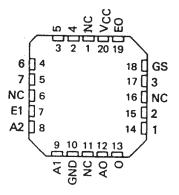
SDLS161 - OCTOBER 1976 - REVISED MARCH 1988

- 3-State Outputs Drive Bus Lines Directly
- Encodes 8 Data Lines to 3-Line Binary (Octal)
- Applications Include:
 N-Bit Encoding
 Code Converters and Generators
- Typical Data Delay . . . 15 ns
- Typical Power Dissipation . . . 60 mW

description

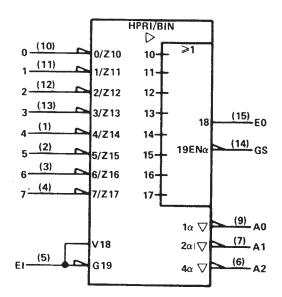
These TTL encoders feature priority decoding of the inputs to ensure that only the highest-order data line is encoded. The 'LS348 circuits encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input E1 and enable output E0) has been provided to allow octal expansion. Outputs A0, A1, and A2 are implemented in three-state logic for easy expansion up to 64 lines without the need for external circuitry. See Typical Application Data.

FUNCTION TABLE


	INPUTS									Ol	JTPU	TS	
EI	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
Н	Х	Х	Χ	Х	Χ	X	X	Χ	Z	Z	Z	Н	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	z	Z	Z	н	L
	Х	Χ	Χ	Х	Х	Χ	Х	L	L	L	L	L	н
L	Х	Х	Х	Х	Х	Х	L	Н	L	L	Н	L	н
L	Х	Χ	Χ	Χ	Х	L	Н	Н	L	Н	L	L	н
L	Х	Х	Χ	Х	L	Н	Н	Н	L	Н	Н	L	н
L	Ϋ́	Χ	Х	L	Н	Н	Н	Н	н	L	L	L	н
니니	Х	Х	L	Н	Н	Н	Н	Н	н	L	Н	L	н
L	X	L	Н	H	Н	Н	Н	Н	н	Н	L	L	н
L	L	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	L	н

H = high logic level, L = low logic level, X = irrelevant

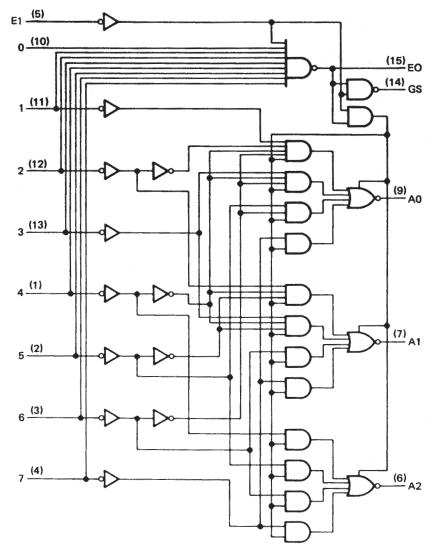
SN54LS348 . . . J OR W PACKAGE SN74LS348 . . . D OR N PACKAGE (TOP VIEW)


4 🛮 1	U ₁₆ V _{CC}
5 □2	15 EO
6 □3	14 🛮 GS
7 🛮 4	13 3
E1 ∏5	12 2
A2 🛮 6	11 🛮 1
A1 □7	10 🛮 0
GND □8	9 🗌 AO

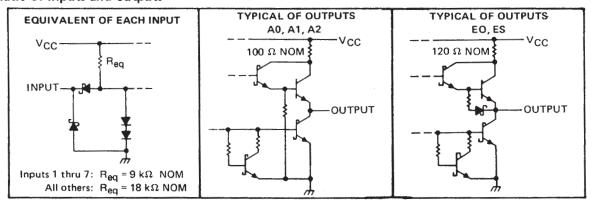
SN54LS348 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol[†]


[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.


Z = high-impedance state

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematic of inputs and outputs

SDLS161 - OCTOBER 1976 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Operating free-air temperature range	SN54LS348
	SN74LS348
Storage temperature range	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	·	SI	N54LS 3	SN74LS348				
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5,25	V
igh-level output current, IOH	A0, A1, A2			-1			-2.6	mA
Thigh-level output current, TOH	EO, GS			-400			-400	μΑ
Low-level output current, IOI	A0, A1, A2			12			24	mA
	EO, GS			4			8	mA
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST COM	IDITIONS†	12	154LS3	148	Si	N74LS	348	UNIT
	TAKAMETEN		TEST COI	VDITIONS.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNII
VIH	High-level input voltage			2			2			V	
VIL	Low-level input voltage				**	0.7			0.8	V	
VIK	Input clamp voltage		V _{CC} = MIN,	I ₁ = -18 mA			-1.5			-1.5	V
High-level	High-level	A0, A1, A2	V _{CC} = MIN, V _{IH} = 2 V,	I _{OH} = -1 mA	2.4	3.1		2.4	2.1		v
· OH	VOH output voltage	EO, GS		$I_{OH} = -2.6 \text{ mA}$ $I_{OH} = -400 \mu\text{A}$	2.5	3.4		2.7	3.4		ľ
Lauriani	A0, A1, A2	V _{CC} = MIN,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4		
Voi	VOL Output voltage	evel	V _{IH} = 2 V,	OL = 24 mA			_		0.35	0.5] _v
0.2	Output voltage	EO, GS	VIL = VILmax	1 _{OL} = 4 mA		0.25	0.4	AX MIN TYP\$ M 2 0.7 1.5 2.4 3.1 2.7 3.4 0.4 0.25 0.35 0.4 0.25 0.35 20 -20 0.2 0.1 40 20 0.8 0.8 0.4 -30 -30	0.4		
			ALE ALEMAX	I _{OL} = 8 mA					0.35	0.5	
loz	Off-State (high-impedance	A0, A1, A2	$V_{CC} = MAX$,	V _O = 2.7 V			20			20	μА
- UZ	state) output current	,,,,,,	V _{IH} = 2 V	V _O = 0.4 V			-20			-20	μΑ
ł _I	Input current at maximum	Inputs 1 thru 7	V _{CC} = MAX,	V. ~ 7 V			0.2			0.2	
-1	input voltage	All other inputs	VCC - MAX,	V - / V			0.1			0.1	mA
Ιн	High-level input current	Inputs 1 thru 7	V _{CC} = MAX,	V 27V			40			40	
30	gir tovor tripat carrent	All other inputs	ACC - MAY	V - 2.7 V			20	2.4 2.7 -30 -20		20	μA
HL	Low-level input current	Inputs 1 thru 7	V _{CC} = MAX,	V. = 0.4.V			-0.8			97P‡ MAX 0.8 -1.5 3.1 3.4 0.25 0.4 0.35 0.5 0.25 0.0 -20 0.2 0.1 40 20 -0.8 -0.4 -130 -100 13 25	
11	=500 lover input current	All other inputs	ACC = MYY	V - 0.4 V		,	-0.4	2.4 3.1 2.7 3.4 0.4 0.25 0.35 0.4 0.25 0.20 0.22 0.1 40 20 0.8 0.8 0.4 30 -30 00 -20 25	-0.4	mA	
IOS Short-circuit output current §		Outputs A0, A1, A2	V _{CC} = MAX		-30		-130	-30		-130	
		Outputs EO, GS	VCC - MAX		-20		-100	-20		-100	mA
Icc	Supply current		V _{CC} = MAX,	Condition 1		13	25		13	25	
			See Note 2	Condition 2		12	23		12	23	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC (condition 1) is measured with inputs 7 and EI grounded, other inputs and outputs open. ICC (condition 2) is measured with all inputs and outputs open.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}$ C.

[§]Not more than one output should be shorted at a time.

SN54LS348, SN74LS348 (TIM9908) 8-LINE TO 3-LINE PRIORITY ENCODERS **WITH 3-STATE OUTPUTS**

SDLS161 - OCTOBER 1976 - REVISED MARCH 1988

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	WAVEFORM	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ФLН	1 thru 7	A0, A1, or A2	In-phase		111	11	17	ns
tPHL.	1 11114 /	A0, A1, 01 A2	output	C. = 45 = 5		20	30	113
ФLН	C _L = 45 pF, Out-of-phase R _I = 667 Ω.				23	35	ns	
tPHL	i thru /	A0, A1, or A2			23	35	118	
ФZH	EI	A0, A1, or A2		See Note 3		25	39	ns
ΨZL] '	70, 71, 01 72				24	41] ""
tPLH	0 thru 7	EO	Out-of-phase			11	18	ns
tPHL	O and /	20	output			26	40	
tPLH	In-phase			38	55	ns		
tPHL	O and /		output	C∟= 15 pF R∟= 2 kΩ,		9	21	
tPLH	EI	GS	In-phase			11	17	
tPHL	EI GS In-phase See Note 3 -			14	36	ns		
ФLН	EI	EO	In-phase In-phase			17	26	
tPHL	1 "		output			25	40	ns
tPHZ	EI	A0, A1, or A2		CL = 5 pF		18	27	
ヤLZ] -'	70, 71, 01 72		R _L = 667 Ω		23	35	ns

[†] tpLH = propagation delay time, low-to-high-level output

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

TYPICAL APPLICATION DATA

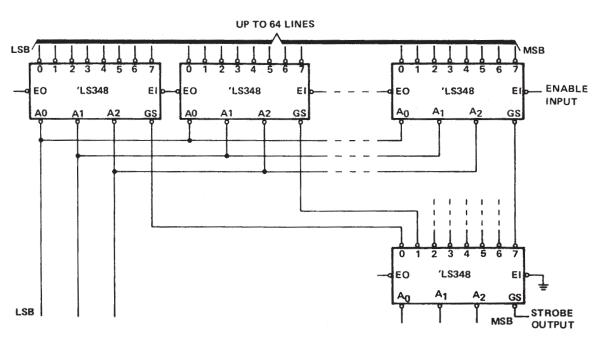


FIGURE 1-PRIORITY ENCODER WITH UP TO 64 INPUTS.

tpHL = propagation delay time, high-to-low-level output

tpzH = output enable time to high level

tpzL = output enable time to low level

tpHZ = output disable time from high level

tpLZ = output disable time from low level

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier RoHS Lead finish/		Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
SN74LS348D	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS348
SN74LS348D.A	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS348
SN74LS348N	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS348N
SN74LS348N.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74LS348N

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

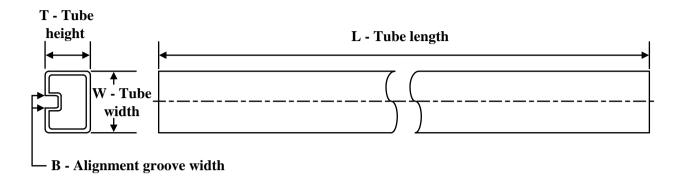
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

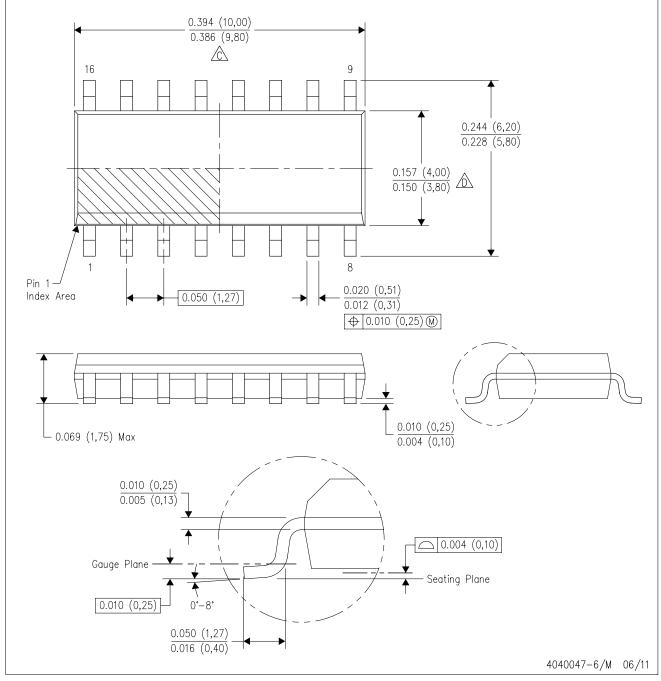

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE



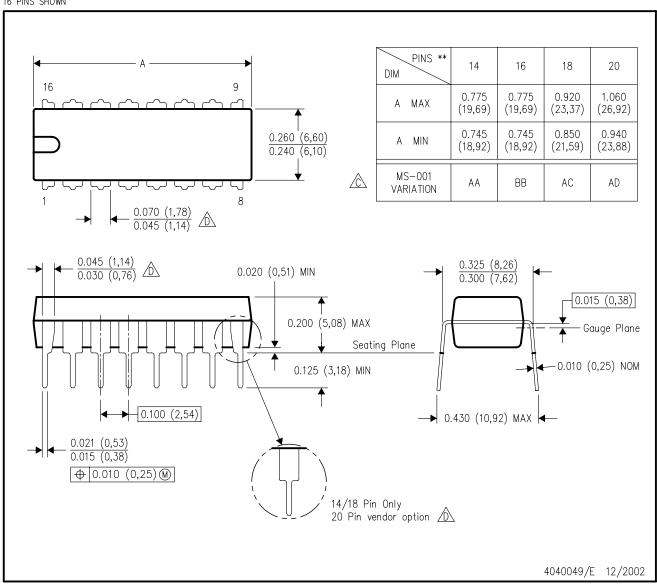
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LS348D	D	SOIC	16	40	507	8	3940	4.32
SN74LS348D.A	D	SOIC	16	40	507	8	3940	4.32
SN74LS348N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS348N	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS348N.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS348N.A	N	PDIP	16	25	506	13.97	11230	4.32

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated