SDAS203C - APRIL 1982 - REVISED JANUARY 1995 - Combines Decoder and 3-Bit Address Latch - Incorporates Two Output Enables to Simplify Cascading - Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs #### description SN54ALS137A, SN74ALS137A, The SN74AS137 are 3-line to 8-line decoders/ demultiplexers with latches on the three address inputs. When the latch-enable (LE) input is low, the devices act as decoders/demultiplexers. When LE goes from low to high, the address present at the select (A. B. and C) inputs is stored in the latches. Further address changes are ignored as long as \overline{LE} remains high. The output-enable controls (G1 and $\overline{G2}$) control the outputs independently of the select or latch-enable inputs. All of the outputs are forced high if G1 is low or $\overline{G2}$ is high. These devices are ideally suited for implementing glitch-free decoders in strobed (stored-address) applications in bus-oriented systems. The SN54ALS137A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS137A and SN74AS137 are characterized for operation from 0°C to 70°C. #### SN54ALS137A . . . J PACKAGE SN74ALS137A, SN74AS137 . . . D OR N PACKAGE (TOP VIEW) ## SN54ALS137A . . . FK PACKAGE (TOP VIEW) NC - No internal connection #### **FUNCTION TABLE** | | | INP | UTS | | | | | | OUT | TPUTS | | | | |----|--------|----------|-----|--------|---|-----|-----------|----------|-----------|--------------|------------|------------|-----| | | ENABLE | . | | SELECT | • | | | | 001 | PU13 | | | | | LE | G1 | G2 | С | В | Α | Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | | Х | Х | Н | Χ | Х | Х | Н | Н | Н | Н | Н | Н | Н | Н | | Х | L | Χ | Х | Χ | Χ | Н | Н | Н | Н | Н | Н | Н | Н | | L | Н | L | L | L | L | L | Н | Н | Н | Н | Н | Н | Н | | L | Н | L | L | L | Н | Н | L | Н | Н | Н | Н | Н | Н | | L | Н | L | L | Н | L | Н | Н | L | Н | Н | Н | Н | Н | | L | Н | L | L | Н | Н | Н | Н | Н | L | Н | Н | Н | Н | | L | Н | L | Н | L | L | Н | Н | Н | Н | L | Н | Н | Н | | L | Н | L | Н | L | Н | Н | Н | Н | Н | Н | L | Н | Н | | L | Н | L | Н | Н | L | Н | Н | Н | Н | Н | Н | L | Н | | L | Н | L | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | L | | Н | Н | L | Χ | Χ | Χ | Out | outs corr | espondir | ng to sto | ed addre | ess = L; a | all others | = H | SDAS203C - APRIL 1982 - REVISED JANUARY 1995 #### logic symbols (alternatives)† [†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages. #### logic diagram (positive logic) Pin numbers shown are for the D, J, and N packages. SDAS203C - APRIL 1982 - REVISED JANUARY 1995 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{CC} | |
7 V | |--|-------------|--------------------| | Input voltage, V _I | |
7 V | | Operating free-air temperature range, T _A : | SN54ALS137A |
-55°C to 125°C | | , o , , , | SN74ALS137A |
0°C to 70°C | | Storage temperature range | | -65°C to 150°C | #### recommended operating conditions | | | SN54ALS137A | | | SN74ALS137A | | | UNIT | | | |-----------------|---|-------------|-----|------|-------------|-----|------|------|--|--| | | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | | | Vcc | Supply voltage | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | V | | | | VIH | High-level input voltage | 2 | | | 2 | | | V | | | | V _{IL} | Low-level input voltage | | | 0.7 | | | 0.8 | V | | | | IOH | High-level output current | | | -0.4 | | | -0.4 | mA | | | | lOL | Low-level output current | | | 4 | | | 8 | mA | | | | t _W | Pulse duration, LE low | 15 | | | 10 | | | ns | | | | t _{su} | Setup time at A, B, and C before $\overline{\text{LE}}\uparrow$ | 15 | | | 10 | | | ns | | | | t _h | Hold time at A, B, and C after LE↑ | 5 | | · | 5 | | | ns | | | | TA | Operating free-air temperature | -55 | | 125 | 0 | | 70 | °C | | | # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | 24244555 | | TEST CONDITIONS | | | 7A | SN7 | '4ALS13 | 7A | LINIT | |-----------------|---|----------------------------|--------------------|------------------|------|--------|------------------|------|-------| | PARAMETER | TEST C | UNDITIONS | MIN | TYP [‡] | MAX | MIN | TYP [‡] | MAX | UNIT | | VIK | $V_{CC} = 4.5 V,$ | I _I = –18 mA | | | -1.5 | | | -1.5 | V | | Voн | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ | $I_{OH} = -0.4 \text{ mA}$ | V _{CC} -2 | 2 | | VCC -2 |) | | V | | V | 45.7 | I _{OL} = 4 mA | | 0.25 | 0.4 | | 0.25 | 0.4 | V | | V _{OL} | V _{CC} = 4.5 V | $I_{OL} = 8 \text{ mA}$ | | | | | 0.35 | 0.5 | V | | lį | $V_{CC} = 5.5 V,$ | V _I = 7 V | | | 0.1 | | | 0.1 | mA | | lН | $V_{CC} = 5.5 V,$ | V _I = 2.7 V | | | 20 | | | 20 | μΑ | | I _{IL} | $V_{CC} = 5.5 V,$ | V _I = 0.4 V | | | -0.1 | | | -0.1 | mA | | ΙΟ [§] | $V_{CC} = 5.5 V,$ | V _O = 2.25 V | -20 | | -112 | -30 | | -112 | mA | | ICC | V _{CC} = 5.5 V | | | 5 | 11 | | 5 | 11 | mA | $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C. [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. [§] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS. SDAS203C - APRIL 1982 - REVISED JANUARY 1995 #### switching characteristics (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _C (
C _L :
R _L :
T _A : | UNIT | | | | |------------------|-----------------|----------------|--|-------|--------|-------|----| | | , , | (| SN54AL | S137A | SN74AL | S137A | | | | | | MIN | MAX | MIN | MAX | | | t _{PLH} | A D C | Υ | 5 | 25 | 5 | 20 | | | ^t PHL | A, B, C | Y | 6 | 25 | 6 | 20 | ns | | t _{PLH} | G 2 | Υ | 4 | 15 | 3 | 12 | | | t _{PHL} | G2 | Y | 5 | 18 | 4 | 15 | ns | | t _{PLH} | 04 | Υ | 5 | 21 | 4 | 17 | | | ^t PHL | G1 | Y | 5 | 19 | 4 | 15 | ns | | t _{PLH} | ĪĒ | Y | 7 | 27 | 6 | 22 | ns | | ^t PHL | LE | I | 7 | 25 | 7 | 20 | | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ | Supply voltage, V _{CC} | 7 V | |--|------------| | Input voltage, V _I | 7 V | | Operating free-air temperature range, T _A : SN74AS1370° | C to 70°C | | Storage temperature range –65°C | C to 150°C | [‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### recommended operating conditions | | | SN | 174AS13 | 7 | UNIT | |-----------------|--------------------------------------|-----|---------|-----|------| | | | MIN | NOM | MAX | UNIT | | Vcc | Supply voltage | 4.5 | 5 | 5.5 | V | | V_{IH} | High-level input voltage | 2 | | | V | | V_{IL} | Low-level input voltage | | | 0.8 | V | | ІОН | High-level output current | | | -2 | mA | | loL | Low-level output current | | | 20 | mA | | t _W | Pulse duration, LE low | 6.5 | | | ns | | t _{su} | Setup time at A, B, and C before LE↑ | 4 | | | ns | | th | Hold time at A, B, and C after LE↑ | 1 | | | ns | | TA | Operating free-air temperature | 0 | | 70 | °C | SDAS203C - APRIL 1982 - REVISED JANUARY 1995 #### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | 24244555 | TEOT 00110 | TEST CONDITIONS 4.5 V, I _I = -18 mA 4.5 V to 5.5 V, I _{OH} = -2 mA V _{CC} 4.5 V, I _{OL} = 20 mA 5.5 V, V _I = 7 V 5.5 V, V _I = 2.7 V | SI | SN74AS137 | | | | |-----------------|---|--|--------------------|--------------------------------------|-------|------|--| | PARAMETER | TEST COND | ITIONS | MIN | MIN TYP† I V _{CC} -2 0.35 | MAX | UNIT | | | VIK | $V_{CC} = 4.5 V,$ | $I_{I} = -18 \text{ mA}$ | | | -1.2 | V | | | V _{OH} | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ | $I_{OH} = -2 \text{ mA}$ | V _{CC} -2 | | | V | | | V _{OL} | $V_{CC} = 4.5 V$, | $I_{OL} = 20 \text{ mA}$ | | 0.35 | 0.5 | V | | | lį | $V_{CC} = 5.5 V$, | $V_I = 7 V$ | | | 0.1 | mA | | | lін | $V_{CC} = 5.5 V$, | $V_{I} = 2.7 V$ | | | 20 | μΑ | | | I _{ΙL} | $V_{CC} = 5.5 V$, | $V_{I} = 0.4 V$ | | | -1 | mA | | | 10‡ | $V_{CC} = 5.5 V,$ | V _O = 2.25 V | -30 | | - 112 | mA | | | ICC | V _{CC} = 5.5 V | | | 15 | 24 | mA | | $[\]uparrow$ All typical values are at V_{CC} = 5 V, T_A = 25°C. #### switching characteristics (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | C _L = 50 pF
R _L = 500 Ω
T _A = MIN to | $V_{CC} = 4.5$ V to 5.5 V,
$C_L = 50$ pF,
$R_L = 500$ Ω,
$T_A = MIN$ to MAX§
SN74AS137 | | | |------------------|-----------------|----------------|---|--|----|--| | | | | MIN | MAX | | | | ^t PLH | A B C | Υ | 2 | 12.5 | ns | | | t _{PHL} | A, B, C | Ť | 2 | 12.5 | | | | t _{PLH} | G 2 | Υ | 2 | 8 | ns | | | ^t PHL | G2 | Y | 2 | 8.5 | | | | t _{PLH} | 04 | V | 2 | 10 | | | | t _{PHL} | G1 | Y | 2 | 9 | ns | | | ^t PLH | ĪĒ | Υ | 3 | 13.5 | ns | | | ^t PHL | LE | Ť | 3 | 14 | | | [§] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los. ## PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. When measuring propagation delay items of 3-state outputs, switch S1 is open. - D. All input pulses have the following characteristics: PRR \leq 1 MHz, $t_f = t_f = 2$ ns, duty cycle = 50%. - E. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuits and Voltage Waveforms www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status
(1) | Material type | Package Pins | Package qty Carrier | RoHS (3) | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|---------------|---------------|----------------|-----------------------|-----------------|-------------------------------|----------------------------|---------------------|------------------| | SN74ALS137AD | Obsolete | Production | SOIC (D) 16 | - | - | Call TI | Call TI | 0 to 70 | ALS137A | | SN74ALS137AN | Active | Production | PDIP (N) 16 | 25 TUBE | Yes | NIPDAU | N/A for Pkg Type | 0 to 70 SN74ALS137A | | | SN74ALS137AN.A | Active | Production | PDIP (N) 16 | 25 TUBE | Yes | NIPDAU | N/A for Pkg Type | 0 to 70 | SN74ALS137AN | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ **MSL** rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. ## **PACKAGE MATERIALS INFORMATION** www.ti.com 23-May-2025 #### **TUBE** *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |----------------|--------------|--------------|------|-----|--------|--------|--------|--------| | SN74ALS137AN | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | SN74ALS137AN | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | SN74ALS137AN.A | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | SN74ALS137AN.A | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | ## N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ## D (R-PDS0-G16) #### PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated