SN74ACT573-Q1 車載用 3 ステート出力、オクタル D タイプ トランスペアレン

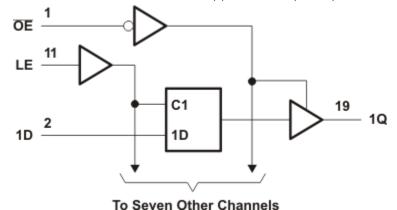
トラッチ

1 特長

- 4.5V~5.5V の V_{CC} で動作
- 5.5V までの入力電圧に対応
- 最大 t_{pd} 9.5ns (5V 時)
- 入力は TTL 電圧互換

2 アプリケーション

- パラレル データストレージ
- デジタル バス バッファ


3 概要

これらの8ビットラッチは、大きな容量性負荷または比較 的低いインピーダンスの負荷の駆動用に設計された3ス テート出力を備えています。本デバイスは、バッファレジス タ、I/O ポート、バスドライバ、およびワーキング レジスタの 実装に特に適しています。

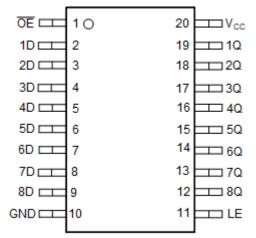
パッケージ情報

部品番号	パッケージ (1)	パッケージ サイズ ⁽²⁾	本体サイズ ⁽³⁾
	DGS (VSSOP, 20)	5.1 mm × 4.9mm	5.1 mm × 3mm
SN74ACT573-Q1	PW (TSSOP, 20)	6.5mm × 6.4mm	6.50 mm × 4.40mm
	RKS (WQFN, 20)	4.5mm × 2.5mm	4.5mm × 2.5mm

- (1) 詳細については、セクション 11 を参照してください。
- パッケージ サイズ (長さ×幅) は公称値で、該当する場合はピンも
- 本体サイズ (長さ×幅) は公称値であり、ピンは含まれません。

論理図 (正論理)

English Data Sheet: SCAS964



目次

1 特長 1	7.3 デバイスの機能モード	8
2 アプリケーション1	8 アプリケーションと実装	<mark>9</mark>
3 概要1	8.1 アプリケーション情報	<mark>9</mark>
4 ピン構成および機能3	8.2 代表的なアプリケーション	
5 仕様4	8.3 設計要件	10
5.1 絶対最大定格4	8.4 詳細な設計手順	12
5.2 ESD 定格4	8.5 アプリケーション曲線	12
5.3 推奨動作条件4	8.6 電源に関する推奨事項	12
5.4 熱に関する情報4	8.7 レイアウト	12
5.5 電気的特性5	9 デバイスおよびドキュメントのサポート	14
5.6 タイミング特性5	9.1ドキュメントの更新通知を受け取る方法	14
5.7 スイッチング特性5	9.2 サポート・リソース	14
5.8 代表的特性6	9.3 商標	14
6 パラメータ測定情報7	9.4 静電気放電に関する注意事項	14
7 詳細説明8	9.5 用語集	14
7.1 概要8	10 改訂履歴	14
7.2 機能ブロック図8	11 メカニカル、パッケージ、および注文情報	14

4 ピン構成および機能

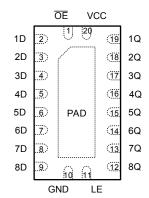


図 4-2. SN74ACT573-Q1 RKS パッケージ、20 ピン VQFN (上面図)

図 4-1. SN74ACT573-Q1 DGS または PW パッケージ、20 ピン VSSOP または TSSOP (上面図)

表 4-1. ピンの機能

ピン 種類 ⁽¹⁾			24.00
名称	番号		説明
ŌĒ	1	I	出力イネーブル、アクティブ Low
1D	2	I	1D 入力
2D	3	I	2D 入力
3D	4	I	3D 入力
4D	5	ı	4D 入力
5D	6	I	5D 入力
6D	7	I	6D 入力
7D	8	ı	7D 入力
8D	9	I	8D 入力
GND	10	G	グランド
LE	11	I	ラッチィネーブル入力
8Q	12	0	8Q 出力
7Q	13	0	7Q 出力
6Q	14	0	6Q 出力
5Q	15	0	5Q 出力
4Q	16	0	4Q 出力
3Q	17	0	3Q 出力
2Q	18	0	2Q 出力
1Q	19	0	1Q 出力
V _{CC}	20	Р	正電源
サーマル	ノパッド ⁽²⁾	_	サーマル パッドは GND に接続するか、フローティングのままにすることができます。他の信号や電源には接続しないでください。

- (1) I = 入力、O = 出力、I/O = 入力または出力、G = グランド、P = 電源。
- (2) RKS パッケージのみ。

5 仕様

5.1 絶対最大定格

自由気流での動作温度範囲内 (特に記述のない限り)(1)

			最小値	最大値	単位
V _{CC}	電源電圧範囲		-0.5	7	V
VI	入力電圧範囲(2)		-0.5	V _{CC} + 0.5 V	V
Vo	出力電圧範囲 ⁽²⁾		-0.5	V _{CC} + 0.5 V	V
I _{IK}	入力クランプ電流	V _I < -0.5 V または V _I > V _{CC} + 0.5 V		±20	mA
I _{OK}	出力クランプ電流	V _O < - 0.5V または V _O > V _{CC} + 0.5V		±50	mA
Io	連続出力電流	V _O = 0∼V _{CC}		±50	mA
	V _{CC} または GND を通過する連続出力電流			±200	mA
T _J	接合部温度			150	°C
T _{stg}	保管温度		-65	150	°C

- 「絶対最大定格」の範囲外の動作は、デバイスの永続的な損傷の原因となる可能性があります。「絶対最大定格」は、これらの条件において、また は「推奨動作条件」に示された値を超える他のいかなる条件でも、本製品が正しく動作することを暗に示すものではありません。「絶対最大定格」 の範囲内で、一時的に「推奨動作条件」の範囲を超えた動作をさせる場合、必ずしもデバイスが損傷を受けるものではありませんが、完全には機 能しない可能性があります。この方法でデバイスを動作させると、デバイスの信頼性、機能性、性能に影響を及ぼし、デバイスの寿命を短縮する
- (2) 入力と出力の電流定格を順守しても、入力と出力の電圧定格を超えることがあります。

5.2 ESD 定格

			値	単位
V	静電放電	人体モデル (HBM)、AEC Q100-002 HBM ESD 分類レベル 2 準拠 ⁽¹⁾	±2000	\/
V(ESD)		デバイス帯電モデル (CDM)、AEC Q100-011 CDM ESD 分類レベル C4B 準拠	±1000	v

(1) AEC Q100-002 には、HBM ストレス試験は ANSI/ESDA/JEDEC JS-001 仕様に従って実施することと規定されています。

5.3 推奨動作条件

自由気流での動作温度範囲内 (特に記述のない限り)

仕様	説明	条件	最小値	最大値	単位
V _{CC}	電源電圧		4.5	5.5	V
V _{IH}	High レベル入力電圧		2		V
V _{IL}	Low レベル入力電圧	ww レベル入力電圧			V
VI	入力電圧	入力電圧			V
Vo	出力電圧		0	V _{CC}	V
I _{OH}	High レベル出力電流			-24	mA
I _{OL}	Low レベル出力電流			24	mA
Δt/Δν	入力遷移の立ち上がりまたは立ち下:		20	ns/V	
T _A	自由空気での動作温度		-40	125	°C

5.4 熱に関する情報

熱評価基準 ⁽¹⁾		DGS (VSSOP)	PW (TSSOP)	RKS (VQFN)	አ ለ የተ
		20 ピン	20ピン	20 ピン	単位
$R_{\theta JA}$	接合部から周囲への熱抵抗	123.6	126.2	67.7	°C/W
$R_{\theta JC(top)}$	接合部からケース (上面) への熱抵抗	62.2	68.7	72.4	°C/W
$R_{\theta JB}$	接合部から基板への熱抵抗	78.7	77.3	40.4	°C/W

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SCAS964

5.4 熱に関する情報 (続き)

熱評価基準(1)		DGS (VSSOP)	PW (TSSOP)	RKS (VQFN)	774 FT-
		20 ピン	20 ピン	20 ピン	単位
Ψ_{JT}	接合部から上面への特性パラメータ	7.8	22.3	10.3	°C/W
Ψ_{JB}	接合部から基板への特性パラメータ	78.0	76.9	40.4	°C/W
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗	該当なし	該当なし	24.1	°C/W

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポートを参照してください。

5.5 電気的特性

自由空気での動作温度範囲内、T_A = 25 ℃ で測定した代表値 (特に記述のない限り)

		V	-40°0	C~125℃		724 6L.
パラメータ	テスト条件	V _{cc}	最小値	代表値	最大値	単位
	I - 50 uA	4.5 V	4.4	4.49		
	I _{OH} = -50 μA	5.5 V	5.4	5.49		
V	I _{OH} = -24 mA	4.5 V	3.9	4.2		V
V _{OH}	I _{OH} = -24 mA	5.5 V	5	5.2		V
	I _{OH} = -50 mA	5.5 V	4.5	4.9		
	I _{OH} = -75 mA	5.5 V	4	4.6		
	I _{OH} = 50 μA	4.5 V		0.01	0.1	
	ΙΟΗ – 30 μΑ	5.5 V		0.01	0.1	
V	I _{OH} = 24 mA	4.5 V		0.2	0.4	V
V_{OL}	I _{OH} = 24 mA	5.5 V		0.2	0.3	V
	I _{OH} = 50 mA	5.5 V		0.3	0.6	
	I _{OH} = 75 mA	5.5 V		0.5	0.9	
l _l	V _I = 5.5 V または GND	0 V∼5.5 V			±1	μA
I _{OZ}	V _O = V _{CC} または GND	5.5 V			±5	μA
I _{cc}	V _I = V _{CC} または GND、I _O = 0	5.5 V			80	μA
ΔI _{CC}	VI = VCC - 2.1V、任意の入力	4.5V∼5.5V		0.6	1.5	mA
C _I	V _I = V _{CC} または GND	5 V		8		pF
Co	V _O = V _{CC} または GND	5 V		14		pF
C _{PD}	F = 1MHz	5 V		59		pF

5.6 タイミング特性

自由空気での推奨動作温度範囲内 (特に記述のない限り)

パラメータ	説明	条件	V _{cc}		25℃	-40°C∼125°C		単位
	102.97	****	▼ CC	最小値	最大値	最小値	最大値	中江
t _W	パルス幅	LE が High	5 V	3.5		4		ns
t _{SU}	セットアップ時間	LE↓前のデータ	5 V	3		3.5		ns
t _H	ホールド時間	LE↓後のデータ	5 V	0		0		ns

5.7 スイッチング特性

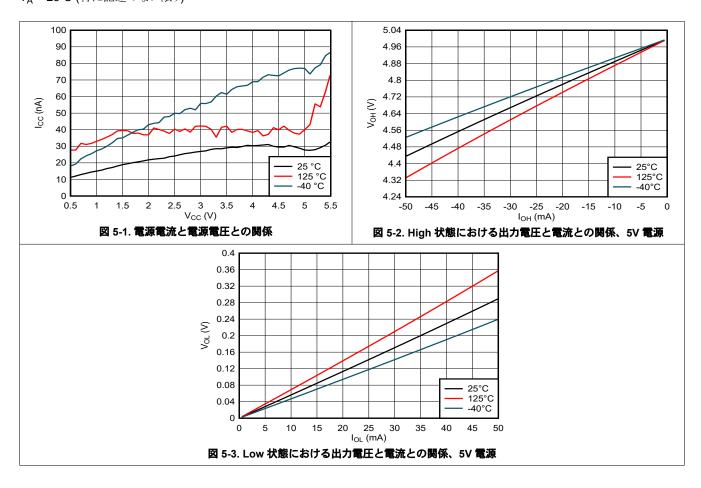
C_L = 50pF、自由気流での動作温度範囲内、T_A = 25℃で測定された標準値 (特に記述のない限り)。「パラメータ測定情報」を参照

	• • • • • • • • • • • • • • • • • • • •			(, -			
パラメータ	始点 (入力)	終点 (出力) 負荷容量 V _{cc}	終点 (出力)	Vac	-40	℃~125°	C	単位
ハシメータ			只刊行里	▼CC	最小値	代表値	最大値	平匹
t _{PLH}	D	Q	C _L = 50pF	5 V		5.2	9.4	ns

Copyright © 2025 Texas Instruments Incorporated

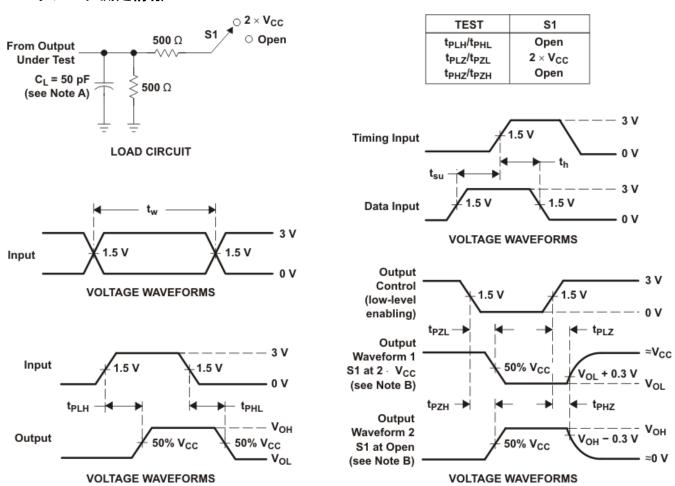
資料に関するフィードバック(ご意見やお問い合わせ)を送信

5



C_L = 50pF、自由気流での動作温度範囲内、T_A = 25℃で測定された標準値 (特に記述のない限り)。「パラメータ測定情報」を参照

パラメータ	松片 (3 力)	始点 (入力) 終点 (出力) 負荷	各共 宏县	V _{cc}	-40℃~12	単位	
/\/\/ - 9	урж (<i>/</i> \/ <i>/</i>)		貝側谷里		最小値 代表値	最大値	
t _{PHL}	D	Q	C _L = 50pF	5 V	6.2	10.6	ns
t _{PLH}	LE	Q	C _L = 50pF	5 V	6.2	9.8	ns
t _{PHL}	LE	Q	C _L = 50pF	5 V	6.3	9.9	ns
t _{PZH}	ŌĒ	Q	C _L = 50pF	5 V	6.1	9.5	ns
t _{PZL}	ŌĒ	Q	C _L = 50pF	5 V	6.3	3 10	ns
t _{PHZ}	OE	Q	C _L = 50pF	5 V	5.5	8.2	ns
t _{PLZ}	ŌĒ	Q	C _L = 50pF	5 V	4	6.1	ns


5.8 代表的特性

T_A = 25℃ (特に記述のない限り)

6 パラメータ測定情報

- A. CL にはプローブと治具の容量が含まれます。
- B. 波形 1 は、出力が Low になるような内部条件を持つ出力についてのものです。ただし、出力制御によってディスエーブルされている場合は除きます。 波形 2 は、出力が High になるような内部条件を持つ出力についてのものです。 ただし、出力制御によってディスエーブルされている場合は除きます。
- C. すべての入力パルスは、以下の特性を持つジェネレータから供給されます。 $PRR \leq 1MHz$ 、 $Z_O = 50\Omega$ 、 $t_r \leq 2.5 ns$ 、 $t_f \leq 2.5 ns$ 。
- D. 出力は一度に 1 つずつ測定され、測定するたびに入力が 1 回遷移します。

図 6-1. 負荷回路および電圧波形

1

Product Folder Links: SN74ACT573-Q1

7 詳細説明

7.1 概要

8 つのラッチは D タイプのトランスペアレント ラッチです。 ラッチ・イネーブル (LE) 入力が HIGH の場合、Q 出力はデータ (D) 入力に従います。 LE を LOW にすると、D 入力で設定されたロジック・レベルで Q 出力がラッチされます。

バッファ付きの出力イネーブル (OE) 入力を使用して、8 つの出力を通常のロジック状態 (High または Low ロジックレベル) または高インピーダンス状態のいずれかにできます。高インピーダンス状態では、出力によってバス ラインに大きな負荷がかかったり、駆動されたりしません。高インピーダンス状態と駆動性能の向上によって、インターフェイスまたはプルアップ コンポーネントなしでバス ラインの駆動が可能になります。

OE は、ラッチの内部動作に影響しません。出力が高インピーダンス状態にある間に、古いデータを保持することも新しいデータを入力することもできます。

電源投入または電源オフの間にデバイスを高インピーダンス状態にするには、OE をプルアップ抵抗を介して Vcc に接続します。この抵抗の最小値は、ドライバの電流シンク能力によって決まります。

7.2 機能ブロック図

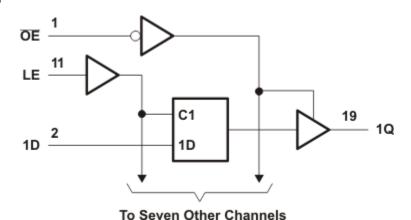


図 7-1. 論理図 (正論理)

7.3 デバイスの機能モード

機能表 (各ラッチ)

	入力		出力
ŌĒ	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q_0
Н	X	X	Z

8アプリケーションと実装

注

以下のアプリケーション情報は、テキサス・インスツルメンツの製品仕様に含まれるものではなく、テキサス・インスツルメンツはその正確性も完全性も保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。また、お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 アプリケーション情報

SN74ACT573-Q1 は、比較的長いパターンや伝送線路で信号を駆動するために使用できます。トランスミッタの出力と直列に配置した直列ダンピング抵抗を使用すると、ドライバ、伝送線路、レシーバの間のインピーダンスの不整合に起因するリンギングを低減できます。「アプリケーション曲線」セクションの図は、3 つの個別の抵抗値を持つ受信信号を示しています。この種のアプリケーションでは、わずかな量の抵抗だけで信号整合性に大きな影響を及ぼす可能性があります。

8.2 代表的なアプリケーション

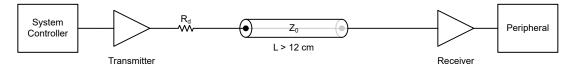


図 8-1. 代表的なアプリケーションのブロック図

9

Product Folder Links: SN74ACT573-Q1

8.3 設計要件

8.3.1 電源に関する考慮事項

目的の電源電圧が「推奨動作条件」で規定されている範囲内であることを確認します。「電気的特性」セクションに記載さ れているように、電源電圧は本デバイスの電気的特性を決定づけます。

正電圧の電源は、SN74ACT573-Q1のすべての出力によってソースされる総電流、「電気的特性」に記載された静的消 費電流 (I_{CC}) の最大値、スイッチングに必要な任意の過渡電流の合計に等しい電流を供給できる必要があります。 ロジッ ク デバイスは、正の電源から供給される電流のみをソースできます。 「絶対最大定格」に記載された **V**cc 総電流の最大 値を超えないようにしてください。

グランドは、SN74ACT573-Q1 のすべての出力によってシンクされる総電流、「電気的特性」に記載された消費電流 (Icc) の最大値、スイッチングに必要な任意の過渡電流の合計に等しい電流をシンクできる必要があります。 ロジック デバ イスは、グランド接続にシンクできる電流のみをシンクできます。「絶対最大定格」に記載された GND 総電流の最大値を 超えないようにしてください。

SN74ACT573-Q1 は、データシートの仕様をすべて満たしつつ、合計容量 50pF 以下の負荷を駆動できます。これより 大きな容量性負荷を印加することもできますが、50pF を超えることは推奨しません。

SN74ACT573-Q1 は、「電気的特性」表に定義されている出力電圧および電流 (V_{OH} および V_{OL}) で、R_L ≧ V_O / I_O で 記述される合計抵抗の負荷を駆動できます。High 状態で出力する場合、この式の出力電圧は、測定した出力電圧と V_{CC} ピンの電源電圧の差として定義されます。

総消費電力は、『CMOS の消費電力と Cpd の計算』に記載されている情報を使用して計算できます。

熱上昇は、『標準リニアおよびロジック (SLL) パッケージおよびデバイスの熱特性』に記載されている情報を使用して計算 できます。

「絶対最大定格」に記載された最大接合部温度 (T_{J(max)}) は、本デバイスの損傷を防止するための追加の制 限値です。「絶対最大定格」に記載されたすべての制限値を必ず満たすようにしてください。これらの制限値 は、デバイスへの損傷を防ぐために規定されています。

Copyright © 2025 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信

8.3.2 入力に関する考慮事項

入力信号は、 $V_{IL(max)}$ を超えるとロジック Low と見なされ、 $V_{IH(min)}$ を超えるとロジック High と見なされます。「絶対最大定格」に記載された最大入力電圧範囲を超えないようにしてください。

未使用の入力は、V_{CC} またはグランドに終端させる必要があります。入力がまったく使われていない場合は、未使用の入力を直接終端させることができます。入力が常時ではなく、時々使用される場合は、プルアップ抵抗かプルダウン抵抗と接続することも可能です。デフォルト状態が High の場合にはプルアップ抵抗、デフォルト状態が Low の場合にはプルダウン抵抗を使用します。コントローラの駆動電流、SN74ACT573-Q1 へのリーク電流 (「電気的特性」で規定)、および必要な入力遷移レートによって抵抗のサイズが制限されます。こうした要因により 10kΩ の抵抗値がしばしば使用されます。

SN74ACT573-Q1 は CMOS 入力を備えているため、正しく動作するには、「推奨動作条件」表で定義されているように、入力が素早く遷移する必要があります。入力遷移が遅いと発振が発生し、消費電力の増大やデバイスの信頼性の低下を招くことがあります。

このデバイスの入力の詳細については、「機能説明」セクションを参照してください。

8.3.3 出力に関する考慮事項

正の電源電圧を使用して、出力 High 電圧を生成します。出力から電流を引き出すと、「電気的特性」の V_{OH} 仕様で規定されたように出力電圧が低下します。グランド電圧を使用して、出力 Low 電圧を生成します。出力に電流をシンクすると、「電気的特性」の V_{OL} 仕様で規定されたように出力電圧が上昇します。

非常に短い期間であっても、逆の状態になる可能性があるプッシュプル出力は、互いに直接接続しないでください。これは、過電流やデバイスへの損傷を引き起こす可能性があります。

同じ入力信号を持つ同一デバイス内の 2 つのチャネルを並列に接続することにより、出力駆動の強度を高めることができます。

未使用の出力はフローティングのままにできます。出力を V_{CC} またはグランドに直接接続しないようにしてください。 本デバイスの出力の詳細については、「機能説明」セクションを参照してください。

English Data Sheet: SCAS964

8.4 詳細な設計手順

- 1. V_{CC} と GND の間にデカップリング コンデンサを追加します。このコンデンサは、物理的にデバイスの近く、かつ V_{CC} ピンと GND ピンの両方に電気的に近づけて配置する必要があります。 レイアウト例を「レイアウト」セクションに示します。
- 2. 出力の容量性負荷は、必ず 50pF 以下になるようにします。これは厳密な制限ではありませんが、設計上、性能が最適化されます。これは、SN74ACT573-Q1 から 1 つまたは複数の受信デバイスまでのトレースを短い適切なサイズにすることで実現できます。
- 3. 出力の抵抗性負荷を $(V_{CC}/I_{O(max)})\Omega$ より大きくします。これを行うと、「絶対最大定格」の最大出力電流に違反するのを防ぐことができます。ほとんどの CMOS 入力は、 $M\Omega$ 単位で測定される抵抗性負荷を備えています。これは、上記で計算される最小値よりはるかに大きい値です。
- 4. 熱の問題がロジックゲートにとって問題となることはほとんどありません。ただし、消費電力と熱の上昇は、アプリケーションレポート『CMOS 消費電力と CPD の計算』に記載されている手順を使用して計算できます。

8.5 アプリケーション曲線

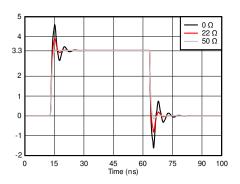


図 8-2. 異なるダンピング抵抗 (R_d) 値を使用してレシーバでの信号の整合性をシミュレート

8.6 電源に関する推奨事項

電源には、「推奨動作条件」に記載された電源電圧定格の最小値と最大値の間の任意の電圧を使用できます。電源の外乱を防止するため、各 V_{CC} 端子に適切なバイパスコンデンサを配置する必要があります。このデバイスには $0.1\mu F$ のコンデンサを推奨します。複数のバイパスコンデンサを並列に配置して、異なる周波数のノイズを除去することが許容されます。一般的に、 $0.1\mu F$ と $1\mu F$ のコンデンサは並列に使用されます。バイパスコンデンサを電源端子のできるだけ近くに配置すると最適な結果が得られます。

8.7 レイアウト

8.7.1 レイアウトのガイドライン

マルチ入力およびマルチチャネルのロジック デバイスを使用する場合、入力をフローティングのままにしてはいけません。多くの場合、デジタル論理デバイスの機能または機能の一部は使用されません (たとえば、トリプル入力 AND ゲートの 2 つの入力のみを使用する場合や 4 つのバッファ ゲートのうちの 3 つのみを使用する場合)。このような未使用の入力ピンを未接続のままにすることはできません。外部接続の電圧が未確定の場合、動作状態が不定になるためです。デジタルロジック デバイスの未使用入力はすべて、入力電圧の仕様で定義されるロジック High またはロジック Low 電圧に接続して、それらがフローティングにならないようにする必要があります。特定の未使用入力に適用する必要があるロジック レベルは、デバイスの機能によって異なります。一般に入力は、GND または V_{CC} のうち、ロジックの機能にとってより適切であるかより利便性の高い方に接続されます。

Product Folder Links: SN74ACT573-Q1

かせ) を送信 Copyright © 2025 Texas Instruments Incorporated

8.7.2 レイアウト例

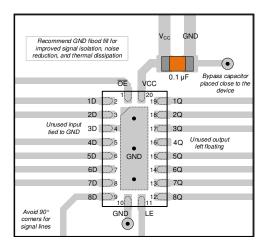


図 8-3. RKS パッケージに封止した SN74ACT573-Q1 のレイアウト例

13

Product Folder Links: SN74ACT573-Q1

9 デバイスおよびドキュメントのサポート

9.1 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

9.2 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

9.3 商標

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

9.4 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

9.5 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

10 改訂履歴

Changes from Revision A (March 2024) to Revision B (December 2024)

Page

• 「パッケージ情報」表、「ピン構成および機能」セクション、および「熱に関する情報」表に DGS パッケージを追加 1

Changes from Revision * (November 2023) to Revision A (March 2024)

Page

「パッケージ情報」表、「ピン構成および機能」セクション、および「熱に関する情報」表に PW パッケージを追加 1

11 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用している場合は、画面左側のナビゲーションをご覧ください。

関するフィートハック (こ息兄やお向い音かせ) を送信

Product Folder Links: SN74ACT573-Q1

www.ti.com 7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	('')	(2)			(0)	(4)	(5)		(0)
SN74ACT573QDGSRQ1	Active	Production	VSSOP (DGS) 20	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1M573Q
SN74ACT573QDGSRQ1.A	Active	Production	VSSOP (DGS) 20	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1M573Q
SN74ACT573QPWRQ1	Active	Production	TSSOP (PW) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	ACT573Q
SN74ACT573QPWRQ1.A	Active	Production	TSSOP (PW) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	ACT573Q
SN74ACT573QWRKSRQ1	Active	Production	VQFN (RKS) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	ACT573Q
SN74ACT573QWRKSRQ1.A	Active	Production	VQFN (RKS) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	ACT573Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

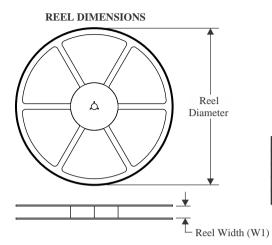
www.ti.com 7-Nov-2025

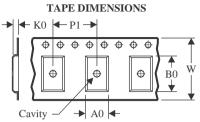
OTHER QUALIFIED VERSIONS OF SN74ACT573-Q1:

Catalog: SN74ACT573

Military: SN54ACT573

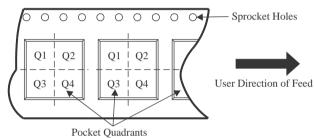
NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product


• Military - QML certified for Military and Defense Applications

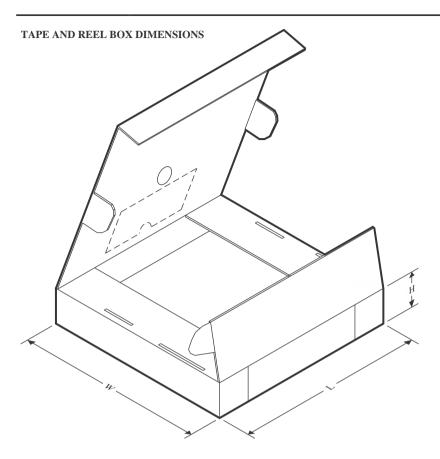
PACKAGE MATERIALS INFORMATION

www.ti.com 14-Feb-2025


TAPE AND REEL INFORMATION

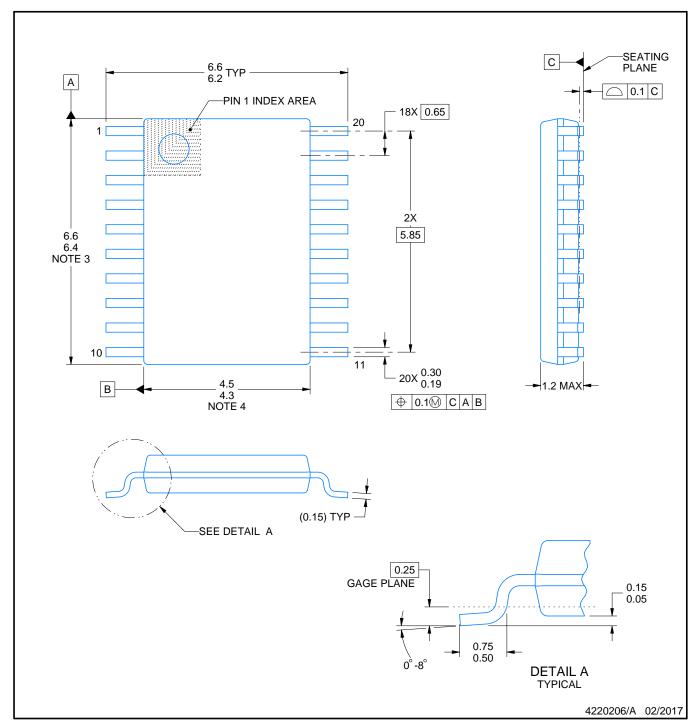
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



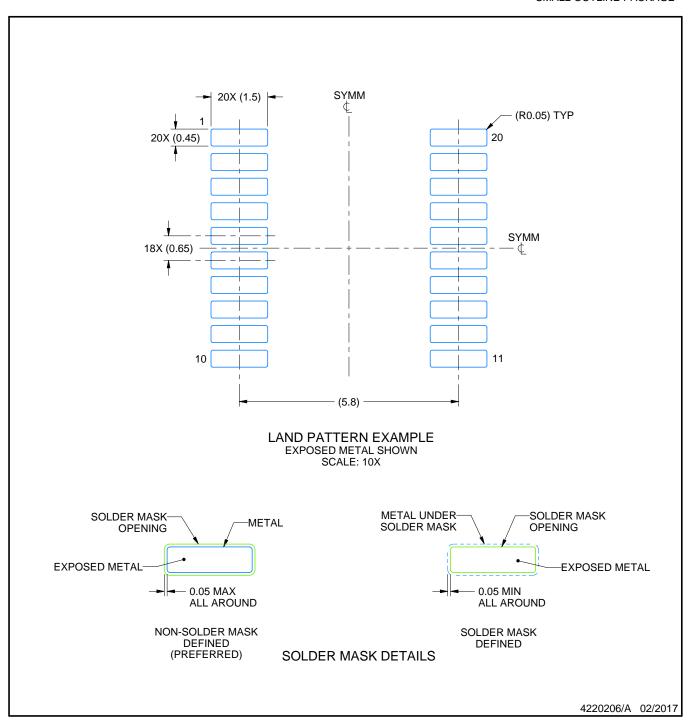
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ACT573QDGSRQ1	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
SN74ACT573QPWRQ1	TSSOP	PW	20	3000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74ACT573QWRKSRQ1	VQFN	RKS	20	3000	180.0	12.4	2.8	4.8	1.2	4.0	12.0	Q1


www.ti.com 14-Feb-2025

*All dimensions are nominal

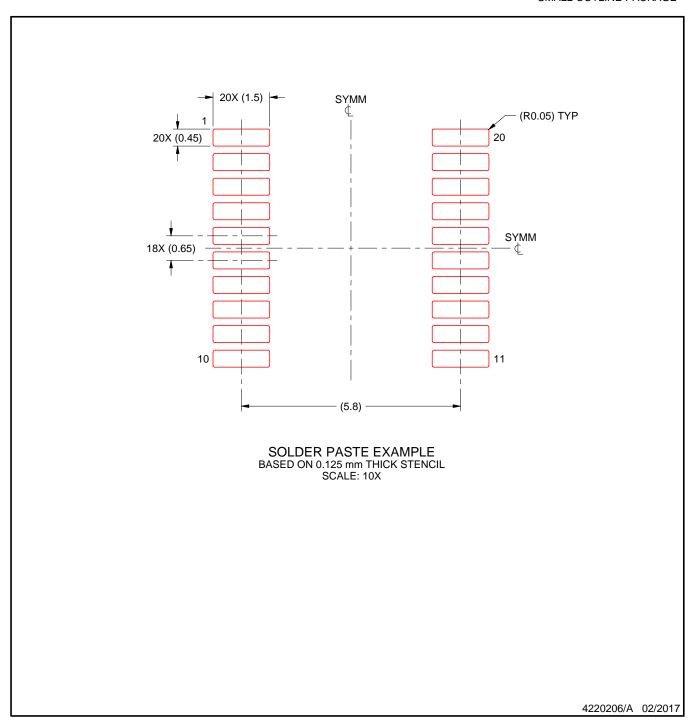
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ACT573QDGSRQ1	VSSOP	DGS	20	5000	353.0	353.0	32.0
SN74ACT573QPWRQ1	TSSOP	PW	20	3000	353.0	353.0	32.0
SN74ACT573QWRKSRQ1	VQFN	RKS	20	3000	210.0	185.0	35.0


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

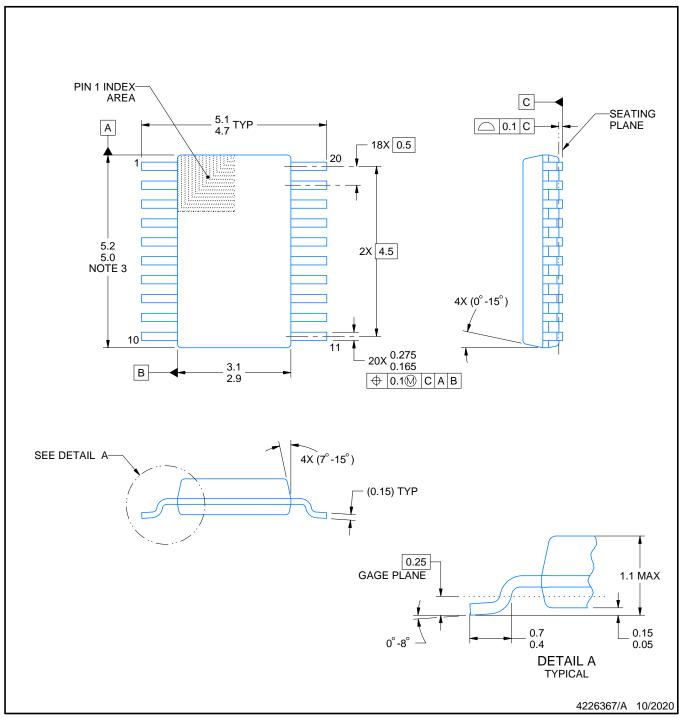
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

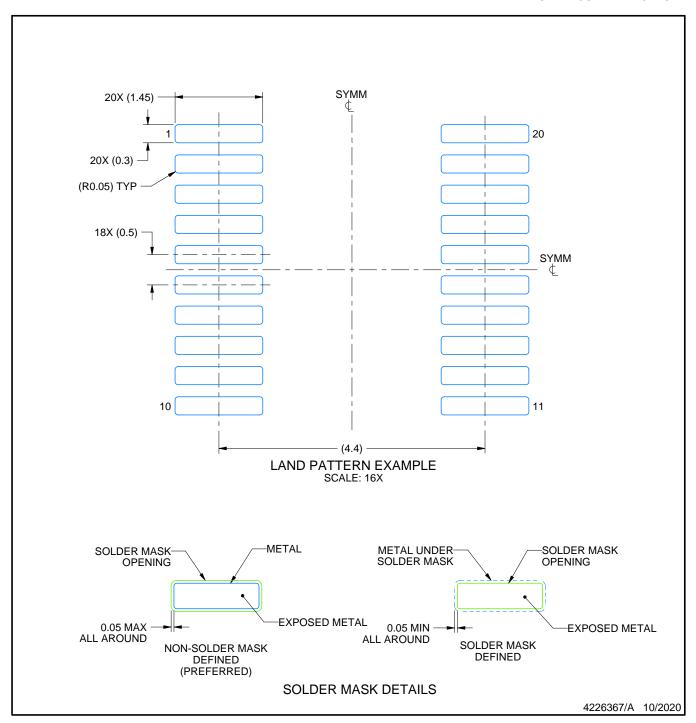
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

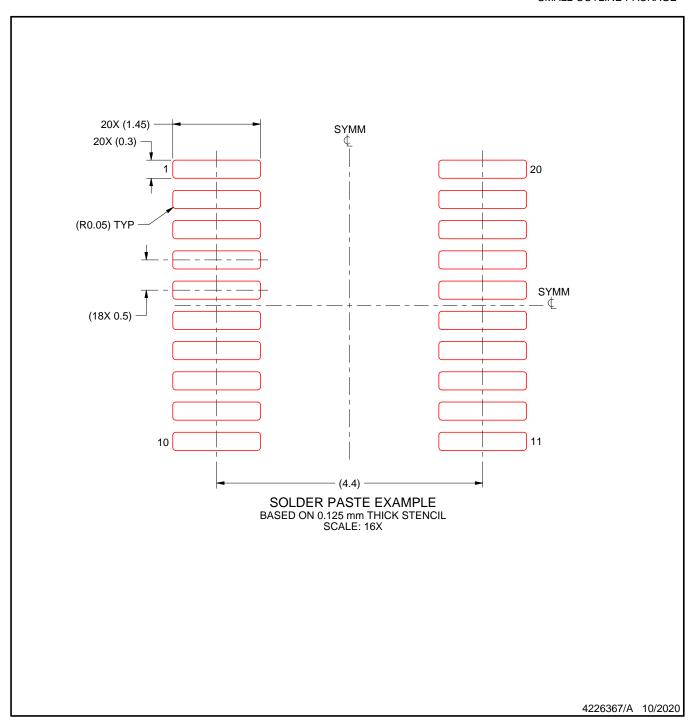
NOTES:


PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. No JEDEC registration as of September 2020.
- 5. Features may differ or may not be present.



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)


- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

2.5 x 4.5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日:2025 年 10 月