



Sample &

Buy





SN74LVC2244A

SCAS572L-APRIL 1996-REVISED JULY 2014

## SN74LVC2244A Octal Buffer/Driver With 3-State Outputs

#### 1 Features

- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max  $t_{pd} \mbox{ of } 5.5 \mbox{ ns at } 3.3 \mbox{ V}$
- Output Ports Have Equivalent 26-Ω Series . Resistors, So No External Resistors Are Required
- Typical V<sub>OLP</sub> (Output Ground Bounce) • <0.8 V at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C
- Typical V<sub>OHV</sub> (Output V<sub>OH</sub> Undershoot) >2 V at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V<sub>CC</sub>)
- Ioff Supports Live Insertion, Partial-Power-Down . Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22 .
  - 2000-V Human-Body Model (A114-A)
  - 200-V Machine Model (A115-A)
  - 1000-V Charged-Device Model (C101)

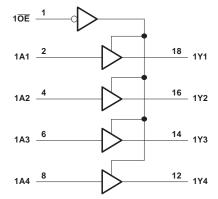
#### Simplified Schematic 4

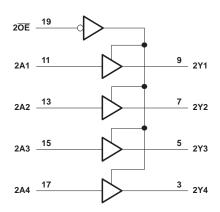


- Wearable Health and Fitness Devices
- **Network Switches**

Tools &

- Servers
- **Tests and Measurements**


### 3 Description


The SN74LVC2244A octal buffer/line driver is designed for 1.65-V to 3.6-V V<sub>CC</sub> operation.

| Device Information <sup>(1)</sup> |            |                    |  |  |  |  |  |  |  |
|-----------------------------------|------------|--------------------|--|--|--|--|--|--|--|
| PART NUMBER                       | PACKAGE    | BODY SIZE (NOM)    |  |  |  |  |  |  |  |
|                                   | SSOP (20)  | 7.20 mm × 5.30 mm  |  |  |  |  |  |  |  |
|                                   | SSOP (20)  | 8.65 mm × 3.90 mm  |  |  |  |  |  |  |  |
| SN74LVC2244A                      | TVSOP (20) | 5.00 mm × 4.40 mm  |  |  |  |  |  |  |  |
|                                   | SOIC (20)  | 12.80 mm × 7.50 mm |  |  |  |  |  |  |  |
|                                   | TSSOP (20) | 6.50 mm × 4.40 mm  |  |  |  |  |  |  |  |

## Device Information $^{(1)}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.







Product Folder Links: SN74LVC2244A

## **Table of Contents**

| 1 | Feat | tures 1                                     |
|---|------|---------------------------------------------|
| 2 | Арр  | lications1                                  |
| 3 | Des  | cription 1                                  |
| 4 | Sim  | plified Schematic1                          |
| 5 | Rev  | ision History 2                             |
| 6 | Pin  | Configuration and Functions 3               |
| 7 | Spe  | cifications 4                               |
|   | 7.1  | Absolute Maximum Ratings 4                  |
|   | 7.2  | Handling Ratings 4                          |
|   | 7.3  | Recommended Operating Conditions5           |
|   | 7.4  | Thermal Information 5                       |
|   | 7.5  | Electrical Characteristics                  |
|   | 7.6  | Switching Characteristics, -40°C to 85°C 6  |
|   | 7.7  | Switching Characteristics, -40°C to 125°C 6 |
|   | 7.8  | Operating Characteristics7                  |
|   | 7.9  | Typical Characteristics 7                   |
| 8 | Para | ameter Measurement Information              |
|   |      |                                             |

| 9  | Deta  | iled Description                  | 9  |
|----|-------|-----------------------------------|----|
|    | 9.1   | Overview                          | 9  |
|    | 9.2   | Functional Block Diagram          | 9  |
|    | 9.3   | Feature Description               | 9  |
|    | 9.4   | Device Functional Modes           | 9  |
| 10 | Арр   | lication and Implementation       | 10 |
|    | 10.1  | Application Information           | 10 |
|    | 10.2  | Typical Application               | 10 |
| 11 | Pow   | ver Supply Recommendations        | 11 |
| 12 | Lay   | out                               | 11 |
|    | 12.1  | Layout Guidelines                 | 11 |
|    |       | Layout Example                    |    |
| 13 | Dev   | ice and Documentation Support     | 12 |
|    | 13.1  | Trademarks                        | 12 |
|    | 13.2  | Electrostatic Discharge Caution   | 12 |
|    | 13.3  | Glossary                          | 12 |
| 14 | Mec   | hanical, Packaging, and Orderable |    |
|    | Infor | mation                            | 12 |
|    |       |                                   |    |

### 5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| CI | nanges from Revision K (March 2005) to Revision L                             | Page |
|----|-------------------------------------------------------------------------------|------|
| •  | Updated document to new TI data sheet standards.                              | 1    |
| •  | Deleted Ordering Information table.                                           |      |
| •  | Changed I <sub>off</sub> bullet in Features list                              | 1    |
| •  | Added Applications                                                            | 1    |
| •  | Added Pin Functions table                                                     |      |
| •  | Added Handling Ratings table                                                  | 4    |
| •  | Changed MAX ambient temperature to 125°C in Recommended Operating Conditions. | 5    |
| •  | Added Thermal Information table.                                              | 5    |
| •  | Added –40°C to 125°C temperature range in Electrical Characteristics table    | 6    |
| •  | Added data to Switching Characteristics, -40°C to 85°C                        |      |
| •  | Added Switching Characteristics table, -40°C to 125°C.                        | 6    |
| •  | Changed Operating Characteristics table                                       | 7    |
| •  | Added Typical Characteristics.                                                | 7    |
| •  | Added Detailed Description section                                            | 9    |
| •  | Added Application and Implementation section                                  | 10   |



www.ti.com



## 6 Pin Configuration and Functions

#### DB, DBQ, DGV, DW, NS, OR PW PACKAGE (TOP VIEW)

|              |    |                 | l I            |
|--------------|----|-----------------|----------------|
| 1 <u>0</u> [ | 1  | U <sub>20</sub> | Vcc            |
| 1A1 [        | 2  | 19              | ] 2 <u>0</u> E |
| 2Y4 [        | 3  | 18              | ] 1Y1          |
| 1A2 [        | 4  | 17              | 2A4            |
| 2Y3 [        | 5  | 16              | ] 1Y2          |
| 1A3 [        | 6  | 15              | 2A3            |
| 2Y2 [        | 7  | 14              | ] 1Y3          |
| 1A4 [        | 8  | 13              | 2A2            |
| 2Y1 [        | 9  | 12              | ] 1Y4          |
| GND [        | 10 | 11              | 2A1            |

#### **Pin Functions**

| PIN |                 | 1/0 | DESCRIPTION     |
|-----|-----------------|-----|-----------------|
| NO. | NAME            | I/O | DESCRIPTION     |
| 1   | 1 <del>0E</del> | I   | Output Enable 1 |
| 2   | 1A1             | I   | 1A1 Input       |
| 3   | 2Y4             | 0   | 2Y4 Output      |
| 4   | 1A2             | I   | 1A2 Input       |
| 5   | 2Y3             | 0   | 2Y3 Output      |
| 6   | 1A3             | I   | 1A3 Input       |
| 7   | 2Y2             | 0   | 2Y2 Output      |
| 8   | 1A4             | I   | 1A4 Input       |
| 9   | 2Y1             | 0   | 2Y1 Output      |
| 10  | GND             | —   | Ground Pin      |
| 11  | 2A1             | I   | 2A1 Input       |
| 12  | 1Y4             | 0   | 1Y4 Output      |
| 13  | 2A2             | I   | 2A2 Input       |
| 14  | 1Y3             | 0   | 1Y3 Output      |
| 15  | 2A3             | I   | 2A3 Input       |
| 16  | 1Y2             | 0   | 1Y2 Output      |
| 17  | 2A4             | Ι   | 2A4 Input       |
| 18  | 1Y1             | 0   | 1Y1 Output      |
| 19  | 2 <del>0E</del> | I   | Output Enable 2 |
| 20  | VCC             |     | Power Pin       |

### 7 Specifications

#### 7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                 |                                                |                                                                                             | MIN  | MAX                   | UNIT |  |
|-----------------|------------------------------------------------|---------------------------------------------------------------------------------------------|------|-----------------------|------|--|
| V <sub>CC</sub> | Supply voltage range                           | Supply voltage range                                                                        |      |                       |      |  |
| VI              | Input voltage range <sup>(2)</sup>             |                                                                                             | -0.5 | 6.5                   | V    |  |
| Vo              | Voltage range applied to any output in the hig | Voltage range applied to any output in the high-impedance or power-off state <sup>(2)</sup> |      |                       |      |  |
| Vo              | Voltage range applied to any output in the hig | gh or low state <sup>(2) (3)</sup>                                                          | -0.5 | V <sub>CC</sub> + 0.5 | V    |  |
| I <sub>IK</sub> | Input clamp current                            | V <sub>1</sub> < 0                                                                          |      | -50                   | mA   |  |
| I <sub>OK</sub> | Output clamp current                           | V <sub>O</sub> < 0                                                                          |      | -50                   | mA   |  |
| I <sub>O</sub>  | Continuous output current                      |                                                                                             |      | ±50                   | mA   |  |
|                 | Continuous current through $V_{CC}$ or GND     |                                                                                             |      | ±100                  | mA   |  |

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of  $V_{CC}$  is provided in the *Recommended Operating Conditions* table.

### 7.2 Handling Ratings

|                    |                           |                                                                                          | MIN | MAX  | UNIT |
|--------------------|---------------------------|------------------------------------------------------------------------------------------|-----|------|------|
| T <sub>stg</sub>   | Storage temperature range | Storage temperature range                                                                |     |      |      |
|                    | Electrostatia discharge   | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins <sup>(1)</sup>              | 0   | 2000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge   | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins <sup>(2)</sup> | 0   | 1000 | V    |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



#### 7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                 |                                    |                                    | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAX                  | UNIT |
|-----------------|------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|
| V               | Cupply veltere                     | Operating                          | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6                  | V    |
| V <sub>CC</sub> | Supply voltage                     | Data retention only                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | v    |
|                 |                                    | V <sub>CC</sub> = 1.65 V to 1.95 V | $0.65 \times V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |      |
| V <sub>IH</sub> | High-level input voltage           | $V_{CC}$ = 2.3 V to 2.7 V          | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | V    |
|                 |                                    | $V_{CC}$ = 2.7 V to 3.6 V          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |      |
|                 |                                    | V <sub>CC</sub> = 1.65 V to 1.95 V |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.35 \times V_{CC}$ |      |
| V <sub>IL</sub> | Low-level input voltage            | $V_{CC}$ = 2.3 V to 2.7 V          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7                  | V    |
|                 |                                    | $V_{CC} = 2.7 V \text{ to } 3.6 V$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8                  |      |
| VI              | Input voltage                      |                                    | $\begin{tabular}{ c c c c c c } \hline Operating & 1.65 \\ \hline Data retention only & 1.5 \\ \hline V_{CC} = 1.65 \ V \ to \ 1.95 \ V & 0.65 \ \times \ V_{CC} \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & 1.7 \\ \hline V_{CC} = 2.7 \ V \ to \ 3.6 \ V & 2 \\ \hline V_{CC} = 1.65 \ V \ to \ 1.95 \ V & 0 \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & 0 \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & 0 \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & 0 \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & 0 \\ \hline \end{array}$ |                      | V    |
| Vo              | Ordenstand                         | High or low state                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V <sub>CC</sub>      | V    |
|                 | Output voltage                     | 3-state                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5                  | V    |
|                 |                                    | V <sub>CC</sub> = 1.65 V           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2                   |      |
|                 | LP-b. Local code of comment        | V <sub>CC</sub> = 2.3 V            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4                   |      |
| I <sub>OH</sub> | High-level output current          | V <sub>CC</sub> = 2.7 V            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -8                   | mA   |
|                 |                                    | $V_{CC} = 3 V$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -12                  |      |
|                 |                                    | V <sub>CC</sub> = 1.65 V           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    |      |
|                 |                                    | V <sub>CC</sub> = 2.3 V            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                    |      |
| I <sub>OL</sub> | Low-level output current           | V <sub>CC</sub> = 2.7 V            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                    | mA   |
|                 |                                    | $V_{CC} = 3 V$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                   |      |
| Δt/Δv           | Input transition rise or fall rate | ·                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                   | ns/V |
| T <sub>A</sub>  | Operating free-air temperature     |                                    | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125                  | °C   |

 All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

#### 7.4 Thermal Information

|                       |                                              |      |      | SN74LV | C2244A |      |       |      |
|-----------------------|----------------------------------------------|------|------|--------|--------|------|-------|------|
|                       | THERMAL METRIC <sup>(1)</sup>                | DB   | DBQ  | DGV    | DW     | NS   | PW    | UNIT |
|                       |                                              |      |      | 20 P   | PINS   |      |       |      |
| $R_{\theta JA}$       | Junction-to-ambient thermal resistance       | 94.5 | 94.7 | 114.7  | 88.3   | 74.7 | 102.5 |      |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 56.2 | 47.9 | 29.8   | 51.1   | 40.5 | 35.9  |      |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 49.7 | 45.0 | 56.2   | 50.9   | 42.3 | 53.5  |      |
| $\Psi_{JT}$           | Junction-to-top characterization parameter   | 18.1 | 11.0 | 0.8    | 20.0   | 14.3 | 2.2   | °C/W |
| Ψ <sub>JB</sub>       | Junction-to-board characterization parameter | 49.5 | 44.6 | 55.5   | 50.5   | 41.9 | 52.9  |      |
| R <sub>θJC(bot)</sub> | Junction-to-case (bottom) thermal resistance | n/a  | n/a  | n/a    | n/a    | n/a  | n/a   |      |

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

#### SN74LVC2244A

SCAS572L-APRIL 1996-REVISED JULY 2014

www.ti.com

STRUMENTS

XAS

#### 7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

|                  | TEST CONDITIONS                                                               |                    | V                  | -40°C                 | to 85°C            |      | –40°C                 | to 125°0           | C    | UNIT |  |
|------------------|-------------------------------------------------------------------------------|--------------------|--------------------|-----------------------|--------------------|------|-----------------------|--------------------|------|------|--|
| PARAMETER        | TEST CONDITIONS                                                               |                    | V <sub>cc</sub>    | MIN                   | TYP <sup>(1)</sup> | MAX  | MIN                   | TYP <sup>(1)</sup> | MAX  | UNIT |  |
|                  | I <sub>OH</sub> = -100 μA                                                     |                    | 1.65 V to<br>3.6 V | V <sub>CC</sub> – 0.2 |                    |      | V <sub>CC</sub> – 0.2 |                    |      |      |  |
|                  | $I_{OH} = -2 \text{ mA}$                                                      |                    | 1.65 V             | 1.2                   |                    |      | 1.2                   |                    |      |      |  |
|                  | 1 4 m 4                                                                       |                    | 2.3 V              | 1.7                   |                    |      | 1.7                   |                    |      |      |  |
| V <sub>OH</sub>  | $I_{OH} = -4 \text{ mA}$                                                      |                    | 2.7 V              | 2.2                   |                    |      | 2.2                   |                    |      | V    |  |
|                  | $I_{OH} = -6 \text{ mA}$                                                      |                    | 3 V                | 2.4                   |                    |      | 2.4                   |                    |      |      |  |
|                  | $I_{OH} = -8 \text{ mA}$                                                      |                    | 2.7 V              | 2                     |                    |      | 2                     |                    |      |      |  |
|                  | I <sub>OH</sub> = -12 mA                                                      |                    | 3 V                | 2                     |                    |      | 2                     |                    |      |      |  |
|                  | I <sub>OL</sub> = 100 μA                                                      |                    | 1.65 V to<br>3.6 V |                       |                    | 0.2  |                       |                    | 0.2  |      |  |
|                  | I <sub>OL</sub> = 2 mA                                                        |                    | 1.65 V             |                       |                    | 0.45 |                       |                    | 0.45 |      |  |
|                  | $I_{OL} = 4 \text{ mA}$<br>$I_{OL} = 6 \text{ mA}$<br>$I_{OL} = 8 \text{ mA}$ |                    | 2.3 V              |                       |                    | 0.7  |                       |                    | 0.7  | .,   |  |
| V <sub>OL</sub>  |                                                                               |                    | 2.7 V              |                       |                    | 0.4  |                       |                    | 0.4  | V    |  |
|                  |                                                                               |                    | 3 V                |                       |                    | 0.55 |                       |                    | 0.55 |      |  |
|                  |                                                                               |                    | 2.7 V              |                       |                    | 0.6  |                       |                    | 0.6  |      |  |
|                  | I <sub>OL</sub> = 12 mA                                                       |                    | 3 V                |                       |                    | 0.8  |                       |                    | 0.8  |      |  |
| I <sub>I</sub>   | $V_{I} = 0$ to 5.5 V                                                          |                    | 3.6 V              |                       |                    | ±5   |                       |                    | ±5   | μA   |  |
| l <sub>off</sub> | $V_{I} \text{ or } V_{O} = 5.5 \text{ V}$                                     |                    | 0                  |                       |                    | ±10  |                       |                    | ±10  | μA   |  |
| I <sub>OZ</sub>  | $V_0 = 0$ to 5.5 V                                                            |                    | 3.6 V              |                       |                    | ±10  |                       |                    | ±10  | μA   |  |
|                  | $V_{I} = V_{CC}$ or GND                                                       | - 0                | 3.6 V              |                       |                    | 10   |                       |                    | 10   |      |  |
| I <sub>CC</sub>  | $3.6~\textrm{V} \leq \textrm{V}_{\textrm{I}} \leq 5.5~\textrm{V}^{(2)}$       | l <sub>O</sub> = 0 | 3.0 V              |                       |                    | 10   |                       |                    | 10   | μA   |  |
| $\Delta I_{CC}$  | One input at V <sub>CC</sub> – 0.6 V, Oth inputs at V <sub>CC</sub> or GND    | ner                | 2.7 V to<br>3.6 V  |                       |                    | 500  |                       |                    | 500  | μA   |  |
| Ci               | $V_I = V_{CC}$ or GND                                                         |                    | 3.3 V              |                       | 4                  |      |                       | 4                  |      | pF   |  |
| Co               | $V_0 = V_{CC}$ or GND                                                         |                    | 3.3 V              |                       | 5.5                |      |                       | 5.5                |      | pF   |  |

All typical values are at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C. This applies in the disabled state only. (1)

(2)

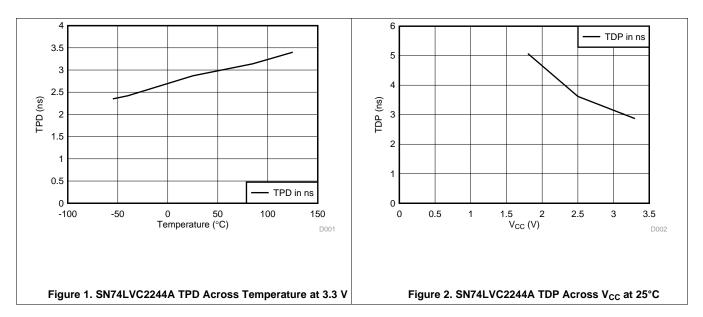
#### 7.6 Switching Characteristics, -40°C to 85°C

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> =<br>± 0.1 |      | V <sub>CC</sub> = 2<br>± 0.2 |     | V <sub>CC</sub> = 2 | 2.7 V | V <sub>CC</sub> = 3<br>± 0.3 | 3.3 V<br>8 V | UNIT |
|------------------|-----------------|----------------|----------------------------|------|------------------------------|-----|---------------------|-------|------------------------------|--------------|------|
|                  | (INFUT)         | (001901)       | MIN                        | MAX  | MIN                          | MAX | MIN                 | MAX   | MIN                          | MAX          |      |
| t <sub>pd</sub>  | А               | Y              |                            | 10.9 |                              | 7.9 |                     | 6.4   | 1.5                          | 5.5          | ns   |
| t <sub>en</sub>  | OE              | Y              |                            | 12.6 |                              | 9.6 |                     | 8.1   | 1                            | 7.1          | ns   |
| t <sub>dis</sub> | OE              | Y              |                            | 12.1 |                              | 7.8 |                     | 7.3   | 1.5                          | 6.8          | ns   |

### 7.7 Switching Characteristics, -40°C to 125°C

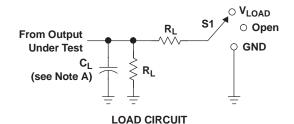
over operating free-air temperature range (unless otherwise noted)


| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> =<br>± 0.1 |      | V <sub>CC</sub> = 2<br>± 0.2 | 2.5 V<br>2 V | V <sub>CC</sub> = 2 | 2.7 V | V <sub>CC</sub> = 3<br>± 0.3 | 3.3 V<br>5 V | UNIT |
|------------------|-----------------|----------------|----------------------------|------|------------------------------|--------------|---------------------|-------|------------------------------|--------------|------|
|                  | (INFUT)         | (001-01)       | MIN                        | MAX  | MIN                          | MAX          | MIN                 | MAX   | MIN                          | MAX          |      |
| t <sub>pd</sub>  | А               | Y              |                            | 12.4 |                              | 10           |                     | 7.1   | 1.5                          | 6.5          | ns   |
| t <sub>en</sub>  | OE              | Y              |                            | 14.1 |                              | 11.7         |                     | 8.5   | 1                            | 7.8          | ns   |
| t <sub>dis</sub> | OE              | Y              |                            | 13.6 |                              | 9.9          |                     | 7.8   | 1.5                          | 7.6          | ns   |



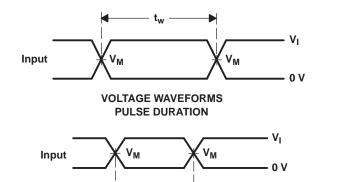
### 7.8 Operating Characteristics

| $T_{A} = 25$    | 5°C                               |                  |            |                         |                  |                  |      |
|-----------------|-----------------------------------|------------------|------------|-------------------------|------------------|------------------|------|
|                 | PARAMETER                         |                  | TEST       | V <sub>CC</sub> = 1.8 V | $V_{CC} = 2.5 V$ | $V_{CC} = 3.3 V$ | UNIT |
|                 | PARAMETER                         |                  | CONDITIONS | TYP                     | ТҮР              | ТҮР              | UNIT |
| C               | Power dissipation capacitance     | Outputs enabled  | f = 10 MHz | 43                      | 43               | 46               | pF   |
| C <sub>pd</sub> | C <sub>pd</sub> per buffer/driver | Outputs disabled | 1 = 10 MHZ | 1                       | 1                | 2                | рг   |


### 7.9 Typical Characteristics

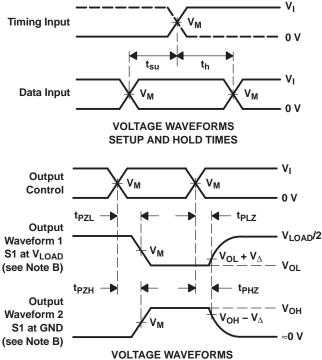


XAS STRUMENTS


www.ti.com

#### Parameter Measurement Information 8




| TEST                               | S1    |
|------------------------------------|-------|
| t <sub>PLH</sub> /t <sub>PHL</sub> | Open  |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | VLOAD |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND   |

| N                                   | INPUTS          |                                |                    | N.                | •     | -            | N            |
|-------------------------------------|-----------------|--------------------------------|--------------------|-------------------|-------|--------------|--------------|
| V <sub>CC</sub>                     | VI              | t <sub>r</sub> /t <sub>f</sub> | VM                 | V <sub>LOAD</sub> | CL    | RL           | $V_{\Delta}$ |
| $1.8~V\pm0.15~V$                    | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | $2 \times V_{CC}$ | 30 pF | <b>1 k</b> Ω | 0.15 V       |
| $\textbf{2.5 V} \pm \textbf{0.2 V}$ | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | $2 \times V_{CC}$ | 30 pF | <b>500</b> Ω | 0.15 V       |
| 2.7 V                               | 2.7 V           | ≤2.5 ns                        | 1.5 V              | 6 V               | 50 pF | <b>500</b> Ω | 0.3 V        |
| 3.3 V $\pm$ 0.3 V                   | 2.7 V           | ≤2.5 ns                        | 1.5 V              | 6 V               | 50 pF | <b>500</b> Ω | 0.3 V        |



Vм

Vм



ENABLE AND DISABLE TIMES

LOW- AND HIGH-LEVEL ENABLING

#### **VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES** INVERTING AND NONINVERTING OUTPUTS

Vм

tPHL

'M

t<sub>PLH</sub>

VOH

 $V_{OL}$ 

VOH

V<sub>OL</sub>

NOTES: A. CL includes probe and jig capacitance.

t<sub>PLH</sub>

t<sub>PHL</sub> -

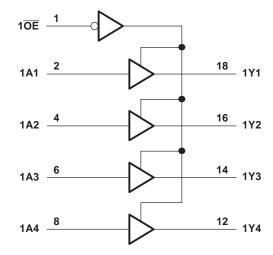
Output

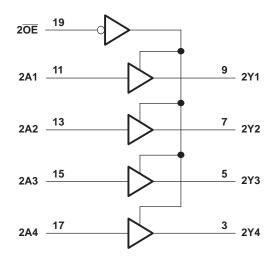
Output

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- G. t<sub>PLH</sub> and t<sub>PHL</sub> are the same as t<sub>pd</sub>.
- H. All parameters and waveforms are not applicable to all devices.

#### Figure 3. Load Circuit and Voltage Waveforms




#### SN74LVC2244A SCAS572L-APRIL 1996-REVISED JULY 2014


### 9 Detailed Description

#### 9.1 Overview

This octal buffer and line driver is designed for 1.65-V to  $3.6-V_{CC}$  operation. The SN74LVC2244A device is organized as two 4-bit line drivers with separate <u>output-enable</u> (OE) inputs. When OE is low, the device passes data from the A inputs to the Y outputs. When OE is high, the outputs are in the high-impedance state. The outputs, which are designed to sink up to 12 mA, include equivalent 26-ohm resistors to reduce overshoot and undershoot.

#### 9.2 Functional Block Diagram





### 9.3 Feature Description

- Wide operating voltage range
- Operates from 1.65 V to 3.6 V
- Allows down voltage translation
  - Inputs accept voltages to 5.5 V
- I<sub>off</sub> Feature
  - Allows voltages on the inputs and outputs when V<sub>CC</sub> is 0 V

### 9.4 Device Functional Modes

#### Table 1. Function Table (Each Buffer)

| INP | UTS | OUTPUT |
|-----|-----|--------|
| OE  | А   | Y      |
| L   | Н   | Н      |
| L   | L   | L      |
| н   | Х   | Z      |

**10** Application and Implementation

### **10.1** Application Information

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment. This device is fully specified for partial-power-down applications using  $I_{off}$ . The  $I_{off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. To ensure the high-impedance state during power up or power down,  $\overline{OE}$  should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

### **10.2 Typical Application**

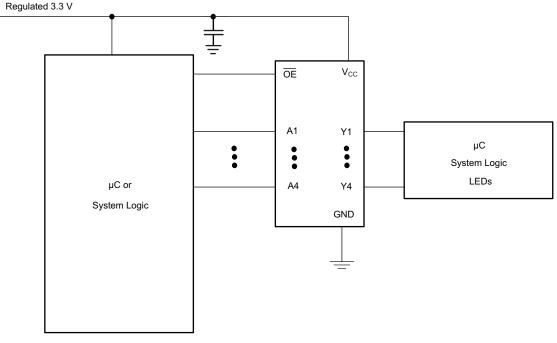



Figure 4. Typical Application Diagram

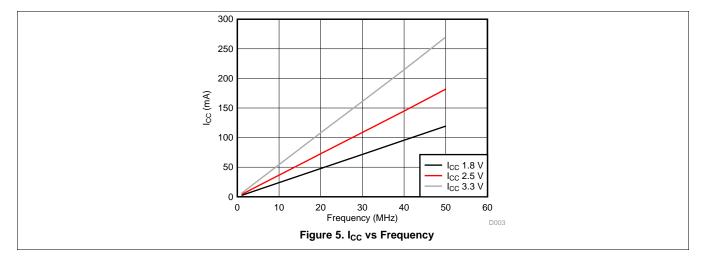
### 10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

### 10.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
  - Rise time and fall time specs: See ( $\Delta t/\Delta V$ ) in the *Recommended Operating Conditions* table.
  - Specified high and low levels: See (V<sub>IH</sub> and V<sub>IL</sub>) in the Recommended Operating Conditions table.
  - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid  $V_{CC}$ .
- 2. Recommend Output Conditions

10


- Load currents should not exceed 25 mA per output and 50 mA total for the part.
- Outputs should not be pulled above V<sub>CC</sub>.

FXAS



#### **Typical Application (continued)**

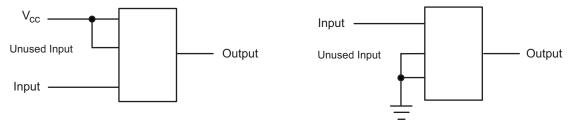
#### 10.2.3 Application Curves



### **11 Power Supply Recommendations**

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each  $V_{CC}$  pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 µf is recommended; if there are multiple  $V_{CC}$  pins, then 0.01 µf or 0.022 µf is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 µf and a 1 µf are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


### 12 Layout

#### 12.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Figure 6 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or  $V_{CC}$ , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the output section of the part when asserted. This will not disable the input section of the IOs, so they cannot float when disabled.

#### 12.2 Layout Example



#### Figure 6. Layout Diagram

TEXAS INSTRUMENTS

www.ti.com

### **13 Device and Documentation Support**

#### 13.1 Trademarks

All trademarks are the property of their respective owners.

#### **13.2 Electrostatic Discharge Caution**



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### 13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

### 14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



## **PACKAGING INFORMATION**

| Orderable part number | Status<br>(1) | Material type (2) | Package   Pins   | Package qty   Carrier | <b>RoHS</b><br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6) |
|-----------------------|---------------|-------------------|------------------|-----------------------|--------------------|--------------------------------------|-----------------------------------|--------------|---------------------|
| SN74LVC2244ADBQR      | Active        | Production        | SSOP (DBQ)   20  | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-2-260C-1 YEAR               | -40 to 85    | LVC2244A            |
| SN74LVC2244ADBQR.B    | Active        | Production        | SSOP (DBQ)   20  | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-2-260C-1 YEAR               | -40 to 85    | LVC2244A            |
| SN74LVC2244ADBQRE4    | Active        | Production        | SSOP (DBQ)   20  | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-2-260C-1 YEAR               | -40 to 85    | LVC2244A            |
| SN74LVC2244ADBR       | Active        | Production        | SSOP (DB)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244ADBR.B     | Active        | Production        | SSOP (DB)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244ADBRG4     | Active        | Production        | SSOP (DB)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244ADGVR      | Active        | Production        | TVSOP (DGV)   20 | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244ADGVR.B    | Active        | Production        | TVSOP (DGV)   20 | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244ADGVRG4    | Active        | Production        | TVSOP (DGV)   20 | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244ADGVRG4.B  | Active        | Production        | TVSOP (DGV)   20 | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244ADW        | Active        | Production        | SOIC (DW)   20   | 25   TUBE             | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244ADW.B      | Active        | Production        | SOIC (DW)   20   | 25   TUBE             | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244ADWR       | Active        | Production        | SOIC (DW)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244ADWR.B     | Active        | Production        | SOIC (DW)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244ADWRE4     | Active        | Production        | SOIC (DW)   20   | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244ANSR       | Active        | Production        | SOP (NS)   20    | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244ANSR.B     | Active        | Production        | SOP (NS)   20    | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244ANSRG4     | Active        | Production        | SOP (NS)   20    | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244ANSRG4.B   | Active        | Production        | SOP (NS)   20    | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LVC2244A            |
| SN74LVC2244APW        | Active        | Production        | TSSOP (PW)   20  | 70   TUBE             | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244APW.B      | Active        | Production        | TSSOP (PW)   20  | 70   TUBE             | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244APWG4      | Active        | Production        | TSSOP (PW)   20  | 70   TUBE             | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244APWR       | Active        | Production        | TSSOP (PW)   20  | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244APWR.B     | Active        | Production        | TSSOP (PW)   20  | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244APWRE4     | Active        | Production        | TSSOP (PW)   20  | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244APWRG4     | Active        | Production        | TSSOP (PW)   20  | 2000   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244APWT       | Active        | Production        | TSSOP (PW)   20  | 250   SMALL T&R       | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |
| SN74LVC2244APWT.B     | Active        | Production        | TSSOP (PW)   20  | 250   SMALL T&R       | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | LE244A              |



17-Jun-2025

<sup>(1)</sup> **Status:** For more details on status, see our product life cycle.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

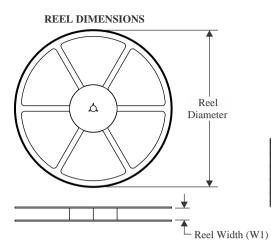
<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

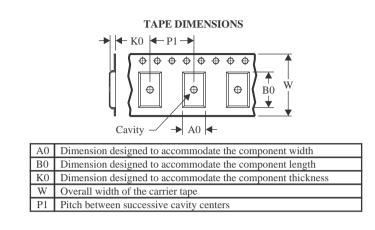
<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

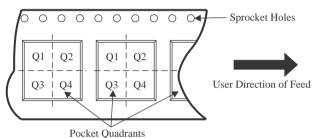
<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS

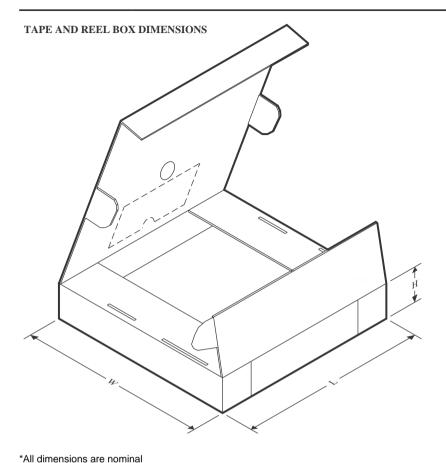

STRUMENTS

#### TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



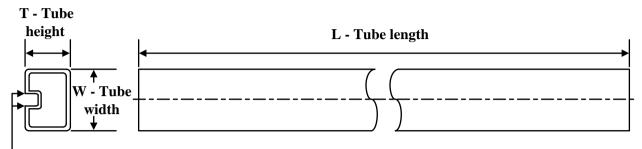

| *All dimensions are nominal |                 |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN74LVC2244ADBQR            | SSOP            | DBQ                | 20 | 2500 | 330.0                    | 16.4                     | 6.5        | 9.0        | 2.1        | 8.0        | 16.0      | Q1               |
| SN74LVC2244ADBR             | SSOP            | DB                 | 20 | 2000 | 330.0                    | 16.4                     | 8.2        | 7.5        | 2.5        | 12.0       | 16.0      | Q1               |
| SN74LVC2244ADGVR            | TVSOP           | DGV                | 20 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74LVC2244ADGVRG4          | TVSOP           | DGV                | 20 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74LVC2244ADWR             | SOIC            | DW                 | 20 | 2000 | 330.0                    | 24.4                     | 10.8       | 13.3       | 2.7        | 12.0       | 24.0      | Q1               |
| SN74LVC2244ANSR             | SOP             | NS                 | 20 | 2000 | 330.0                    | 24.4                     | 8.4        | 13.0       | 2.5        | 12.0       | 24.0      | Q1               |
| SN74LVC2244ANSRG4           | SOP             | NS                 | 20 | 2000 | 330.0                    | 24.4                     | 8.4        | 13.0       | 2.5        | 12.0       | 24.0      | Q1               |
| SN74LVC2244APWR             | TSSOP           | PW                 | 20 | 2000 | 330.0                    | 16.4                     | 6.95       | 7.0        | 1.4        | 8.0        | 16.0      | Q1               |
| SN74LVC2244APWT             | TSSOP           | PW                 | 20 | 250  | 330.0                    | 16.4                     | 6.95       | 7.0        | 1.4        | 8.0        | 16.0      | Q1               |



## PACKAGE MATERIALS INFORMATION

24-Jul-2025




| Device             | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74LVC2244ADBQR   | SSOP         | DBQ             | 20   | 2500 | 353.0       | 353.0      | 32.0        |
| SN74LVC2244ADBR    | SSOP         | DB              | 20   | 2000 | 353.0       | 353.0      | 32.0        |
| SN74LVC2244ADGVR   | TVSOP        | DGV             | 20   | 2000 | 353.0       | 353.0      | 32.0        |
| SN74LVC2244ADGVRG4 | TVSOP        | DGV             | 20   | 2000 | 353.0       | 353.0      | 32.0        |
| SN74LVC2244ADWR    | SOIC         | DW              | 20   | 2000 | 356.0       | 356.0      | 45.0        |
| SN74LVC2244ANSR    | SOP          | NS              | 20   | 2000 | 356.0       | 356.0      | 45.0        |
| SN74LVC2244ANSRG4  | SOP          | NS              | 20   | 2000 | 356.0       | 356.0      | 45.0        |
| SN74LVC2244APWR    | TSSOP        | PW              | 20   | 2000 | 353.0       | 353.0      | 32.0        |
| SN74LVC2244APWT    | TSSOP        | PW              | 20   | 250  | 353.0       | 353.0      | 32.0        |

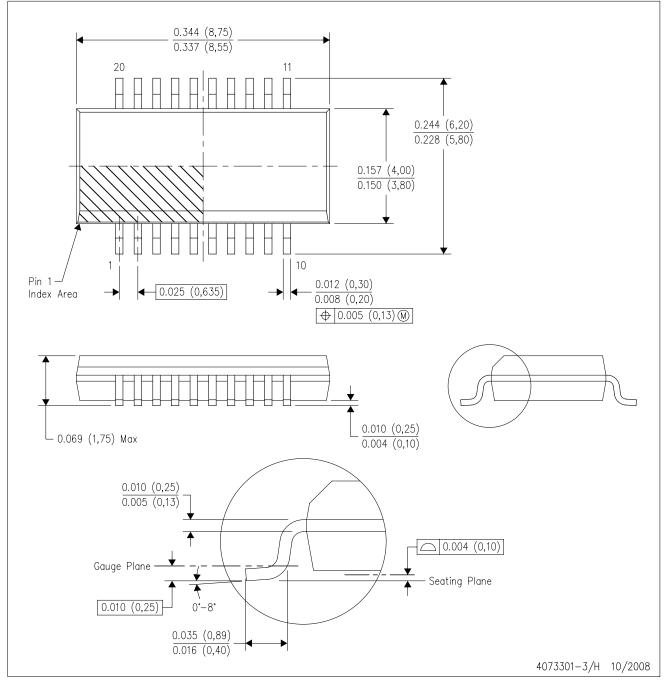
### TEXAS INSTRUMENTS

www.ti.com

24-Jul-2025

### TUBE




## - B - Alignment groove width

#### \*All dimensions are nominal

| Device           | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|------------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| SN74LVC2244ADW   | DW           | SOIC         | 20   | 25  | 507    | 12.83  | 5080   | 6.6    |
| SN74LVC2244ADW.B | DW           | SOIC         | 20   | 25  | 507    | 12.83  | 5080   | 6.6    |
| SN74LVC2244APW   | PW           | TSSOP        | 20   | 70  | 530    | 10.2   | 3600   | 3.5    |
| SN74LVC2244APW.B | PW           | TSSOP        | 20   | 70  | 530    | 10.2   | 3600   | 3.5    |
| SN74LVC2244APWG4 | PW           | TSSOP        | 20   | 70  | 530    | 10.2   | 3600   | 3.5    |

DBQ (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE



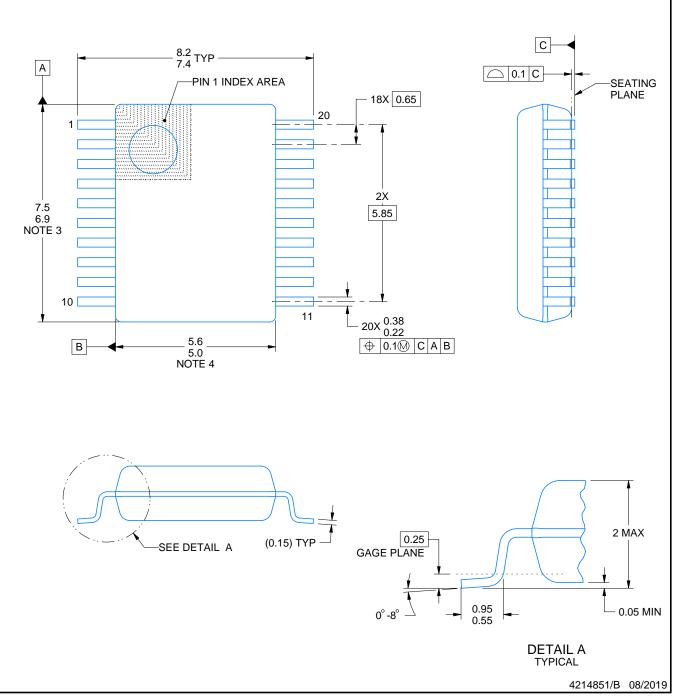
NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AD.




# **DB0020A**



## **PACKAGE OUTLINE**

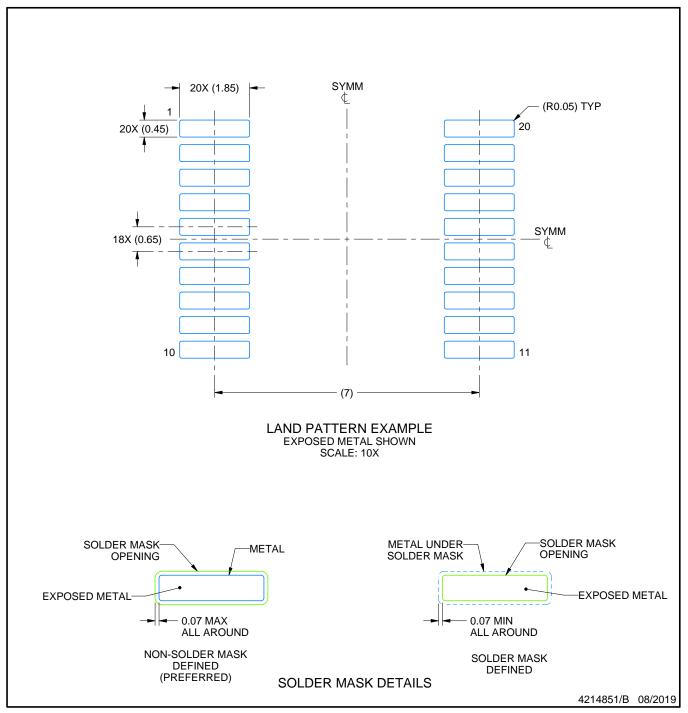
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.




## DB0020A

# **EXAMPLE BOARD LAYOUT**

## SSOP - 2 mm max height

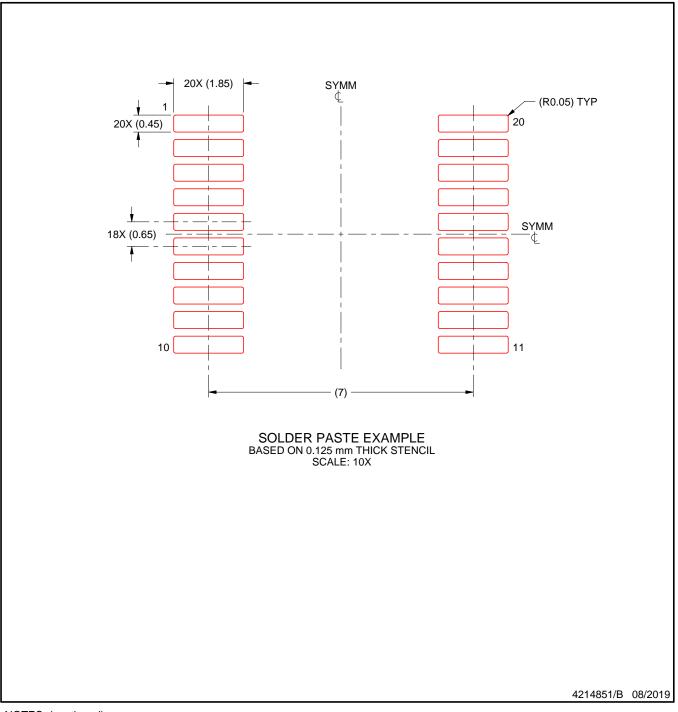
SMALL OUTLINE PACKAGE



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




## DB0020A

# **EXAMPLE STENCIL DESIGN**

## SSOP - 2 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



### MECHANICAL DATA

#### PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

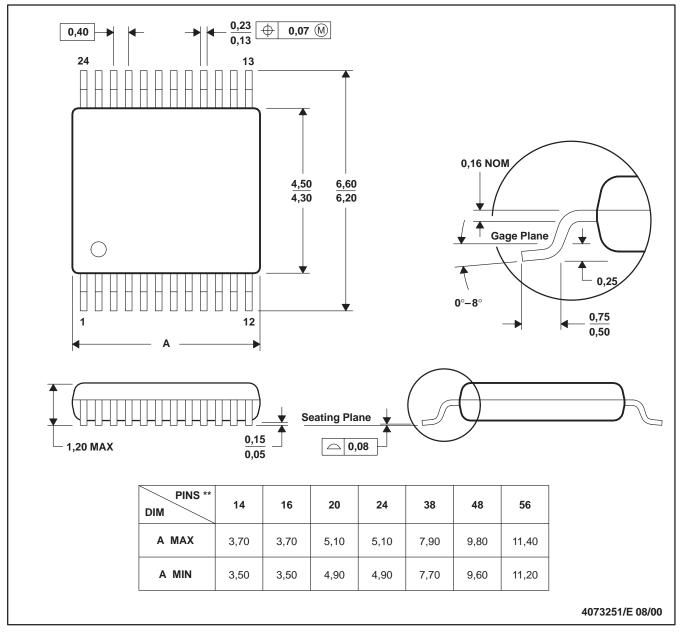
NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)

**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.




## **MECHANICAL DATA**

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

### DGV (R-PDSO-G\*\*)

24 PINS SHOWN



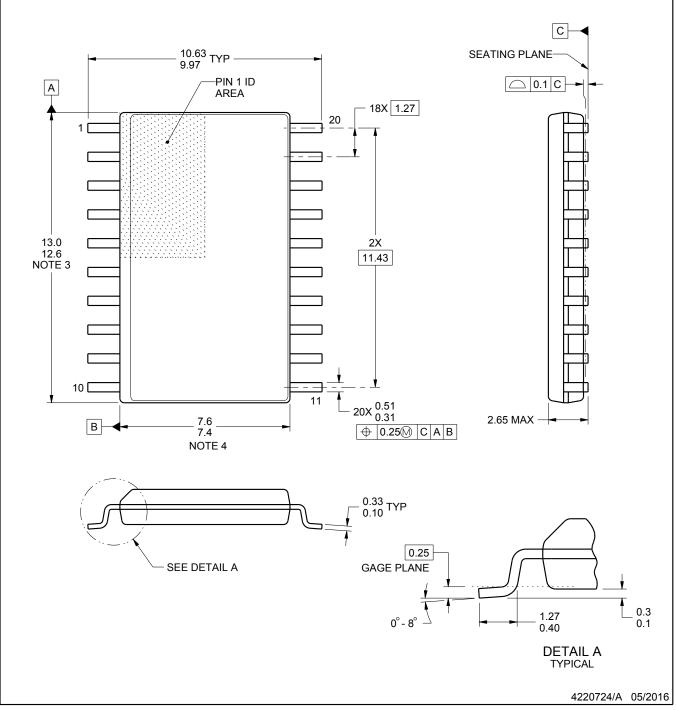
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194




# **DW0020A**



## **PACKAGE OUTLINE**

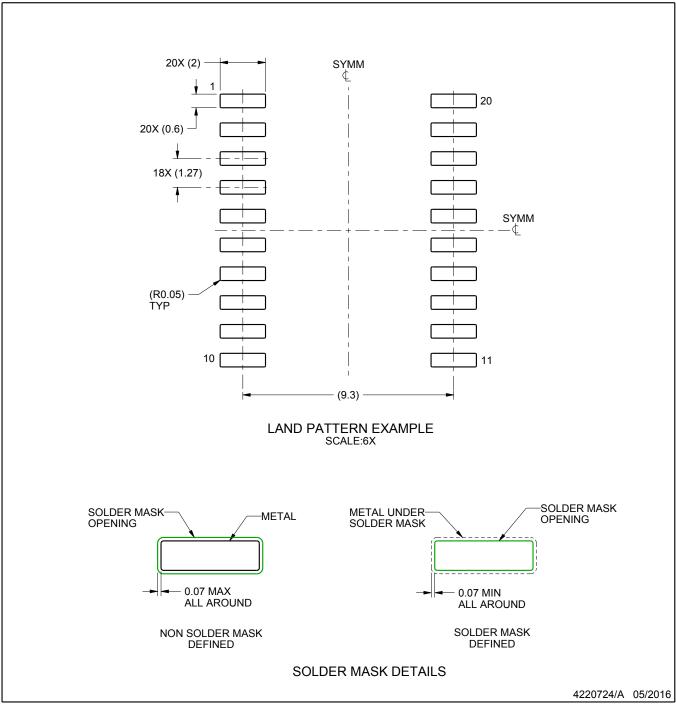
### SOIC - 2.65 mm max height

SOIC



NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.




## DW0020A

## **EXAMPLE BOARD LAYOUT**

## SOIC - 2.65 mm max height

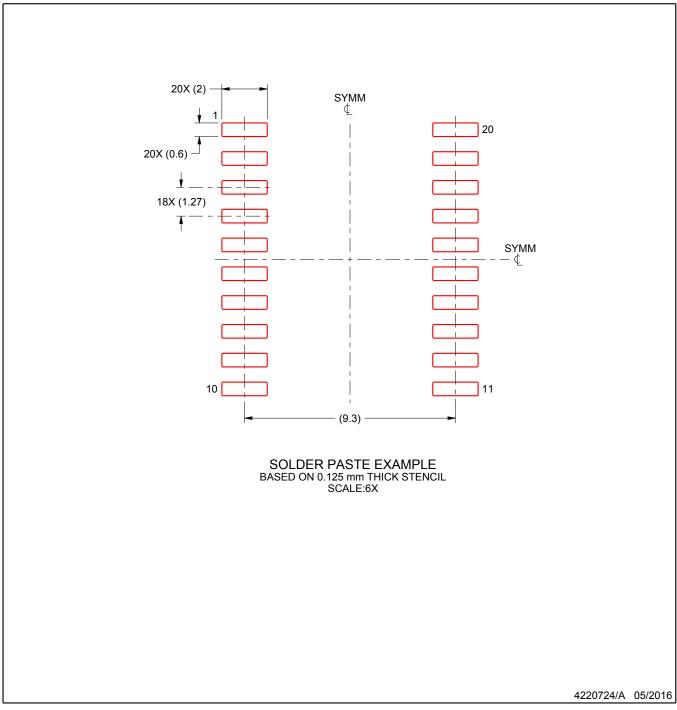
SOIC



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




## DW0020A

## **EXAMPLE STENCIL DESIGN**

## SOIC - 2.65 mm max height

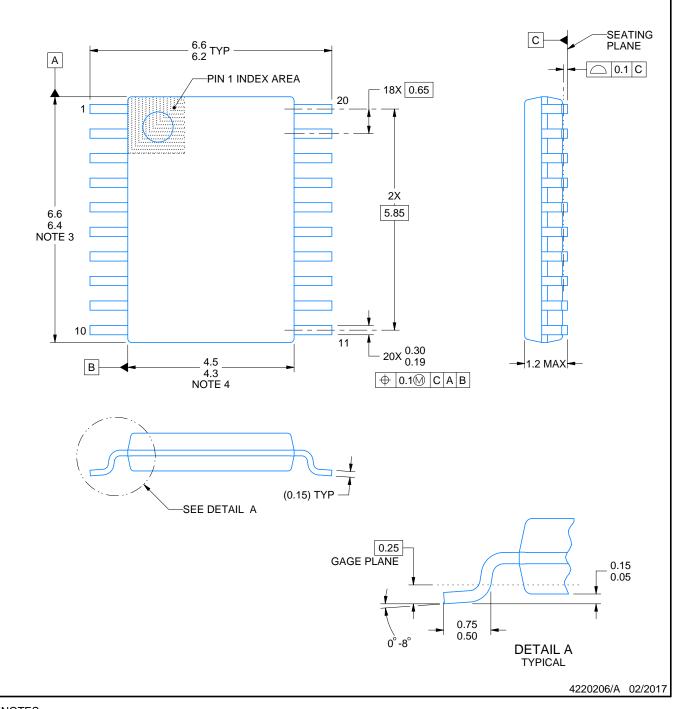
SOIC



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.




## **PW0020A**



## **PACKAGE OUTLINE**

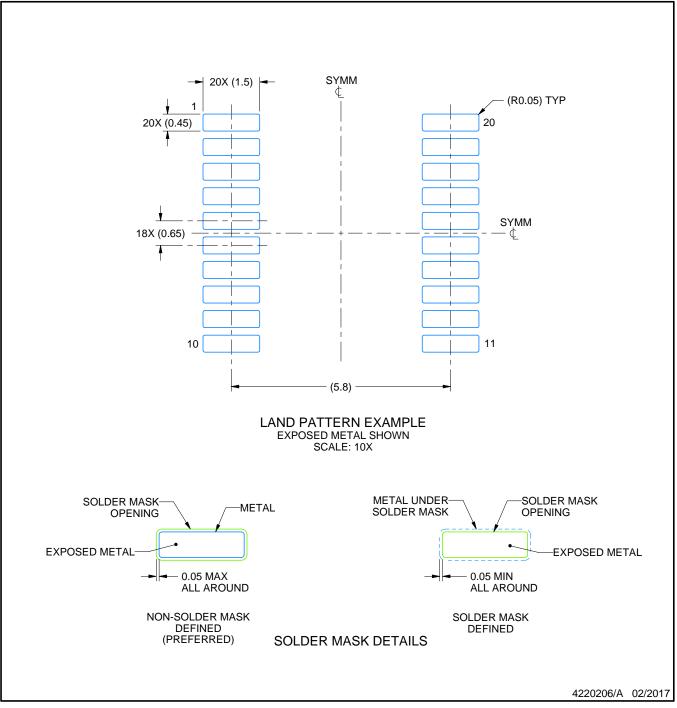
## TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.




## PW0020A

# **EXAMPLE BOARD LAYOUT**

## TSSOP - 1.2 mm max height

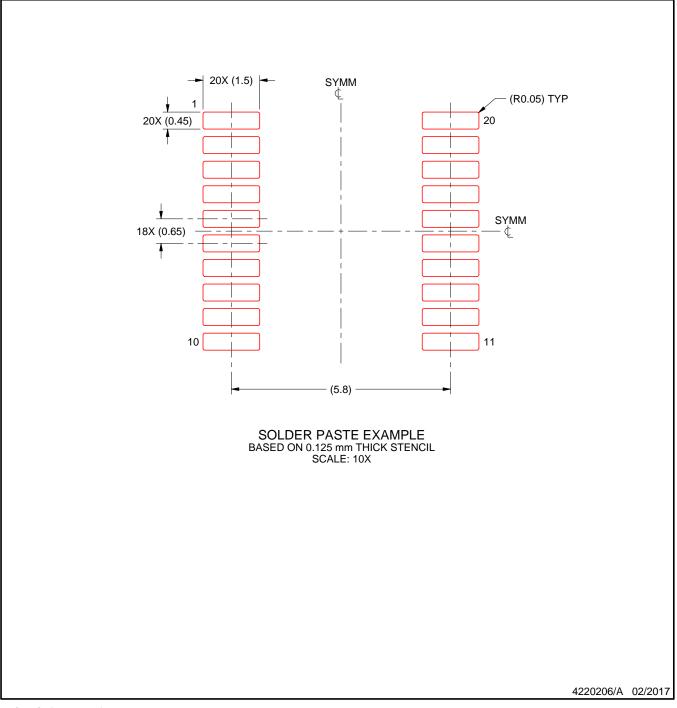
SMALL OUTLINE PACKAGE



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




## PW0020A

## **EXAMPLE STENCIL DESIGN**

## TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated