (OV) PROTECTION					
PVDD overvoltage-shutdown set		19.5	21	22.5	V
PVDD overvoltage-shutdown hysteresis			0.6		V
PVDD UNDERVOLTAGE (UV) PROTECTION					
PVDD undervoltage-shutdown set		3.6	4	4.4	V
PVDD undervoltage-shutdown hysteresis			0.25		V
ВҮР					
BYP pin voltage		6.4	6.9	7.4	V
POWER-ON RESET (POR)				,	
PVDD voltage for POR				4.1	V
PVDD recovery hysteresis voltage for POR			0.3		V
OVERTEMPERATURE (OT) PROTECTION					
Junction temperature for overtemperature shutdown		155	170		°C
Junction temperature overtemperature shutdown hystersis			15		°C
OVERCURRENT (OC) SHUTDOWN PROTECTION					
Maximum current (peak output current) (1)	Tc= -40°C - 125°C	2.45	3.5		Α
STANDBY PIN					
STANDBY pin current			0.1	0.2	μA
DC DETECT				-	
DC detect threshold			2.9		V
DC detect step response time				700	ms
FAULT REPORT					
FAULT pin output voltage for logic-level high (open-drain logic output)	External 47-kΩ pullup resistor to 3.3 V	2.4			V
FAULT pin output voltage for logic-level low (open-drain logic output)	External 47-kΩ pullup resistor to 3.3 V			0.5	V
LOAD DIAGNOSTICS		-			
Resistance to detect a short from OUT pin(s) to PVDD or ground				200	Ω
Open-circuit detection threshold	Including speaker wires	70	95	120	Ω
Short-circuit detection threshold	Including speaker wires	0.9	1.2	1.5	Ω
I ² C	1	1			
SDA pin output voltage for logic-level high	$R_{(PU\ I2C)}$ = 4.7-kΩ pullup, supply voltage = 3.3 V or 5 V	2.4			V
SDA pin output voltage for logic-level low	3-mA sink current			0.4	V
· · · · · · · · · · · · · · · · · · ·		+			
Capacitance for SCL and SDA pins				10	pF

⁽¹⁾ This parameter is validated by design and verified during product characterization. It is not tested in production.

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyrigh

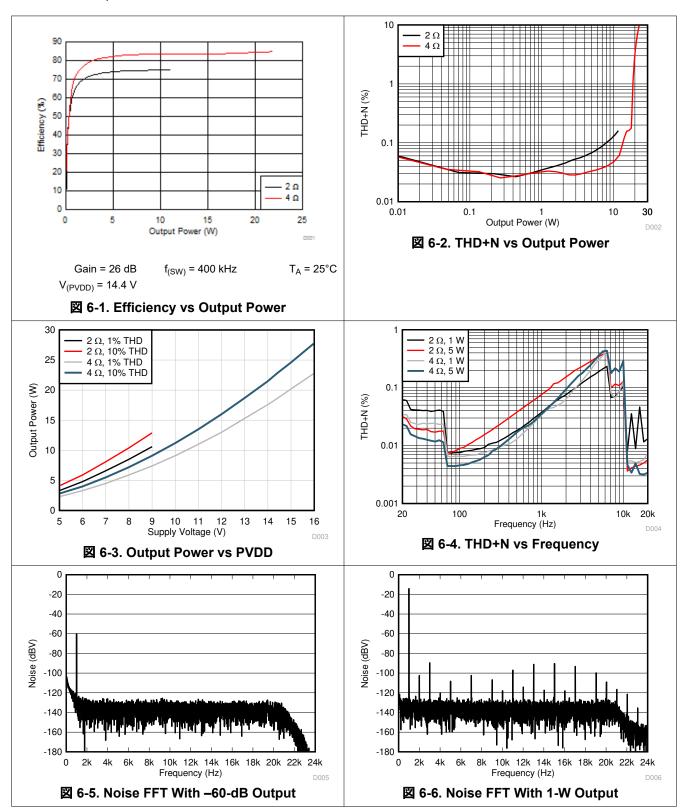
English Data Sheet: SLOSE41

6.6 Timing Requirements for I²C Interface Signals

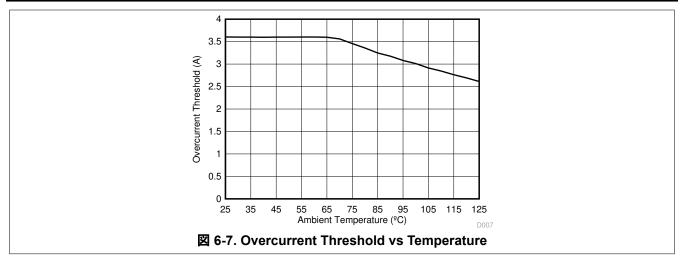
over recommended operating conditions (unless otherwise noted)

		MIN	NOM MAX	UNIT
f _(SCL)	SCL clock frequency		40) kHz
t _r	Rise time for both SDA and SCL signals		30) ns
t _f	Fall time for both SDA and SCL signals		30) ns
t _{w(H)}	SCL pulse duration, high	0.6		μs
t _{w(L)}	SCL pulse duration, low	1.3		μs
t _{su(2)}	Setup time for START condition	0.6		μs
t _{h(2)}	START condition hold time before generation of first clock pulse	0.6		μs
t _{su(1)}	Data setup time	100		ns
t _{h(1)}	Data hold time	0(1)		ns
t _{su(3)}	Setup time for STOP condition	0.6		μs
C _(B)	Load capacitance for each bus line		40) pF

⁽¹⁾ A device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL.


資料に関するフィードバック(ご意見やお問い合わせ)を送信

1

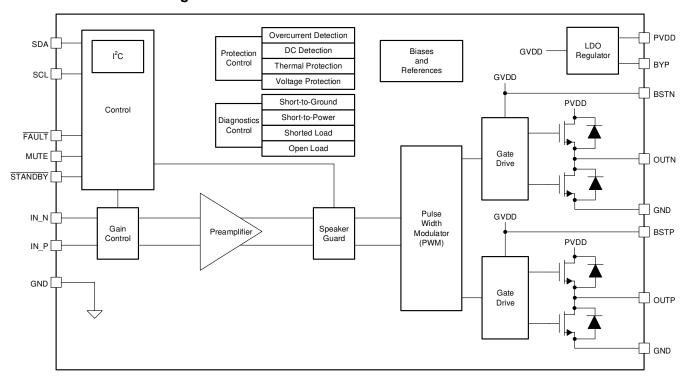

6.7 Typical Characteristics

 T_C = 25°C, PVDD = 14.4 V, R_L = 4 Ω , $P_{(O)}$ = 1 W/ch, AES17 filter, 1-kHz input, default I²C settings (unless otherwise noted)

Copyright © 2024 Texas Instruments Incorporated

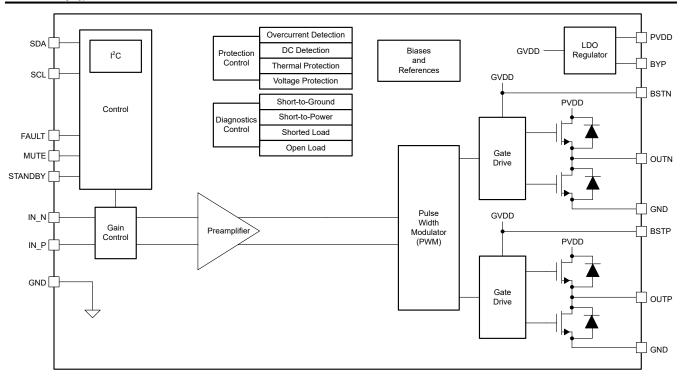
9

7 Detailed Description


7.1 Overview

The TAS5441-Q1 is a mono analog-input class-D audio amplifier for use in an automotive environment. The design uses an ultra-efficient class-D technology developed by Texas Instruments with additional features specific to the automotive industry. The class-D technology allows for reduced power consumption, reduced heat, and reduced peak currents in the electrical system. The device realizes an audio sound system design with smaller size and lower weight than traditional class-AB devices.

The TAS5441-Q1 device has seven core design blocks:


- PWM
- · Gate drive
- Power FETs
- Diagnostics
- Protection
- Power supply
- I²C serial communication bus

7.2 Functional Block Diagram

English Data Sheet: SLOSE41

English Data Sheet: SLOSE41

7.3 Feature Description

7.3.1 Analog Audio Input and Preamplifier

The differential input stage of the amplifier cancels common-mode noise that appears on the inputs. For a differential audio source, connect the positive lead to IN_P and the negative lead to IN_N. The inputs must be ac-coupled to minimize the output dc-offset and make sure of correct ramping of the output voltages. For good transient performance, the impedance seen at each of the two differential inputs is the same.

The gain setting impacts the analog input impedance of the amplifier. See Input Impedance and Gain for typical values.

 Gain
 Input Impedance

 20 dB
 60 kΩ ± 20%

 26 dB
 30 kΩ ± 20%

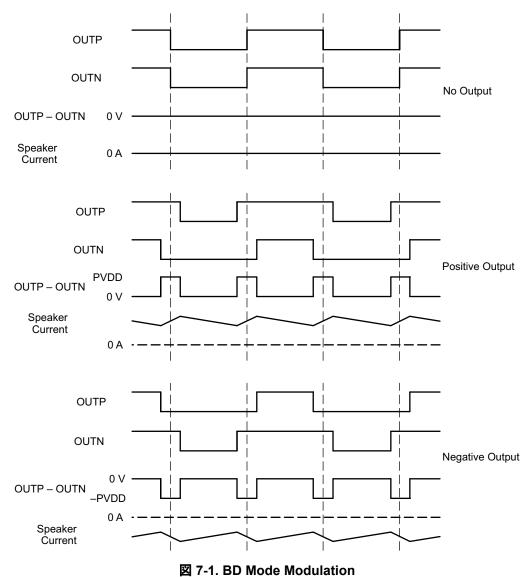
32 dB

36 dB

表 7-1. Input Impedance and Gain

15 kΩ \pm 20%

 $9 k\Omega \pm 20\%$


7.3.2 Pulse-Width Modulator (PWM)

The PWM converts the analog signal from the preamplifier into a switched signal of varying duty cycle. This is the critical stage that defines the class-D architecture. In the TAS5441-Q1, the modulator is an advanced design with high bandwidth, low noise, low distortion, and excellent stability.

The pulse-width modulation scheme allows increased efficiency at low power. Each output is switching from 0 V to PVDD. The OUTP and OUTN pins are in phase with each other with no input so that there is little or no current in the speaker. The duty cycle of OUTP is greater than 50% and the duty cycle OUTN is less than 50% for positive output voltages. The duty cycle of OUTN is greater than 50% and the duty cycle of OUTP is less than 50% for negative output voltages. The voltage across the load is at 0 V through most of the switching period, reducing power loss.

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated

13

English Data Sheet: SLOSE41

7.3.3 Gate Drive

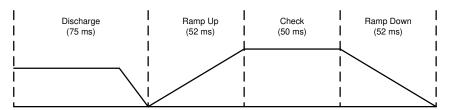
The gate driver accepts the low-voltage PWM signal and level-shifts the signal to drive a high-current, full-bridge, power FET stage. The device uses proprietary techniques to optimize EMI and audio performance.

7.3.4 Power FETs

The BTL output comprises four matched N-channel FETs for high efficiency and maximum power transfer to the load. By design, the FETs withstand large voltage transients during a load-dump event.

7.3.5 Load Diagnostics

The device incorporates load diagnostic circuitry designed for detecting and determining the status of output connections. The device supports the following diagnostics:


- Short to GND
- · Short to PVDD
- · Short across load
- Open load

The device reports the presence of any of the short or open conditions to the system via I²C register read.

7.3.5.1 Load Diagnostics Sequence

The load diagnostic function runs on de-assertion of STANDBY or when the device is in a fault state (dc detect, overcurrent, overvoltage, undervoltage, and overtemperature). During this test, the outputs are in a Hi-Z state. The device determines whether the output is a short to GND, short to PVDD, open load, or shorted load. The load diagnostic biases the output, which therefore requires limiting the capacitance value for proper functioning; see the *Recommended Operating Conditions*. The load diagnostic test takes approximately 229 ms to run. Note that the *check* phase repeats up to five times if a fault is present or a large capacitor to GND is present on the output. On detection of an open load, the output still operates. On detection of any other fault condition, the output goes into a Hi-Z state, and the device checks the load continuously until removal of the fault condition. After detection of a normal output condition, the audio output starts. The load diagnostics run after every other overvoltage (OV) event. The load diagnostic for open load only has I²C reporting. All other faults have I²C and FAULT pin assertion.

The device performs load diagnostic tests as shown in **Z** 7-2.

☑ 7-2. Load Diagnostics Sequence of Events

Product Folder Links: TAS5441-Q1

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

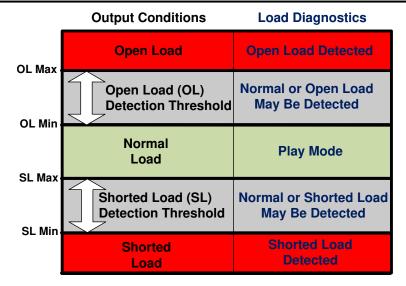


図 7-3. Load Diagnostic Reporting Thresholds

7.3.5.2 Faults During Load Diagnostics

If the device detects a fault (such as overtemperature, overvoltage, or undervoltage) during the load diagnostics test, the device exits the load diagnostics, which can result in a pop or click on the output.

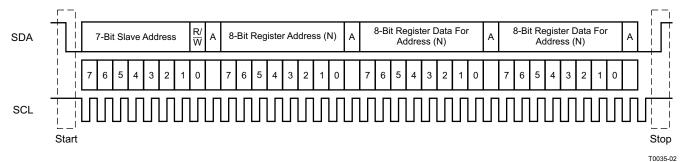
7.3.6 Protection and Monitoring

- Overcurrent Shutdown (OCSD): The overcurrent shutdown forces the output into Hi-Z. The device asserts
 the FAULT pin and updates the I²C register.
- **DC Detect**: This circuit checks for a dc offset continuously during normal operation at the output of the amplifier. If a dc offset occurs, the device asserts the FAULT pin and updates the I²C register. Note that the dc detection threshold follows PVDD changes.
- Overtemperature Shutdown (OTSD): The device shuts down when the die junction temperature reaches the overtemperature threshold. The device asserts the FAULT pin asserts and updates I²C register. Recovery is automatic when the temperature returns to a safe level.
- **Undervoltage (UV)**: The undervoltage (UV) protection detects low voltages on PVDD. In the event of an undervoltage condition, the device asserts the FAULT pin and resets the I²C register.
- Power-On Reset (POR): Power-on reset (POR) occurs when PVDD drops below the POR threshold. A POR event causes the I²C bus to go into a high-impedance state. After recovery from the POR event, the device restarts automatically with default I²C register settings.
- Overvoltage (OV) and Load Dump: OV protection detects high voltages on PVDD. If PVDD reaches the overvoltage threshold, the device asserts the FAULT pin and updates the I²C register. The device can withstand 40-V load-dump voltage spikes. The device supports load-dump in both standby and active modes.
- **SpeakerGuard**: This protection circuitry limits the output voltage to the value selected in I²C register 0x03. This value determines both the positive and negative limits. The user can use the SpeakerGuard feature to improve battery life or protect the speaker from exceeding the excursion limits.
- Adjacent-Pin Shorts: The device design is such that shorts between adjacent pins do not cause damage.

English Data Sheet: SLOSE41

7.3.7 I²C Serial Communication Bus

The device communicates with the system processor via the I^2C serial communication bus as an I^2C slave-only device. The processor can poll the device via I^2C to determine the operating status. All reports of fault conditions and detections are via I^2C . The system can also set numerous features and operating conditions via I^2C . The I^2C interface is active approximately 1 ms after the $\overline{STANDBY}$ pin is high.


The I²C interface controls the following device features:

- Changing gain setting to 20 dB, 26 dB, 32 dB, or 36 dB.
- · Controlling peak voltage value of SpeakerGuard protection circuitry
- · Reporting load diagnostic results
- Changing of switching frequency for AM radio avoidance

7.3.7.1 I²C Bus Protocol

The device has a bidirectional serial control interface that is compatible with the Inter IC (I^2C) bus protocol and supports 400-kbps data transfer rates for random and sequential write and read operations. This is a slave-only device that does not support a multimaster bus environment or wait-state insertion. The master device uses the I^2C control interface to program the registers of the device and to read device status.

The I²C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data transfer on the bus is serial, one bit at a time. The transfer of address and data is in byte (8-bit) format with the most-significant bit (MSB) transferred first. In addition, the receiving device acknowledges each byte transferred on the bus with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the clock is HIGH to indicate start and stop conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop. Normal data bit transitions must occur within the low time of the clock period. Z 7-4 shows these conditions. The master generates the 7-bit slave address and the read/write (R/\overline{W}) bit to open communication with another device and then waits for an acknowledge condition. The device holds SDA LOW during the acknowledge clock period to indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence. The address for each device is a unique 7-bit slave address plus a R/ \overline{W} bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. The SDA and SCL signals require the use of an external pullup resistor to set the HIGH level for the bus. There is no limit on the number of bytes that the communicating devices can transmit between start and stop conditions. After transfer of the last word, the master generates a stop condition to release the bus.

図 7-4. Typical I²C Sequence

To communicate with the device, the I^2C master uses addresses shown in \boxtimes 7-4. Transmission of read and write data can be by single-byte or multiple-byte data transfers.

7.3.7.2 Random Write

As shown in \boxtimes 7-5, a single-byte data-write transfer begins with the master device transmitting a start condition followed by the I^2C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I^2C device address and the

Copyright © 2024 Texas Instruments Incorporated

read/write bit, the device responds with an acknowledge bit. Next, the master transmits the address byte corresponding to the internal memory address being accessed. After receiving the address byte, the device again responds with an acknowledge bit. Next, the master device transmits the data byte for writing to the memory address being accessed. After receiving the data byte, the device again responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.

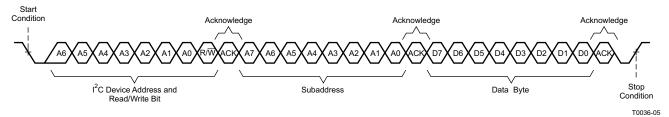


図 7-5. Random Write Transfer

7.3.7.3 Random Read

As shown in \boxtimes 7-6, a single-byte data-read transfer begins with the master device transmitting a start condition followed by the I²C device address and the read/write bit. For the data-read transfer, the master device performs both a write and a following read. Initially, the master device performs a write to transfer the address byte of the internal memory address to be read. As a result, the read/write bit is a 0. After receiving the address and the read/write bit, the device responds with an acknowledge bit. In addition, after sending the internal memory address byte, the master device transmits another start condition followed by the device address and the read/write bit again. This time, the read/write bit is a 1, indicating a read transfer. After receiving the address and the read/write bit, the device again responds with an acknowledge bit. Next, the device transmits the data byte from the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the single-byte data-read transfer.

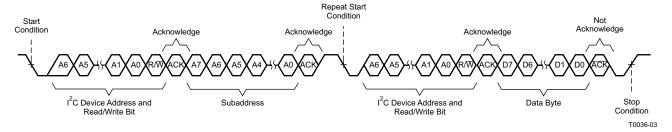


図 7-6. Random Read Transfer

7.3.7.4 Sequential Read

A sequential data-read transfer is identical to a single-byte data-read transfer except that the TAS5441-Q1 transmits multiple data bytes to the master device as shown in \boxtimes 7-7. Except for the last data byte, the master device responds with an acknowledge bit after receiving each data byte and automatically increments the I²C subaddress by one. After receiving the last data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the transfer.

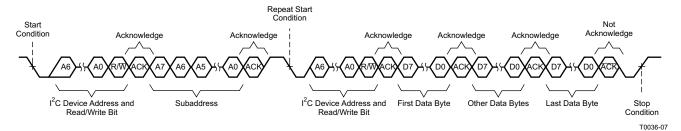


図 7-7. Sequential Read Transfer

Product Folder Links: TAS5441-Q1

資料に関するフィードバック(ご意見やお問い合わせ) を送信

17

7.4 Device Functional Modes

7.4.1 Hardware Control Pins

Three discrete hardware pins are available for real-time control and indication of device status.

- 1. **FAULT** pin: This active-low open-drain output pin indicates the presence of a fault condition which requires the device to go into the Hi-Z mode. On assertion of this pin, the device has protected itself and the system from potential damage. The system can read the exact nature of the fault via I²C with the exception of PVDD undervoltage faults below POR, in which case the I²C bus is no longer operational.
- 2. **STANDBY** pin: Assertion of this active-low pin sends the device into a complete shutdown, limiting the current draw. Load-dump protection is supported. I²C is inactive and non-blocking (does not pull I²C bus low) and the device registers are reset.
- 3. **MUTE** pin: On assertion of this active-high pin, the device is in mute mode. The output pins stop switching and audio does not pass from the input to the output. To place the device back into play mode, deassert this pin. The MUTE pin should be asserted low when the device is in STANDBY.

7.4.2 EMI Considerations

Automotive-level EMI performance depends on both careful integrated-circuit design and good system-level design. Controlling sources of electromagnetic interference (EMI) was a major consideration in all aspects of the design.

The design has minimal parasitic inductances due to the short leads on the package, which dramatically reduces the EMI that results from current passing from the die to the system PCB. The design incorporates circuitry that optimizes output transitions that cause EMI.

7.4.3 Operating Modes and Faults

The following tables list operating modes and faults.

I²C (1) STATE NAME **OUTPUT OSCILLATOR STANDBY** Hi-Z, floating Inactive, Registers Stopped Reset, Non-blocking Load diagnostic DC biased Active Active Mute (Hi-Z) / Fault Hi-Z, floating Active Active

Active

表 7-2. Operating Modes

Play

表 7-3. Faults and Actions

Switching with audio

FAULT EVENT	FAULT EVENT CATEGORY	MONITORING MODES	REPORTING METHOD	ACTION TYPE	ACTION RESULT	CLEARING	STANDBY
POR			Not applicable		Standby		Disabled
UV	Voltage fault	Mute (Hi-Z), Play					Disabled
OV and Load dump ⁽¹⁾		I ² C + FAULT pin					Protected, No Reporting
OTSD	Thermal fault	Mute (Hi-Z), Play			Hi-Z	Self-clearing	
OC fault	Output channel	Play					
DC detect	fault	Flay	I ² C + FAULT pin				
Load diagnostic - short	Diagnostic		N		Hi-Z, re-run diagnostics		Disabled
Load diagnostic - open		Hi-Z	I ² C	None	None	Clears on next diagnostic cycle	

(1) Tested in accordance with ISO7637-1

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLOSE41

Active

⁽¹⁾ See SLOA264 for I2C applications.

7.5 Register Maps

表 7-4. I²C Address

DESCRIPTION			FIXI	ED ADDR	READ/WRITE BIT	I ² C ADDRESS					
DESCRIPTION	MSB	6	5	4	3	2	1	LSB	I-C ADDRESS		
I ² C write	1	1	0	1	1	0	0	0	0xD8		
I ² C read	1	1	0	1	1	0	0	1	0xD9		

7.5.1 I²C Address Register Definitions

表 7-5. I²C Address Register Definitions

ADDRESS	R/ W	REGISTER DESCRIPTION
0x01	R	Latched fault register
0x02	R	Status and load diagnostics register
0x03	R/W	Control register

表 7-6. Fault Register (0x01)

	2. The activity											
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION				
0	0	0	0	0	0	0	0	No protection-created faults, default value				
_	_	_	_	_	-	_	1 Reserved					
_	_	_	-	_	-	1	_	- Reserved				
_	_	_	-	_	1	_	_	A load-diagnostics fault has occurred.				
_	_	_	_	1	-	_	_	Overcurrent shutdown has occurred.				
_	_	_	1	_	_	_	_	PVDD undervoltage has occurred.				
_	_	1	_	_	-	_	_	PVDD overvoltage has occurred.				
_	1	_	-	_	_	_	_	DC offset protection has occurred.				
1	_	_	_	_	_	_	_	Overtemperature shutdown has occurred.				

表 7-7. Status and Load Diagnostic Register (0x02)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION				
0	0	0	0	0	0	0	0	No speaker-diagnostic-created faults, default value				
_	_	_	-	_	_	_	1	Output short to PVDD is present.				
_	_	_	-	_	_	1	_	Output short to ground is present.				
_	_	_	-	_	1	_	_	Open load is present.				
_	_	_	_	1	_	_	_	Shorted load is present.				
_	_	_	1	_	_	_	-	In a fault condition				
_	_	1	_	_	_	_	_	Performing load diagnostics				
_	1	_	_	_	_	_	_	In mute mode				
1	_	_	_	_	_	_	_	In play mode				

Product Folder Links: TAS5441-Q1

資料に関するフィードバック(ご意見やお問い合わせ)を送信

19

表 7-8. Control Register (0x03)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION			
0	1	1	1	1	0	0	0	26-dB gain, switching frequency set to 400 kHz , SpeakerGuard protection circuitry disabled			
_	_	_	_	_	_	_	1 Switching frequency set to 500 khz				
_	_	_	_	_	1	1	- Reserved				
_	_	1	1	0	_	_	_	SpeakerGuard protection circuitry set to 14-V peak output			
_	_	1	0	1	_	_	_	SpeakerGuard protection circuitry set to 11.8-V peak output			
_	_	1	0	0	_	_	_	SpeakerGuard protection circuitry set to 9.8-V peak output			
_	_	0	1	1	_	_	_	SpeakerGuard protection circuitry set to 8.4-V peak output			
_	_	0	1	0	_	_	_	SpeakerGuard protection circuitry set to 7-V peak output			
_	_	0	0	1	_	_	_	SpeakerGuard protection circuitry set to 5.9-V peak output			
_	_	0	0	0	_	_	_	SpeakerGuard protection circuitry set to 5-V peak output			
0	0	_	_	_	_	_	_	Gain set to 20 dB			
1	0	_	_	_	_	_	_	Gain set to 32 dB			
1	1	_	_	_	_	_	_	Gain set to 36 dB			

English Data Sheet: SLOSE41

8 Application and Implementation

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

The device is a mono high-efficiency class-D audio amplifier. Typical use of the device is to amplify an audio input to drive a speaker. The intent of use is for a bridge-tied load (BTL) application, not for support of single-ended configuration. This section presents how to use the device in the application, including what external components are necessary and how to connect unused pins.

8.2 Typical Application

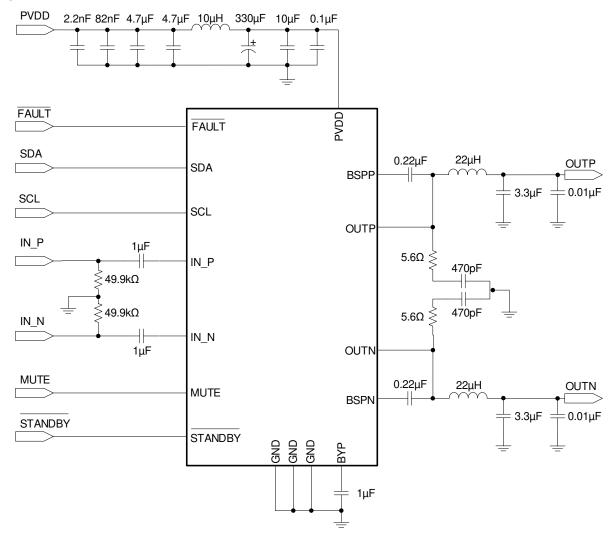


図 8-1. TAS5441-Q1 Typical Application Schematic

21

8.2.1 Design Requirements

Use the following for the design requirements:

· Power supplies

The device requires only a single power supply compliant with the recommended operation range. The device is designed to work with either a vehicle battery or regulated power supply such as from a backup battery.

Communication

The device communicates with the system controller with both discrete hardware control pins and with I²C. The device is an I²C slave and thus requires a master. If a master I²C-compliant device is not present in the system, the device can still be used, but only with the default settings. Diagnostic information is limited to the discrete reporting FAULT pin.

· External components

表 8-1 lists the components required for the device.

表 8-1. Supporting Compone	ents
---------------------------	------

EVM DESIGNATOR	QUANITY	VALUE	SIZE	DESCRIPTION	USE IN APPLICATION
C7	1	10 µF ± 10%	1206	X7R ceramic capacitor, 25-V	Power supply
C8	1	330 µF ± 20%	10 mm	Low-ESR aluminum capacitor, 25-V	Power supply
C9, C16, C20	3	1 µF ± 10%	0805	X7R ceramic capacitor, 25-V	Analog audio input filter, bypass
C10, C14	2	0.22 μF ± 10%	0603	X7R ceramic capacitor, 25-V	Bootstrap capacitors
C11, C17	2	3.3 µF ± 10%	0805	X7R ceramic capacitor, 25-V	Amplifier output filtering
C13, C15	2	470 pF ± 10%	0603	X7R ceramic capacitor, 250-V	Amplifier output snubbers
C6	1	0.1 µF ± 10%	0603	X7R ceramic capacitor, 25-V	Power supply
C2	1	2200 pF ± 10%	0603	X7R ceramic capacitor, 50-V	Power supply
С3	1	0.082 μF ± 10%	0603	X7R ceramic capacitor, 25-V	Power supply
C4, C5	2	4.7 µF ± 10%	1206	X7R ceramic capacitor, 25-V	Power supply
C12, C18	2	0.01 μF ± 10%	0603	X7R ceramic capacitor, 25-V	Output EMI filtering
L1	1	10 μH ± 20%	13.5 mm ×13.5 mm	Shielded ferrite inductor	Power supply
L2	1	22 µH ± 20%	8 mm × 8 mm	Coupled inductor	Amplifier output filtering
R5, R6	2	49.9 kΩ ± 1%	0805	Resistors, 0.125-W	Analog audio input filter
R4, R7	2	5.6 Ω ± 5%	0805	Resistors, 0.125-W	Output snubbers

8.2.1.1 Amplifier Output Filtering

Output FETs drive the amplifier outputs in an H-bridge configuration. These transistors are either fully off or on. The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the audio signal. The amplifier outputs require a low-pass filter to filter out the PWM modulation carrier frequency. People frequently call this filter the L-C filter, due to the presence of an inductive element L and a capacitive element C to make up the 2-pole low-pass filter. The L-C filter attenuates the carrier frequency, reducing electromagnetic emissions and smoothing the current waveform which the load draws from the power supply. See *Class-D LC Filter Design* for a detailed description on proper component selection and design of an L-C filter based upon the desired load and response.

Product Folder Links: TAS5441-Q1

Copyright © 2024 Texas Instruments Incorporated

8.2.1.2 Amplifier Output Snubbers

A snubber is an RC network placed at the output of the amplifier to dampen ringing or overshoot on the PWM output waveform. Overshoot and ringing has several negative impacts including: potential EMI sources, degraded audio performance, and overvoltage stress of the output FETs or board components. For more information on the use and design of output snubbers, see *Class-D Output Snubber Design Guide*.

8.2.1.3 Bootstrap Capacitors

The output stage uses dual NMOS transistors; therefore, the circuit requires bootstrap capacitors for the high side of each output to turn on correctly. The required capacitor connection is from BSTN to OUTN and from BSTP to OUTP as shown in \boxtimes 8-1.

8.2.1.4 Analog Audio Input Filter

The circuit requires an input capacitor to allow biasing of the amplifier put to the proper dc level. The input capacitor and the input impedance of the amplifier form a high-pass filter with a -3-dB corner frequency determined by the equation: $f = 1 / (2\pi R_{(i)}C_{(i)})$, where $R_{(i)}$ is the input impedance of the device based on the gain setting and $C_{(i)}$ is the input capacitor value. $\frac{1}{2}$ 8-2 lists largest recommended input capacitor values. Use a capacitor which matches the application requirement for the lowest frequency but does not exceed the values listed.

z,												
TYPICAL INPUT IMPEDANCE (kΩ)	INPUT CAPACITANCE (μF)	HIGH-PASS FILTER (Hz)										
60	1	2.7										
00	1.5	1.8										
30	1	5.3										
30	3.3	1.6										
15	5.6	2.3										
9	10	1.8										
	TYPICAL INPUT IMPEDANCE (kΩ) 60 30	TYPICAL INPUT IMPEDANCE (kΩ) $ \begin{array}{c c} \hline $										

表 8-2. Recommended Input AC-Coupling Capacitors

8.2.2 Detailed Design Procedure

Use the following steps for the design procedure:

- Step 1: Hardware Schematic Design: Using the 図 8-1 as a guide, integrate the hardware into the system schematic.
- Step 2: Following the layout guidelines recommended in *Layout Guidelines#none#*, integrate the device and the supporting components into the system PCB file.
- Step 3: Thermal Design: The device has an exposed thermal pad which requires proper soldering. For more information, see *Semiconductor and IC Package Thermal Metrics* and *PowerPAD Thermally Enhanced Package*.
- Step 4: Develop software: The EVM User's Guide has detailed instructions for how to set up the device, interpret diagnostic information, and so forth. For information about control registers, see セクション 7.5.

For questions and support, go to the E2E forums.

8.2.2.1 Unused Pin Connections

Even if unused, always connect pins to a fixed rail; do not leave them floating. Floating input pins represent an ESD risk, therefore the user must adhere to the following guidance for each pin.

8.2.2.1.1 MUTE Pin

If the MUTE pin is unused in the application, then connect the pin to GND through a high-impedance resistor.

Product Folder Links: TAS5441-Q1

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

23

8.2.2.1.2 **STANDBY** Pin

If the STANDBY pin is unused in the application, connect it to a low-voltage rail such as 3.3 V or 5 V through a high-impedance resistor.

8.2.2.1.3 I²C Pins (SDA and SCL)

If there is no microcontroller in the system, use of the device without I^2C communication is possible. In this situation, connect the SDA and SCL pins to 3.3 V.

8.2.2.1.4 Terminating Unused Outputs

If the FAULT pin does not report to a system microcontroller in the application, then connect the pin to GND.

8.2.2.1.5 Using a Single-Ended Audio Input

When using a single-ended audio source, ac-ground the negative input through a capacitor equal in value to the input capacitor on the positive input, and apply the audio source to the positive input. For best performance, the ac ground must be at the audio source instead of at the device input if possible.

8.2.3 Application Curves

See the セクション 6.7 section for application performance plots.

表 8-3. Table of Graphs

GRAPH	FIGURE NO.									
Efficiency vs Output Power	図 6-1									
THD+N vs Output Power	☑ 6-2									
Output Power vs PVDD	☑ 6-3									
THD+N vs Frequency	☑ 6-4									
Noise FFT With -60-dB Output	☑ 6-5									
Noise FFT With 1-W Output	☑ 6-6									
Overcurrent Threshold vs Temperature	☑ 6-7									

Product Folder Links: TAS5441-Q1

資料に関するフィードバック(ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

9 Layout

9.1 Layout Guidelines

The EVM layout optimizes for thermal dissipation and EMC performance. The TAS5441-Q1 device has a thermal pad down, and good thermal conduction and dissipation require adequate copper area. Layout also affects EMC performance. TAS5411Q1EVM illustrations form the basis for the layout discussions.

9.2 Layout Examples

9.2.1 Top Layer

The red boxes around number 1 are the copper ground on the top layer. Soldered directly to the thermal pad, the ground is the first significant thermal dissipation required. There are vias that go to the other layers for further thermal relief, but vias have high thermal resistance. TI recommends that use of the top layer be mostly for thermal dissipation. A further recommendation is short routes from output pins to the second-order LC filter for EMC suppression. The number 2 arrow indicates these short routes for better ECM results. A short route from the PVDD pin to the LC filter from the battery or power source, as indicated by the number 3 arrow, also improves EMC suppression. Route on an outside layer for added current capability. The red box around number 4 indicates the ground plane that is common to both OUTP and OUTN. Place the capacitors of the LC filter in the common ground plane to help with common-mode noise and short ground loops

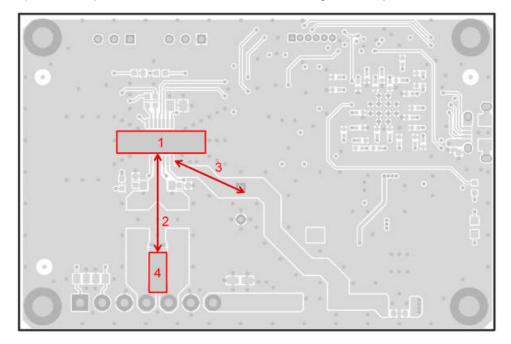


図 9-1. Top layer

25

9.2.2 Second Layer - Signal Layer

Pour a full ground plane on an inner layer to keep current loops small to reduce EMI.

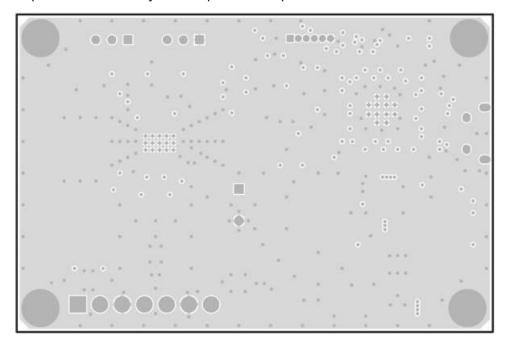


図 9-2. Signal Layer

10 Device and Documentation Support

10.1 Device Support

10.1.1 サード・パーティ製品に関する免責事項

サード・パーティ製品またはサービスに関するテキサス・インスツルメンツの出版物は、単独またはテキサス・インスツルメン ツの製品、サービスと一緒に提供される場合に関係なく、サード・パーティ製品またはサービスの適合性に関する是認、サ ード・パーティ製品またはサービスの是認の表明を意味するものではありません。

10.2 Documentation Support

10.2.1 Related Documentation

For related documentation see the following:

- AN-1737 Managing EMI in Class D Audio Applications (SNAA050)
- AN-1849 An Audio Amplifier Power Supply Design (SNAA057)
- Class-D LC Filter Design (SLOA119)
- Class-D Output Snubber Design Guide (SLOA201)
- Filter-Free™ Class-D Audio Amplifiers (SLOA145)
- Guidelines for Measuring Audio Power Amplifier Performance (SLOA068)
- Power Rating in Audio Amplifiers (SLEA047)
- PowerPAD Thermally Enhanced Package (SLMA002)

10.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をク リックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細に ついては、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

10.4 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパ ートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要 な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕 様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツ ルメンツの使用条件を参照してください。

10.5 Trademarks

PowerPAD™ and テキサス・インスツルメンツ E2E™ are trademarks of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

10.6 静電気放電に関する注意事項

Copyright © 2024 Texas Instruments Incorporated

この IC は、ESD によって破損する可能性があります。 テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うこと を推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

10.7 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TAS5441-Q1

資料に関するフィードバック(ご意見やお問い合わせ)を送信

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TAS5441QPWPRQ1	Active	Production	HTSSOP (PWP) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TAS5441
TAS5441QPWPRQ1.A	Active	Production	HTSSOP (PWP) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TAS5441

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

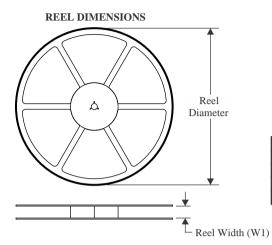
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

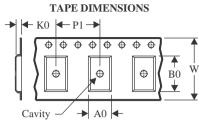
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

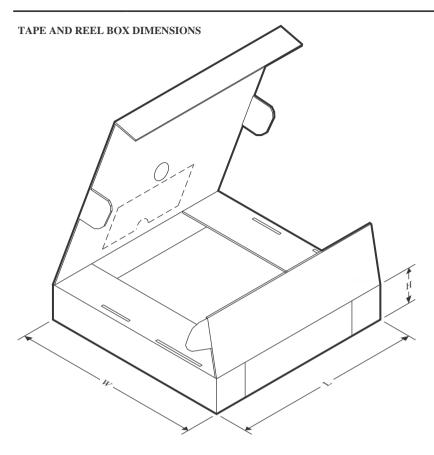
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

_	<u> </u>
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

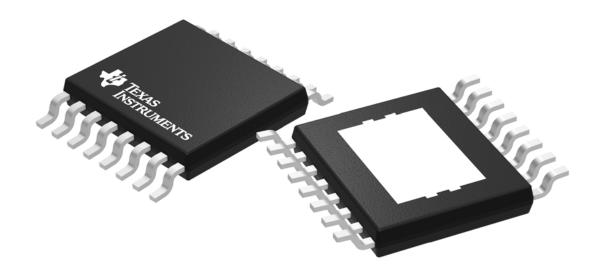
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TAS5441QPWPRQ1	HTSSOP	PWP	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

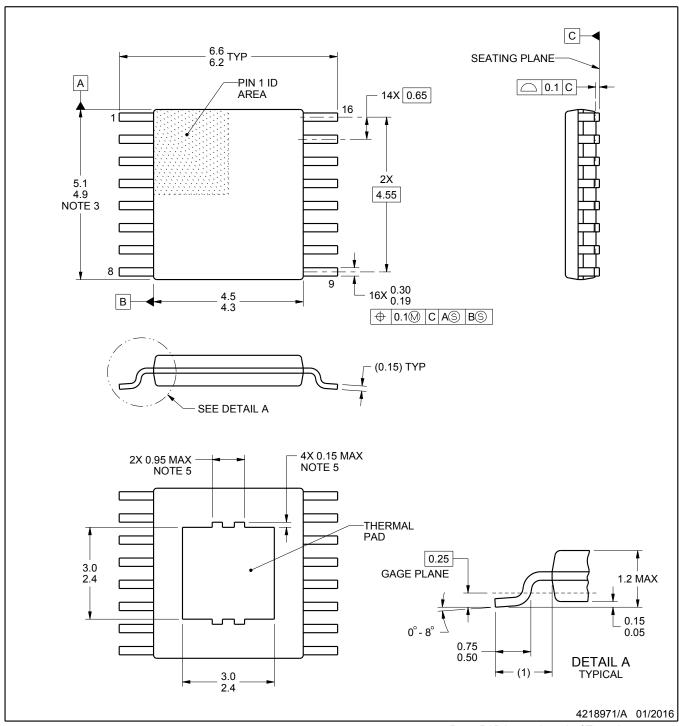
PACKAGE MATERIALS INFORMATION


www.ti.com 24-Jul-2025

*All dimensions are nominal

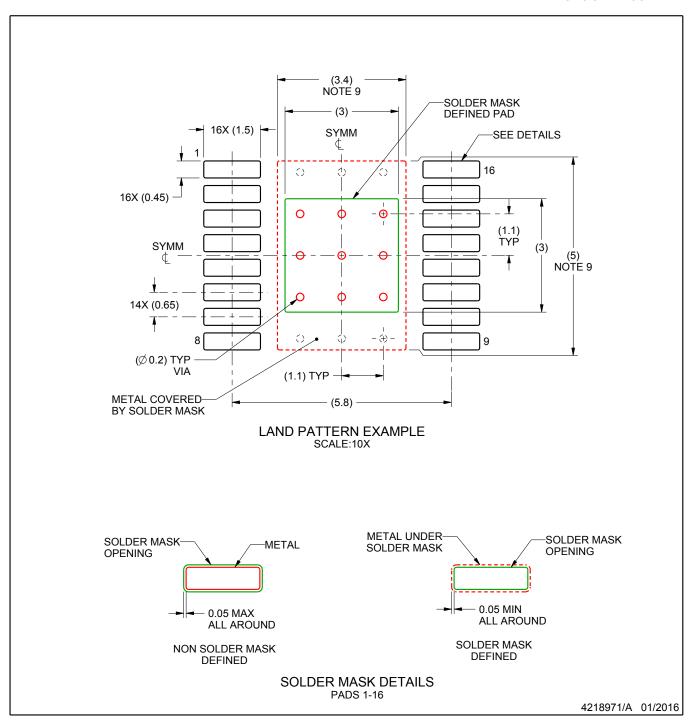
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TAS5441QPWPRQ1	HTSSOP	PWP	16	2000	353.0	353.0	32.0

PLASTIC SMALL OUTLINE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PowerPAD™ TSSOP - 1.2 mm max height

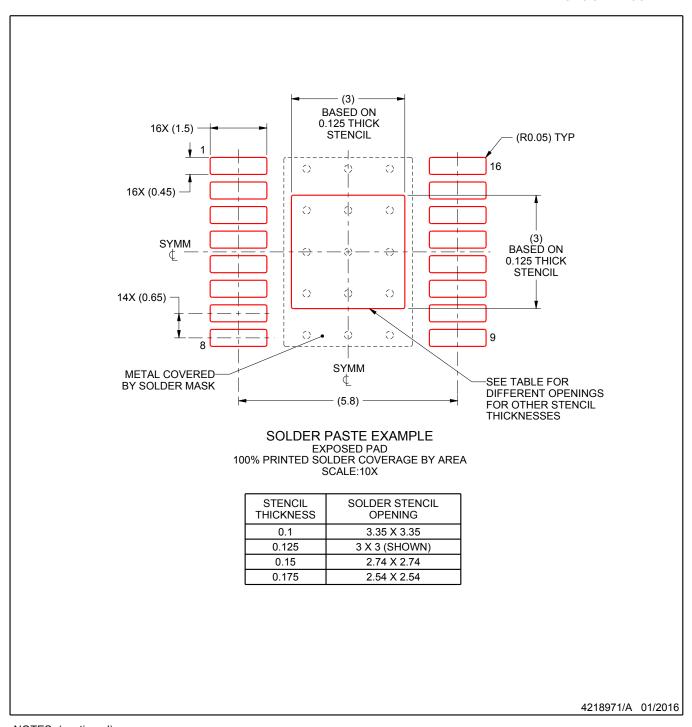
PLASTIC SMALL OUTLINE


NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.
- 5. Features may not be present.

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日:2025 年 10 月