

SLOS457A-JANUARY 2005-REVISED APRIL 2008

DUAL AUDIO OPERATIONAL AMPLIFIER

FEATURES

- Operating Voltage . . . ±2 V to ±18 V
- Low Noise Voltage . . . 1.2 µVrms (Typ)
- Wide GBW . . . 15 MHz (Typ)
- Low THD . . . 0.05% (Typ)

- Slew Rate . . . 5.5 V/µsec (Typ)
- Suitable for Applications Such as Audio Preamplifier, Active Filter, Headphone Amplifier, Industrial Measurement Equipment

DESCRIPTION/ORDERING INFORMATION

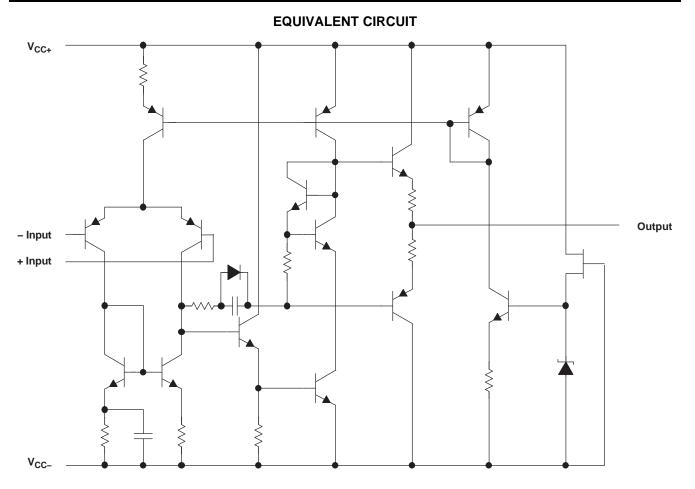
The RC4560 is a high-gain, wide-bandwidth, dual operational amplifier capable of driving 20 V peak-to-peak into 400- Ω loads. The RC4560 combines many of the features of the RC4558, but with wider bandwidth and higher slew rate, making this device ideal for active filters, data and telecommunications, and many instrumentation applications.

ORDERING INFORMATION⁽¹⁾

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – P	Tube of 50	RC4560IP	RC4560IP
–40°C to 85°C	SOIC – D	Tube of 75	RC4560ID	DAFCOL
		Reel of 2500	RC4560IDR	R4560I
	TSSOP – PW	Tube of 150	RC4560IPW	D 45 COL
		Reel of 2000	RC4560IPWR	R4560I

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS457A-JANUARY 2005-REVISED APRIL 2008

www.ti.com

INSTRUMENTS

EXAS

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

$V_{\text{CC}\pm}$	Supply voltage	Supply voltage			
	Input voltage (any input)	±15 V			
	Output current		±50 mA		
		D package	97°C/W		
θ_{JA}	Package thermal impedance ⁽²⁾⁽³⁾	P package	85°C/W		
		PW package	149°C/W		
TJ	Operating virtual junction temperature	· ·	150°C		
T _{stg}	Storage temperature range		-60°C to 125°C		

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum T_J of 150°C can impact reliability.
(2) The nearborn of T_J(max) - T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability.
(3) The nearborn of the maximum T_J of 150°C can impact reliability.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

2

SLOS457A-JANUARY 2005-REVISED APRIL 2008

www.ti.com

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC+}	Supply veltage	2	16	V
V _{CC} -	Supply voltage	-2	-16	v
V _{ID}	Differential input voltage		±30	V
VICR	Input common mode range	-14	14	V
T _A	Operating free-air temperature range	-40	85	°C

ELECTRICAL CHARACTERISTICS

 $V_{CC\pm}=\pm 15$ V, $T_{A}=25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	R _S ≤ 10 kΩ		0.5	6	mV
I _{IO}	Input offset current			5	200	nA
I _{IB}	Input bias current			40	500	nA
A _{VD}	Large-signal differential voltage amplification	$R_L \ge 2 \ k\Omega, \ V_O = \pm 10 \ V$	86	100		dB
r _i	Input resistance		0.3	5		MΩ
	Output voltage owing	$R_L \ge 2 k\Omega$	±12	±14		V
Vo	Output voltage swing	I _O = 25 mA	±10	±12.5		v
VICR	Common-mode input voltage range		±12	±14		V
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ	70	90		dB
k _{SVR}	Supply-voltage rejection ratio ⁽¹⁾	R _S ≤ 10 kΩ	76.5	90		dB
I _{CC}	Supply current (all amplifiers)			4.3	5.7	mA

(1) Measured with V_{CC±} differentially varied simultaneously from ±4 V to ±15 V

OPERATING CHARACTERISTICS

 $V_{CC\pm} = \pm 15 \text{ V}, \text{ } T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP	UNIT
SR	Slew rate at unity gain		5.5	V/µs
GBW	Gain bandwidth product		15	MHz
THD	Total harmonic distortion	$V_0 = 5 \text{ V}, \text{ R}_L = 2 \text{ k}\Omega, \text{ f} = 1 \text{ kHz}, \text{ A}_{VD} = 20 \text{ dB}$	0.05	%
Vn	Equivalent input noise voltage	RIAA, R _S ≤ 2 kΩ, 30-kHz LPF	1.2	μVrms

3

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
RC4560ID	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 85	R4560I
RC4560IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	R4560I
RC4560IDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	R4560I
RC4560IP	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	RC4560IP
RC4560IP.A	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	RC4560IP
RC4560IPW	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	-40 to 85	R4560I
RC4560IPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R4560I
RC4560IPWR.A	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	R4560I

⁽¹⁾ Status: For more details on status, see our product life cycle.

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

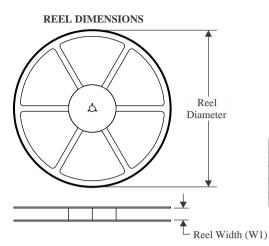
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

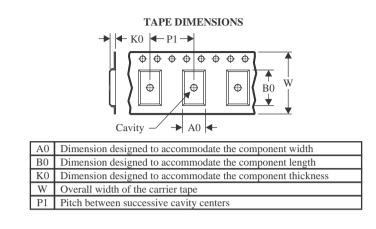
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

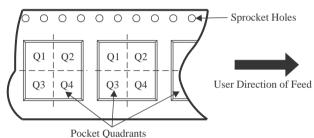
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

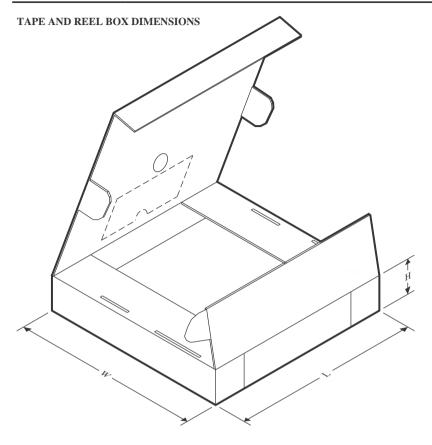


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

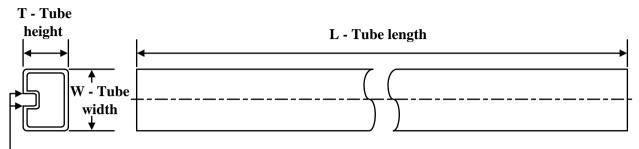


*All	dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	RC4560IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
	RC4560IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

21-Aug-2025

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
RC4560IDR	SOIC	D	8	2500	353.0	353.0	32.0
RC4560IPWR	TSSOP	PW	8	2000	353.0	353.0	32.0

TEXAS INSTRUMENTS

www.ti.com

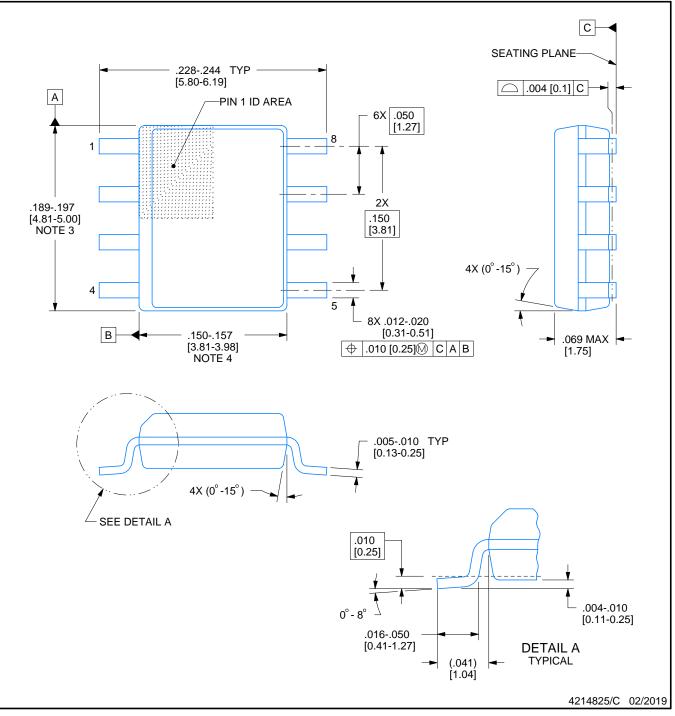
21-Aug-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
RC4560IP	Р	PDIP	8	50	506	13.97	11230	4.32
RC4560IP.A	Р	PDIP	8	50	506	13.97	11230	4.32


D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

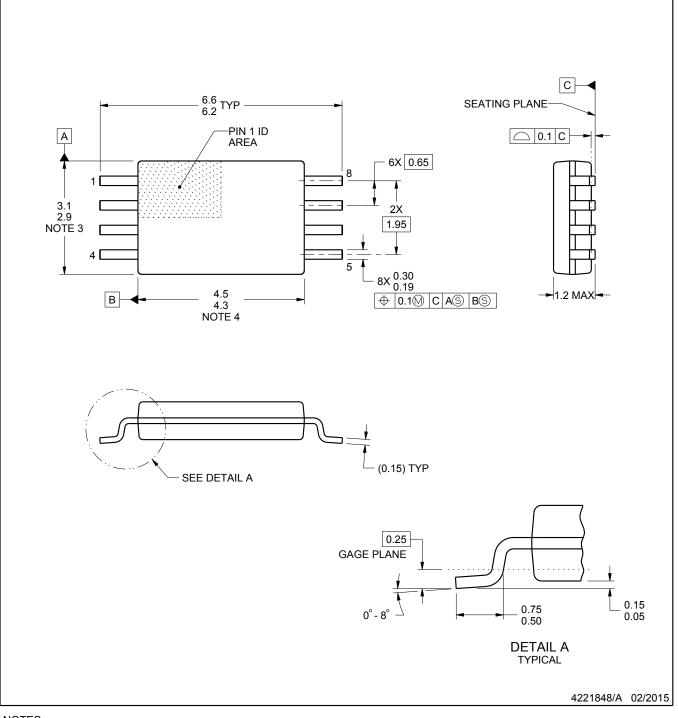
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.


PW0008A

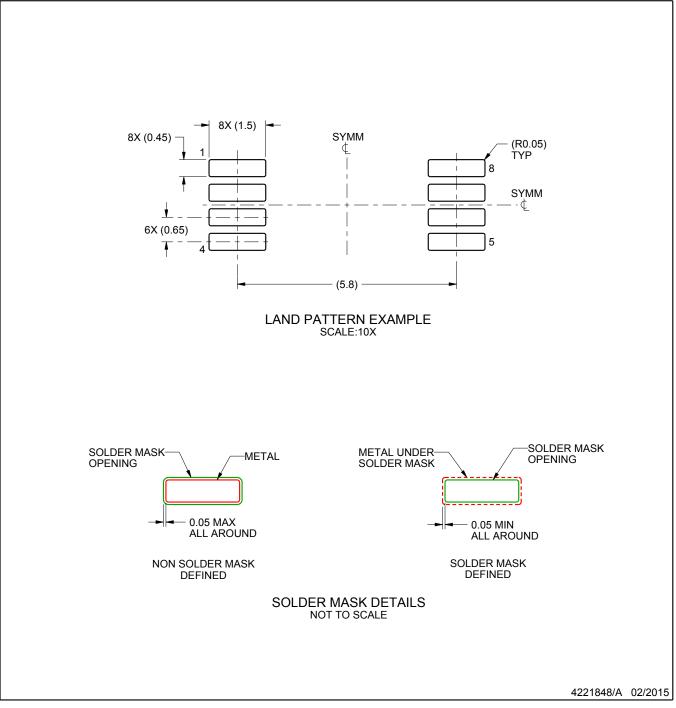
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

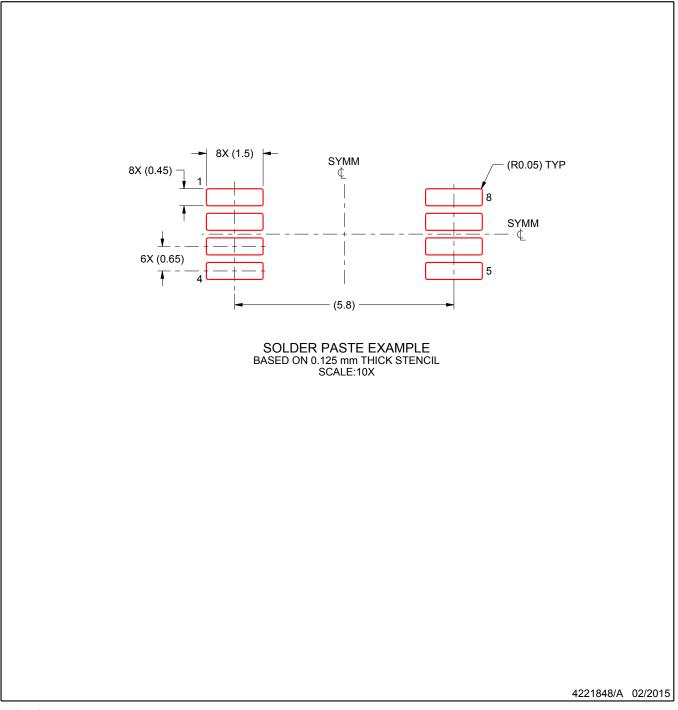
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated