
SN74AVC2T245-Q1 Dual-Bit Dual-Supply Bus Transceiver with Configurable Level-**Shifting / Voltage Translation and Tri-State Outputs**

1 Features

- Each Channel Has Independent Direction Control
- Control Inputs V_{IH}/V_{IL} Levels Are Referenced to V_{CCA} Voltage
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power-Supply Range
- I/Os Are 4.6V Tolerant
- I_{off} Supports Partial-Power-Down Mode Operation
- V_{CC} Isolation Feature If Either V_{CC} Input is at GND, Both Ports are in High-Impedance State
- Typical Data Rates
 - 500Mbps (1.8V to 3.3V Level-Shifting)
 - 320Mbps (<1.8V to 3.3V Level-Shifting)
 - 320Mbps (Translate to 2.5V or 1.8V)
 - 280Mbps (Translate to 1.5V)
 - 240Mbps (Translate to 1.2V)
- Latch-Up Performance Exceeds 100mA Per JESD 78, Class II
- **ESD Protection Exceeds JESD 22**
 - 5000V Human-Body Model (A114-A)
 - 200V Machine Model (A115-A)
 - 1500V Charged-Device Model (C101)

2 Applications

- Personal Electronics
- Industrial
- Enterprise
- Telecom

Shown for a single channel

Logic Diagram (Positive Logic)

3 Description

This dual-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.2V to 3.6V. The B port is designed to track V_{CCB}. V_{CCB} accepts any supply voltage from 1.2V to 3.6V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.

SN74AVC2T245-Q1 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (\overline{OE}) activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode . The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ}.

The SN74AVC2T245-Q1 control pins (DIR1, DIR2, and \overline{OE}) are supplied by V_{CCA} .

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} must be connected to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
		, ,
SN74AVC2T245-Q1	UQFN (10)	1.80mm × 1.40mm

For all available packages, see the orderable addendum at the end of the datasheet.

Table of Contents

1 Features	7.2 Functional Block Diagram12
2 Applications1	7.3 Feature Description12
3 Description1	7.4 Device Functional Modes12
4 Pin Configuration and Functions3	8 Application and Implementation13
5 Specifications4	8.1 Application Information
5.1 Absolute Maximum Ratings4	8.2 Typical Application13
5.2 ESD Ratings4	9 Power Supply Recommendations15
5.3 Recommended Operating Conditions4	10 Layout15
5.4 Thermal Information5	10.1 Layout Guidelines15
5.5 Electrical Characteristics6	10.2 Layout Example15
5.6 Switching Characteristics: V _{CCA} = 1.2V7	11 Device and Documentation Support16
5.7 Switching Characteristics: V _{CCA} = 1.5V ± 0.1V7	11.1 Receiving Notification of Documentation Updates 16
5.8 Switching Characteristics: V _{CCA} = 1.8V ± 0.15V8	11.2 Support Resources
5.9 Switching Characteristics: V _{CCA} = 2.5V ± 0.2V8	11.3 Trademarks16
5.10 Switching Characteristics: V _{CCA} = 3.3V ± 0.3V9	11.4 Electrostatic Discharge Caution16
5.11 Operating Characteristics9	11.5 Glossary
5.12 Typical Characteristics10	12 Revision History16
6 Parameter Measurement Information11	13 Mechanical, Packaging, and Orderable
7 Detailed Description12	Information16
7.1 Overview12	

4 Pin Configuration and Functions

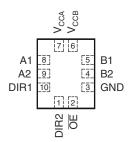


Figure 4-1. RSW Package 10-Pin UQFN Top View

Pin Functions

	PIN	
NAME	NO. (UQFN)	DESCRIPTION
V _{CCA}	7	Supply Voltage A
V _{CCB}	6	Supply Voltage B
GND	3	Ground
A1	8	Output or input depending on state of DIR. Output level depends on V _{CCA} .
A2	9	Output or input depending on state of DIR. Output level depends on V _{CCA} .
B1	5	Output or input depending on state of DIR. Output level depends on V _{CCB} .
B2	4	Output or input depending on state of DIR. Output level depends on V _{CCB} .
DIR1,DIR2	10,1	Direction Pin, Connect to GND or to V _{CCA}
ŌĒ	2	Tri-state output-mode enables. Pull OE high to place all outputs in 3-state mode. Referenced to V_{CCA}

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CCA} V _{CCB}	Supply voltage		-0.5	4.6	V
		I/O ports (A port)	-0.5	4.6	
VI	Input voltage ⁽²⁾	I/O ports (B port)	-0.5	4.6	V
		Control inputs	-0.5	4.6	
V	Voltage applied to any output in the high-impedance or power-off	A port	-0.5	4.6	V
Vo	state ⁽²⁾	B port	-0.5	4.6	· ·
	Voltage applied to any output in the high or law state(2) (3)	A port	-0.5	V _{CCA} + 0.5	V
Vo	Voltage applied to any output in the high or low state ^{(2) (3)}	B port	-0.5	V _{CCB} + 0.5	
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND		±100	mA	
TJ	Junction Temperature		-40	150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The output positive-voltage rating may be exceeded up to 4.6V maximum if the output current rating is observed.

5.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	1500	V

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

(3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V_{CCA}	Supply voltage				1.2	3.6	V
V_{CCB}	Supply voltage				1.2	3.6	V
			1.2V to 1.95V		V _{CCI} × 0.65		
V _{IH}	High-level input voltage		1.95V to 2.7V		1.6		V
	input voltage		2.7V to 3.6V		2 V _{CCI} × 0.35		
			1.2V to 1.95V			V _{CCI} × 0.35	
V_{IL}	Low-level input voltage	Data inputs ⁽¹⁾	1.95V to 2.7V			0.7	V
	input voltage		2.7V to 3.6V				
			1.2V to 1.95V		V _{CCA} × 0.65		
V_{IH}	High-level input voltage		1.95V to 2.7V		1.6		٧
V IH			2.7V to 3.6V		2		

5.3 Recommended Operating Conditions (continued)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT	
			1.2V to 1.95V		V	_{CCA} × 0.35		
V_{IL}	Low-level input voltage	DIR (referenced to V _{CCA}) ⁽²⁾	1.95V to 2.7V			0.7	V	
	input voltage	(Totoromoca to VCCA)	2.7V to 3.6V			0.8		
VI	Input voltage				0	3.6	V	
V	Output valtage	Active state			0	V _{cco}	V	
Vo	Output voltage	3-state			0	3.6	V	
				1.1V to 1.2V		-3		
	High-level output current			1.4V to 1.6V		-6	mA	
I _{OH}				1.65V to 1.95V		-8		
				2.3V to 2.7V		-9		
				3V to 3.6V		-12		
				1.1V to 1.2V		3		
				1.4V to 1.6V		6		
I _{OL}	Low-level output cu	ırrent		1.65V to 1.95V		8	mA	
				2.3V to 2.7V		9		
				3V to 3.6V		12		
Δt/Δν	Input transition rise	or fall rate			,	5	ns/V	
T _A	Operating free-air to	emperature			-40	85	°C	

- (2)
- V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5.4 Thermal Information

		SN74AVC2T245-Q1	
	THERMAL METRIC (1)	RSW (UQFN)	UNIT
		10 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	227.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	96.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	139.6	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	5.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	139.2	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)(1) (2)

DAI	RAMETER	TEST CONDI	TIONS	V	V	T,	_A = 25°C		-40°C to 8	5°C	UNIT	
PARAMETER		TEST CONDI	IIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	MIN	MAX	UNII	
		I _{OH} = -100μA		1.2V to 3.6V	1.2V to 3.6V				V _{CCO} - 0.2			
		I _{OH} = -3mA		1.2V	1.2V		0.95					
\/		I _{OH} = -6mA],, _,,	1.4V	1.4V				1.05		V	
V _{OH}		I _{OH} = -8mA	$V_I = V_{IH}$	1.65V	1.65V				1.2		V	
		I _{OH} = -9mA		2.3V	2.3V				1.75			
		I _{OH} = -12mA		3V	3V				2.3			
		I _{OL} = 100μA		1.2V to 3.6V	1.2V to 3.6V					0.2		
		I _{OL} = 3mA		1.2V	1.2V		0.25					
\/		I _{OL} = 6mA	$V_I = V_{IL}$	1.4V	1.4V					0.35	V	
V _{OL}		I _{OL} = 8mA	$v_I = v_{IL}$	1.65V	1.65V					0.45	v	
		I _{OL} = 9mA		2.3V	2.3V					0.55		
		I _{OL} = 12mA		3V	3V					0.7		
l ₁	Control inputs	V _I = V _{CCA} or GND		1.2V to 3.6V	1.2V to 3.6V		±0.025	±0.25		±1	μA	
		., ., ., ., .,		0V	0V to 3.6V		±0.1	±1		±5		
l _{off}	A or B port	$V_{\rm I}$ or $V_{\rm O} = 0$ to 3.6	V	0V to 3.6V	0V		±0.1	±1		±5	μA	
l _{OZ}	A or B port	$V_O = V_{CCO}$ or GNE $V_I = V_{CCI}$ or GND,	OE = V _{IH}	3.6V	3.6V		±0.5	±2.5		±5	μΑ	
				1.2V to 3.6V	1.2V to 3.6V					8		
I_{CCA}		$V_I = V_{CCI}$ or GND,	I _O = 0	0V	0V to 3.6V					-2	μΑ	
				0V to 3.6V	0V					8		
				1.2V to 3.6V	1.2V to 3.6V					8		
I_{CCB}		$V_I = V_{CCI}$ or GND,	I _O = 0	0V	0V to 3.6V					8	μΑ	
			_		0V					-2		
I _{CCA} +	· I _{CCB}	$V_I = V_{CCI}$ or GND,	I _O = 0	1.2V to 3.6V	1.2V to 3.6V					16	μΑ	
C _i	Control inputs	V _I = 3.3V or GND		3.3V	3.3V		3.5			4.5	pF	
C _{io}	A or B port	V _O = 3.3V or GND		3.3V	3.3V		6			7	pF	

 $[\]begin{array}{ll} \hbox{(1)} & V_{CCO} \text{ is the } V_{CC} \text{ associated with the output port.} \\ \hbox{(2)} & V_{CCI} \text{ is the } V_{CC} \text{ associated with the input port.} \end{array}$

5.6 Switching Characteristics: $V_{CCA} = 1.2V$

over recommended operating free-air temperature range, $V_{CCA} = 1.2V$ (unless otherwise noted) (see Figure 6-1)

FROM	TO (OUTPUT)	V _{CCB} = 1.2V	V _{CCB} = 1.5V ± 0.1V	V _{CCB} = 1.8V ± 0.15V	V _{CCB} = 2.5V ± 0.2V	V _{CCB} = 3.3V ± 0.3V	UNIT		
(IIVF O I)	(001701)	TYP	TYP	TYP	TYP	TYP			
۸	D	2.5	2.1	1.9	1.9	1.9	no		
A	Б	2.5	2.1	1.9	1.9	1.9	ns		
В	۸	2.5	2.2	2	1.8	1.7	no		
	A	2.5	2.2	2	1.8	1.7	ns		
OE.	۸	3.8	3.1	2.7	2.6	3	ns		
OE	A	3.8	3.1	2.7	2.6	3	113		
OE.	D	3.7	3.7	3.7	3.7	3.7			
OE	Б	3.7	3.7	3.7	3.7	3.7	ns		
OE	۸	4.4	3.6	3.5	3.3	4.1	ne		
OE	A	4.4	3.6	3.5	3.3	4.1	ns		
<u> </u>	D	4.2	4.2	4.3	4.1	4.2	no		
OE	Б	4.2	4.2	4.3	4.1	4.2	ns		
	(INPUT)	(INPUT) (OUTPUT) A B B A OE A OE B OE A	(INPUT) (OUTPUT) TYP A B 2.5 B A 2.5 2.5 2.5 2.5 3.8 3.8 3.8 3.7 OE B 3.7 OE A 4.4 4.4 4.4 OE B	TO	TO	TO	TO		

5.7 Switching Characteristics: $V_{CCA} = 1.5V \pm 0.1V$

over recommended operating free-air temperature range, V_{CCA} = 1.5V \pm 0.1V (see Figure 6-1)

	' '	•	3 ,	COA		`		- ,				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.2V	V _{CCB} = ± 0.		V _{CCB} = ± 0.1		V _{CCB} = ± 0.		V _{CCB} = ± 0.		UNIT
		(0011-01)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A	В	2.2	0.3	4.4	0.2	3.9	0.1	3.6	0.1	3.9	ns
t _{PHL}		Ь	2.2	0.3	4.4	0.2	3.9	0.1	3.6	0.1	3.9	115
t _{PLH}	В	А	2	0.6	5.1	0.4	4.9	0.2	4.6	0.1	4.5	ns
t _{PHL}	Ь		2	0.6	5.1	0.4	4.9	0.2	4.6	0.1	4.5	115
t _{PZH}	ŌĒ	А	3.4	1.1	7.1	0.9	6.2	0.7	5.5	0.1	6.4	ns
t _{PZL}	OL		3.4	1.1	7.1	0.9	6.2	0.7	5.5	0.1	6.4	115
t _{PZH}	ŌĒ	В	2.5	1.1	8.2	1.1	8.2	1.1	8.2	1.1	8.2	ns
t _{PZL}	OL		2.5	1.1	8.2	1.1	8.2	1.1	8.2	1.1	8.2	115
t _{PHZ}	<u> </u>	А	4.1	1.2	7.1	0.8	6.7	0.4	5.6	1	74	ns
t _{PLZ}	ŌĒ		4.1	1.2	7.1	0.8	6.7	0.4	5.6	1	7.4	119
t _{PHZ}	ŌĒ	В	3.3	0.3	7.4	0.2	5.7	0.3	5.6	0.3	5.6	ns
t _{PLZ}	OE		3.3	0.3	7.4	0.2	5.7	0.3	5.6	0.3	5.6	115

5.8 Switching Characteristics: $V_{CCA} = 1.8V \pm 0.15V$

over recommended operating free-air temperature range, V_{CCA} = 1.8V \pm 0.15V (see Figure 6-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.2V		V _{CCB} = 1.5V ± 0.1V		V _{CCB} = 1.8V ± 0.15V		2.5V 2V	V _{CCB} = 3.3V ± 0.3V		UNIT
	(IIVFOT)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	Α	В	2	0.1	4.1	0.1	3.6	0.1	3.1	0.1	3.3	ns
t _{PHL}	^	ь	2	0.1	4.1	0.1	3.6	0.1	3.1	0.1	3.3	115
t _{PLH}	В	Α	1.9	0.4	4.3	0.1	4.1	0.1	3.8	0.1	3.7	ns
t _{PHL}		Ь	Α	1.9	0.4	4.3	0.1	4.1	0.1	3.8	0.1	3.7
t _{PZH}	ŌĒ	Α	3.2	8.0	6.7	0.4	5.8	0.4	4.8	0.3	4.6	ns
t _{PZL}	OL	A	3.2	8.0	6.7	0.4	5.8	0.4	4.8	0.3	4.6	115
t _{PZH}	ŌĒ	В	1.9	0.2	6.7	0.2	6.6	0.2	6.7	0.2	6.7	ns
t _{PZL}	OL	ь	1.9	0.2	6.7	0.2	6.6	0.2	6.7	0.2	6.7	115
t _{PHZ}	ŌĒ	Α	3.8	0.7	6.2	0.3	6.5	0.1	5.2	0.8	6.5	ns
t _{PLZ}	OE	A	3.8	0.7	6.2	0.3	6.5	0.1	5.2	0.8	6.5	115
t _{PHZ}	ŌĒ	В	3.4	0.1	6.8	0.1	6.8	0.1	6.7	0.1	6.7	ns
t _{PLZ}	OE .	ם	3.4	0.1	6.8	0.1	6.8	0.1	6.7	0.1	6.7	115

5.9 Switching Characteristics: $V_{CCA} = 2.5V \pm 0.2V$

over recommended operating free-air temperature range, $V_{CCA} = 2.5V \pm 0.2V$ (see Figure 6-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.2V	V _{CCB} = ± 0.		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(INPUT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	Α	В	1.9	0.1	3.8	0.1	3.2	0.1	2.7	0.1	2.6	no
t _{PHL}	A	Б	1.9	0.1	3.8	0.1	3.2	0.1	2.7	0.1	2.6	ns
t _{PLH}	В	Α	1.8	0.5	3.4	0.2	3.1	0.1	2.8	0.1	2.6	ns
t _{PHL}	Ь	A	1.8	0.5	3.4	0.2	3.1	0.1	2.8	0.1	2.6	115
t _{PZH}	ŌĒ	Α	3.1	0.7	6.2	0.5	5.2	0.3	4.1	0.3	3.6	ns
t _{PZL}	OL	^	3.1	0.7	6.2	0.5	5.2	0.3	4.1	0.3	3.6	115
t _{PZH}	ŌĒ	В	1.4	0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	ns
t _{PZL}	OE	Б	1.4	0.4	4.5	0.4	4.5	0.4	4.5	0.4	4.5	115
t _{PHZ}	ŌĒ	Α	3.6	0.2	5.2	0.1	5.4	0.1	4.5	0.7	6	ns
t _{PLZ}	OE	Α	3.6	0.2	5.2	0.1	5.4	0.1	4.5	0.7	6	115
t _{PHZ}	ŌE.	В	2.1	0.1	4.7	0.1	4.6	0.1	4.7	0.1	4.7	no
t _{PLZ}	ŌĒ	D	2.1	0.1	4.7	0.1	4.6	0.1	4.7	0.1	4.7	ns

Submit Document Feedback

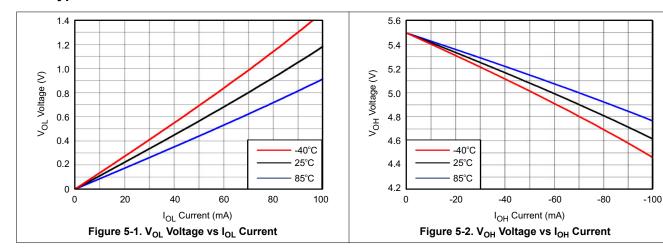
Copyright © 2025 Texas Instruments Incorporated

5.10 Switching Characteristics: $V_{CCA} = 3.3V \pm 0.3V$

over recommended operating free-air temperature range, $V_{CCA} = 3.3V \pm 0.3V$ (see Figure 6-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.2V	V _{CCB} = ± 0.		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(1141 01)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	Α	В	1.8	0.1	3.6	0.1	3	0.1	2.6	0.1	2.4	ns
t _{PHL}	A	Б	1.8	0.1	3.6	0.1	3	0.1	2.6	0.1	2.4	115
t _{PLH}	В	Α	1.9	0.5	3.4	0.2	2.9	0.1	2.5	0.1	2.3	ns
t _{PHL}	ט	Α	1.9	0.5	3.4	0.2	2.9	0.1	2.5	0.1	2.3	115
t _{PZH}	ŌĒ	Α	3.1	0.9	5.9	0.5	5	0.3	3.8	0.3	3.3	ns
t _{PZL}	OE	А	3.1	0.9	5.9	0.5	5	0.3	3.8	0.3	3.3	115
t _{PZH}	ŌĒ	В	1.2	0.4	3.6	0.4	3.6	0.4	3.6	0.4	3.6	ns
t _{PZL}	OL	Б	1.2	0.4	3.6	0.4	3.6	0.4	3.6	0.4	3.6	115
t _{PHZ}	ŌĒ	Α	3.4	0.1	4.6	0.1	4.7	0.3	4.8	0.7	4.5	ns
t _{PLZ}	OL	Α.	3.4	0.1	4.6	0.1	4.7	0.3	4.8	0.7	4.5	115
t _{PHZ}	ŌĒ	В	2.9	0.1	5.4	0.1	5.3	0.1	5.3	0.1	5.3	ns
t _{PLZ}	OE	ם	2.9	0.1	5.4	0.1	5.3	0.1	5.3	0.1	5.3	115

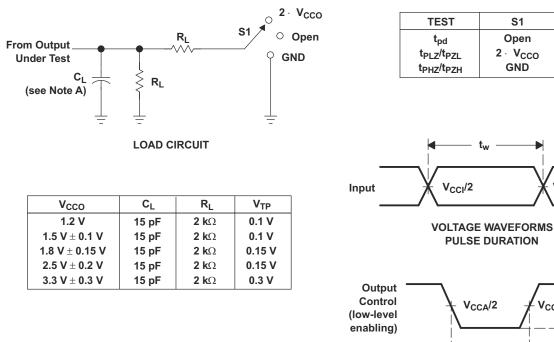
5.11 Operating Characteristics

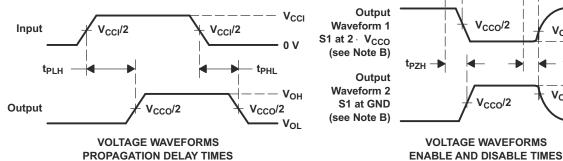

T_A = 25°C

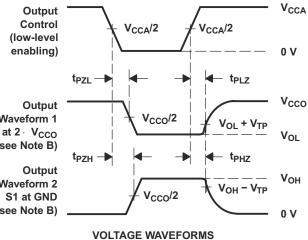
F	PARAMETER		PARAMETER TEST CONDITION			V _{CCA} = V _{CCB} = 1.2V	V _{CCA} = V _{CCB} = 1.5V	V _{CCA} = V _{CCB} = 1.8V	V _{CCA} = V _{CCB} = 2.5V	V _{CCA} = V _{CCB} = 3.3V	UNIT
			CONDITIONS	TYP	TYP	TYP	TYP	TYP			
		Outputs enabled		3	3	3	3	4			
C _{pdA} (1)	A to B	Outputs disabled	$C_L = 0,$ f = 10MHz,	1	1	1	2	2	ne		
OpdA (*)	B to A	Outputs enabled	$t_r = t_f = 1$ ns	12	13	13	15	15	pF		
	B to A	Outputs disabled		1	2	2	2	2			
	A to B	Outputs enabled		12	13	13	14	16			
C _{pdB} (1)	Alob	Outputs disabled	$C_L = 0,$ f = 10MHz,	1	2	2	2	2	pF		
OpdB (1)	B to A	Outputs enabled $t_r = t_f = 1$ ns	3	3	3	4	4	ρr			
	B to A	Outputs disabled		1	1	1	2	2			

⁽¹⁾ Power dissipation capacitance per transceiver. Refer to the TI application note, CMOS Power Consumption and Cpd Calculation.

5.12 Typical Characteristics




V_{CCI}


0 V

V_{CCI}/2

6 Parameter Measurement Information

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \ge 1 V/ns$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLH} and t_{PHL} are the same as t_{pd} .
- F. V_{CCI} is the V_{CC} associated with the input port.
- G. V_{CCO} is the V_{CC} associated with the output port.

Figure 6-1. Load and Circuit and Voltage Waveforms

7 Detailed Description

7.1 Overview

The SN74AVC2T245-Q1 is a dual-bit, dual-supply noninverting bidirectional voltage level translation. Pins A and control pins (DIR and $\overline{\text{OE}}$) are supported by V_{CCA} and pins B are supported by V_{CCB} . The A port can accept I/O voltages ranging from 1.2V to 3.6V, while the B port can accept I/O voltages from 1.2V to 3.6V. A high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A when $\overline{\text{OE}}$ is set to low. When $\overline{\text{OE}}$ is set to high, both A and B are in the high-impedance state.

This device is fully specified for partial-power-down applications using off output current (I_{off}).

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are put in a high-impedance state.

7.2 Functional Block Diagram

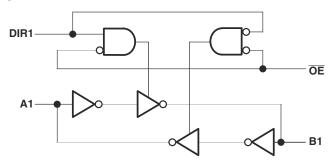


Figure 7-1. Logic Diagram (Positive Logic)

7.3 Feature Description

7.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage from 1.2V to 3.6V making the device suitable for translating between any of the low voltage nodes (1.2V, 1.8V, 2.5V, and 3.3V).

7.3.2 Partial-Power-Down Mode Operation

This device is fully specified for partial-power-down applications using off output current (I_{off}). The I_{off} circuitry will prevent backflow current by disabling I/O output circuits when device is in partial power-down mode.

7.3.3 V_{CC} Isolation

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} are at GND, both ports will be in a high-impedance state (I_{OZ}). This prevents false logic levels from being presented to either bus.

7.4 Device Functional Modes

The SN74AVC2T245-Q1 is a voltage level translator that can operate from 1.2V to 3.6V (V_{CCA}) and 1.2V to 3.6V (V_{CCB}). The signal translation requires direction control and output enable control. The table below enlists the operation of the part for the respective states of the control inputs.

CONTROL INPUTS (1) **OUTPUT CIRCUITS OPERATION OE** DIR1 **A PORT B PORT** L Enabled Hi-Z B data to A data L L Н Hi-Z Enabled A data to B data Н Х Hi-Z Hi-Z Isolation

Table 7-1. Function Table (Each Transceiver)

Input circuits of the data I/Os are always active.

Submit Document Feedback

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The SN74AVC2T245-Q1 is used to shift IO voltage levels from one voltage domain to another. Bus A and bus B have independent power supplies, and a direction pin is used to control the direction of data flow. Unused data ports must not be floating; tie the unused port input and output to ground directly.

8.1.1 Enable Times

Calculate the enable times for the SN74AVC2T245-Q1 using the following formulas:

$$t_{PZH}(DIR\ to\ A) = t_{PLZ}(DIR\ to\ B) + t_{PLH}(B\ to\ A) \tag{1}$$

$$t_{PZL}(DIR\ to\ A) = t_{PHZ}(DIR\ to\ B) + t_{PHL}(B\ to\ A) \tag{2}$$

$$t_{PZH}(DIR\ to\ B) = t_{PLZ}(DIR\ to\ A) + t_{PHL}(A\ to\ B) \tag{3}$$

$$t_{PZL}(DIR\ to\ B) = t_{PHZ}(DIR\ to\ A) + t_{PHL}(A\ to\ B) \tag{4}$$

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74AVC2T245-Q1 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

8.2 Typical Application

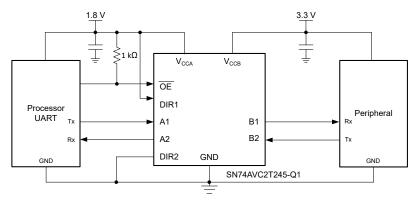


Figure 8-1. Typical Application of the SN74AVC2T245-Q1

8.2.1 Design Requirements

This device uses drivers which are enabled depending on the state of the DIR pin. The designer must know the intended flow of data and take care not to violate any of the high or low logic levels. Unused data inputs must not be floating, as this can cause excessive internal leakage on the input CMOS structure. Tie any unused input and output ports directly to ground.

For this design example, use the parameters listed in Table 8-1.

Table 8-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.2V to 3.6V
Output voltage range	1.2V to 3.6V

8.2.2 Detailed Design Procedure

To begin the design process, determine the following:

8.2.2.1 Input Voltage Ranges

Use the supply voltage of the device that is driving the SN74AVC2T245-Q1 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.

8.2.2.2 Output Voltage Range

Use the supply voltage of the device that the SN74AVC2T245-Q1 device is driving to determine the output voltage range.

8.2.3 Application Curves

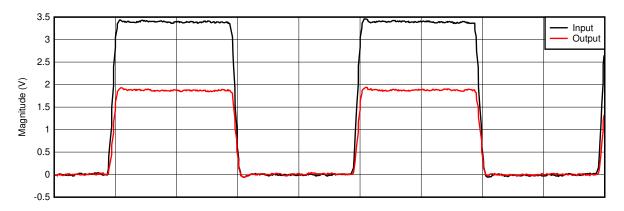


Figure 8-2. 3.3V to 1.8V Level-Shifting With 1MHz Square Wave

D001

9 Power Supply Recommendations

The SN74AVC2T245-Q1 device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . V_{CCA} accepts any supply voltage from 1.2V to 3.6V and V_{CCB} accepts any supply voltage from 1.2V to 3.6V. The A port and B port are designed to track V_{CCA} and V_{CCB} respectively allowing for low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.

10 Layout

10.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit-board layout guidelines is recommended.

- Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements.

10.2 Layout Example

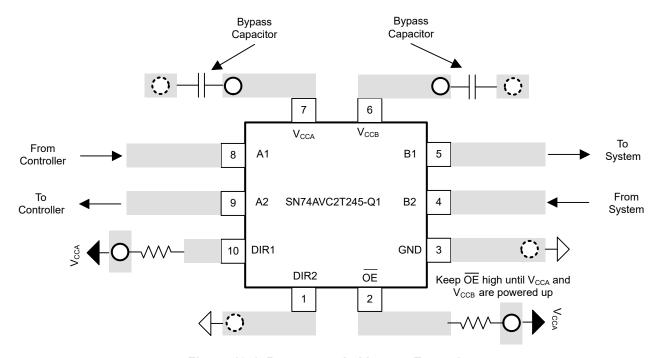


Figure 10-1. Recommended Layout Example

11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

12 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
November 2025	*	Initial Release

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74AVC2T245-Q1

www.ti.com 6-Dec-2025

PACKAGING INFORMATION

Ī	Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
							(4)	(5)		
	CAVC2T245QRSWRQ1	Active	Production	UQFN (RSW) 10	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1TJ

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

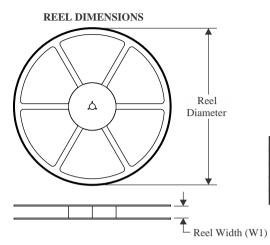
OTHER QUALIFIED VERSIONS OF SN74AVC2T245-Q1:

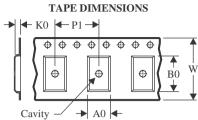
Catalog: SN74AVC2T245

NOTE: Qualified Version Definitions:

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

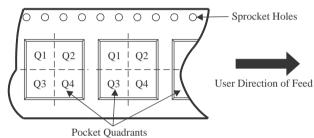
PACKAGE OPTION ADDENDUM


www.ti.com 6-Dec-2025

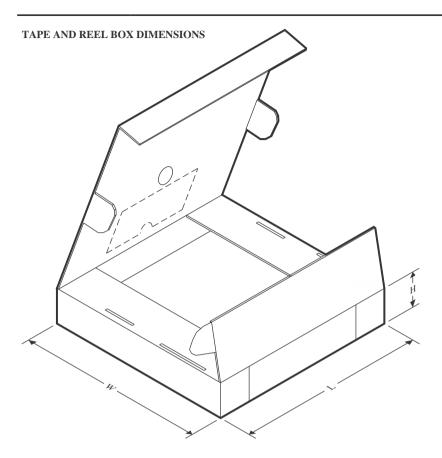

Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 7-Dec-2025


TAPE AND REEL INFORMATION

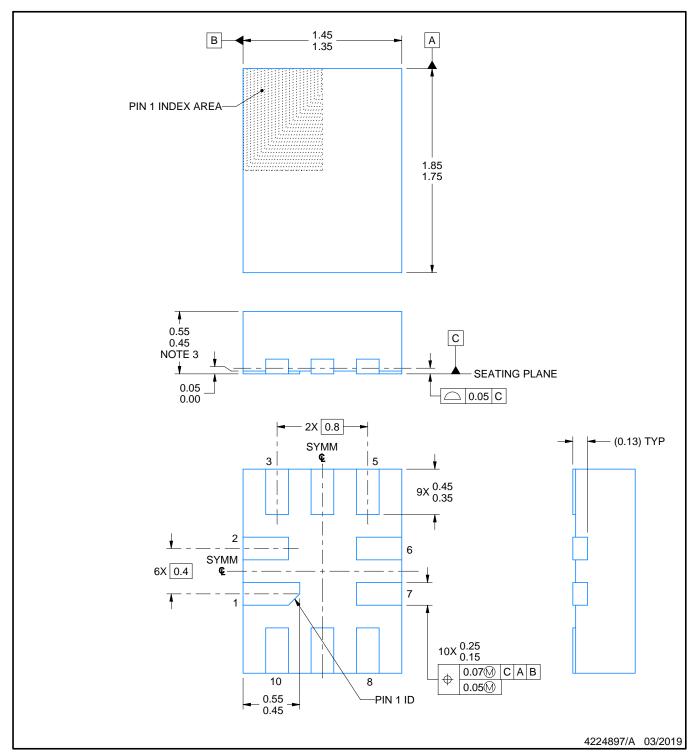
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	` '	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CAVC2T245QRSWRQ1	UQFN	RSW	10	3000	180.0	8.4	1.6	2.0	0.7	4.0	8.0	Q1

www.ti.com 7-Dec-2025

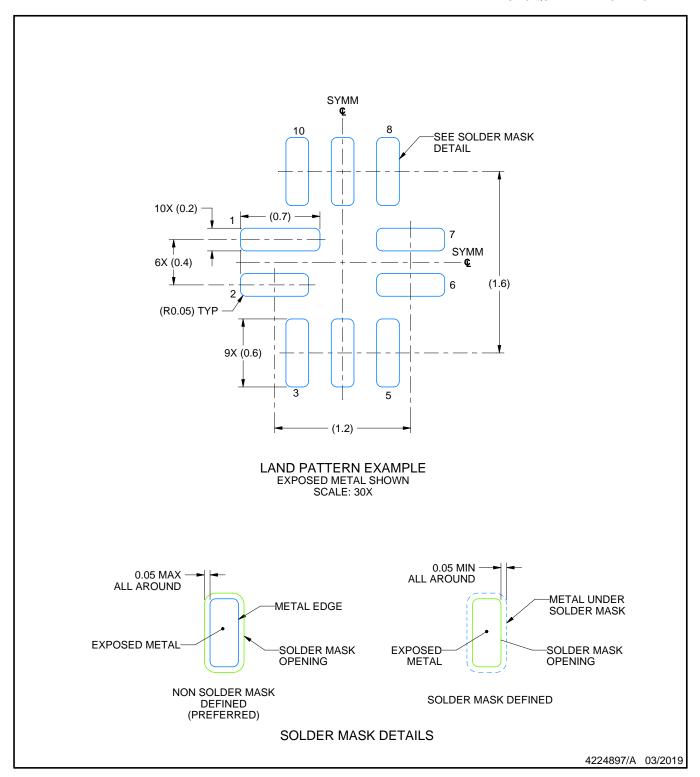


*All dimensions are nominal

Device	evice Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CAVC2T245QRSWRQ1	UQFN	RSW	10	3000	210.0	185.0	35.0	

PLASTIC QUAD FLATPACK - NO LEAD

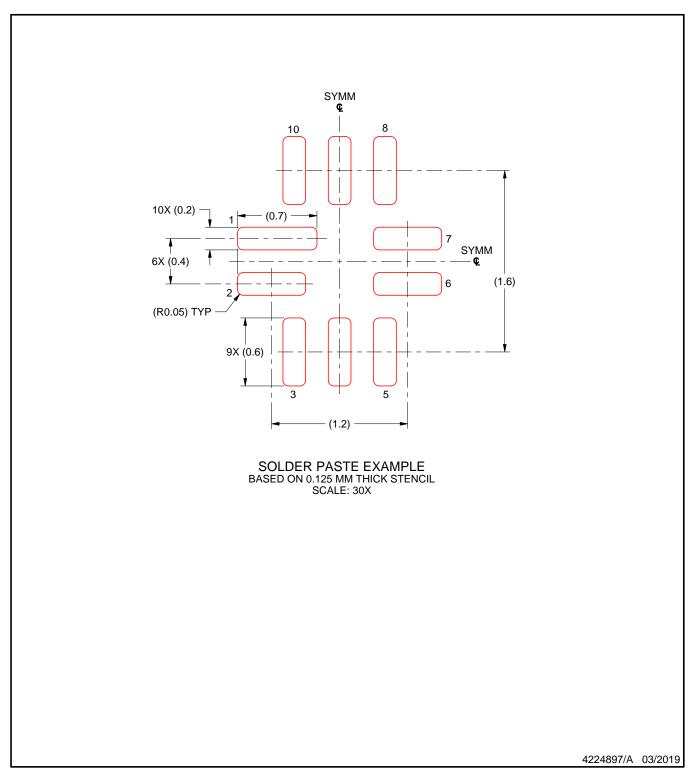
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This package complies to JEDEC MO-288 variation UDEE, except minimum package height.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025