SN74LVT125 3.3-V ABT QUADRUPLE BUS BUFFER WITH 3-STATE OUTPUTS

SCBS133F - MAY 1992 - REVISED OCTOBER 2003

- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} Supports Partial-Power-Down Mode Operation
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

description/ordering information

This bus buffer is designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The SN74LVT125 features independent line drivers with 3-state outputs. Each output is in the high-impedance state when the associated output-enable (\overline{OE}) input is high.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

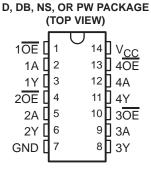
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Tube	SN74LVT125D	1)/7405
	SOIC – D	Tape and reel	SN74LVT125DR	LVT125
–40°C to 85°C	SOP – NS	Tape and reel	SN74LVT125NSR	LVT125
-40°C 10 85°C	SSOP – DB	Tape and reel	SN74LVT125DBR	LX125
		Tube	SN74LVT125PW	1 1 1 2 5
	TSSOP – PW	Tape and reel	SN74LVT125PWR	LX125

ORDERING INFORMATION

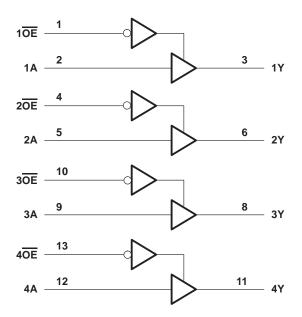
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated



SN74LVT125 3.3-V ABT QUADRUPLE BUS BUFFER WITH 3-STATE OUTPUTS

SCBS133F - MAY 1992 - REVISED OCTOBER 2003

FUNCTION TABLE (each buffer)										
INP	INPUTS OUTPUT									
OE	Α	Y								
L	Н	Н								
L	L	L								
Н	Х	Z								

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} –0.5 V to 4.6 V Input voltage range, V _I (see Note 1)–0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_O (see Note 1)0.5 V to 7 V Current into any output in the low state, I_O
Current into any output in the high state, I _O (see Note 2)
Input clamp current, I _{IK} (V _I < 0)
Output clamp current, I _{OK} (V _O < 0)
Package thermal impedance, θ _{JA} (see Note 3): D package
DB package
NS package
PW package 113°C/W
Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74LVT125 3.3-V ABT QUADRUPLE BUS BUFFER WITH 3-STATE OUTPUTS SCBS133F - MAY 1992 - REVISED OCTOBER 2003

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	V
V_{IH}	High-level input voltage		2		V
V_{IL}	Low-level input voltage			0.8	V
VI	Input voltage			5.5	V
IOH	High-level output current			-32	mA
IOL	Low-level output current			64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10	ns/V
Т _А	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

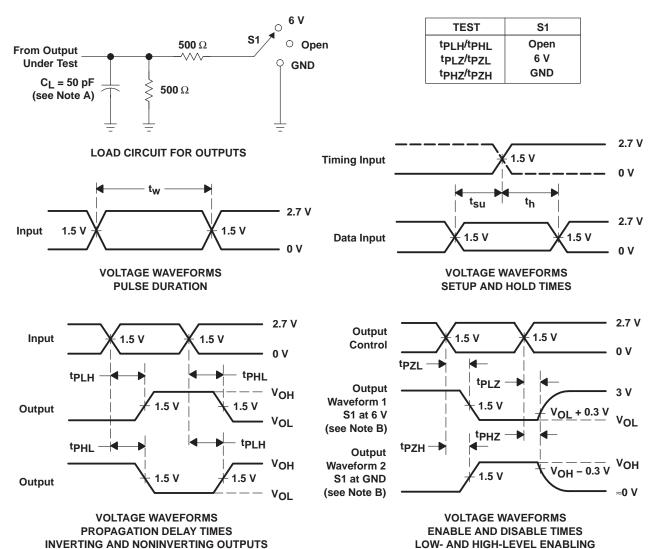
PARAMETER		TEST CONDITIONS						
VIK	V _{CC} = 2.7 V,	lj = –18 mA			-1.2	V		
VOH VOL	$V_{CC} = MIN \text{ to } MAX^{\ddagger},$	V _{CC} -0.2						
	V _{CC} = 2.7 V,	I _{OH} = -8 mA	$I_{OH} = -8 \text{ mA}$				V	
	$V_{CC} = 3 V$	$\begin{split} & I_{I} = -18 \text{ mA} \\ & I_{OH} = -100 \ \mu\text{A} \\ & I_{OH} = -8 \text{ mA} \\ \hline & I_{OL} = -32 \text{ mA} \\ & I_{OL} = 100 \ \mu\text{A} \\ & I_{OL} = 24 \text{ mA} \\ \hline & I_{OL} = 24 \text{ mA} \\ \hline & I_{OL} = 32 \text{ mA} \\ & I_{OL} = 32 \text{ mA} \\ \hline & I_{OL} = 64 \text{ mA} \\ \hline & V_{I} = 5.5 \text{ V} \\ \hline & V_{I} = V_{CC} \text{ or GND} \\ & V_{I} = V_{CC} \text{ or GND} \\ \hline & V_{I} = V_{CC} \\ \hline & V_{I} = 0 \\ \hline & V_{I} = 2 \text{ V} \\ \hline & V_{I} = 2 \text{ V} \\ \hline & V_{O} = 3 \text{ V} \\ \hline & V_{O} = 0.5 \text{ V} \\ \hline & I_{O} = 0, \\ \hline & Outputs \text{ high} \\ \hline & Outputs \text{ disa} \\ \hline & One \text{ input at } V_{CC} - 0.6 \text{ V}, \\ \hline & Other \text{ inputs} \\ \hline \end{split}$		2				
		I _{OL} = 100 μA				0.2		
	V _{CC} = 2.7 V	I _{OL} = 24 mA				0.5		
VOL		I _{OL} = 16 mA				0.4	V	
VIK VOH VOL II Ioff II(hold) IOZH IOZL ICC ΔICC [§] Ci	V _{CC} = 3 V	I _{OL} = 32 mA				0.5		
		$I_{I} = -18 \text{ mA}$ $I_{OH} = -100 \mu \text{A}$ $I_{OH} = -8 \text{ mA}$ $I_{OH} = -32 \text{ mA}$ $I_{OL} = 100 \mu \text{A}$ $I_{OL} = 24 \text{ mA}$ $I_{OL} = 32 \text{ mA}$ $I_{OL} = 32 \text{ mA}$ $I_{OL} = 32 \text{ mA}$ $I_{OL} = 64 \text{ mA}$ $V_{I} = 5.5 \text{ V}$ $V_{I} = V_{CC} \text{ or GND}$ $V_{I} = V_{CC} \text{ or GND}$ $V_{I} = V_{CC} \text{ or GND}$ $V_{I} = 0$ $V_{I} = 0 \text{ Data inputs}$ $V_{I} = 2 \text{ V}$ $V_{O} = 3 \text{ V}$ $V_{O} = 0.5 \text{ V}$ $I_{O} = 0,$ $Outputs low$ $Outputs low$				0.55		
$V_{CC} = 0$ or MAX [‡] ,		V _I = 5.5 V						
	$V_{CC} = 0 \text{ or MAX}^{\ddagger}, \qquad V_{I} = 5.5 \text{ V}$ $V_{CC} = 3.6 \text{ V} \qquad \qquad V_{I} = V_{CC} \text{ or GND}$ $V_{I} = V_{CC}$ $V_{I} = 0$ $V_{I} = 0$ $V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$ $V_{I} = 0.8 \text{ V}$	$V_{I} = V_{CC}$ or GND	Control inputs			±1		
lį		$V_{I} = V_{CC}$				1	μA	
		$V_{I} = 0$	Data inputs			-5		
loff	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V				±100	μΑ	
		V _I = 0.8 V	Deta incuta	75				
^I I(hold)	ACC = 3 A	V ₁ = 2 V	Data Inputs	-75			μA	
IOZH	V _{CC} = 3.6 V,	$V_{O} = 3 V$				5	μΑ	
IOZL	V _{CC} = 3.6 V,	$V_{O} = 0.5 V$				-5	μΑ	
			Outputs high	0.12 (0.19		
ICC	$V_{CC} = 3.6 V,$ VI = V_CC or GND	$I_{O} = 0,$	Outputs low		4.5	7	mA	
			Outputs disabled		0.12	0.19		
∆ICC§	V _{CC} = 3 V to 3.6 V,	One input at V_{CC} – 0.6 V,				0.2	mA	
Ci	V _I = 3 V or 0				4		pF	
Co	V _O = 3 V or 0	-			8		pF	

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [§] This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

SN74LVT125 3.3-V ABT QUADRUPLE BUS BUFFER WITH 3-STATE OUTPUTS SCBS133F - MAY 1992 - REVISED OCTOBER 2003

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	TO	V	CC = 3.3 ± 0.3 V	V	V _{CC} =	UNIT	
	(INPUT)	(OUTPUT)	MIN	TYP†	MAX	MIN	MAX	
^t PLH	٨	v		2.7	4		4.5	20
^t PHL	A	Ť	1	2.9	3.9		4.9	ns
^t PZH	OE	×	1	3.4	4.7		6	2
^t PZL	OE	Ŷ		3.4	4.7		6.5	ns
^t PHZ	OE	V	1.8	3.7	5.1		5.7	20
^t PLZ	UE	ſ	1.3	2.6	4.5		4	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25° C.

SN74LVT125 3.3-V ABT QUADRUPLE BUS BUFFER WITH 3-STATE OUTPUTS

SCBS133F - MAY 1992 - REVISED OCTOBER 2003

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	(3) Ball material		MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74LVT125D	Active	Production	SOIC (D) 14	50 TUBE	Yes	(4) NIPDAU NIPDAU	(5) Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125D.B	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125D1G4	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125D1G4.B	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125DBR	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125
SN74LVT125DBR.B	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125
SN74LVT125DBR1G4	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125
SN74LVT125DBR1G4.B	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125
SN74LVT125DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125DR.B	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125DRG4	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125NSR.B	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVT125
SN74LVT125PW	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125
SN74LVT125PW.B	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125
SN74LVT125PWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125
SN74LVT125PWR.B	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125
SN74LVT125PWRG4	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LX125

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

PACKAGE OPTION ADDENDUM

17-Jun-2025

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

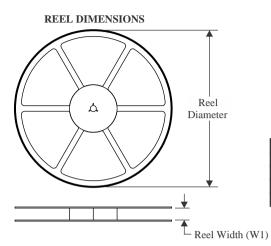
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

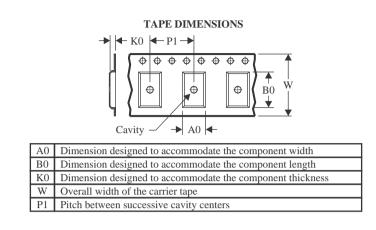
OTHER QUALIFIED VERSIONS OF SN74LVT125 :

• Automotive : SN74LVT125-Q1

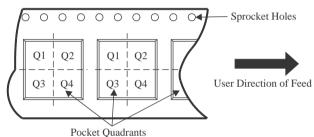
• Enhanced Product : SN74LVT125-EP

NOTE: Qualified Version Definitions:


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

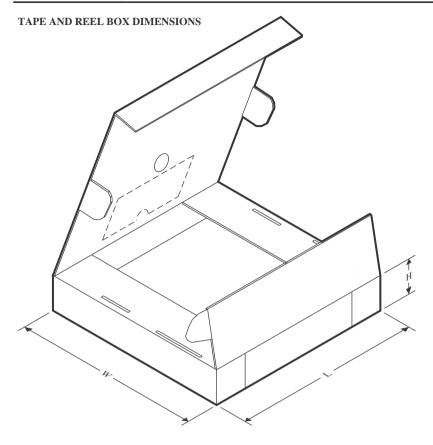


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

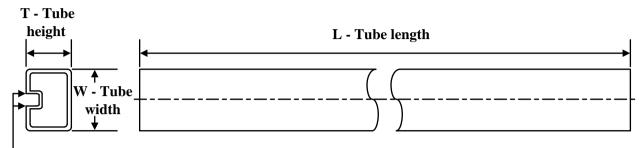

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVT125DBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LVT125DBR1G4	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LVT125DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVT125NSR	SOP	NS	14	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1
SN74LVT125PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2025

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVT125DBR	SSOP	DB	14	2000	353.0	353.0	32.0
SN74LVT125DBR1G4	SSOP	DB	14	2000	353.0	353.0	32.0
SN74LVT125DR	SOIC	D	14	2500	340.5	336.1	32.0
SN74LVT125NSR	SOP	NS	14	2000	353.0	353.0	32.0
SN74LVT125PWR	TSSOP	PW	14	2000	353.0	353.0	32.0

TEXAS INSTRUMENTS

www.ti.com

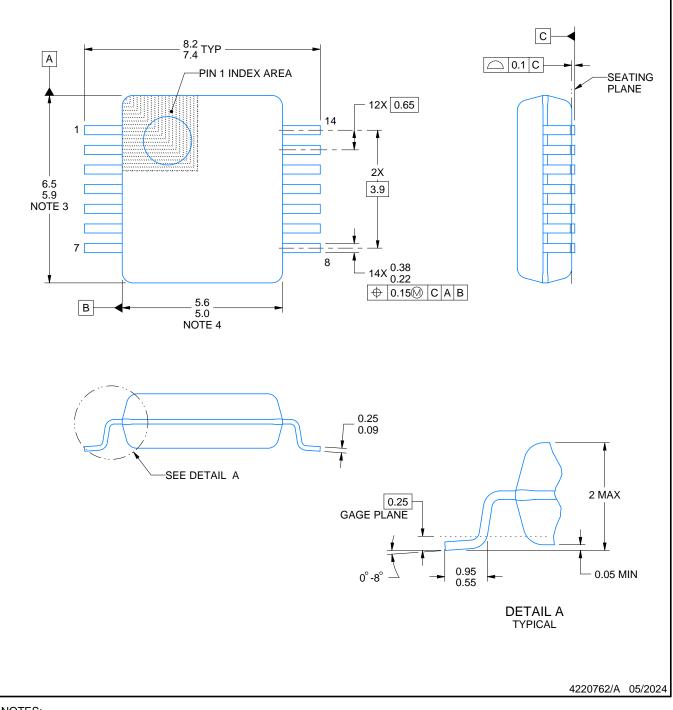
24-Jul-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74LVT125D	D	SOIC	14	50	507	8	3940	4.32
SN74LVT125D	D	SOIC	14	50	506.6	8	3940	4.32
SN74LVT125D.B	D	SOIC	14	50	507	8	3940	4.32
SN74LVT125D.B	D	SOIC	14	50	506.6	8	3940	4.32
SN74LVT125D1G4	D	SOIC	14	50	507	8	3940	4.32
SN74LVT125D1G4.B	D	SOIC	14	50	507	8	3940	4.32
SN74LVT125PW	PW	TSSOP	14	90	530	10.2	3600	3.5
SN74LVT125PW.B	PW	TSSOP	14	90	530	10.2	3600	3.5


DB0014A

PACKAGE OUTLINE

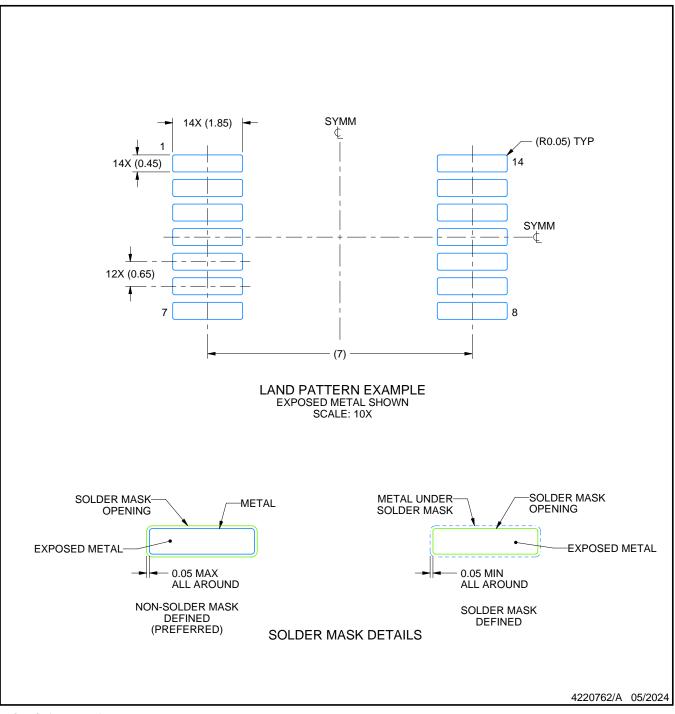
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150.



DB0014A

EXAMPLE BOARD LAYOUT

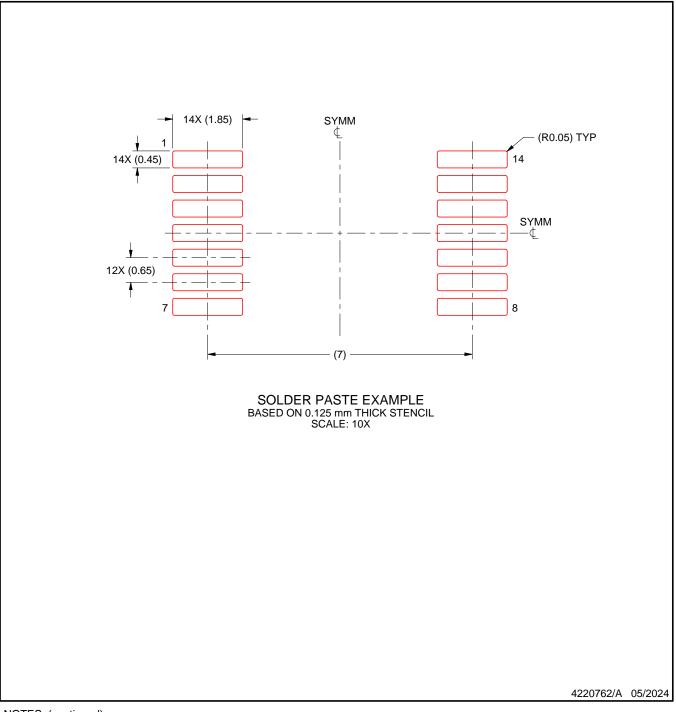
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0014A

EXAMPLE STENCIL DESIGN

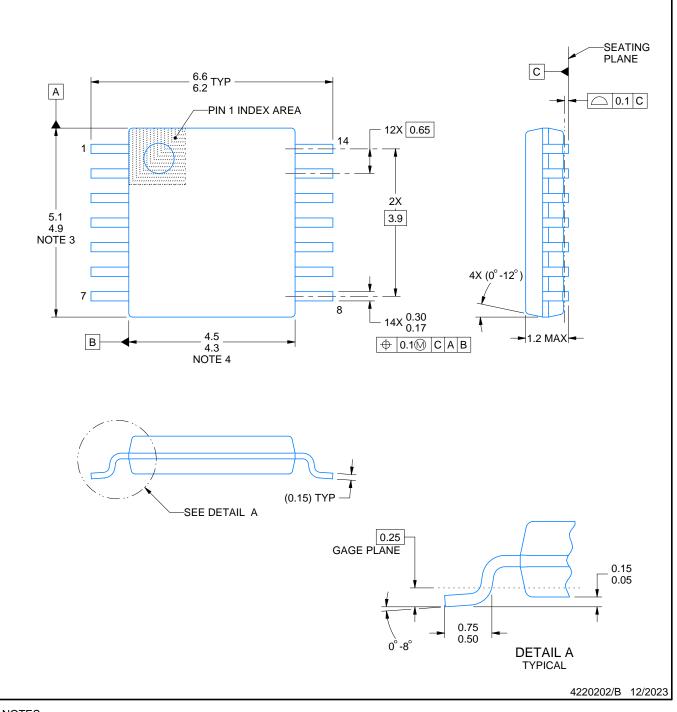
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.


PW0014A

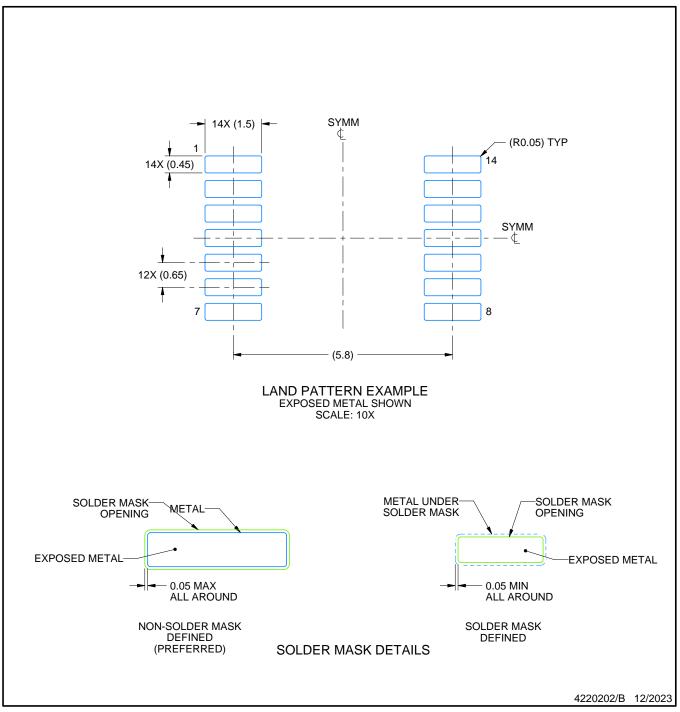
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0014A

EXAMPLE BOARD LAYOUT

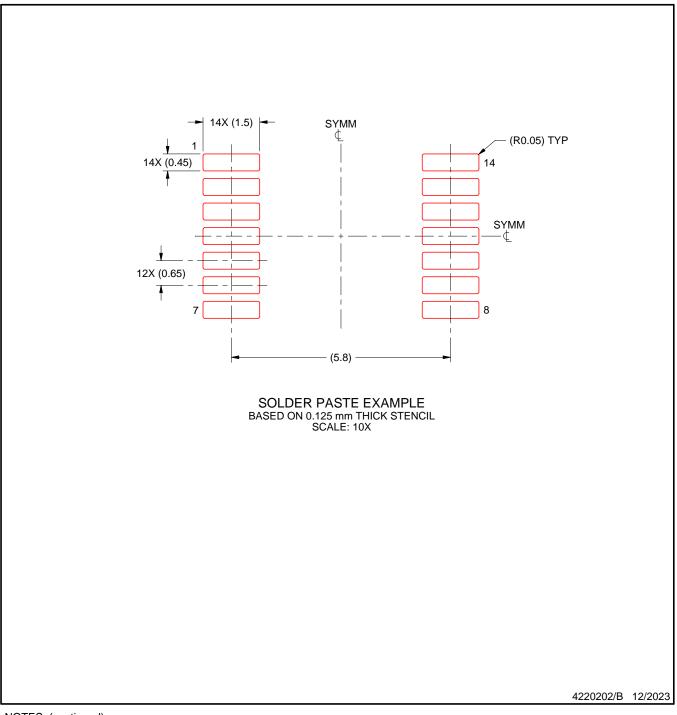
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0014A

EXAMPLE STENCIL DESIGN

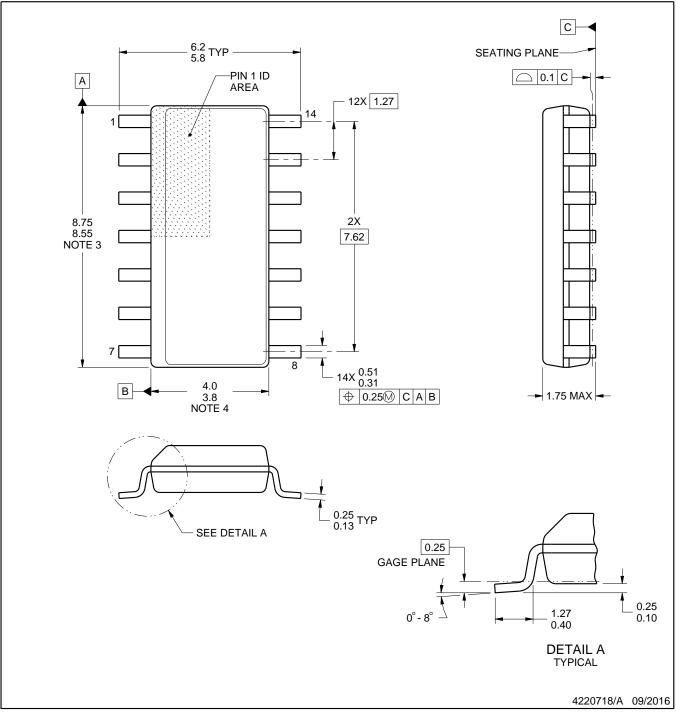
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


D0014A

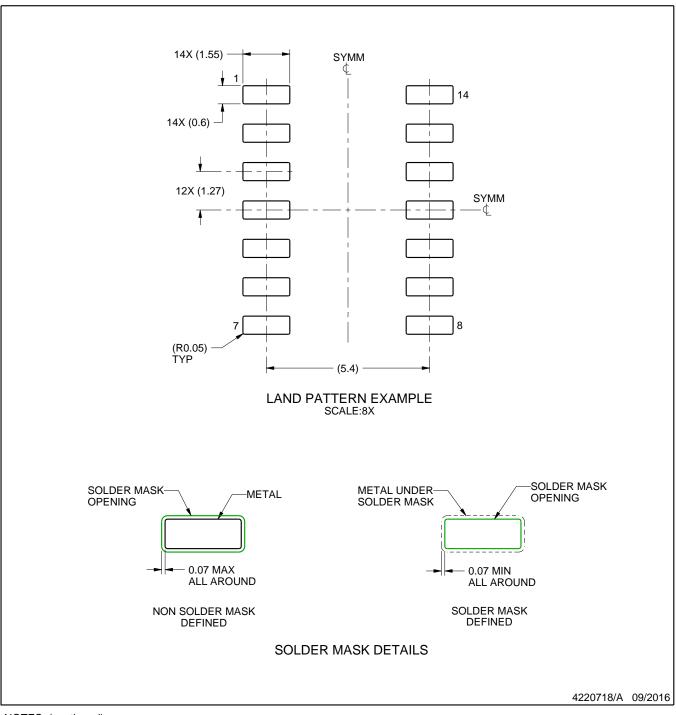
PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.



D0014A

EXAMPLE BOARD LAYOUT

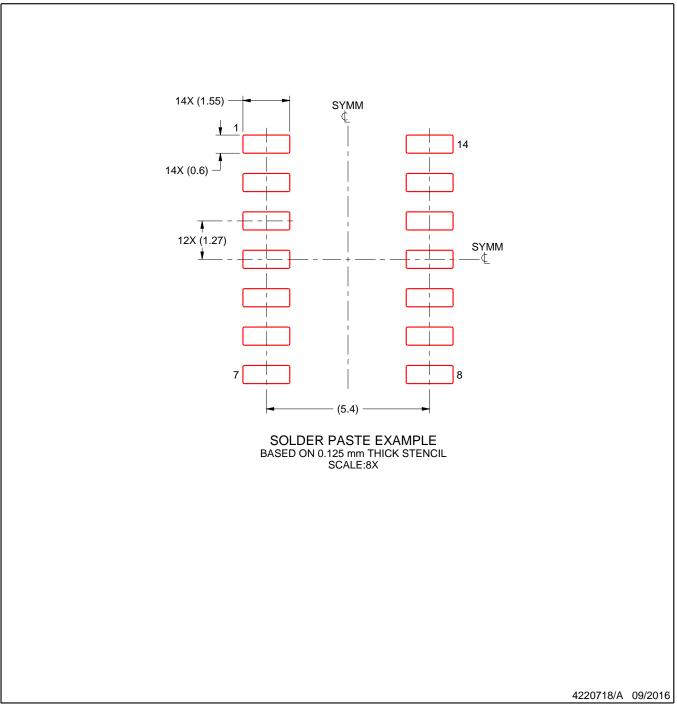
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0014A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated