

SN54HCT245, SN74HCT245

JAJSP47H - MARCH 1984 - REVISED DECEMBER 2022

SNx4HCT2453ステート出力、オクタル・バス・トランシーバ

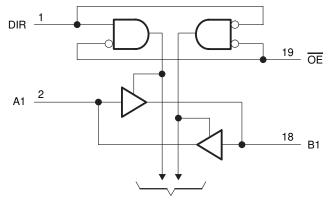
1 特長

- 4.5V~5.5V の動作電源電圧範囲
- バス・ラインを直接、または最大 15 の LSTTL 負荷を 駆動する大電流 3 ステート出力
- 低い消費電力、最大 I_{CC}:80µA
- t_{nd} = 14ns (標準値)
- 5Vで ±6mA の出力駆動能力
- 低い入力電流:最大値 1µA
- 入力は TTL 電圧互換

2 アプリケーション

- ファクトリ・オートメーション / 制御
- グリッド・インフラ
- POS システム
- 多機能プリンタ
- モーター駆動
- ストレージ 诵信インフラ

3 概要


SNx4HCT245 オクタル・バス・トランシーバは、データ・バ ス間の非同期双方向通信用に設計されています。制御機 能を実装することで、外部のタイミング要件を最小化してま す。

SNx4HCT245 デバイスを使うと、方向制御 (DIR) 入力の 論理レベルに応じて、A バスから B バス、または B バスか ら A バスヘデータを転送できます。 出力イネーブル (OE) 入力を使うと、本デバイスを無効化してバスを実質的に絶 縁できます。

デバイス情報

部品番号	パッケージ ⁽¹⁾	本体サイズ (公称)		
	J (CDIP, 20)	24.20mm × 6.92mm		
SN54HCT245	FK (LCCC, 20)	8.89mm × 8.89mm		
	W (CFP, 20)	13.09mm × 6.92mm		
	DW (SOIC, 20)	12.80mm × 7.50mm		
	N (PDIP、20)	24.33mm × 6.35mm		
SN74HCT245	NS (SO, 20)	12.60mm × 5.30mm		
311741101243	PW (TSSOP, 20)	6.50mm × 4.40mm		
	DB (SSOP, 20)	7.80mm × 7.20mm		
	DGS (VSSOP, 20)	5.10mm × 3.00mm		

利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。

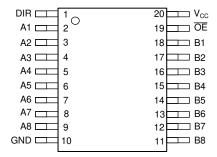
To Seven Other Channels

Copyright © 2016, Texas Instruments Incorporated

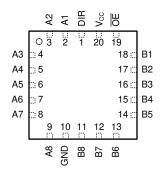
論理図 (正論理)

Table of Contents

1 特長	1	8.3 Feature Description	9
2 アプリケーション		8.4 Device Functional Modes	
3 概要		9 Application and Implementation	10
4 Revision History		9.1 Application Information	10
5 Pin Configuration and Functions		9.2 Typical Application	10
6 Specifications		10 Power Supply Recommendations	1 <mark>2</mark>
6.1 Absolute Maximum Ratings		11 Layout	12
6.2 ESD Ratings		11.1 Layout Guidelines	12
6.3 Recommended Operating Conditions		11.2 Layout Example	12
6.4 Thermal Information		12 Device and Documentation Support	13
6.5 Electrical Characteristics		12.1 Documentation Support	13
6.6 Switching Characteristics: C ₁ = 50 pF		12.2 Related Links	13
6.7 Switching Characteristics: C ₁ = 150 pF		12.3 Receiving Notification of Documentation Update	es1 <mark>3</mark>
6.8 Operating Characteristics		12.4 サポート・リソース	13
6.9 Typical Characteristics		12.5 Trademarks	13
7 Parameter Measurement Information		12.6 Electrostatic Discharge Caution	13
8 Detailed Description		12.7 Glossary	
8.1 Overview		13 Mechanical, Packaging, and Orderable	
8.2 Functional Block Diagram		Information	13


4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。


Changes from Revision G (September 2022) to Revision H (December 2022)	Page
DGS パッケージ情報を追加	1
Added DGS package values in the Thermal Information table	
Changes from Revision F (August 2016) to Revision G (September 2022)	Page
• 文書全体にわたって表、図、相互参照の採番方法を更新	1
Changes from Revision E (August 2003) to Revision F (August 2016)	Page
「注文情報」を削除 (データシートの末尾にある POA を参照)。	1
• 「ESD 定格」表、「機能説明」セクション、「デバイスの機能モード」セクション、「アプリケーションと実装」セク	
源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよびドキュメントのサポート」セクション	<i>、、「メカニカ</i>
<i>ル、パッケージ、および注文情報</i> 」セクションを追加。	1
Updated values in the <i>Thermal Information</i> table	5

5 Pin Configuration and Functions

J, W, DB, DW, N, NS, PW or DGS Packages 20-Pin CDIP, CFP, SSOP, SOIC, PDIP, SO, TSSOP or VSSOP Top View

FK Package 20-Pin LCCC Top View

Pin Functions

P	IN	TYPE(1)	DESCRIPTION
NO.	NAME	ITPE\''	DESCRIPTION
1	DIR	I	Direction select. High = A to B, Low = B to A
2	A1	I/O	Channel 1 port A
3	A2	I/O	Channel 2 port A
4	A3	I/O	Channel 3 port A
5	A4	I/O	Channel 4 port A
6	A5	I/O	Channel 5 port A
7	A6	I/O	Channel 6 port A
8	A7	I/O	Channel 7 port A
9	A8	I/O	Channel 8 port A
10	GND	_	Ground
11	B8	O/I	Channel 8 port B
12	B7	O/I	Channel 7 port B
13	B6	O/I	Channel 6 port B
14	B5	O/I	Channel 5 port B
15	B4	O/I	Channel 4 port B
16	В3	O/I	Channel 3 port B
17	B2	O/I	Channel 2 port B
18	B1	O/I	Channel 1 port B
19	ŌE	I	Output enable, active low. High = all ports in high impedance mode, Low = all ports active
20	V _{CC}	_	Power supply

(1) Signal Types: I = Input, O = Output, I/O = Input or Output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_I < 0$ or $V_I > V_{CC}$		±20	mA
I _{OK}	Output clamp current ⁽²⁾	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±35	mA
	Continuous current through V _{CC} or GND			±70	mA
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	5.5	V
V _{IH}	High-level input voltage	V _{CC} = 4.5 V to 5.5 V	2			V
V _{IL}	Low-level input voltage	V _{CC} = 4.5 V to 5.5 V			0.8	V
VI	Input voltage		0		V _{CC}	V
Vo	Output voltage		0		V _{CC}	V
Δt/Δν	Input transition rise and fall time				500	ns
т	Operating free-air temperature	SN54HCT245	-55		125	°C
T _A	Operating nee-air temperature	SN74HCT245	-40		85	C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		SNx4HCT245									
THERMAL METRIC(1)		J (CDIP)	W (CFP)	FK (LCCC)	DB (SSOP)	DW (SOIC)	N (PDIP)	NS (SO)	PW (TSS OP)	DGS (VSS OP)	UNIT
		20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	_	_		84.6	70.4	43.4	68.9	94.9	118.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	38.7	60.8	37.1	44.3	36.5	29.5	34.7	30.2	57.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	49.8	100.4	36.1	40.2	38.1	24.3	36.4	45.7	73.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	_	_	_	11.1	11.3	15	11.6	1.5	5.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	_	_	_	39.7	37.7	24.2	36	45.1	72.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	11.5	8.5	4.3	_	_	_	_	_	_	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS V _{CC} MIN TYP MAX		UNIT						
				I _{OH} =	T _A = 25°C		4.4	4.499			
				-20	SN54HCT245		4.4				
V	High Loyal Output Valtage	ligh-Level Output Voltage		μA	SN74HCT245	4.5 V	4.4				
V _{OH}	r light-Level Output voltage		$V_I = V_{IH}$ or V_{IL}		T _A = 25°C	4.5 V	3.98	4.3		"	
				I _{OH} = -6 mA	SN54HCT245		3.7				
				011111	SN74HCT245		3.84				
					T _A = 25°C			0.001	0.1		
				I _{OL} = 20 μA	SN54HCT245				0.1		
V _{OL} Low-I	Low-Level Output Voltage	w Lovel Output Valtage			SN74HCT245	4.5 V			0.1	V	
	Low-Level output voltage		$V_I = V_{IH}$ or V_{IL}		T _A = 25°C	4.5 V		0.17	0.26		
				I _{OL} = 6 mA	SN54HCT245				0.4		
		Г			SN74HCT245				0.33		
		DID	$V_{I} = V_{CC} \text{ or } 0$	T _A = 25°C				±0.1	±100		
I _I	Input Current	DIR or OE		SN54HCT245		5.5 V			±1000	nA	
				SN74F	ICT245				±1000		
				T _A = 25°C				±0.01	±0.5		
I_{OZ}	Off-State Output Current	A or B	$V_O = V_{CC}$ or 0	SN54HCT245		5.5 V			±10	μA	
				SN74F	ICT245				±5		
					T _A = 25°C				8		
I _{CC}	Supply Current		$V_I = V_{CC}$ or 0	I _O = 0	SN54HCT245	5.5 V			160	μΑ	
					SN74HCT245				80		
				T _A = 25°C				1.4	2.4		
ΔI_{CC} (1)	Supply-Current Change		or 2.4 V, Other inputs at 0 or	SN54HCT245		5.5 V			3	mA	
				SN74H	HCT245				2.9	1	

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		DID	T _A = 25°C	4.5 V		3	10	
C _i (2)	Input Capacitance	DIR or OE	SN54HCT245	to			10	pF
			SN74HCT245	5.5 V			10	

- (1) This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.
- (2) Parameter C_i does not apply to transceiver I/O ports.

6.6 Switching Characteristics: $C_L = 50 pF$

over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Z 7-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	TEST CONDITIONS	MIN TY	P MAX	UNIT	
				T _A = 25°C	1	6 22		
			4.5 V	SN54HCT245		33		
	A or B	B or A		SN74HCT245		28	-	
t _{pd}	AUID	BOIA		T _A = 25°C	1	4 20	ns	
			5.5 V	SN54HCT245		30		
				SN74HCT245		25		
				T _A = 25°C	2	5 46		
			4.5 V	SN54HCT245		69		
t _{en}	ŌĒ	A or B		SN74HCT245		58	no	
			5.5 V	T _A = 25°C	2	2 41	ns	
				SN54HCT245		62		
				SN74HCT245		52		
	T _A = 25°C	T _A = 25°C	2	6 40				
			4.5 V	SN54HCT245		60	ns	
+	ŌĒ	A or B		SN74HCT245		50		
t _{dis}	OL	AOIB	5.5 V	T _A = 25°C	2	3 36		
				SN54HCT245		54		
				SN74HCT245		45		
				T _A = 25°C		9 12		
			4.5 V	SN54HCT245		18		
<u>,</u>		A or B		SN74HCT245		15	ne	
t _t		AUID		T _A = 25°C		8 11	ns	
			5.5 V	SN54HCT245		16		
				SN74HCT245		14		

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

6.7 Switching Characteristics: $C_L = 150 pF$

over recommended operating free-air temperature range, C_L = 150 pF (unless otherwise noted) (see ⊠ 7-1)

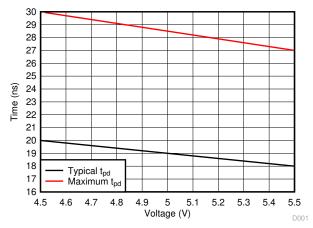
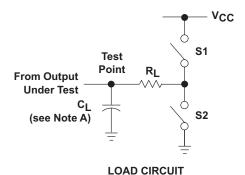
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC}	TEST CONDITIONS	MIN	TYP	MAX	UNIT
				T _A = 25°C		20	30	
			4.5 V	SN54HCT245			45	
	A or B	D A		SN74HCT245			38	20
t _{pd}	AOIB	B or A	5.5 V	T _A = 25°C		18	27	ns
				SN54HCT245			41	
				SN74HCT245			34	
			4.5 V 5.5 V	T _A = 25°C		36	59	ns
	ŌĒ	A or B		SN54HCT245			89	
				SN74HCT245			74	
t _{en}				T _A = 25°C		30	53	
				SN54HCT245			80	
				SN74HCT245			67	
				T _A = 25°C		17	42	
			4.5 V	SN54HCT245			63	ns
		A or B		SN74HCT245			53	
t _t		A or B	5.5 V	T _A = 25°C		14	38	
				SN54HCT245			57	
				SN74HCT245			48	

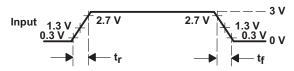
6.8 Operating Characteristics

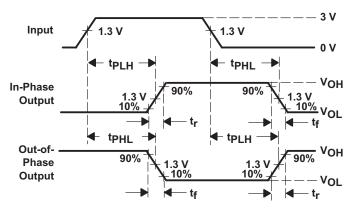
 $T_A = 25^{\circ}C$

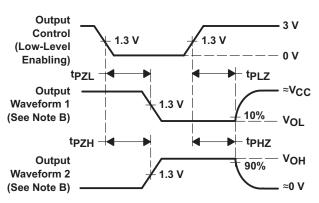
	PARAMETER	TEST CONDITIONS	TYP	UNIT
С	Power dissipation capacitance per transceiver	No load	40	pF

6.9 Typical Characteristics


図 6-1. Propagation Delay Over Operating Voltage Range, $T_A = 25$ °C


7 Parameter Measurement Information



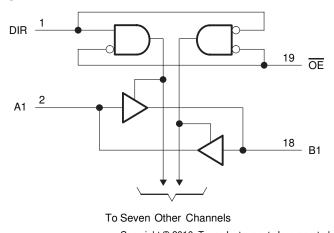
PARAM	IETER	RL	CL	S 1	S2
t _{en}	tPZH	1 kΩ	50 pF or	. Opon 0.00.	
	tPZL	1 K22	150 pF	Closed	Open
4	tPHZ	1 kΩ	50 pF	Open	Closed
tdis	tPLZ	1 K12	50 pr	Closed	Open
t _{pd} or	t _t	_	50 pF or 150 pF	Open	Open

VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

- A. C_L includes probe and test-fixture capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 6 ns, t_f = 6 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.


図 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SNx4HCT245 is a bidirectional buffer with direction control and active low output enable. This device is commonly used in logic systems for isolation and increasing drive strength.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

図 8-1. Logic Diagram (Positive Logic)

8.3 Feature Description

Voltage operating range from 4.5 V to 5.5 V is forgiving of 5-V power supply rail accuracy. Outputs can operate up to 15 LSTTL loads. This device has balanced propagation delay, typically 14 ns, and balanced output drive of $\pm 6 \text{ mA}$ at 5 V. It has low power consumption of only 80- μ A maximum static supply current. The center V_{CC} and GND pin configurations minimize high-speed switching noise. Inputs are TTL-voltage compatible.

8.4 Device Functional Modes

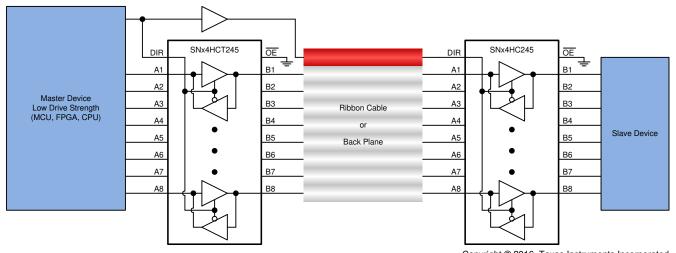
This device is a standard '245 logic function. It has an active low output enable, a direction pin, and eight communication channels.

表 8-1. Function Table

(1) H = High Voltage Level, L = Low Voltage Level, X = Don't Care

9 Application and Implementation

注


以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

9.1 Application Information

The SNx4HCT245 is a versatile device with many available applications. The application chosen as an example here is connecting a master and slave device through a ribbon cable. This configuration is common due to losses in this type of cable.

9.2 Typical Application

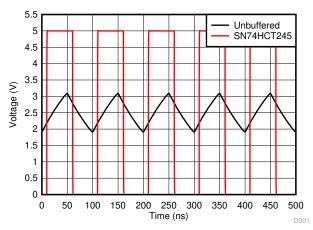
Logic transceivers are commonly seen in back plane and ribbon cable applications where a signal direct from an FPGA or MCU would be too weak to reach the distant end. The transceiver acts as an amplifier to get the signal across the line, and since it is bidirectional, data can be sent from master to slave or slave to master. The additional buffer on the direction line is necessary to ensure the direction signal can always reach the distant end.

Copyright © 2016, Texas Instruments Incorporated

図 9-1. Typical application for SNx4HC245

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care must be taken to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive, but the high drive also creates faster edges into light loads, so routing and load conditions must be considered to prevent ringing.


9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs: See $(\Delta t/\Delta V)$ in the *Recommended Operating Conditions*.
 - Specified high and low levels: See (VIH and VIL) in the Recommended Operating Conditions.
- 2. Recommended Output Conditions
 - Load currents should not exceed 35 mA per output and 70 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

9.2.3 Application Curve

It is common to see significant losses in ribbon cables and back planes. The plot shown in \boxtimes 9-2 is a simplified simulation of a ribbon cable from a 5-V, 10-MHz low drive strength source. It shows the difference between an input signal from a weak driver like an MCU or FPGA compared to a strong driver like the SN74HCT245 when measured at the distant end of the cable. By adding a high-current drive transceiver before the cable, the signal strength can be significantly improved, and subsequently the cable can be longer.

Unbuffered line is directly connected to low current source, SN74HCT245 line is buffered through the transceiver. Both signals are measured at the distant end of the ribbon cable.

図 9-2. Simulated Outputs From Ribbon Cable With a 5-V, 10-MHz Source

10 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended; if there are multiple VCC pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1 μ F and a 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only six channels of an eight channel transceiver are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} , whichever makes more sense or is more convenient.

The output enable pin disables the output section of the part when asserted. This does not disable the input section of the IOs, so they cannot float when disabled.

 \boxtimes 11-1 shows the proper method to terminate unused channels using a large resistance (in this example, 10-k Ω resistors). This avoids overloading the outputs , and maintains a valid voltage on the inputs. Note that it is also valid to tie both sides of an unused transceiver directly to ground or V_{CC} ; however, the two sides must never be tied to different states directly.

11.2 Layout Example

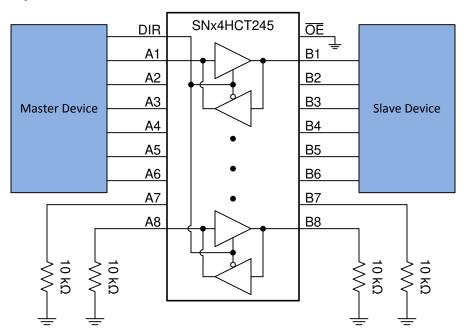


図 11-1. Proper Termination of OE Pin And Unused Channels 7 and 8

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs (SCBA004)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

表 12-1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54HCT245	Click here	Click here	Click here	Click here	Click here
SN74HCT245	Click here	Click here	Click here	Click here	Click here

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

12.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-8550601VRA	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8550601VR A SNV54HCT245J
5962-8550601VRA.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8550601VR A SNV54HCT245J
5962-8550601VSA	Active	Production	CFP (W) 20	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8550601VS A SNV54HCT245W
5962-8550601VSA.A	Active	Production	CFP (W) 20	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8550601VS A SNV54HCT245W
85506012A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	85506012A SNJ54HCT 245FK
8550601RA	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8550601RA SNJ54HCT245J
JM38510/65553BRA	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65553BRA
JM38510/65553BRA.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65553BRA
JM38510/65553BSA	Active	Production	CFP (W) 20	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65553BSA
JM38510/65553BSA.A	Active	Production	CFP (W) 20	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65553BSA
M38510/65553BRA	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65553BRA
M38510/65553BSA	Active	Production	CFP (W) 20	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65553BSA
SN54HCT245J	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54HCT245J
SN54HCT245J.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54HCT245J
SN74HCT245DBR	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245
SN74HCT245DBR.A	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245

31-Oct-2025 www.ti.com

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74HCT245DBRG4	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245
SN74HCT245DGSR	Active	Production	VSSOP (DGS) 20	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HT245
SN74HCT245DGSR.A	Active	Production	VSSOP (DGS) 20	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HT245
SN74HCT245DW	Obsolete	Production	SOIC (DW) 20	-	-	Call TI	Call TI	-40 to 85	HCT245
SN74HCT245DWR	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245
SN74HCT245DWR.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245
SN74HCT245DWRE4	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245
SN74HCT245DWRG4	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245
SN74HCT245N	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HCT245N
SN74HCT245N.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HCT245N
SN74HCT245NE4	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HCT245N
SN74HCT245NSR	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245
SN74HCT245NSR.A	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245
SN74HCT245PW	Obsolete	Production	TSSOP (PW) 20	-	-	Call TI	Call TI	-40 to 85	HT245
SN74HCT245PWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245
SN74HCT245PWR.A	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245
SN74HCT245PWRE4	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245
SN74HCT245PWRG4	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245
SN74HCT245PWRG4.A	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245
SN74HCT245PWT	Obsolete	Production	TSSOP (PW) 20	-	-	Call TI	Call TI	-40 to 85	HT245
SNJ54HCT245FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	85506012A SNJ54HCT 245FK
SNJ54HCT245FK.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	85506012A SNJ54HCT 245FK
SNJ54HCT245J	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8550601RA SNJ54HCT245J
SNJ54HCT245J.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8550601RA SNJ54HCT245J
SNJ54HCT245W	Active	Production	CFP (W) 20	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54HCT245W
SNJ54HCT245W.A	Active	Production	CFP (W) 20	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SNJ54HCT245W

31-Oct-2025

www.ti.com

- (1) Status: For more details on status, see our product life cycle.
- (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HCT245, SN54HCT245-SP, SN74HCT245:

Catalog: SN74HCT245, SN54HCT245

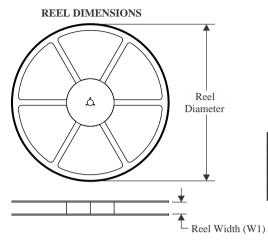
Military: SN54HCT245

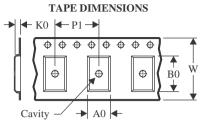
Space: SN54HCT245-SP

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

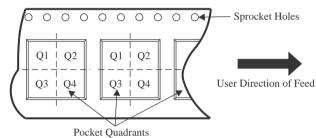
PACKAGE OPTION ADDENDUM


www.ti.com 31-Oct-2025


- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

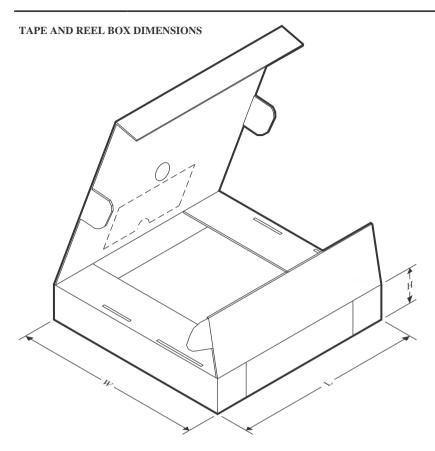
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

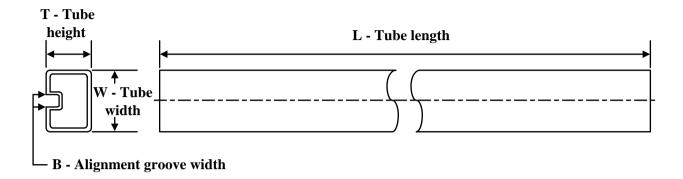


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HCT245DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74HCT245DGSR	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
SN74HCT245DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74HCT245NSR	SOP	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74HCT245PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74HCT245PWRG4	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

www.ti.com 24-Jul-2025

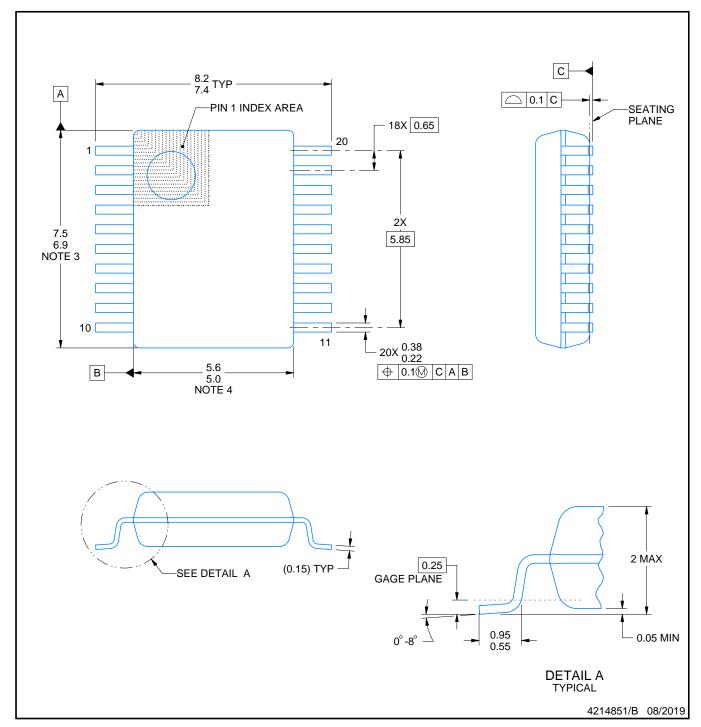
*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HCT245DBR	SSOP	DB	20	2000	353.0	353.0	32.0
SN74HCT245DGSR	VSSOP	DGS	20	5000	353.0	353.0	32.0
SN74HCT245DWR	SOIC	DW	20	2000	356.0	356.0	45.0
SN74HCT245NSR	SOP	NS	20	2000	356.0	356.0	45.0
SN74HCT245PWR	TSSOP	PW	20	2000	353.0	353.0	32.0
SN74HCT245PWRG4	TSSOP	PW	20	2000	353.0	353.0	32.0

Instruments

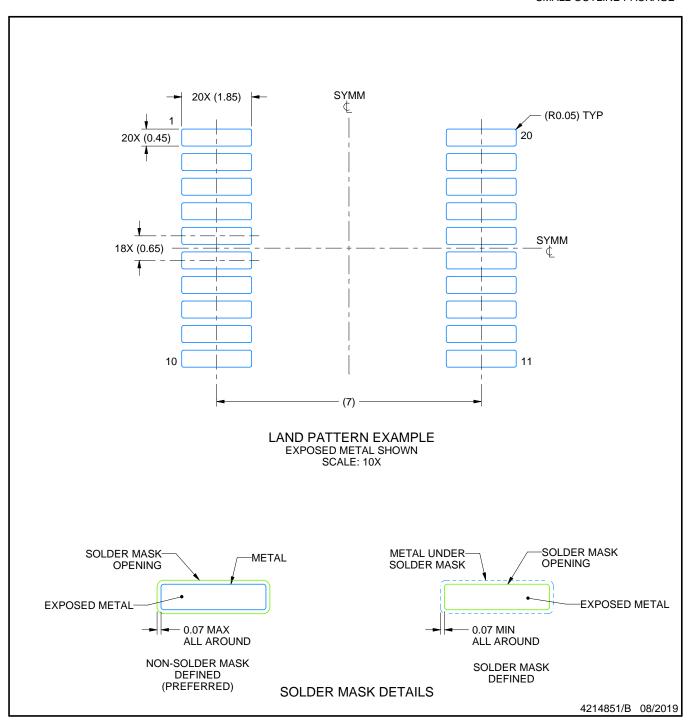
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TUBE

*All dimensions are nominal

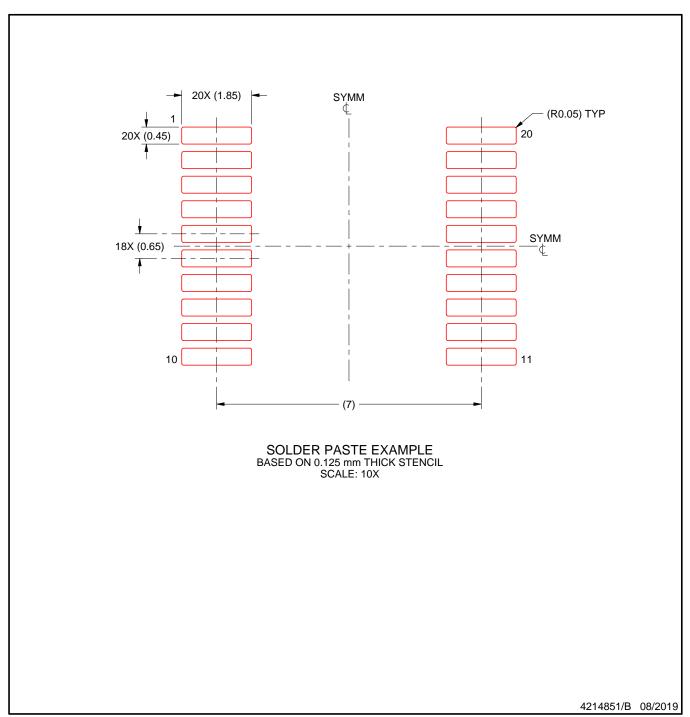
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-8550601VSA	W	CFP	20	25	506.98	26.16	6220	NA
5962-8550601VSA.A	W	CFP	20	25	506.98	26.16	6220	NA
85506012A	FK	LCCC	20	55	506.98	12.06	2030	NA
JM38510/65553BSA	W	CFP	20	25	506.98	26.16	6220	NA
JM38510/65553BSA.A	W	CFP	20	25	506.98	26.16	6220	NA
M38510/65553BSA	W	CFP	20	25	506.98	26.16	6220	NA
SN74HCT245N	N	PDIP	20	20	506	13.97	11230	4.32
SN74HCT245N.A	N	PDIP	20	20	506	13.97	11230	4.32
SN74HCT245NE4	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54HCT245FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54HCT245FK.A	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54HCT245W	W	CFP	20	25	506.98	26.16	6220	NA
SNJ54HCT245W.A	W	CFP	20	25	506.98	26.16	6220	NA


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



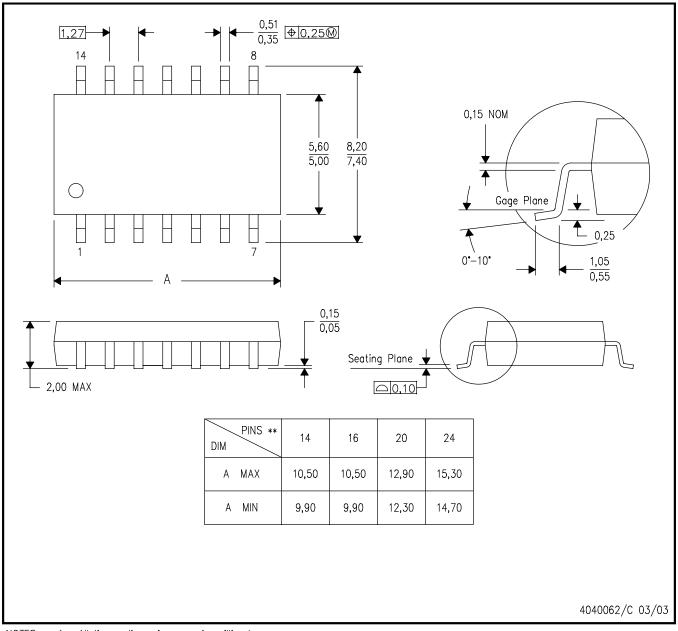
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

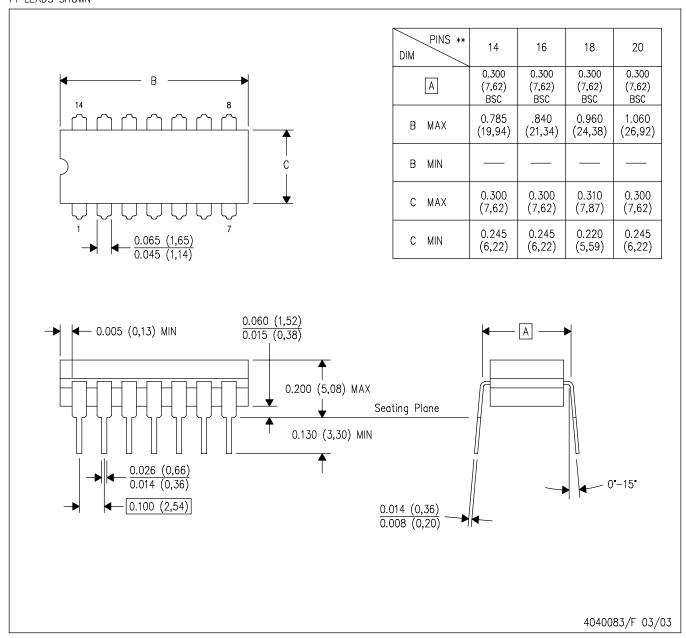


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

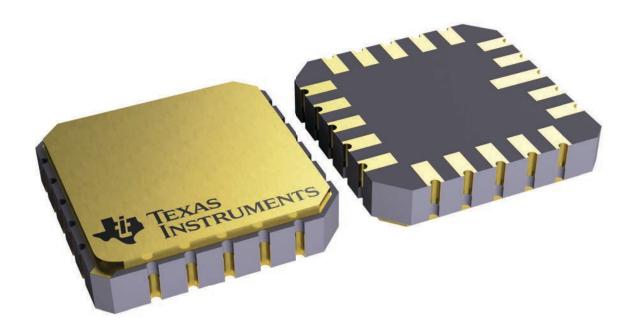
PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

14 LEADS SHOWN

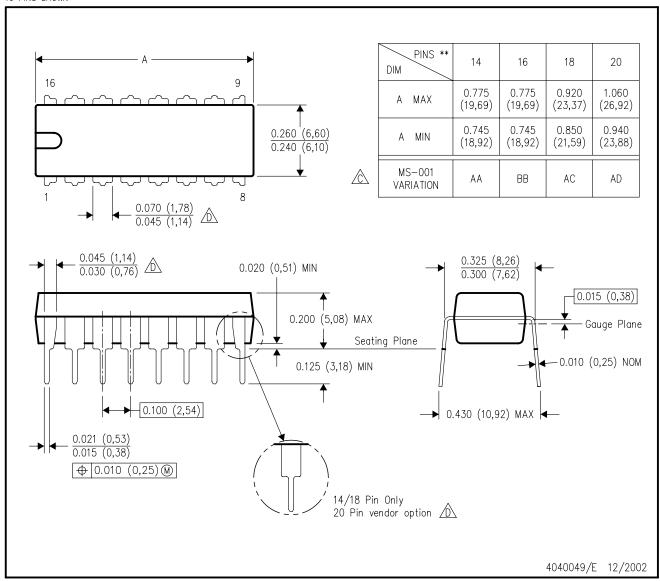

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

8.89 x 8.89, 1.27 mm pitch

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

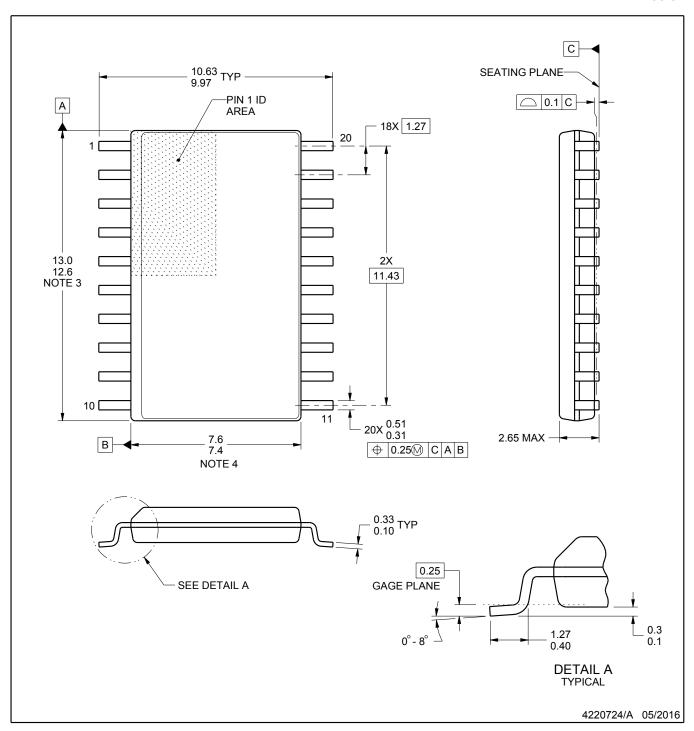


INSTRUMENTS www.ti.com

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

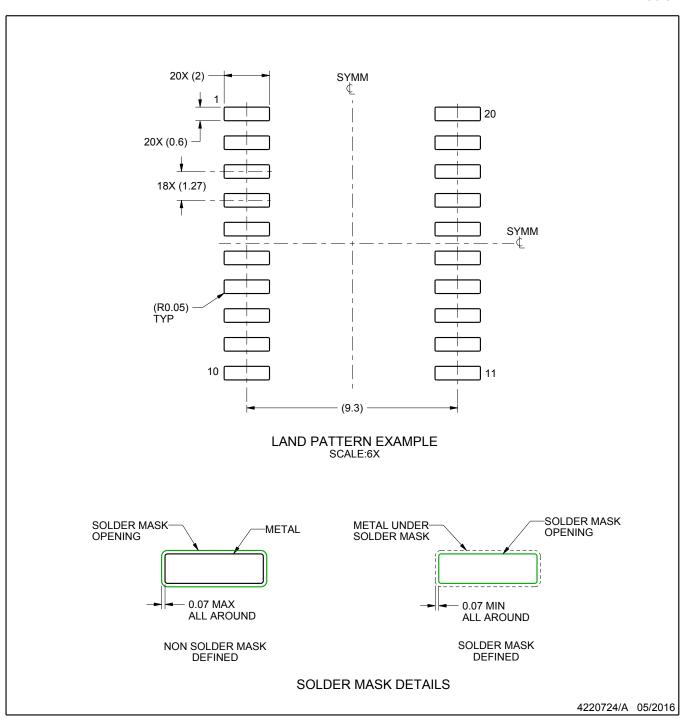
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

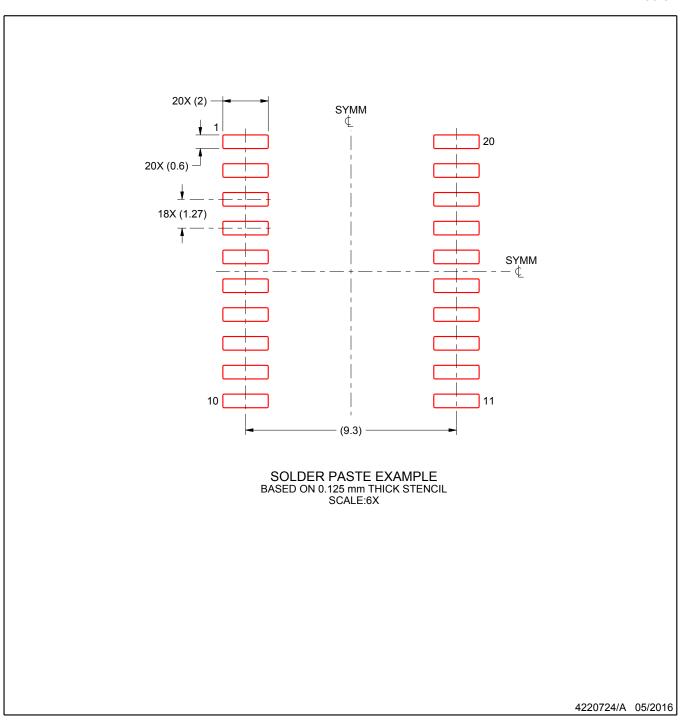
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

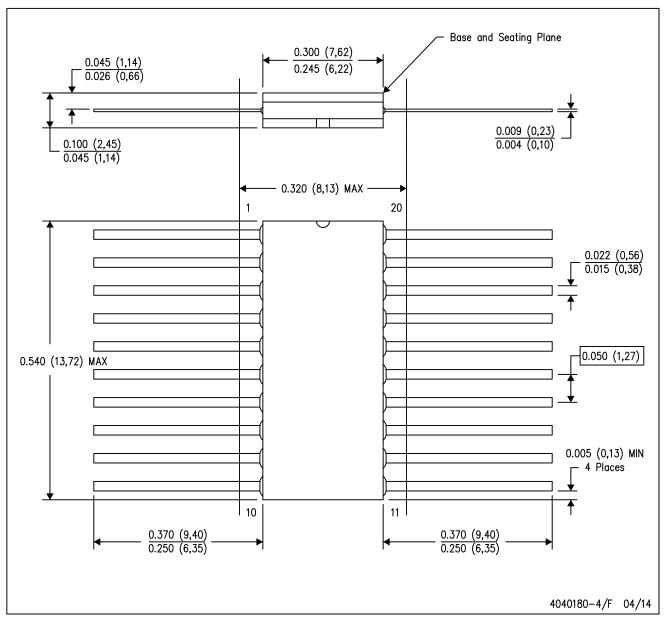
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

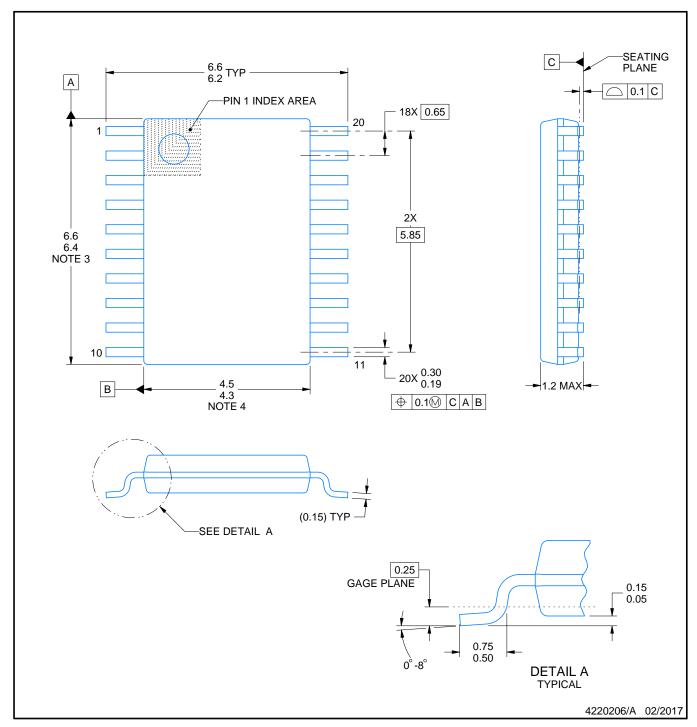

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

W (R-GDFP-F20)

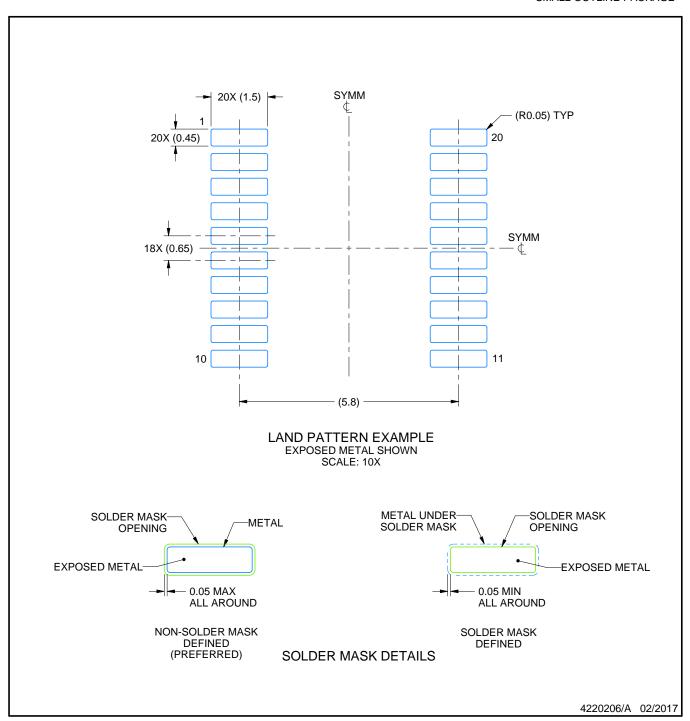
CERAMIC DUAL FLATPACK

NOTES:


- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.

 D. Index point is provided on cap for terminal identification only.

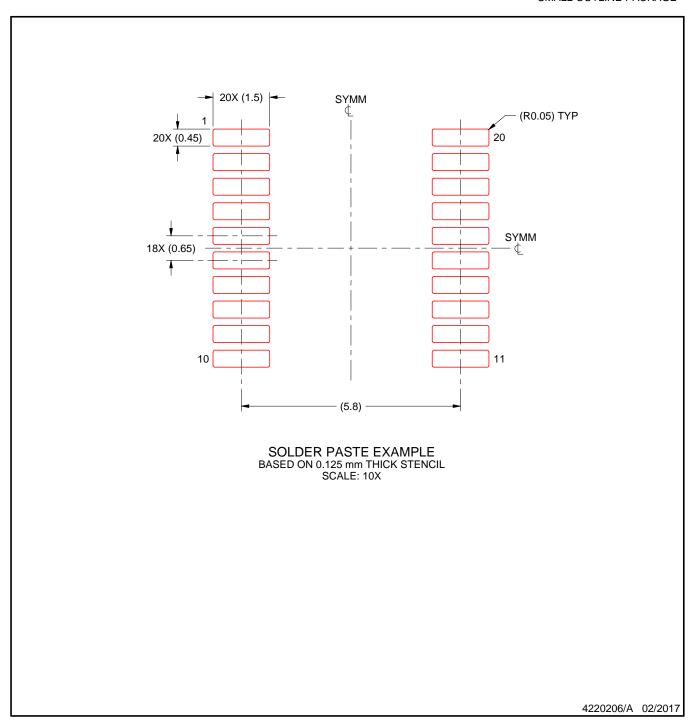
 E. Falls within Mil—Std 1835 GDFP2—F20


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

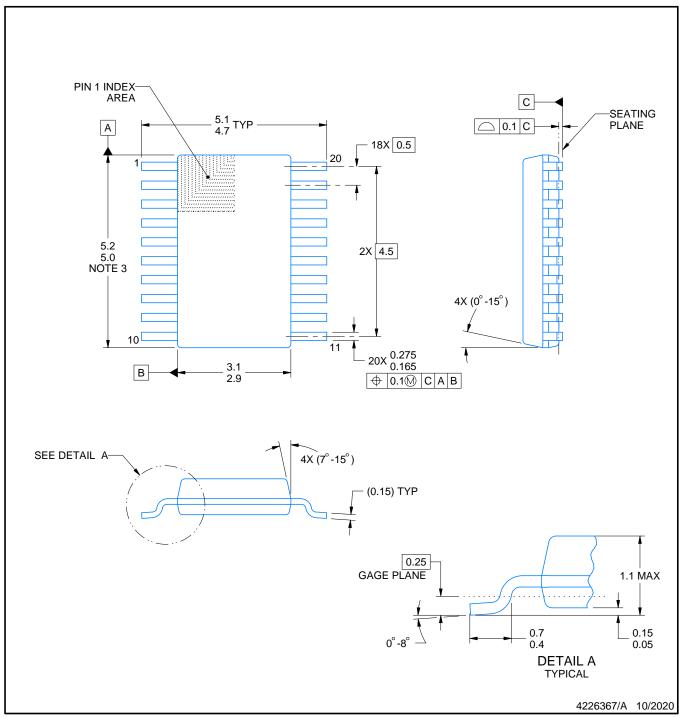
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

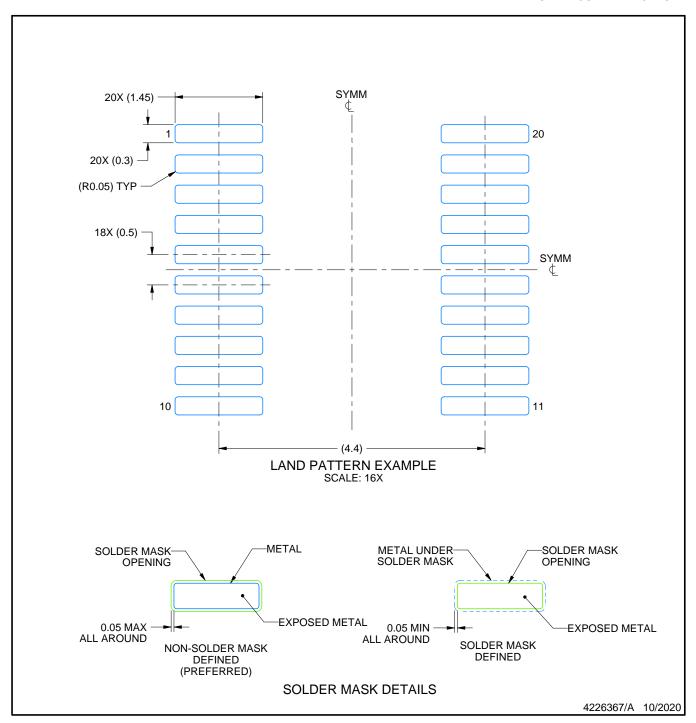
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

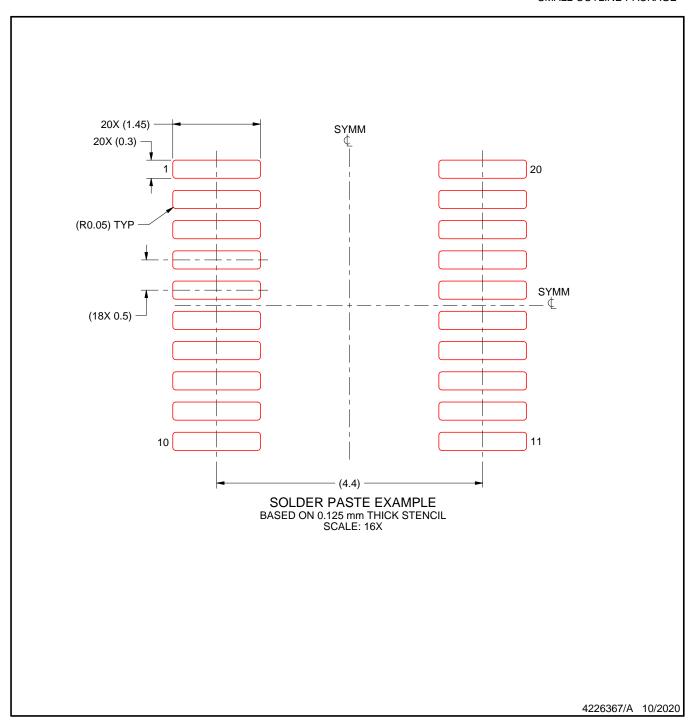
NOTES:


PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日:2025 年 10 月