

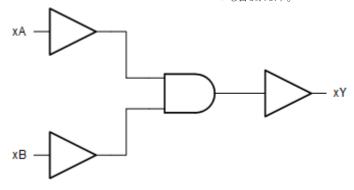
SN74LV08A-Q1

JAJSQR9D - FEBRUARY 2003 - REVISED AUGUST 2023

SN74LV08A-Q1 車載用クワッド 2 入力正論理 AND ゲート

1 特長

- 車載アプリケーション向け認定済み
- 標準 V_{OLP} (出力グランド・バウンス) < 0.8V (V_{CC} = $3.3V, T_A = 25^{\circ}C)$
- 標準 V_{OHV} (出力 V_{OH} アンダーシュート) > 2.3V (V_{CC}) $= 3.3 V, T_A = 25 ^{\circ}C)$
- すべてのポートで混在モード電圧動作をサポート
- loff により部分的パワーダウン・モードでの動作をサポ
- JESD 17 準拠で 250mA 超のラッチアップ性能


2 概要

このクワッド 2 入力の正論理 AND ゲートは、2V~5.5V の Vcc で動作するように設計されています。

パッケージ情報

部品番号	パッケージ ⁽¹⁾	パッケージ・サイズ ⁽²⁾
SN74LV08A-Q1	PW (TSSOP, 14)	5.00mm × 6.4mm

- 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。
- (2) パッケージ・サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。

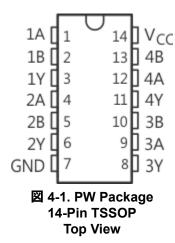
論理図 (正論理)

Table of Contents

1 特長 1	6 Parameter Measurement Information
2 概要1	7 Detailed Description
3 Revision History2	7.1 Overview
4 Pin Configuration and Functions3	7.2 Functional Block Diagram
5 Specifications4	7.3 Device Functional Modes
5.1 Absolute Maximum Ratings4	8 Device and Documentation Support
5.2 ESD Ratings	8.1 Documentation Support (Analog)
5.3 Recommended Operating Conditions4	8.2ドキュメントの更新通知を受け取る方法
5.4 Thermal Information5	8.3 サポート・リソース
5.5 Electrical Characteristics5	8.4 Trademarks9
5.6 Switching Characteristics, V _{CC} = 3.3 V ±0.3 V5	8.5 静電気放電に関する注意事項
5.7 Switching Characteristics, V _{CC} = 5 V ±0.5 V5	8.6 用語集
5.8 Noise Characteristics6	9 Mechanical, Packaging, and Orderable Information
5.9 Operating Characteristics6	

3 Revision History

Changes from Revision C (January 2008) to Revision D (August 2023)


Page

• 「パッケージ情報」表、「ピンの機能」表、「ESD 定格」表、「熱に関する情報」表、「デバイスの機能モード」セクション、「デバイスおよびドキュメントのサポート」セクション、「メカニカル、パッケージ、および注文情報」セクションを追加...... 1

Product Folder Links: SN74LV08A-Q1

4 Pin Configuration and Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NO.	NAME	ITPE	DESCRIPTION
1	1A	I	1A input
2	1B	I	1B
3	1Y	0	1Y
4	2A	I	2A
5	2B	I	2B
6	2Y	0	2Y
7	GND	_	GND
8	3Y	0	3Y
9	3A	1	3A
10	3B	I	3B
11	4Y	0	4Y
12	4A	I	4A
13	4B	I	4B
14	V _{CC}	_	V _{CC}

⁽¹⁾ Signal Types: I = Input, O = Output, I/O = Input or Output

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)(1)

				MIN	MAX	UNIT
V _{CC}	Supply voltage range	upply voltage range			7	V
VI	Input voltage range ⁽²⁾			-0.5	7	V
Vo	Voltage applied to any output in the high-impedance or power-off state ⁽²⁾		-0.5	7	V	
Vo	Output voltage range ^{(2) (3)}		-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0			-20	mA
I _{OK}	Output clamp current	V _O < 0			-50	mA
Io	Continuous output current	V _O = 0 to V _{CC}		-25	25	mA
	Continuous current through V _{CC} or GND		-50	50	mA	
T _{stg}	Storage temperature			-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
V _(ESD)	discharge	Charged device model (CDM), per AEC Q100-011	±1000	'

⁽¹⁾ AEC Q100-002 indicates that HBM stressing must be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
\/	High lovel input veltage	V _{CC} = 2.3 V to 2.7 V	V _{CC} x 0.7		V
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	V _{CC} x 0.7		V
		V _{CC} = 4.5 V to 5.5 V	V _{CC} x 0.7		
		V _{CC} = 2 V		0.5	
\/	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		V _{CC} x 0.3	V
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		V _{CC} x 0.3	V
		V _{CC} = 4.5 V to 5.5 V		V _{CC} x 0.3	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 2 V		-50	μA
	High lovel output current	V _{CC} = 2.3 V to 2.7 V		-2	
I _{OH}	High-level output current	V _{CC} = 3 V to 3.6 V		-6	mA
		V _{CC} = 4.5 V to 5.5 V		-12	
		V _{CC} = 2 V		50	μΑ
	Low lovel output ourrent	V _{CC} = 2.3 V to 2.7 V		2	
I _{OL}	Low-level output current	V _{CC} = 3 V to 3.6 V		6	mA
		V _{CC} = 4.5 V to 5.5 V		12	

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

English Data Sheet: SCLS465

4

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value is limited to 5.5-V maximum.

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
		V _{CC} = 2.3 V to 2.7 V		200	
∆t/∆v Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V	
		V _{CC} = 4.5 V to 5.5 V		20	
T _A	Operating free-air temperature	·	-40	105	°C

All unused inputs of the device must be held at V_{CC} or GND for proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

5.4 Thermal Information

over operating free-air temperature range (unless otherwise noted)

THERMAL METRIC ⁽¹⁾		PW	UNIT
		14 PINS	ONT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	113	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT	
		I _{OH} = -50 μA	2 to 5.5 V	V _{CC} - 0.1				
V _{OH}	High level output voltage	I _{OH} = -2 mA	2.3 V	2			V	
		I _{OH} = -6 mA	3 V	2.48				
		I _{OH} = -12 mA	4.5 V	3.8				
		I _{OL} = 50 μA	2 to 5.5 V			0.1		
.,	Laurianal antonit valtana	I _{OL} = 2 mA	2.3 V			0.4	V	
V _{OL}	Low level output voltage	I _{OL} = 6 mA	3 V			0.44		
		I _{OL} = 12 mA	4.5 V			0.55		
II	Input leakage current	V _I = 5.5 V or GND	0 to 5.5 V			±1	μΑ	
I _{CC}	Supply current	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			20	μΑ	
I _{off}	Input/Output Power-Off Leakage Current	V_I or $V_O = 0$ to 5.5 V	0			5	μΑ	
_	Innut Conscitance	V = V or CND	3.3 V		3.3		"r	
Ci	Input Capacitance $V_I = V_{CC}$ or GND		5 V		3.3		pF	

5.6 Switching Characteristics, V_{CC} = 3.3 V ±0.3 V

over recommended operating free-air temperature range, V_{CC} = 3.3 V ±0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD	T _A = 25°C		MIN	MIN MAX	UNIT	
		CAF	10 (001701)	CAPACITANCE	MIN	TYP	MAX		IVIAA
t _{pd}	A or B	Y	C _L = 50 pF		7.5	12.3	1	16	ns

5.7 Switching Characteristics, $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, V_{CC} = 5 V ±0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD	T _A = 25°C		MIN	MIN MAX		
		10 (001701)	CAPACITANCE	MIN	TYP	MAX	IVIIN IVIAA	IVIAA	UNIT
t _{pd}	A or B	Y	C _L = 50 pF		5.5	7.9	1	12	ns

English Data Sheet: SCLS465

5.8 Noise Characteristics

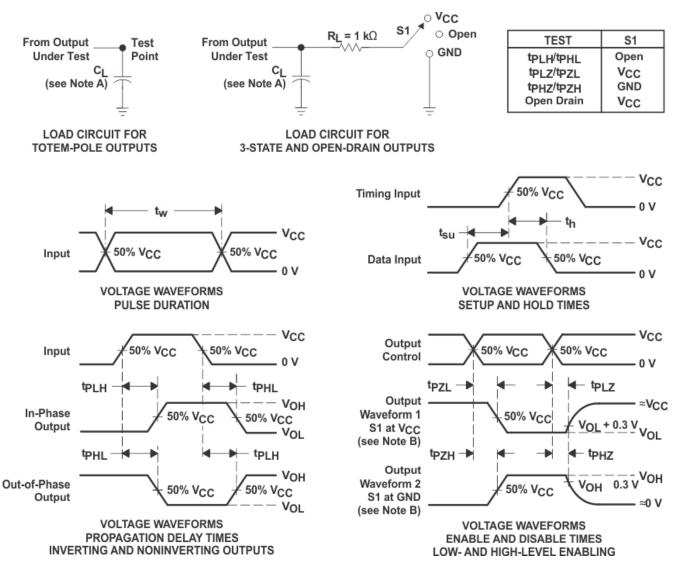
 $V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}^{(1)}$

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.2	8.0	
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.1	-0.8	
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		3.1		V
V _{IH(D)}	High-level dynamic input voltage	2.31			
$V_{IL(D)}$	Low-level dynamic input voltage			0.99	

(1) Characteristics are for surface-mount packages only.

5.9 Operating Characteristics

T_A = 25°C


	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT	
C _{nd} Power dissipation capacitance		C ₁ = 50 pF, f = 10 MHz	3.3 V	8	pF	
	C _{pd} Fower dissipation capacitance	CL = 30 pr , r = 10 wr 12	5 V	10	Pi	

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

6 Parameter Measurement Information

- A. C₁ includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq 3$ ns, $t_f \leq 3$ ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and tPZH are the same as t_{en} .
- G. t_{PHL} and t_{PLH} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

図 6-1. Load Circuit and Voltage Waveforms

7 Detailed Description

7.1 Overview

This quadruple 2-input positive-AND gate is designed for 2-V to 5.5-V VCC operation.

The SN74LV08A performs the Boolean function $Y = A \cdot B$ or $Y = \overline{A + B}$ in positive logic.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

7.2 Functional Block Diagram

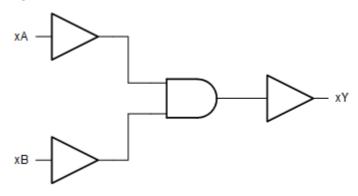


図 7-1. Logic Diagram, each gate (Positive Logic)

7.3 Device Functional Modes

表 7-1. Function Table

INPU	OUTPUT (2)	
Α	В	Y
Н	Н	Н
L	Х	L
X	L	L

- (1) H = High Voltage Level, L = Low Voltage Level, X = Don't Care
- (2) H = Driving High, L = Driving Low, Z = High Impedance State

English Data Sheet: SCLS465

8 Device and Documentation Support

8.1 Documentation Support (Analog)

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

表 8-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
SN74LV08A-Q1	Click here	Click here	Click here	Click here	Click here	

8.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.com のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

8.3 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

8.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

8.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

English Data Sheet: SCLS465

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74LV08ATPWRG4Q1	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	LV08ATQ
SN74LV08ATPWRG4Q1.A	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	LV08ATQ

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV08A-Q1:

Catalog: SN74LV08A

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

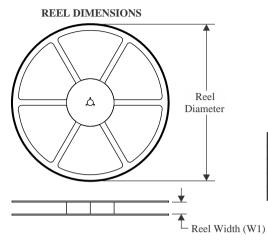
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

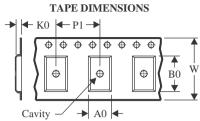
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

● Enhanced Product : SN74LV08A-EP


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

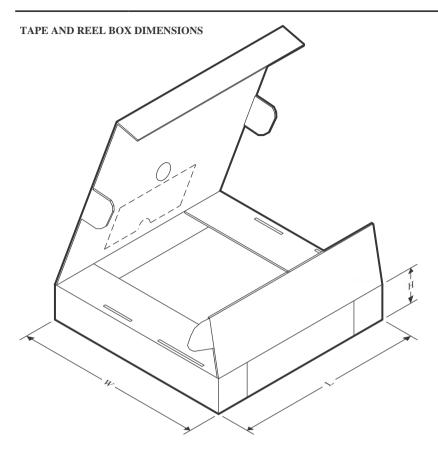
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

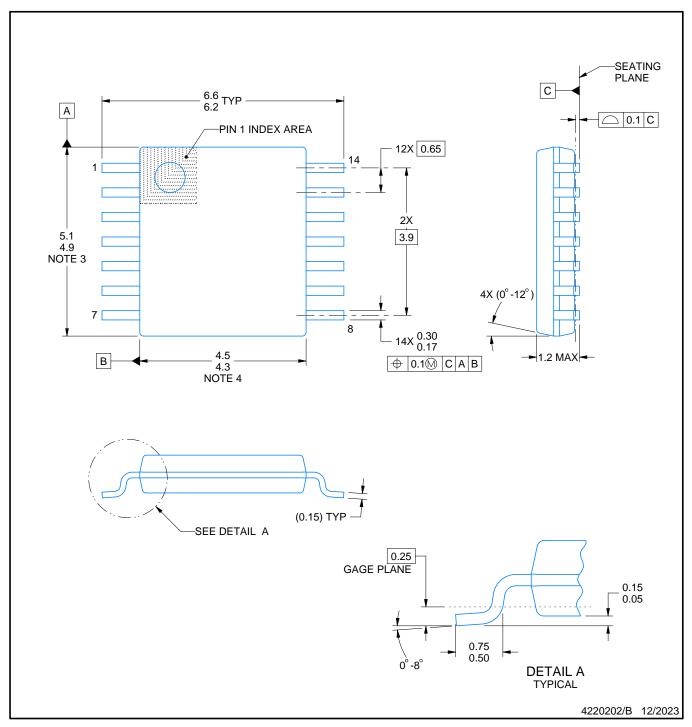


*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV08ATPWRG4Q1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

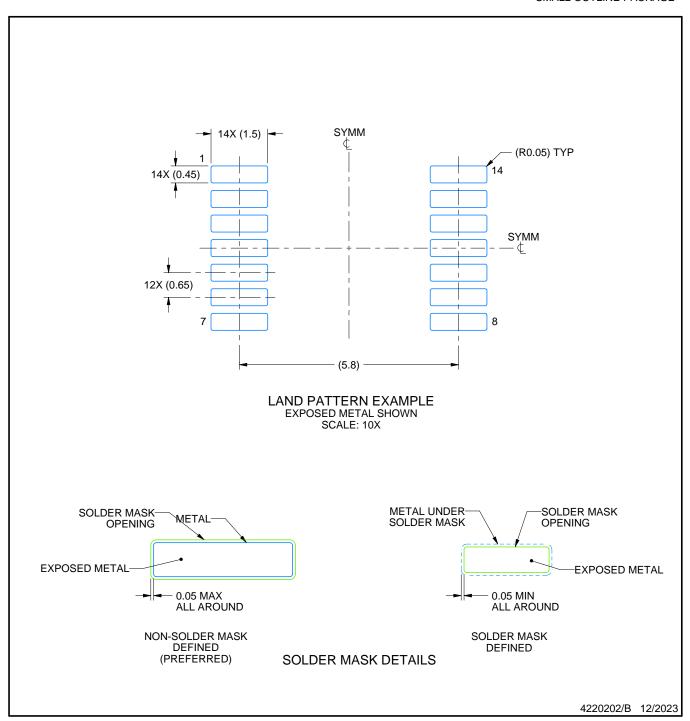


*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74LV08ATPWRG4Q1	TSSOP	PW	14	2000	353.0	353.0	32.0	

SMALL OUTLINE PACKAGE

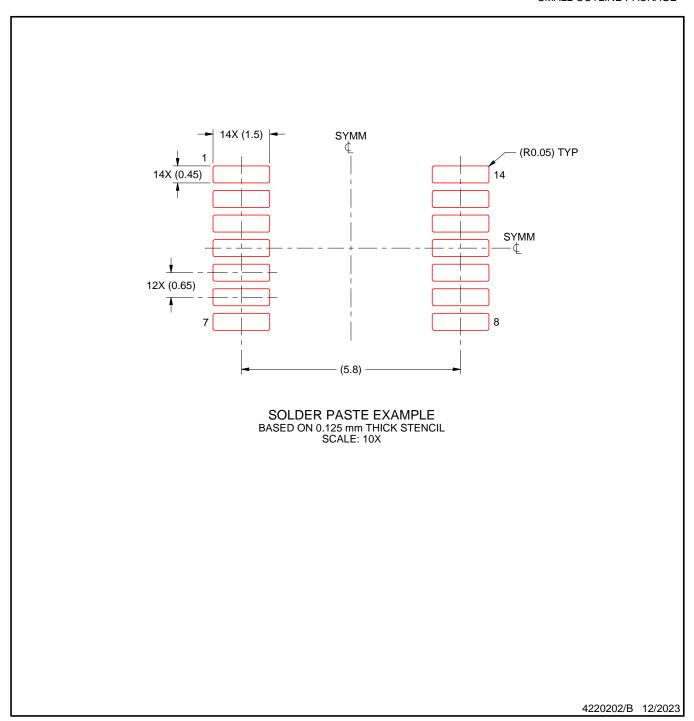
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated