

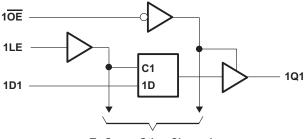
Sample &

Buy

SN54AHCT16373, SN74AHCT16373

SCLS336I – JANUARY 2000 – REVISED AUGUST 2014

SNx4AHCT16373 16-Bit Transparent D-Type Latches With 3-State Outputs


1 Features

Texas

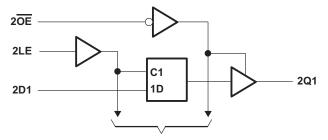
Instruments

- Members of the Texas Instruments Widebus™ Family
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) Process
- Inputs are TTL-Voltage Compatible
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include:
 - Plastic Shrink Small-Outline (DL) Package
 - Thin Shrink Small-Outline (DGG) Package
 - Thin Very Small-Outline (DGV) Package
 - 80-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

4 Simplified Schematic

To Seven Other Channels

2 Applications


- Wearable Health and Fitness Devices
- Toys
- PCs and Notebooks
- Power Infrastructures
- Servers

3 Description

The SNxAHCT16373 devices are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	TSSOP (48)	12.50 mm × 6.10 mm		
SNx4AHC16373	TVSOP (48)	9.70 mm × 4.40 mm		
	SSOP (48)	15.88 mm × 7.49 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

To Seven Other Channels

Table of Contents

1	Feat	tures 1						
2	Арр	lications1						
3	Des	Description 1						
4	Sim	plified Schematic 1						
5	Rev	ision History2						
6	Pin	Configuration and Functions 3						
7	Spe	cifications5						
	7.1	Absolute Maximum Ratings 5						
	7.2	Handling Ratings5						
	7.3	Recommended Operating Conditions5						
	7.4	Thermal Information 6						
	7.5	Electrical Characteristics						
	7.6	Timing Requirements 6						
	7.7	Switching Characteristics 7						
	7.8	Noise Characteristics7						
	7.9	Operating Characteristics7						
	7.10	Typical Characteristics 8						
8	Para	ameter Measurement Information						

9	Deta	iled Description	10
	9.1	Overview	10
	9.2	Functional Block Diagrams	10
	9.3	Feature Description	11
	9.4	Device Functional Modes	11
10	Арр	lication and Implementation	12
	10.1	Application Information	12
	10.2	Typical Application	
11	Pow	er Supply Recommendations	13
12	Laye	out	13
	12.1	Layout Guidelines	13
	12.2	Layout Example	13
13	Dev	ice and Documentation Support	14
	13.1	Related Links	14
	13.2	Trademarks	14
	13.3	Electrostatic Discharge Caution	14
	13.4	Glossary	14
14		hanical, Packaging, and Orderable mation	14

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision H (January 2000) to Revision I	Page
Updated document to new TI data sheet format	1
Deleted Ordering Information table.	
Added Applications.	
Added Pin Functions table	
Added Handling Ratings table	
Changed MAX operating temperature to 125°C in Recommended Operating Condition	
Added Thermal Information table.	
• Added -40°C to 125°C for SN74AHCT16373 in Electrical Characteristics table	
• Added $T_A = -40^{\circ}$ C to 125°C for SN74AHCT16373 in the Timing Requirements table	
• Added $T_A = -40^{\circ}$ C to 125°C for SN74AHCT16373 in the Switching Characteristics tab	le7
Added Typical Characteristics.	
Added Detailed Description section.	
Added Application and Implementation section	
Added Power Supply Recommendations and Layout sections	

2

www.ti.com

6 Pin Configuration and Functions

$1 \overrightarrow{OE} \begin{bmatrix} 1 & 48 \\ 1 & 48 \end{bmatrix} 1 LE \\ 1 Q1 \begin{bmatrix} 2 & 47 \\ 1 Q2 \end{bmatrix} 1 D1 \\ 1 Q2 \begin{bmatrix} 3 & 46 \\ 1 D2 \end{bmatrix} 1 D2$	SN74AHCT16373DG	WD PACKAGE G, DGV, OR DL PACKAGE VIEW)
GND 4 45 GND 1Q3 5 44 1D3 1Q4 6 43 1D4 V _{CC} 7 42 V _{CC} 1Q5 8 41 1D5 1Q6 9 40 1D6 GND 10 39 GND 1Q7 11 38 1D7 1Q8 12 37 1D8 2Q1 13 36 2D1 2Q2 14 35 2D2 GND 15 34 GND 2Q3 16 33 2D3 2Q4 17 32 2D4 V _{CC} 18 31 V _{CC} 2Q5 19 30 2D5 2Q6 20 29 2D6 GND 21 28 GND 2Q7 22 27 2D7 2Q8 23 26 2D8 2OE 24 25 2LE	1Q1 [2 1Q2 [3 GND [4 1Q3 [5 1Q4 [6 V _{CC} [7 1Q5 [8 1Q6 [9 GND [10 1Q7 [11 1Q8 [12 2Q1 [13 2Q2 [14 GND [15 2Q3 [16 2Q4 [17 V _{CC} [18 2Q5 [19 2Q6 [20 GND [21 2Q7 [22 2Q8 [23	47 1D1 46 1D2 45 GND 44 1D3 43 1D4 42 V _{CC} 41 1D5 40 1D6 39 GND 38 1D7 37 1D8 36 2D1 35 2D2 34 GND 33 2D3 32 2D4 31 V _{CC} 30 2D5 29 2D6 28 GND 27 2D7 26 2D8

Pin Functions

PIN		I/O	DESCRIPTION	
NO.	NAME		DESCRIPTION	
1	1 0E	I	Output Enable 1	
2	1Q1	0	1Q1 Output	
3	1Q2	0	1Q2 Output	
4	GND	—	Ground Pin	
5	1Q3	0	1Q3 Output	
6	1Q4	0	1Q4 Output	
7	V _{CC}	—	Power Pin	
8	1Q5	0	1Q5 Output	
9	1Q6	0	1Q6 Output	
10	GND	—	Ground Pin	
11	1Q7	0	1Q7 Output	
12	1Q8	0	1Q8 Output	
13	2Q1	0	2Q1 Output	
14	2Q2	0	2Q2 Output	
15	GND	_	Ground Pin	
16	2Q3	0	2Q3 Output	
17	2Q4	0	2Q4 Output	
18	V _{CC}	_	Power Pin	

Copyright © 2000–2014, Texas Instruments Incorporated

Submit Documentation Feedback 3

Pin Functions (continued)

I	PIN		DECODIDEION	
NO.	NAME	I/O	DESCRIPTION	
19	2Q5	0	2Q5 Output	
20	2Q6	0	2Q6 Output	
21	GND	_	Ground Pin	
22	2Q7	0	2Q7 Output	
23	2Q8	0	2Q8 Output	
24	2 0E	I	Output Enable 2	
25	2LE	I	Latch Enable 2	
26	2D8	I	2D8 Input	
27	2D7	I	2D7 Input	
28	GND	_	Ground Pin	
29	2D6	I	2D6 Input	
30	2D5	I	2D5 Input	
31	V _{CC}	_	Power Pin	
32	2D4	I	2D4 Input	
33	2D3	I	2D3 Input	
34	GND	_	Ground Pin	
35	2D2	I	2D2 Input	
36	2D1	I	2D1 Input	
37	1D8	I	1D8 Input	
38	1D7	I	1D7 Input	
39	GND	—	Ground Pin	
40	1D6	I	1D6 Input	
41	1D5	I	1D5 Input	
42	V _{CC}	_	Power Pin	
43	1D4	I	1D4 Input	
44	1D3	I	1D3 Input	
45	GND		Ground Pin	
46	1D2	I	1D2 Input	
47	1D1	I	1D1 Input	
48	1LE	I	Latch Enable 1	

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	7	V
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Output voltage range ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±75	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

7.2 Handling Ratings

			MIN	MAX	UNIT	
T _{stg}	Storage temperature rang	-65	150	°C		
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000		
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		SN54AHCT16373 ⁽²⁾		SN74AHCT16373		UNIT
		MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	5.5	0	5.5	V
Vo	Output voltage	0	V _{CC}	0	V _{CC}	V
I _{OH}	High-level output current		8		-8	mA
I _{OL}	Low-level output current		8		8	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		20		20	ns/V
T _A	Operating free-air temperature	-55	125	-40	125	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

(2) Product Preview

SN54AHCT16373, SN74AHCT16373

SCLS336I - JANUARY 2000 - REVISED AUGUST 2014

www.ti.com

7.4 Thermal Information

			SN74AHCT16373			
	THERMAL METRIC ⁽¹⁾	DGG	DGV	DL	UNIT	
			48 PINS			
R_{\thetaJA}	Junction-to-ambient thermal resistance	69.9	80.9	61.4		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	24.2	32.8	31.4		
$R_{ extsf{ heta}JB}$	Junction-to-board thermal resistance	26.9	44.0	33.2	00 MM	
Ψ_{JT}	Junction-to-top characterization parameter	1.9	3.3	9.0	°C/W	
Ψјв	Junction-to-board characterization parameter	36.6	43.4	32.9		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	n/a		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	T _A = 25°C			SN54AHCT16373 ⁽¹⁾		-40°C to 85°C SN74AHCT16373		-40°C to 125°C SN74AHCT16373		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
V _{OH}	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		4.4		4.4		V
	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8		3.8		3.8		v
V	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1		0.1	V
V _{OL}	I _{OL} = 8 mA	4.5 V			0.36		0.44		0.44		0.44	v
l _i	$V_{I} = V_{CC}$ or GND	0 V to 5.5 V			±0.1		±1 ⁽²⁾		±1		±1	μA
I _{oz}	$V_{O} = V_{CC}$ or GND	5.5 V			±0.25		±2.5		±2.5		±2.5	μA
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40		40		40	μA
ΔI _{CC} ⁽³⁾	One input at 3.4 V, Other inputs at V_{CC} or GND	5.5 V			1.35		1.5		1.5		1.5	mA
C _i	$V_{I} = V_{CC}$ or GND	5 V		2.5	10				10			pF
Co	$V_{O} = V_{CC}$ or GND	5 V		4.5								pF

(1)Product Preview

(2)

On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0$ V. This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC} . (3)

7.6 Timing Requirements

over recommended operating free-air temperature range, $V_{CC} = 5 V \pm 0.5 V$ (unless otherwise noted) (see Figure 2)

		T _A = 25°C		SN54AHCT16373 ⁽¹⁾		SN74AHCT16373	T _A = -40°C to 125°C SN74AHCT16373	UNIT
		MIN	MAX	MIN MA	X	MIN MAX	MIN MAX	
tw	Pulse duration, LE high	6.5		6.5		6.5	6.5	ns
t _{su}	Setup time, data before LE \downarrow	1.5		1.5		1.5	1.5	ns
t _h	Hold time, data after LE \downarrow	3.5		3.5		3.5	3.5	ns

(1) Product Preview

7.7 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO	LOAD CAPACITANCE		T _A = 25°C		SN54AHCT	16373 ⁽¹⁾	SN74AHC	Г16373	SN74AHC T _A = -40°C		UNIT						
	(OUTPUT)	(INPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX							
t _{PLH}	D	Q	0 45 - 5		5.1 ⁽²⁾	8.5 ⁽²⁾	1 ⁽²⁾	9.5 ⁽²⁾	1	9.5	1	10.5							
t _{PHL}	D	Q	C _L = 15 pF		5.1 ⁽²⁾	8.5(2)	1 ⁽²⁾	9.5 ⁽²⁾	1	9.5	1	10.5	ns						
t _{PLH}			0.45.5		5(2)	8.5(2)	1 ⁽²⁾	9.5 ⁽²⁾	1	9.5	1	10.5							
t _{PHL}	LE	Q	C _L = 15 pF		5 ⁽²⁾	8.5(2)	1 ⁽²⁾	9.5 ⁽²⁾	1	9.5	1	10.5	ns						
t _{PZH}	OE	-	0 15 5		5 ⁽²⁾	9.5 ⁽²⁾	1 ⁽²⁾	10.5(2)	1	10.5	1	11.1							
t _{PZL}	OE	Q	Q	Q	Q	Q	Q	Q	C _L = 15 pF		5 ⁽²⁾	9.5 ⁽²⁾	1 ⁽²⁾	10.5 ⁽²⁾	1	10.5	1	11.1	ns
t _{PHZ}	ŌĒ	Q			6 ⁽²⁾	10.2 ⁽²⁾	1 ⁽²⁾	11 ⁽²⁾	1	11	1	11.6							
t _{PLZ}	OE		C _L = 15 pF		6.8 ⁽²⁾	10.2 ⁽²⁾	1 ⁽²⁾	11 ⁽²⁾	1	11	1	11.6	ns						
t _{PLH}	"	-	0	0 50 5		5.9	9.5	1	10.5	1	10.5	1	11.5						
t _{PHL}	D	Q	C _L = 50 pF		5.9	9.5	1	10.5	1	10.5	1	11.5	ns						
t _{PLH}			0 50 5		6.4	9.5	1	10.5	1	10.5	1	11.5							
t _{PHL}	LE	Q	C _L = 50 pF		5.9	9.5	1	10.5	1	10.5	1	11.5	ns						
t _{PZH}	5	-	0 50 5		6	10.5	1	11.5	1	11.5	1	12.1							
t _{PZL}	OE	DE Q	C _L = 50 pF		6	10.5	1	11.5	1	11.5	1	12.1	ns						
t _{PHZ}		_	0 50 5		6.8	11.2	1	12	1	12	1	12.6							
t _{PLZ}	<u>OE</u> Q	C _L = 50 pF		7.8	11.2	1	12	1	12	1	12.6	ns							
t _{sk(o)}			C _L = 50 pF			1 ⁽³⁾				1		1	ns						

(1) Product Preview

(2) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(3) On products compliant to MIL-PRF-38535, this parameter does not apply.

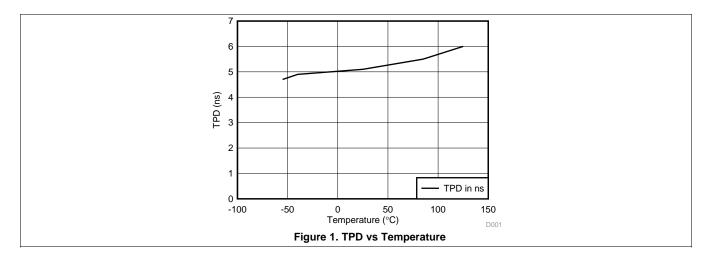
7.8 Noise Characteristics

 $V_{CC} = 5 \text{ V}, \text{ } \text{C}_{L} = 50 \text{ pF}, \text{ } \text{T}_{A} = 25^{\circ}\text{C}^{(1)}$

	PARAMETER	SN74	73	UNIT		
	PARAMETER	MIN	MIN TYP MAX		UNIT	
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.32	0.8	V	
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.1	-0.8	V	
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		4.7		V	
V _{IH(D)}	High-level dynamic input voltage	2			V	
V _{IL(D)}	Low-level dynamic input voltage			0.8	V	

(1) Characteristics are for surface-mount packages only.

7.9 Operating Characteristics


 $V_{CC} = 5 V, T_A = 25^{\circ}C$

	PARAMETER	TEST C	ONDITIONS	ТҮР	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	22	pF

NSTRUMENTS www.ti.com


EXAS

7.10 Typical Characteristics

8 Parameter Measurement Information

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_Q = 50 Ω , t_r ≤ 3 ns, t_f ≤ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

TEXAS INSTRUMENTS

www.ti.com

9 Detailed Description

9.1 Overview

The SNxAHCT16373 devices are 16-bit transparent D-type latches with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, IO ports, bidirectional bus drivers, and working registers.

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

9.2 Functional Block Diagrams

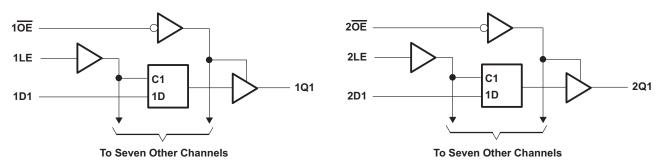
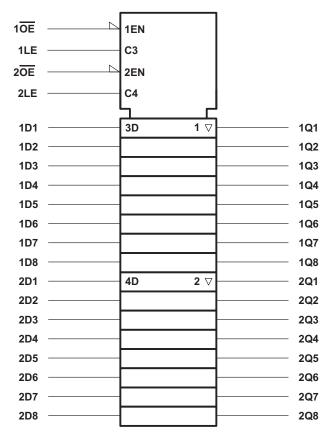



Figure 3. Logic Diagram (Positive Logic)

Functional Block Diagrams (continued)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Figure 4. Logic Symbol

9.3 Feature Description

- TTL inputs
 - Lowered switching threshold allows up translation from 3.3 V to 5 V
- Slow edges reduce output ringing

9.4 Device Functional Modes

Table 1. Function Table (Each 8-bit Latch)

	•	·	
	INPUTS	OUTPUT	
OE	LE	D	Q
L	Н	Н	Н
L	н	L	L
L	L	х	Q ₀
Н	х	х	Z

10 Application and Implementation

10.1 Application Information

The SN74AHCT16373 is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The input switching levels have been lowered to accommodate TTL inputs of 0.8-V V_{IL} and 2-V V_{IH} . This feature makes it ideal for translating up from 3.3 V to 5 V. Figure 6 shows this type of translation.

10.2 Typical Application

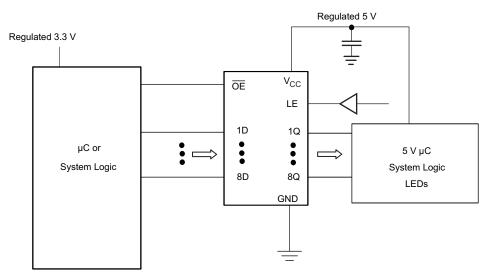
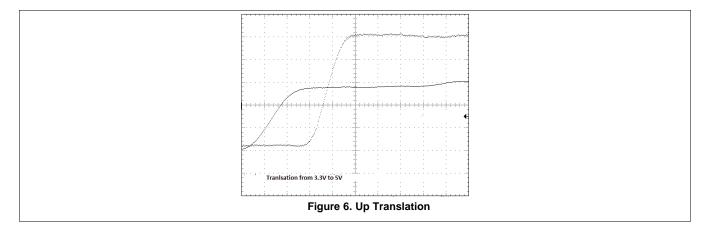


Figure 5. Typical Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure


1. Recommended input conditions

- Rise time and fall time specs: See ($\Delta t/\Delta V$) in the *Recommended Operating Conditions* table.
- Specified High and low levels: See (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
- Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}
- 2. Recommend output conditions
 - Load currents should not exceed 25 mA per output and 75 mA total for the part
 - Outputs should not be pulled above V_{CC}

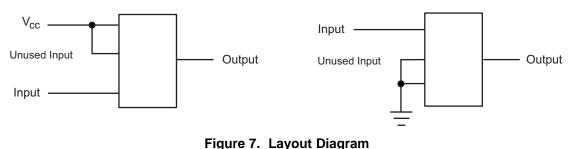
Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.


12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input-AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 7 are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} ; whichever makes more sense or is more convenient. It is generally acceptable to float outputs unless the part is a transceiver.

12.2 Layout Example

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54AHCT16373	Click here	Click here	Click here	Click here	Click here
SN74AHCT16373	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

13.2 Trademarks

Widebus is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74AHCT16373DGGR	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT16373
SN74AHCT16373DGGR.A	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT16373
SN74AHCT16373DGVR	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HF373
SN74AHCT16373DGVR.A	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HF373
SN74AHCT16373DL	Obsolete	Production	SSOP (DL) 48	-	-	Call TI	Call TI	-40 to 125	AHCT16373
SN74AHCT16373DLR	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT16373
SN74AHCT16373DLR.A	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT16373

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

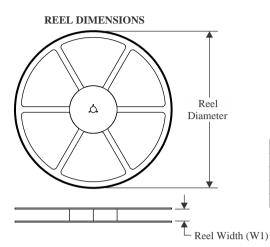
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

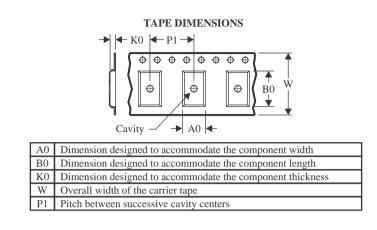
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

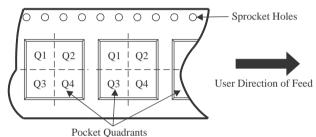
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


23-May-2025

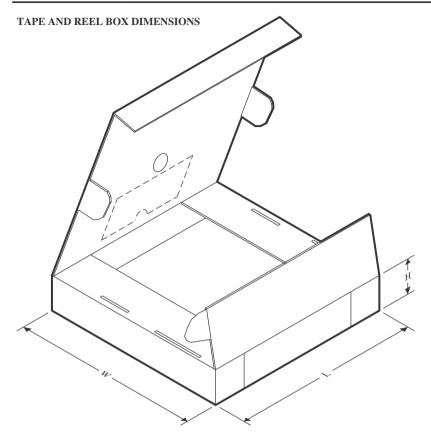


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



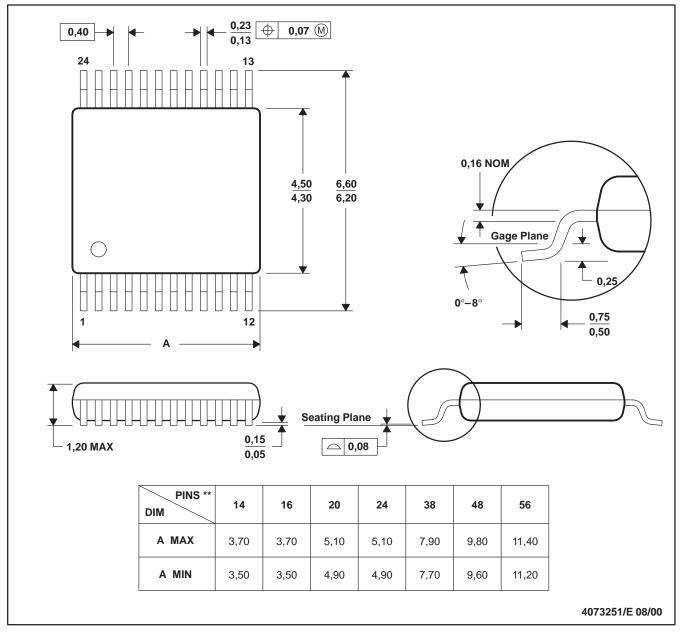
*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHCT16373DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74AHCT16373DGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74AHCT16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

PACKAGE MATERIALS INFORMATION

24-Jul-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHCT16373DGGR	TSSOP	DGG	48	2000	356.0	356.0	45.0
SN74AHCT16373DGVR	TVSOP	DGV	48	2000	353.0	353.0	32.0
SN74AHCT16373DLR	SSOP	DL	48	1000	356.0	356.0	53.0


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

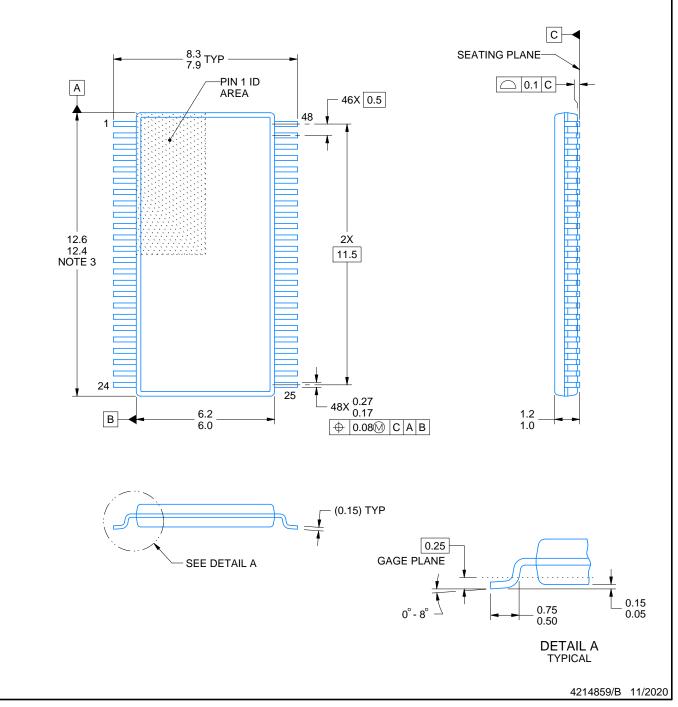
DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153


14/16/20/56 Pins – MO-194

PACKAGE OUTLINE

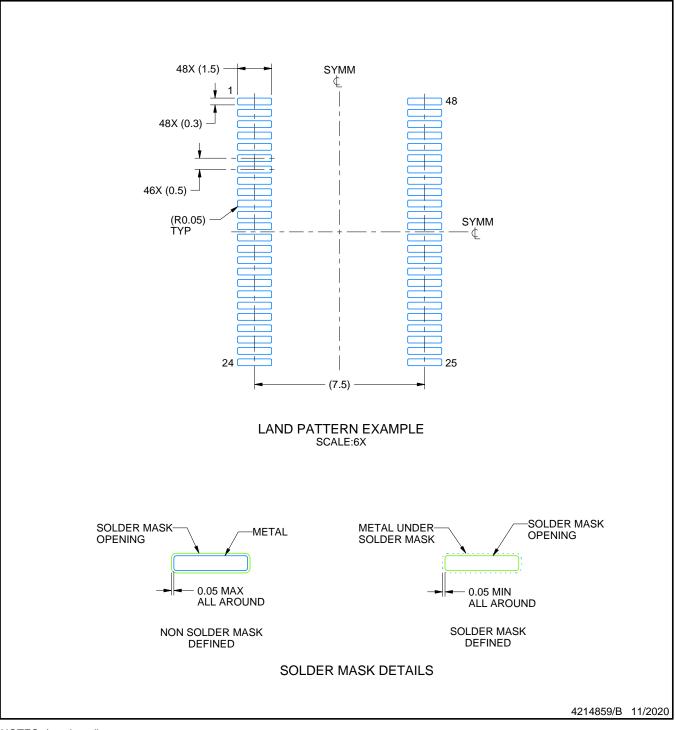
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.


DGG0048A

DGG0048A

EXAMPLE BOARD LAYOUT

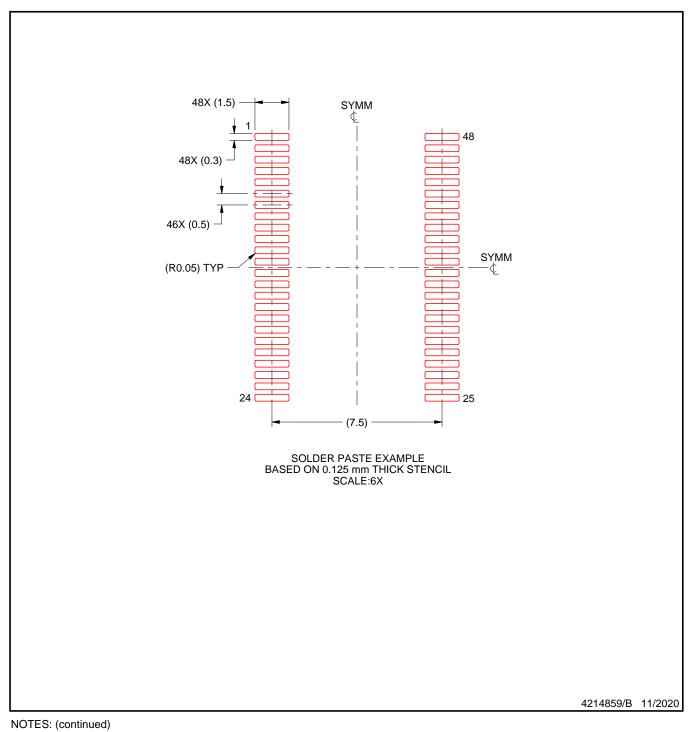
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0048A

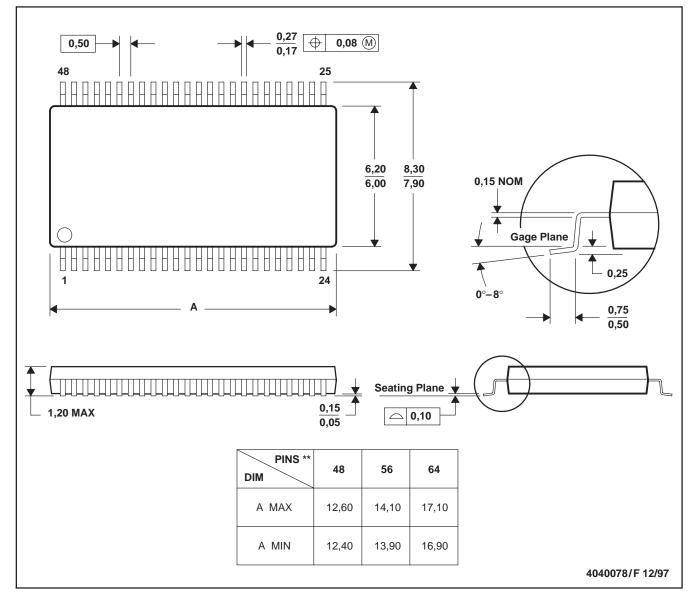
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

design recommendations. 8. Board assembly site may have different recommendations for stencil design.

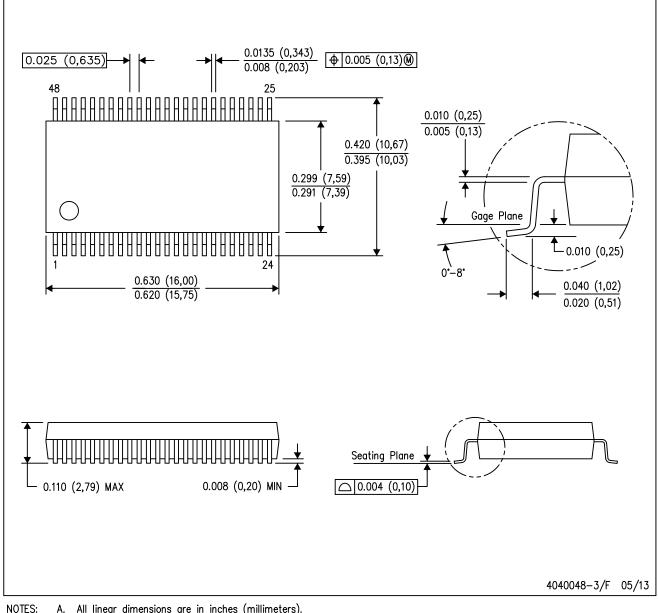

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated