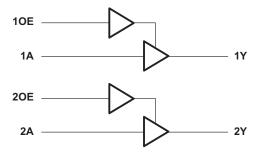


JAJSQF4S - DECEMBER 1995 - REVISED FEBRUARY 2024

SN54AHCT126, SN74AHCT126

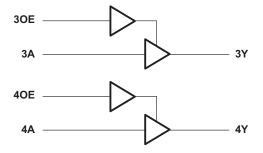

SNx4AHCT1263ステート出力搭載、クワッド・バス・バッファ・ゲート

1 特長

- 入力は TTL 電圧互換
- JESD 17 準拠で 250mA 超のラッチアップ性能
- JESD 22 を上回る ESD 保護:
 - 2000V、人体モデル (A114-A)
 - 200V、マシン モデル(A115-A)
- MIL-PRF-38535 準拠の製品については、特に記述 のない限り、すべてのパラメータはテスト済みです。 その他のすべての製品については、量産プロセスにす べてのパラメータのテストが含まれているとは限りませ

2 アプリケーション

- ・サーバー
- PC およびノートパソコン
- ネットワーク・スイッチ
- ウェアラブルなヘルスケア / フィットネス機器
- テレコム・インフラストラクチャ
- レジ用電子機器


3 概要

SNxAHCT126 デバイスはクワッド バス バッファ ゲート で、3ステート出力の独立したラインドライバを備えていま

製品情報

部品番号	定格	パッケージ サイズ ⁽¹⁾
		D (SOIC, 14)
SN54AHCT126	軍用	DB (SSOP, 14)
		DGV (TVSOP, 14)
		NS (PDIP、14)
		N (SOP, 14)
		PW (TSSOP、14)
SN74AHCT126	商用	J (CDIP、14)
		W (CFP、14)
		BQA (WQFN, 14)
		FK (LCCC、20)

(1) 詳細については、セクション 11 を参照してください。

概略回路図

Table of Contents

1 特長 1	7.2 Functional Block Diagram	10
2 アプリケーション1	7.3 Feature Description	10
3 概要1	7.4 Device Functional Modes	10
4 Pin Configuration and Functions	8 Application and Implementation	<mark>1</mark> 1
5 Specifications5	8.1 Application Information	11
5.1 Absolute Maximum Ratings	8.2 Typical Application	<mark>1</mark> 1
5.2 ESD Ratings5	8.3 Power Supply Recommendations	12
5.3 Recommended Operating Conditions5	8.4 Layout	12
5.4 Thermal Information	9 Device and Documentation Support	13
5.5 Electrical Characteristics	9.1ドキュメントの更新通知を受け取る方法	13
5.6 Switching Characteristics, V _{CC} = 5 V ± 0.5 V7	9.2 サポート・リソース	13
5.7 Noise Characteristics	9.3 Trademarks	13
5.8 Operating Characteristics	9.4 静電気放電に関する注意事項	13
5.9 Typical Characteristics8		
6 Parameter Measurement Information9	10 Revision History	
7 Detailed Description10		
7.1 Overview	Information	13

4 Pin Configuration and Functions

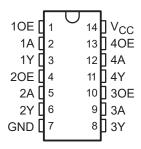
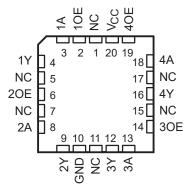



図 4-1. SN54AHCT126 J or W Packages, CDIP or CFP SN74AHCT126 D, DB, DGV, N, NS, or PW Packages, 14-Pin SOIC, SSOP, TVSOP, PDIP, SOP or TSSOP (Top View)

NC - No internal connection

図 4-2. SN54AHCT126 FK Package, 20-Pin LCCC (Top View)

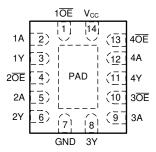


図 4-3. SNx4AHCT126 BQA Package, 14-Pin WQFN (Top View)

表 4-1. Pin Functions

	PIN				
	SN74AHCT126	SN54A	HCT126	TYPE ⁽¹⁾	DESCRIPTION
NAME	D, DB, DGV, N, NS, PW, BQA	J, W	FK		BESSIAI HON
1A	2	2	3	I	1A Input
10E	1	1	2	I	Output Enable 1
1Y	3	3	4	0	1Y Output
2A	5	5	8	I	2A Input
20E	4	4	6	I	Output Enable 2
2Y	6	6	9	0	2Y Output
3A	9	9	13	I	3A Input
3OE	10	10	14	I	Output Enable 3
3Y	8	8	12	0	3Y Output
4A	12	12	18	I	4A Input
40E	13	13	19	ı	Output Enable 4
4Y	11	11	16	0	4Y Output
GND	7	7	10	_	Ground Pin

表 4-1. Pin Functions (続き)

	PIN				
	SN74AHCT126	SN54AHCT126		TYPE ⁽¹⁾	DESCRIPTION
NAME	D, DB, DGV, N, NS, PW, BQA	J, W	FK		3201 1101.
			1		
			5		
NC		_	7	_	No Connection
			11		No connection
			15		
			17		
V _{CC}	14	14	20	_	Power Pin
Thermal Pag	y (2)			_	Thermal Pad

- (1) I = input, O = output
- (2) For BQA package only

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
VI	Input voltage range ⁽²⁾	-0.5	7	V	
Vo	Output voltage range ⁽²⁾	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND		±50	mA	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	e	-65	150	ů
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(2)

		SN54AHCT126 ⁽¹⁾		SN74AHC	T126	UNIT
		MIN	MAX	MIN	MAX	ONII
V _{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V _{IH}	High-level input voltage	2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	5.5	0	5.5	V
Vo	Output voltage	0	V _{CC}	0	V _{CC}	V
I _{OH}	High-level output current		-8		-8	mA
I _{OL}	Low-level output current		8		8	mA
Δt/Δν	Input transition rise or fall rate		20		20	ns/V
T _A	Operating free-air temperature	-55	125	-40	125	°C

⁽¹⁾ Product Preview.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ All unused inputs of the device must be held at V_{CC} or GND for proper device operation. Refer to the TI Application Report, Implications of Slow or Floating CMOS Inputs (SCBA004).

5.4 Thermal Information

				SN7	4AHCT12	6			
	THERMAL METRIC ⁽¹⁾	D	DB	DGV	N	NS	PW	BQA	UNIT
		14 PINS							
$R_{\theta JA}$	Junction-to-ambient thermal resistance	124.5	107.1	129.0	57.4	120.9	147.7	88.3	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	78.8	59.6	52.1	44.9	78.2	77.4	90.9	
$R_{\theta JB}$	Junction-to-board thermal resistance	81	54.4	62.0	37.2	81.6	90.9	56.8	
Ψ_{JT}	Junction-to-top characterization parameter	37	20.5	6.5	30.1	42.8	27.2	9.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	80.6	53.8	61.3	37.1	81.1	90.2	56.7	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	N/A	33.4	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	T _A = 25°C		SN54AHCT126		SN74AHCT126		SN74AHCT126 -40 to 125°C		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
V	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		4.4		4.4		V
V _{OH}	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		3.8		V
\/	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1		0.1	V
V _{OL}	I _{OL} = 8 mA				0.36		0.44		0.44		0.44	V
I _I	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1 ⁽¹⁾		±1		±1	μA
I _{OZ}	V _O = V _{CC} or GND	5.5 V			±0.25		±2.5		±2.5		±2.5	μA
I _{cc}	$V_I = V_{CC}$ or GND $I_O = 0$	5.5 V			2		20		20		20	μA
ΔI _{CC} ⁽²⁾	One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			1.35		1.5		1.5		1.5	mA
C _i	V _I = V _{CC} or GND	5 V		4	10				10			pF
Co	V _O = V _{CC} or GND	5 V		15								pF

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0 \text{ V}$.

⁽²⁾ This is the increase in supply current for each input at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

5.6 Switching Characteristics, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range (unless otherwise noted) (see 🗵 6-1)

		_						, ,							
PARAMETER	FROM (OUTPUT)			TO	LOAD CAPACITANCE	T _A =	= 25°C		SN54AH0 -55°C to	-	SN74AH0 -40°C to	-	SN74AH0 -40°C to		UNIT
		(INPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
t _{PLH}	А	Y	C _I = 15 pF	3	3.8 ⁽¹⁾	5.5 ⁽¹⁾	1 ⁽¹⁾	6.5 ⁽¹⁾	1	6.5	1	7	ns		
t _{PHL}	A	i i	CL = 15 pr	3	3.8 <mark>(1)</mark>	5.5 ⁽¹⁾	1 ⁽¹⁾	6.5 ⁽¹⁾	1	6.5	1	7	115		
t _{PZH}	OE	Υ	C ₁ = 15 pF	3	3.6 ⁽¹⁾	5.1 ⁽¹⁾	1 ⁽¹⁾	6 ⁽¹⁾	1	6	1	6.5	ns		
t _{PZL}		'	OL = 13 pi	3	3.6 ⁽¹⁾	5.1 ⁽¹⁾	1 ⁽¹⁾	6 ⁽¹⁾	1	6	1	6.5	115		
t _{PHZ}	OE	Y	C _I = 15 pF	4	1.6 ⁽¹⁾	6.8 ⁽¹⁾	1 ⁽¹⁾	8(1)	1	8	1	8.5	ns		
t _{PLZ}	OE	i i	CL = 15 pr	4	1.6 ⁽¹⁾	6.8 <mark>(1)</mark>	1 ⁽¹⁾	8(1)	1	8	1	8.5	115		
t _{PLH}	А	Υ	C ₁ = 50 pF		5.3	7.5	1	8.5	1	8.5	1	9.5	ns		
t _{PHL}	^	'	OL = 30 pi		5.3	7.5	1	8.5	1	8.5	1	9.5	115		
t _{PZH}	OE	Y	C ₁ = 50 pF		5.1	7.1	1	8	1	8	1	9	ns		
t _{PZL}] OE	i i	CL = 30 pr		5.1	7.1	1	8	1	8	1	9	115		
t _{PHZ}	OE	Y	C _I = 50 pF		6.1	8.8	1	10	1	10	1	11	no		
t _{PLZ}		*	OL - 50 PF		6.1	8.8	1	10	1	10	1	11	ns		
t _{sk(o)}			C _L = 50 pF			1 ⁽²⁾				1		1	ns		

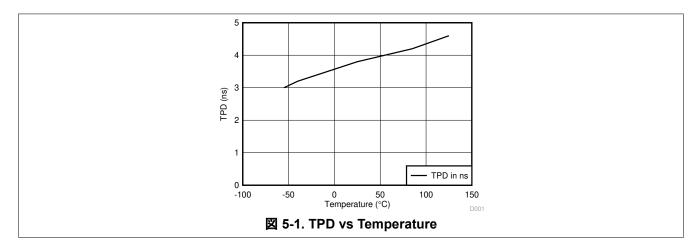
- (1) On products compliant to MIL-PRF-38535, this parameter is not production tested.
- (2) On products compliant to MIL-PRF-38535, this parameter does not apply.

5.7 Noise Characteristics

 $V_{CC} = 5 \text{ V}, C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}^{(1)}$

	PARAMETER	SN74AHCT126	UNIT
	PARAMETER	MIN MAX	
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}	3.0	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}	4.4	V
V _{IH(D)}	High-level dynamic input voltage	2	V
V _{IL(D)}	Low-level dynamic input voltage	3.0	V

⁽¹⁾ Characteristics are for surface-mount packages only.


5.8 Operating Characteristics

 V_{CC} = 5 V, T_A = 25°C

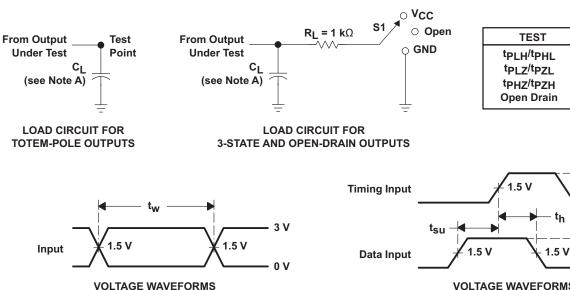
	PARAMETER		CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	No load,	f = 1 MHz	14	pF

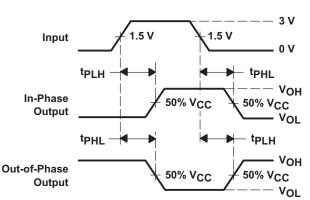
5.9 Typical Characteristics

th

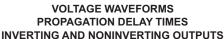
S1

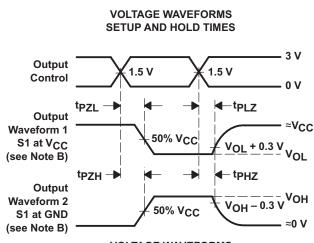
Open v_{CC}


GND


Vcc

0 V




6 Parameter Measurement Information

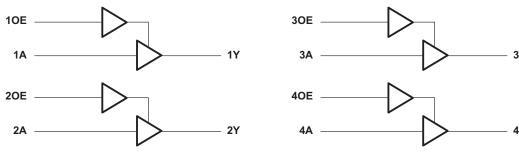
PULSE DURATION

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , $t_f \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

図 6-1. Load Circuit and Voltage and Waveforms


7 Detailed Description

7.1 Overview

The SNxAHCT126 devices are quadruple-bus buffer gates featuring independent line drivers with 3-state outputs.

Each output is disabled when the associated output-enable (OE) input is low. When OE is high, the respective gate passes the data from the A input to the Y output. For the high-impedance state during power up or power down, tie OE to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

7.2 Functional Block Diagram

7.3 Feature Description

- · TTL inputs
 - Lowered switching threshold allows up translation from 3.3 V to 5 V
- · Slow edges reduce output ringing

7.4 Device Functional Modes

表 7-1. Function Table (Each Buffer)

I	NPUTS	OUTPUT
OE	Α	Y
Н	Н	Н
Н	L	L
L	X	Z

8 Application and Implementation

注

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 Application Information

The SNx4AHCT126 is a low-drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The input switching levels have been lowered to accommodate TTL inputs of 0.8-V V_{IL} and 2-V V_{IH} . This feature makes it ideal for translating up from 3.3 V to 5 V. \boxtimes 8-2 shows this type of translation.

8.2 Typical Application

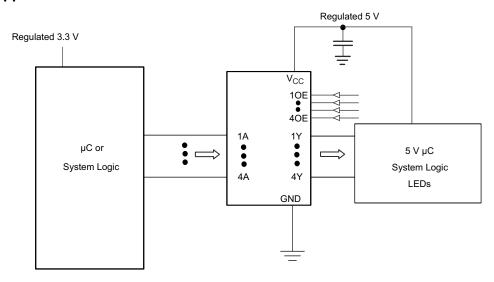
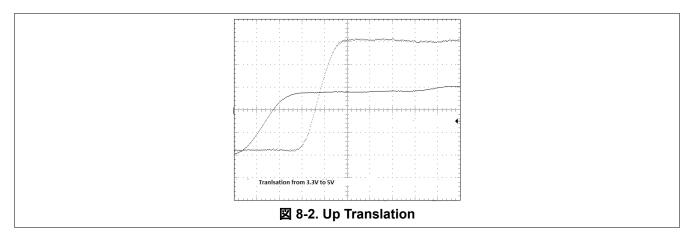


図 8-1. Typical Application Schematic

8.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads; therefore, routing and load conditions should be considered to prevent ringing.

8.2.2 Detailed Design Procedure


- 1. Recommended input conditions:
 - Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions table.
 - Specified High and low levels: See (V_{IH} and V_{II}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid $V_{\rm CC}$
- 2. Recommended output conditions:
 - Load currents should not exceed 25 mA per output and 50 mA total for the part
 - Outputs should not be pulled above V_{CC}

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

11

8.2.3 Application Curves

8.3 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

8.4 Layout

8.4.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. \boxtimes 8-3 shows the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} ; whichever makes more sense or is more convenient. It is generally acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the IO's so they cannot float when disabled.

8.4.2 Layout Example

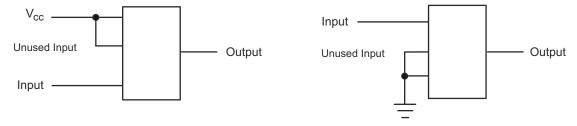


図 8-3. Layout Diagram

9 Device and Documentation Support

9.1 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.com のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

9.2 サポート・リソース

テキサス・インスツルメンツ E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

9.3 Trademarks

テキサス・インスツルメンツ E2E™ is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

9.4 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

9.5 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

10 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision R (October 2023) to Revision S (February 2024)

Page

Changes from Revision Q (May 2023) to Revision R (October 2023)

Page

 Updated RθJA values: D = 90.6 to 124.5, PW = 122.6 to 147.7; Updated D and PW packages for RθJC(top), RθJB, ΨJT, ΨJB, and RθJC(bot), all values in °C/W

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

13

www.ti.com

31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-9686301QDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9686301QD A SNJ54AHCT126W
SN74AHCT126BQAR	Active	Production	WQFN (BQA) 14	3000 LARGE T&R	Yes	SELECTIVE AG (TOP SIDE)	Level-1-260C-UNLIM	-40 to 125	AHT126
SN74AHCT126BQAR.A	Active	Production	WQFN (BQA) 14	3000 LARGE T&R	Yes	SELECTIVE AG (TOP SIDE)	Level-1-260C-UNLIM	-40 to 125	AHT126
SN74AHCT126D	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	-40 to 85	AHCT126
SN74AHCT126DBR	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB126
SN74AHCT126DBR.A	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB126
SN74AHCT126DGVR	Active	Production	TVSOP (DGV) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB126
SN74AHCT126DGVR.A	Active	Production	TVSOP (DGV) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB126
SN74AHCT126DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT126
SN74AHCT126DR.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT126
SN74AHCT126N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	SN74AHCT126N
SN74AHCT126N.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	SN74AHCT126N
SN74AHCT126NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT126
SN74AHCT126NSR.A	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHCT126
SN74AHCT126PW	Obsolete	Production	TSSOP (PW) 14	-	-	Call TI	Call TI	-40 to 125	HB126
SN74AHCT126PWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	HB126
SN74AHCT126PWR.A	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HB126
SNJ54AHCT126W	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9686301QD A SNJ54AHCT126W
SNJ54AHCT126W.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9686301QD A SNJ54AHCT126W

⁽¹⁾ Status: For more details on status, see our product life cycle.

PACKAGE OPTION ADDENDUM

www.ti.com 31-Oct-2025

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

(3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54AHCT126, SN74AHCT126:

Catalog: SN74AHCT126

Automotive: SN74AHCT126-Q1, SN74AHCT126-Q1

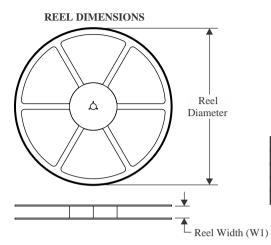
Enhanced Product: SN74AHCT126-EP, SN74AHCT126-EP

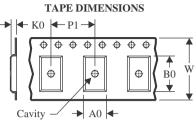
Military: SN54AHCT126

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

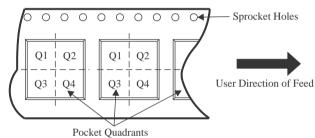
PACKAGE OPTION ADDENDUM


www.ti.com 31-Oct-2025


- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

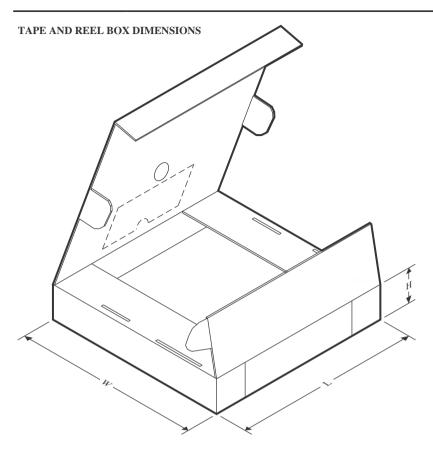
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

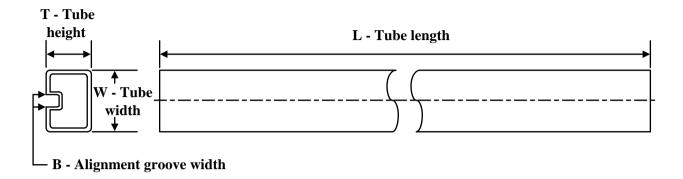
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHCT126BQAR	WQFN	BQA	14	3000	180.0	12.4	2.8	3.3	1.1	4.0	12.0	Q1
SN74AHCT126DBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74AHCT126DGVR	TVSOP	DGV	14	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74AHCT126DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74AHCT126NSR	SOP	NS	14	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1
SN74AHCT126NSR	SOP	NS	14	2000	330.0	16.4	8.45	10.55	2.5	12.0	16.2	Q1
SN74AHCT126PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 24-Jul-2025

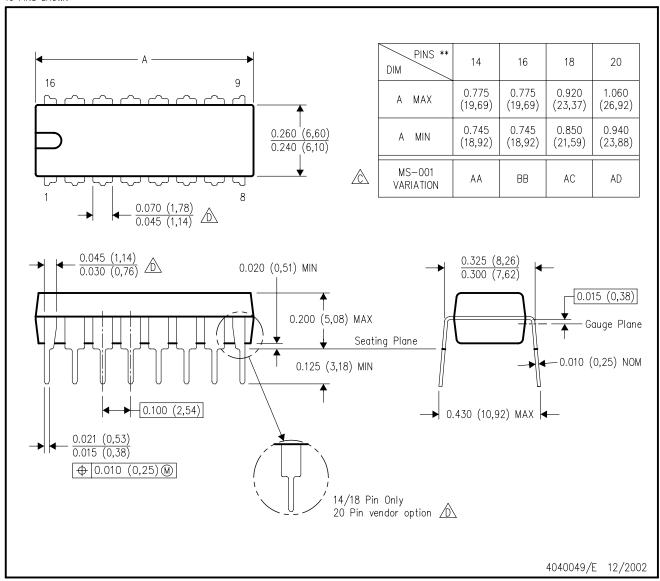

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHCT126BQAR	WQFN	BQA	14	3000	210.0	185.0	35.0
SN74AHCT126DBR	SSOP	DB	14	2000	353.0	353.0	32.0
SN74AHCT126DGVR	TVSOP	DGV	14	2000	353.0	353.0	32.0
SN74AHCT126DR	SOIC	D	14	2500	353.0	353.0	32.0
SN74AHCT126NSR	SOP	NS	14	2000	353.0	353.0	32.0
SN74AHCT126NSR	SOP	NS	14	2000	353.0	353.0	32.0
SN74AHCT126PWR	TSSOP	PW	14	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

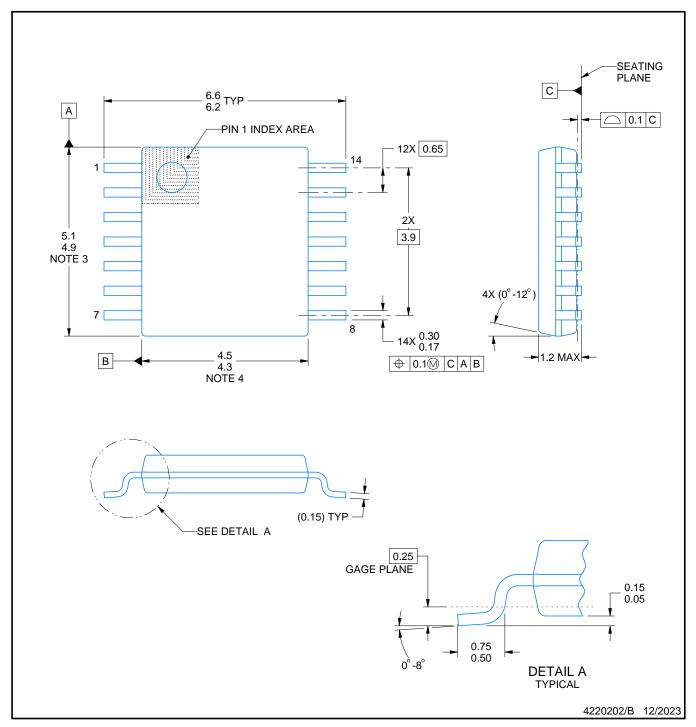

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-9686301QDA	W	CFP	14	25	506.98	26.16	6220	NA
SN74AHCT126N	N	PDIP	14	25	506	13.97	11230	4.32
SN74AHCT126N	N	PDIP	14	25	506	13.97	11230	4.32
SN74AHCT126N.A	N	PDIP	14	25	506	13.97	11230	4.32
SN74AHCT126N.A	N	PDIP	14	25	506	13.97	11230	4.32
SNJ54AHCT126W	W	CFP	14	25	506.98	26.16	6220	NA
SNJ54AHCT126W.A	W	CFP	14	25	506.98	26.16	6220	NA

N (R-PDIP-T**)

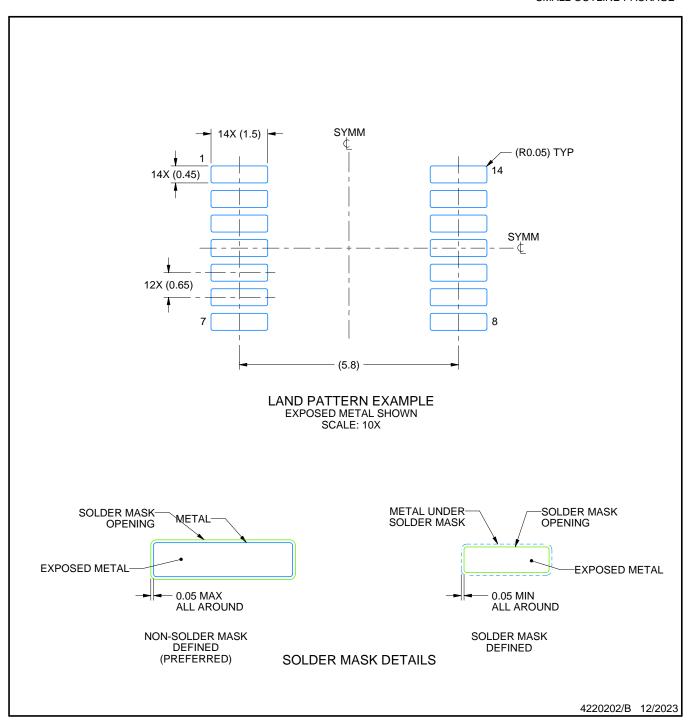
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



NOTES:

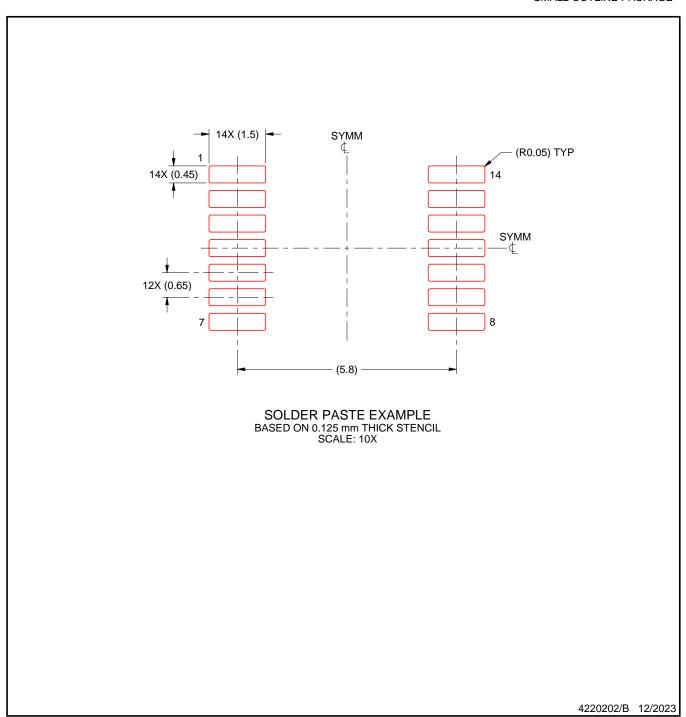
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

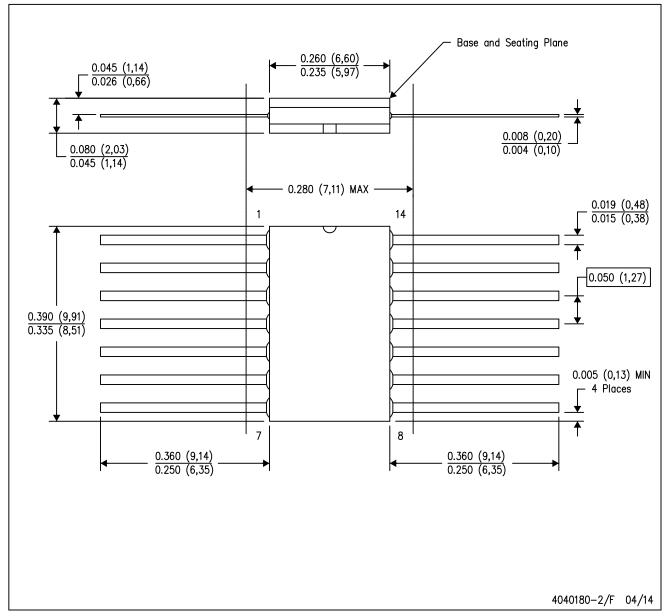
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

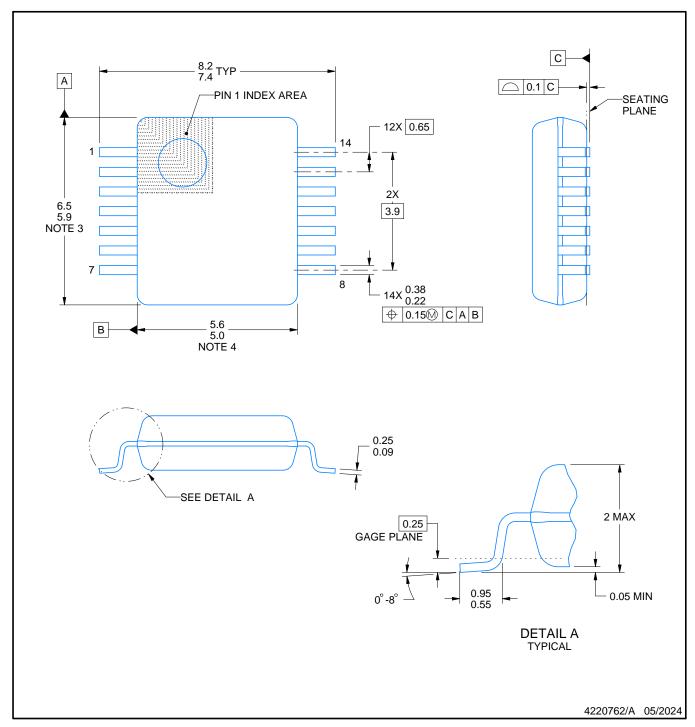
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

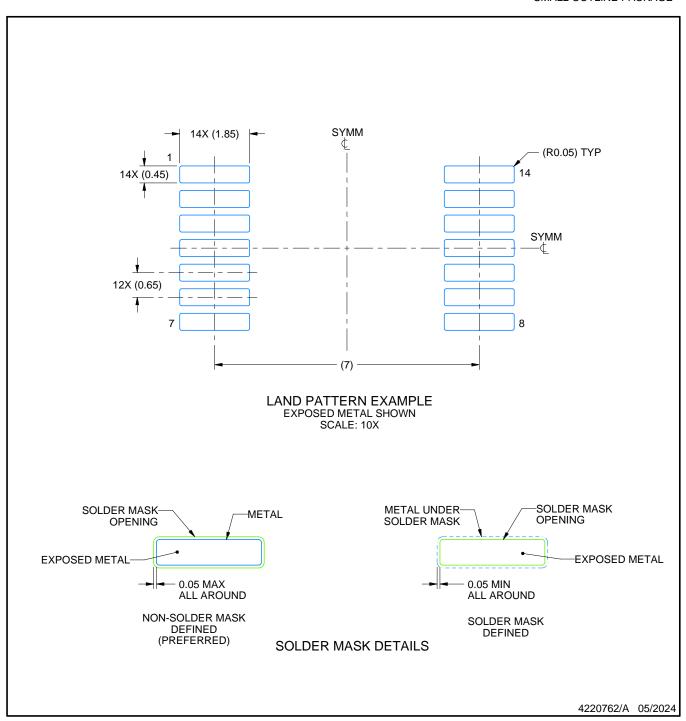
W (R-GDFP-F14)

CERAMIC DUAL FLATPACK



NOTES:

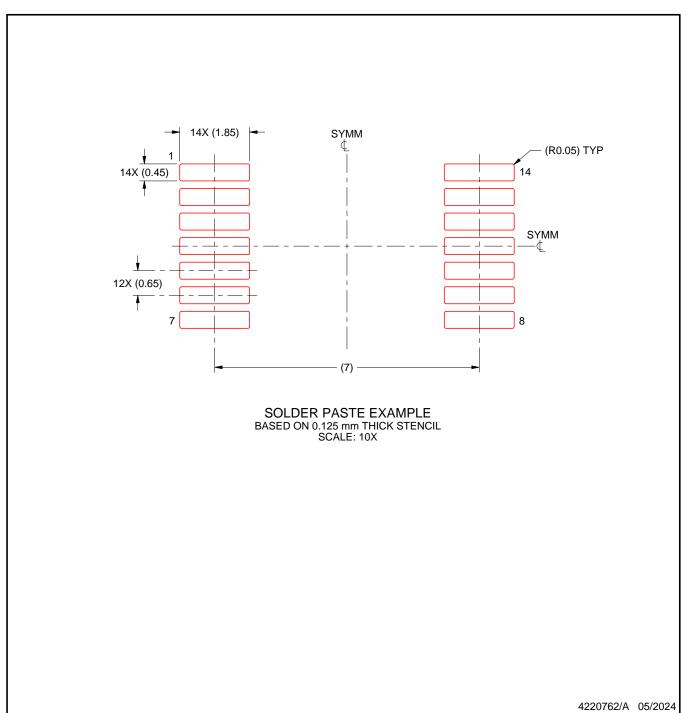
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

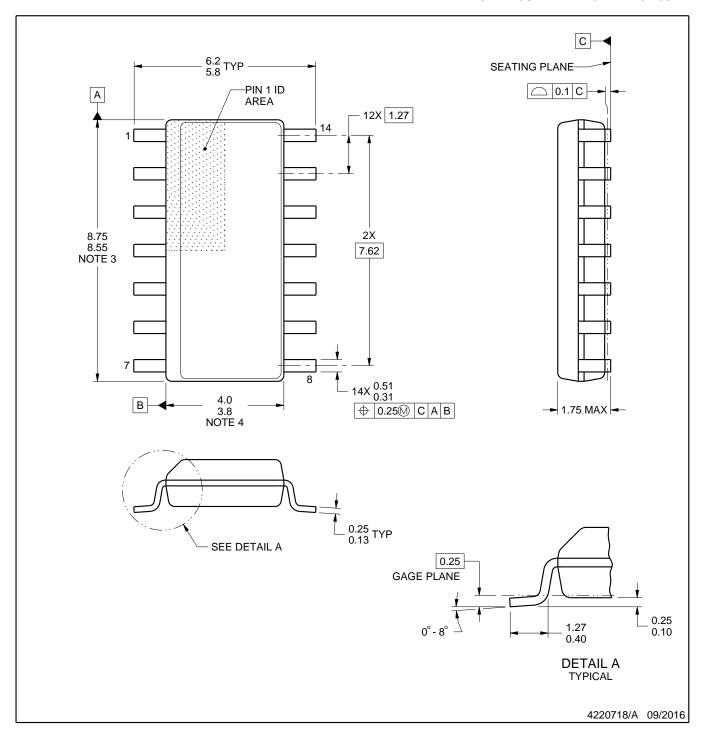
 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.



NOTES: (continued)

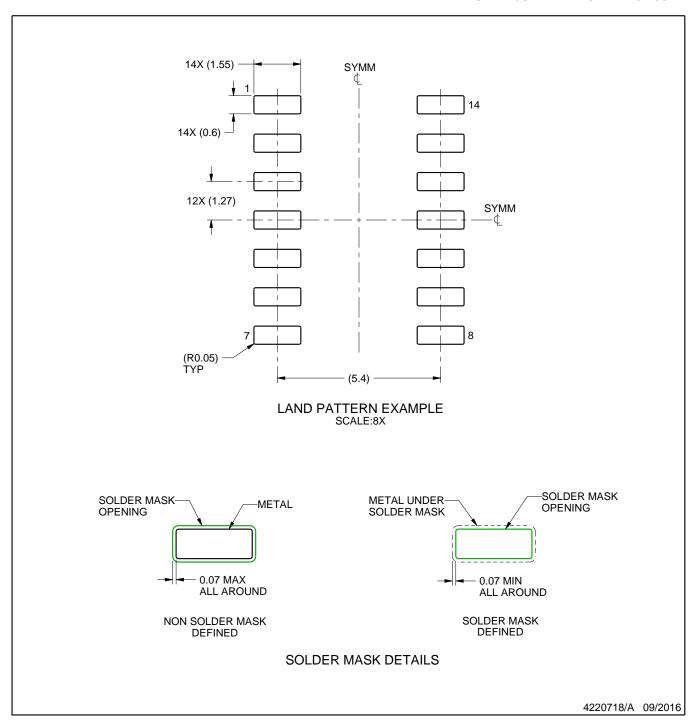
- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE INTEGRATED CIRCUIT

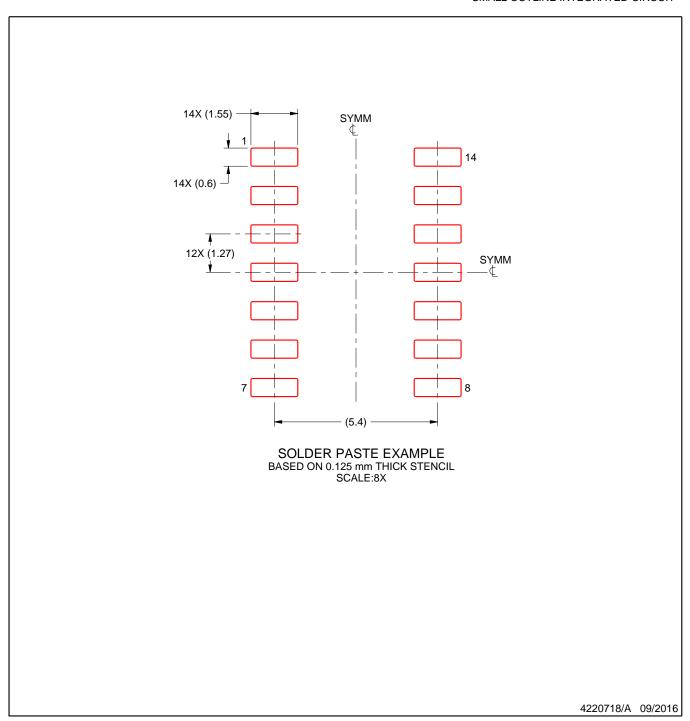
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT

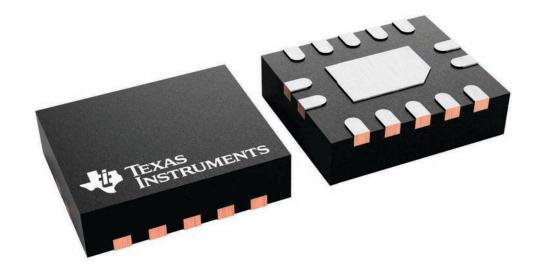

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

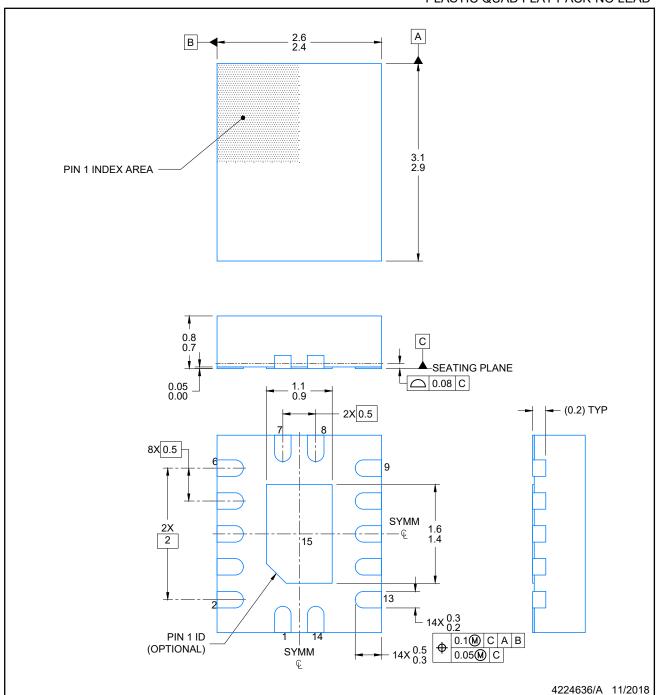
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

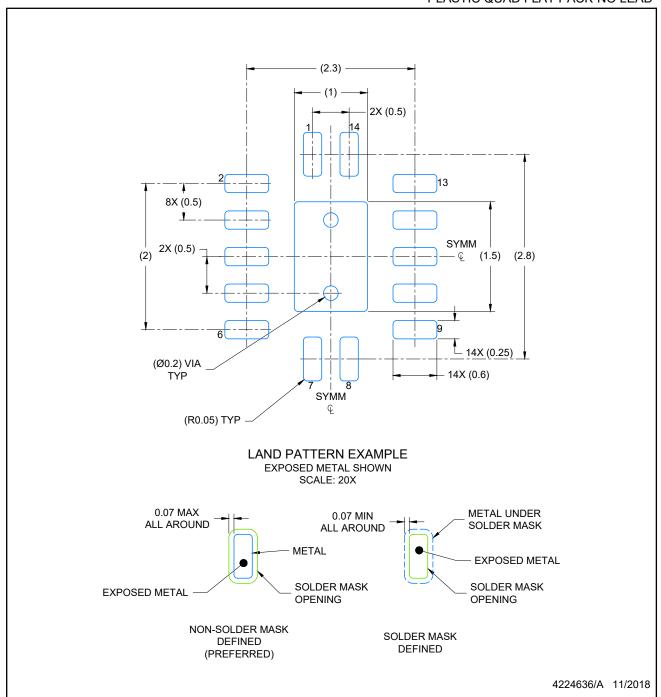
2.5 x 3, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

www.ti.com

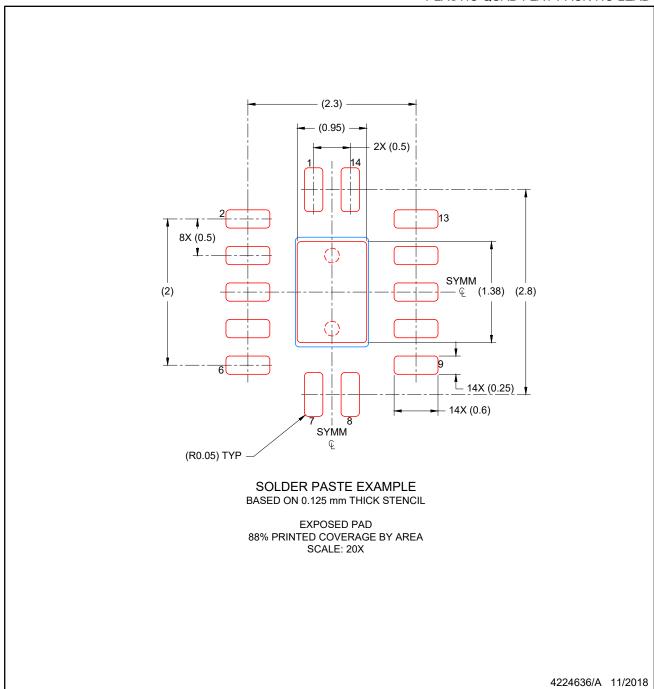
PLASTIC QUAD FLAT PACK-NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLAT PACK-NO LEAD



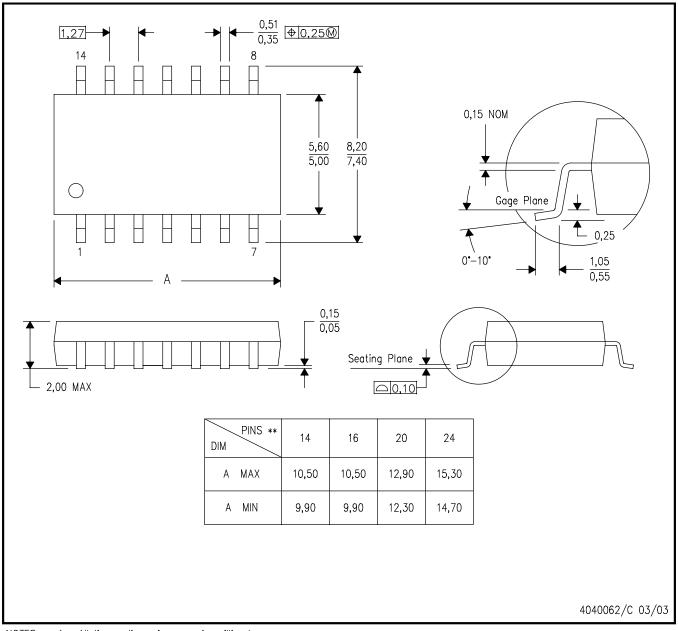
NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLAT PACK-NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日:2025 年 10 月