

OPA836, OPA2836 JAJSLJ2J – JANUARY 2011 – REVISED MARCH 2021

OPAx836 超低消費電力、レール・ツー・レール出力、負のレール入力、電圧 フィードバック・オペアンプ

1 特長

• 低消費電力:

電源電圧:2.5V~5.5V 静止電流:1mA (標準値)

パワーダウン・モード: 0.5µA (標準値)

帯域幅:205MHzスルーレート:560V/µs

• 立ち上がり時間:3ns (2V_{STEP})

セトリング・タイム (0.1%): 22ns (2V_{STEP})

• オーバードライブ復帰時間:60ns

• SNR: 0.00013% (-117.6dBc) (1kHz、1V_{RMS} 時)

• THD:0.00003% (-130dBc) (1kHz、1V_{RMS} 時)

HD₂/HD₃:-85dBc/-105dBc (1MHz、2V_{PP} 時)

入力電圧ノイズ:4.6nV/√Hz (f = 100 kHz)

• 入力オフセット電圧:65µV (最大±400µV)

CMRR: 116dB

• 出力電流駆動:50mA

• RRO:レール・ツー・レール出力

• 入力電圧範囲:-0.2V~+3.9V (5V 電源)

動作温度範囲:
 -40℃~+125℃

2 アプリケーション

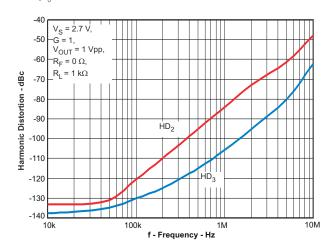
- 低消費電力のシグナル・コンディショニング
- オーディオ用 A/D コンバータの入力バッファ
- 低消費電力 SAR および ΔΣ A/D コンバータのドライバ
- ポータブル・システム
- 低消費電力システム
- 高密度システム

3 概要

OPA836 および OPA2836 デバイス (OPAx836) は、2.5V~5.5V 単一電源または ±1.25V~±2.75V デュアル電源で動作するように設計された、シングルおよびデュアル・チャネル、超低消費電力、レール・ツー・レール出力、負レール入力の電圧帰還 (VFB) オペアンプです。このアンプは、1 チャネルあたりの消費電力がわずか 1mA、ユニティ・ゲイン帯域幅が 205MHz であり、レール・ツー・レール・アンプとしては業界トップの電力性能比を実現しています。

OPA836 および OPA2836 は、低消費電力で高周波性能が優れているため、電力性能がきわめて重要な意味を持つ電池駆動の携帯アプリケーションに適しており、他のデバイスでは得られない電力性能比を実現しています。

電流を 1.5µA 未満に低減する省電力モードも備えている ため、バッテリ駆動機器の高周波アンプに最適です。


OPA836 RUN パッケージ・オプションはゲイン設定抵抗を内蔵しているため、プリント基板の占有面積を最小限(約 2.00mm × 2.00mm) に抑えることができます。PCBに回路トレースを追加することにより、+1、-1、-1.33、+2、+2.33、-3、+4、-4、+5、-5.33、+6.33、-7、+8 のゲインと -0.1429、-0.1875、-0.25、-0.33、-0.75 の反転減衰を実現できます。詳細は表 9-1 および表 9-2 をご参照ください。

OPA836 および OPA2836 デバイスは、-40℃~+125°C の拡張産業用温度範囲において動作が規定されています。

デバイス情報(1)

7 119 101						
部品番号	パッケージ	本体サイズ (公称)				
OPA836	SOT-23 (6)	2.90mm × 1.60mm				
UPA836	WQFN (10)	2.00mm × 2.00mm				
	SOIC (8)	4.90mm × 3.91mm				
OPA2836	VSSOP (10)	3.00mm × 3.00mm				
OFA2030	UQFN (10)	2.00mm × 2.00mm				
	WQFN (10)	2.00mm × 2.00mm				

(1) 利用可能なすべてのパッケージについて、このデータシートの末 尾にあるパッケージ・オプションについての付録を参照してください。

高調波歪みと周波数との関係

•	Table of	Contents	
I 特長	1	8.3 Feature Description	24
2 アプリケーション		8.4 Device Functional Modes	<mark>2</mark> 7
3 概要		9 Application and Implementation	30
Revision History		9.1 Application Information	30
Device Comparison Table	4	9.2 Typical Applications	36
Pin Configuration and Functions		10 Power Supply Recommendations	
7 Specifications		11 Layout	
7.1 Absolute Maximum Ratings		11.1 Layout Guidelines	
7.2 ESD Ratings		11.2 Layout Example	
7.3 Recommended Operating Conditions		12 Device and Documentation Support	
7.4 Thermal Information: OPA836		12.1 Device Support	
7.5 Thermal Information: OPA2836	8	12.2 Receiving Notification of Documentation L	
7.6 Electrical Characteristics: V _S = 2.7 V	8	12.3 サポート・リソース	43
7.7 Electrical Characteristics: V _S = 5 V	11	12.4 静電気放電に関する注意事項	43
7.8 Typical Characteristics: V _S = 2.7 V		12.5 用語集	43
7.9 Typical Characteristics: V _S = 5 V		12.6 Trademarks	
B Detailed Description		13 Mechanical, Packaging, and Orderable	
8.1 Overview		Information	43
8.2 Functional Block Diagrams	24		
4 Revision History 資料番号末尾の英字は改訂を表しています。その			
Changes from Revision I (October 2016) to	Revision	J (March 2021)	Page
・ 文書全体にわたって表、図、相互参照の採番	を 方法を更新	Ť	1
		ons From: = 200 1.2 kΩ pF (Typical) To: 10	

	· · · · · · · · · · · · · · · · · · ·	
•	文書全体にわたって表、図、相互参照の採番方法を更新	1
•	Changed the input impedance common mode conditions From: = 200 1.2 kΩ pF (Typical) To: 100 1.2	2
	MΩ pF (Typical)	3
•	Changed the input impedance differential mode conditions From: = 200 1 k Ω pF (Typical) To: 100 1 k Ω	(Ω
	pF (Typical)	
•	Changed the input impedance common mode conditions From: = 200 1.2 k Ω pF (Typical) To: 100 1.2 k Ω	
	MΩ pF (Typical)	11
•	Changed the input impedance differential mode conditions From: = 200 1 k Ω pF (Typical) To: 100 1 k Ω	
	pF (Typical)	11

C	hanges from Revision H (September 2016) to Revision I (October 2016)	Page
•	データシート全体のセクションのテキストをより明確かつ簡潔に変更	
•	Changed " $R_G = \infty \Omega$ (open)" to " R_G = open"	3 ²
	Changed "gain tracking is superior to using" to "gain drift is superior to the drift with"	
	Changed "results in degraded harmonic distortion" to "increases the harmonic distortion"	
•	Deleted "A 10-Ω series resistor can be inserted between the capacitor and the noninverting pin to it	
	capacitance."	38

C	hanges from Revision G (October 2015) to Revision H (September 2016)	Page
•	Changed "Type" column header to "I/O" on Pin Functions table	
	Reformatted header rows in Thermal Information: OPA836 and Thermal Information: OPA2836 tables.	
•	Reformatted Thermal Information table note	
•	Reformatted Thermal Information table note	8
•	Deleted the word "linear" from Output section parameters in <i>Electrical Characteristics</i> $V_S = 2.7 \text{ V}$ table	8
	Deleted the word "linear" from Output section parameters in <i>Electrical Characteristics</i> $V_S = 5 V$ table	
	Reformatted Development Support subsection	
	Reformatted Related Documentation section	

www.tij.co.jp

Cł	hanges from Revision E (September 2013) to Revision F (June 2015)	Page
•	「 <i>特長</i> 」セクションを変更	1
	「ピン構成および機能」セクション、「ESD 定格」表、「機能説明」セクション、「デバイスの機能モード」セクション	、「アプ
	リケーションと実装」セクション、「電源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよびト	
	ントのサポート」セクション、「メカニカル、パッケージ、および注文情報」セクションを追加	1
•	Changed Device Comparison Table	
•	Changed Pin Functions table	
•	Changed Open Loop Gain vs Frequency graph	14
•	Changed Input Referred Noise vs Frequency graph	14
•	Changed Open Loop Gain vs Frequency graph	
•	Changed Input Referred Noise vs Frequency graph	19
Cł	hanges from Revision D (October 2011) to Revision E (September 2013)	Page
•	ドキュメントに OPA2836 RMC パッケージを追加	1
•	Added RMC pin definitions to <i>Pin Functions</i> table	
•	Deleted Packaging/Ordering Information table, leaving only note to POA	
•	Added OPA2836 RMC package to Thermal Information table	8
-CI	hanges from Revision C (September 2011) to Revision D (September 2011)	Page
•	Removed Product Preview from OPA835IRUNT and OPA835IRUNR	
•	Removed Product Preview from OPA836IRUNT and OPA836IRUNR	
•	Changed typical value for resistor temperature coefficien parameter from TBD to < 10	
•	Changed "quiescent operating current" parameter to "quiescent operating current per amplifier"	
•	Changed resistor temperature coefficient typical value from TBD to < 10	
•	Changed "quiescent operating current" to "quiescent operating current per amplifier"	
CI	hanges from Revision B (May 2011) to Revision C (August 2011)	Page
•	「概要」に「OPA836 RUN パッケージ」のテキストを追加	
•	Removed Product Preview from all devices except OPA835IRUNT and OPA835IRUNR	
•	Removed Product Preview from all devices except OPA836IRUNT and OPA836IRUNR	
•	Changed typical value for channel to channel crosstalk (OPA2836) parameter from TBD to -120 dB	
•	Changed the common-mode rejection ratio minimum value from 94 dB to 91 dB	
•	Added Gain Setting Resistors (OPA836IRUN ONLY) parameter in Electrical Characteristics table	
•	Changed the quiescent operating current (T _A = 25°C) minimum value from 0.8 mA to 0.7 mA	
•	Changed the minimum value for power supply rejection (±PSRR) parameter from 95 dB to 91 dB	
•	Changed the power-down pin bias current test condition from $\overline{PD} = 0.7 \text{ V}$ to $\overline{PD} = 0.5 \text{ V}$	
•	Changed the power-down quiescent current test condition from \overline{PD} = 0.7 V to \overline{PD} = 0.5 V	8
•	Changed typical value for channel to channel crosstalk (OPA2836) parameter from TBD to -120 dB	
•	Changed the Common-mode rejection ratio Min value From: 97 dB To: 94 dB	
•	Added GAIN SETTING RESISTORS (OPA836I RUN ONLY) parameter to Electrical Characteristics tab	ole 11
•	Changed the quiescent operating current (T _A = 25°C) minimum value from 0.9 mA to 0.8 mA	11
•	Changed the power supply rejection (±PSRR) minimum value from: 97 dB to 94 dB	11
•	Changed the Power-down quiescent current CONDITIONS From: PD = 0.7 V To: PD = 0.5 V	
•	Changed the Power-down quiescent current Conditions From: PD = 0.7 V To: PD = 0.5 V	
•	Added Figure Crosstalk vs Frequency	
•	Added Crosstalk vs Frequency figure	
•	Added section Single Ended to Differential Amplifier	31
Cł	hanges from Revision A (March 2011) to Revision B (May 2011)	Page
•	OPA836 を製品プレビューから量産データに変更	

5 Device Comparison Table

DEVICE	BW (A _V = 1) (MHz)	SLEW RATE (V/µs)	Iq (+5 V) (mA)	INPUT NOISE (nV/√ Hz)	RAIL-TO-RAIL IN/OUT	DUALS
OPA836	205	560	1	4.6	–VS/Out	OPA2836
OPA835	30	110	0.25	9.3	–VS/Out	OPA2835
OPA365	50	25	5	4.5	In/Out	OPA2365
THS4281	95	35	0.75	12.5	In/Out	
LMH6618	140	45	1.25	10	In/Out	LMH6619
OPA830	310	600	3.9	9.5	–VS/Out	OPA2830

6 Pin Configuration and Functions

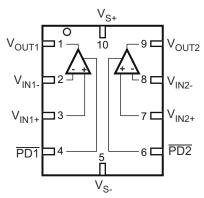


図 6-1. OPA2836 RUN, RMC Packages 10-Pin WQFN, UQFN Top View

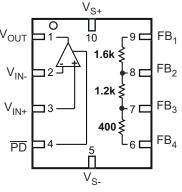


図 6-2. OPA836 RUN Package 10-Pin WQFN Top View



図 6-3. OPA2836 D Package 8-Pin SOIC Top View

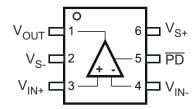


図 6-4. OPA836 DBV Package 6-Pin SOT-23 Top View

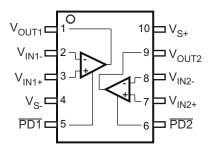


図 6-5. OPA2836 DGS Package 10-Pin VSSOP Top View

表 6-1. Pin Functions

		P	PIN					
	OPA	1836	OPA2836		I/O	DESCRIPTION		
NAME	SOT-23	WQFN	SOIC	VSSOP	WQFN, UQFN		2200	
FB ₁		9				I/O	Connection to top of 2.4-kΩ internal gain setting resistors	
FB ₂		8				I/O	Connection to junction of 1.8-k Ω and 2.4-k Ω internal gain setting resistors	
FB ₃		7		_	_	I/O	Connection to junction of 600- Ω and 1.8-k Ω internal gain setting resistors	
FB ₄		6				I/O	Connection to bottom of 600-Ω internal gain setting resistors	
PD	5	4	_			I	Amplifier Power Down, low = low-power mode, high = normal operation (PIN MUST BE DRIVEN)	
PD1				5	4	I	Amplifier 1 Power Down, low = low-power mode, high = normal operation (PIN MUST BE DRIVEN)	
PD2				6	6	I	Amplifier 2 Power Down, low = low-power mode, high = normal operation (PIN MUST BE DRIVEN)	
V _{IN+}	3	3				I	Amplifier noninverting input	
V _{IN} _	4	2		_	_	I	Amplifier inverting input	
V _{IN1+}			3	3	3	I	Amplifier 1 noninverting input	
V _{IN1}			2	2	2	I	Amplifier 1 inverting input	
V _{IN2+}	_	_	5	7	7	I	Amplifier 2 noninverting input	
V _{IN2}			6	8	8	I	Amplifier 2 inverting input	
V _{OUT}	1	1	_	_	_	0	Amplifier output	
V _{OUT1}			1	1	1	0	O Amplifier 1 output	
V _{OUT2}	_	_	7	9	9	0	Amplifier 2 output	
V _{S+}	6	10	8	10	10	POW	Positive power supply input	
V _{S-}	2	5	4	4	5	POW	Negative power supply input	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{S-} to V _{S+}	Supply voltage		5.5	V
VI	Input voltage	V _{S-} - 0.7	V _{S+} + 0.7	V
V _{ID}	Differential input voltage		1	V
I _I	Continuous input current		0.85	mA
Io	Continuous output current		60	mA
	Continuous power dissipation	See セク ar セクシ:		
T _J	Maximum junction temperature		150	°C
T _A	Operating free-air temperature	-40	125	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±6000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V
		Machine model	±200	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{S+}	Single supply voltage	2.5	5	5.5	V
T _A	Ambient temperature	-40	25	125	°C

7.4 Thermal Information: OPA836

		OP.	A836	
	THERMAL METRIC ⁽¹⁾	DBV (SOT23-6)	RUN (WQFN-10)	UNIT
		6 PINS	10 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	194	145.8	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	129.2	75.1	°C/W
R _{0JB}	Junction-to-board thermal resistance	39.4	38.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	25.6	13.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	38.9	104.5	°C/W

(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics (SPRA953).

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 Thermal Information: OPA2836

			OPA2836					
THERMAL METRIC(1)		D (SOIC-8)	(DGS) VSSOP, MSOP-10	(RUN) WQFN-10	RMC (UQFN-10)	UNIT		
		8 PINS	10 PINS	10 PINS	10 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	150.1	206	145.8	143.2	°C/W		
R _{θJCtop}	Junction-to-case (top) thermal resistance	83.8	75.3	75.1	49.0	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	68.4	96.2	38.9	61.9	°C/W		
ΨЈТ	Junction-to-top characterization parameter	33.0	12.9	13.5	3.3	°C/W		
ΨЈВ	Junction-to-board characterization parameter	67.9	94.6	104.5	61.9	°C/W		

⁽¹⁾ For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics (SPRA953).

7.6 Electrical Characteristics: $V_S = 2.7 \text{ V}$

at V_{S+} = +2.7 V, V_{S-} = 0 V, V_{OUT} = 1 V_{PP} , R_F = 0 Ω , R_L = 2 k Ω , G = 1 V/V, input and output referenced to mid-supply, V_{IN_CM} = mid-supply – 0.5 V. T_A = 25°C, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN TYP MA	X UNIT	TEST LEVEL ⁽¹⁾
AC PERFORMANCE			•	
	V _{OUT} = 100 mV _{PP} , G = 1	200		
Small-signal bandwidth	V _{OUT} = 100 mV _{PP} , G = 2	100	MHz	С
Small-signal bandwidth	V _{OUT} = 100 mV _{PP} , G = 5	26	IVITZ	
	V _{OUT} = 100 mV _{PP} , G = 10	11		
Gain-bandwidth product	V _{OUT} = 100 mV _{PP} , G = 10	110	MHz	С
Large-signal bandwidth	V _{OUT} = 1 V _{PP} , G = 2	60	MHz	С
Bandwidth for 0.1-dB flatness	V _{OUT} = 1 V _{PP} , G = 2	25	MHz	С
Slew rate, rise	V _{OUT} = 1 V _{STEP} , G = 2	260	V/µs	С
Slew rate, fall	V _{OUT} = 1 V _{STEP} , G = 2	240	V/µs	С
Rise time	V _{OUT} = 1 V _{STEP} , G = 2	4	ns	С
Fall time	V _{OUT} = 1 V _{STEP} , G = 2	4.5	ns	С
Settling time to 1%, rise	V _{OUT} = 1 V _{STEP} , G = 2	15	ns	С
Settling time to 1%, fall	V _{OUT} = 1 V _{STEP} , G = 2	15	ns	С
Settling time to 0.1%, rise	V _{OUT} = 1 V _{STEP} , G = 2		ns	С
Settling time to 0.1%, fall	V _{OUT} = 1 V _{STEP} , G = 2	25	ns	С
Settling time to 0.01%, rise	V _{OUT} = 1 V _{STEP} , G = 2	50	ns	С
Settling time to 0.01%, fall	V _{OUT} = 1 V _{STEP} , G = 2	45	ns	С
Overshoot/Undershoot	V _{OUT} = 1 V _{STEP} , G = 2	5%/3%		С
	f = 10 kHz, V _{IN_CM} = mid-supply – 0.5 V	-133		С
Second-order harmonic distortion	f = 100 kHz, V _{IN_CM} = mid-supply – 0.5 V	-120	dBc	С
	f = 1 MHz, V _{IN_CM} = mid-supply – 0.5 V	-84		С
	f = 10 kHz, V _{IN_CM} = mid-supply – 0.5 V	-137		С
Third-order harmonic distortion	f = 100 kHz, V _{IN_CM} = mid-supply – 0.5 V	-130	dBc	С
	f = 1 MHz, V _{IN_CM} = mid-supply – 0.5 V	-105		С
Second-order intermodulation distortion	f = 1 MHz, 200-kHz Tone Spacing, V _{OUT} Envelope = 1 V _{PP} V _{IN_CM} = mid-supply – 0.5 V	-90	dBc	С
Third-order intermodulation distortion	$\begin{array}{l} \text{f} = 1 \text{ MHz, } 200\text{-kHz Tone Spacing,} \\ \text{V}_{\text{OUT}} \text{ Envelope} = 1 \text{ V}_{\text{PP}} \\ \text{V}_{\text{IN_CM}} = \text{mid-supply} - 0.5 \text{ V} \end{array}$	-90	dBc	С
Input voltage noise	f = 100 KHz	4.6	nV/√ Hz	С
Voltage noise 1/f corner frequency		215	Hz	С
Input current noise	f = 1 MHz	0.75	pA/√ Hz	С

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7.6 Electrical Characteristics: $V_S = 2.7 \text{ V}$ (continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	TEST LEVEL ⁽¹⁾
AC PERFORMANCE (continued)						
Current noise 1/f corner frequency			31.7		kHz	С
Overdrive recovery time, over/under	Overdrive = 0.5 V		55/60		ns	С
Closed-loop output impedance	f = 100 kHz		0.02		Ω	С
Channel-to-channel crosstalk (OPA2836)	f = 10 kHz		-120		dB	С
DC PERFORMANCE		'				
Open-loop voltage gain (A _{OL})		100	125		dB	Α
	T _A = 25°C	-400	±65	400		Α
	T _A = 0°C to 70°C	-680		680		
Input referred offset voltage	T _A = -40°C to 85°C	-760		760	μV	В
	T _A = -40°C to 125°C	-1060		1060		
	T _A = 0°C to 70°C	-6.2	±1	6.2		
Input offset voltage drift ⁽²⁾	T _A = -40°C to 85°C	-6	±1	6	μV/°C	В
	T _A = -40°C to 125°C	-6.6	±1.1	6.6		
	T _A = 25°C	300	650	1000		Α
Input bias current ⁽³⁾	T _A = 0°C to 70°C	190		1400		
	T _A = -40°C to 85°C	120		1500	nA	В
	T _A = -40°C to 125°C	120		1800		
	T _A = 0°C to 70°C	-2	±0.33	2	nA/°C	
Input bias current drift ⁽²⁾	T _A = -40°C to 85°C	-1.9	±0.32	1.9		В
	T _A = -40°C to 125°C	-2.1	±0.37	2.1		
	T _A = 25°C	-180	±30	180		Α
	T _A = 0°C to 70°C	-200	±30	200	_	В
Input offset current	T _A = -40°C to 85°C	-215	±30	215	nA	
	T _A = -40°C to 125°C	-240	±30	240		
	T _A = 0°C to 70°C	-460	±77	460		
Input offset current drift ⁽²⁾	T _A = -40°C to 85°C	-575	±95	575	pA/°C	В
	T _A = -40°C to 125°C	-600	±100	600		
INPUT	'					
Common mode input range law	T _A = 25°C, < 3-dB degradation in CMRR limit		-0.2	0	V	А
Common-mode input range low	$T_A = -40$ °C to 125°C, < 3-dB degradation in CMRR limit		-0.2	0	V	В
Common mode input reases high	T _A = 25°C, < 3-dB degradation in CMRR limit	1.5	1.6		V	А
Common-mode input range high	T _A = -40°C to 125°C, < 3-dB degradation in CMRR limit	1.5	1.6		٧	В
Input operating voltage range	T _A = 25°C, < 6-dB degradation in THD		-0.3 to 1.75		V	С
Common-mode rejection ratio		91	114		dB	Α
Input impedance common-mode			100 1.2		MΩ pF	С
Input impedance differential mode			100 1		kΩ pF	С

7.6 Electrical Characteristics: V_S = 2.7 V (continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	TEST LEVEL ⁽¹⁾
ОИТРИТ						
Output voltage low	T _A = 25°C, G = 5		0.15	0.2	V	Α
Output voltage low	$T_A = -40$ °C to 125°C, G = 5		0.15	0.2	V	В
Output voltage high	T _A = 25°C, G = 5	2.45	2.5		V	Α
Output voltage night	$T_A = -40$ °C to 125°C, G = 5	2.45	2.5		V	В
Output saturation voltage, high/low	T _A = 25°C, G = 5		80/40		mV	С
Output ourrent drive	T _A = 25°C	±40	±45		mA	Α
Output current drive	T _A = -40°C to 125°C	±40	±45		mA	В
GAIN SETTING RESISTORS (OPA836IRUN O	NLY)			<u>'</u>		•
Resistor FB1 to FB2	DC resistance	1584	1600	1616	Ω	Α
Resistor FB2 to FB3	DC resistance	1188	1200	1212	Ω	Α
Resistor FB3 to FB4	DC resistance	396	400	404	Ω	Α
Resistor tolerance	DC resistance	-1%		1%		Α
Resistor temperature coefficient	DC resistance		<10		PPM	С
POWER SUPPLY				1		
Specified operating voltage		2.5		5.5	V	В
	T _A = 25°C	0.7	0.95	1.15	mA	Α
Quiescent operating current per amplifier	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	0.6		1.4	mA	В
Power supply rejection (±PSRR)		91	108		dB	Α
POWER DOWN				1		
Enable voltage threshold	Specified "on" above V _S _ + 2.1 V			2.1	V	Α
Disable voltage threshold	Specified "off" below V _S _ + 0.7 V	0.7			V	Α
Power-down pin bias current	PD = 0.5 V		20	500	nA	Α
Power-down quiescent current	PD = 0. 5 V		0.5	1.5	μA	Α
Turnon time delay	Time from PD = high to V _{OUT} = 90% of final value		200		ns	С
Turnoff time delay	Time from PD = low to V _{OUT} = 10% of original value		25		ns	С

⁽¹⁾ Test levels (all values set by characterization and simulation): **(A)** 100% tested at 25°C; over temperature limits by characterization and simulation. **(B)** Not tested in production; limits set by characterization and simulation. **(C)** Typical value only for information.

⁽²⁾ Input Offset Voltage Drift, Input Bias Current Drift, and Input Offset Current Drift are average values calculated by taking data at the end points, computing the difference, and dividing by the temperature range.

⁽³⁾ Current is considered positive out of the pin.

7.7 Electrical Characteristics: $V_S = 5 V$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT	TEST LEVEL ⁽¹⁾
AC PERFORMANCE					
	V _{OUT} = 100 mV _{PP} , G = 1	205			
Constitution of the conductivity	V _{OUT} = 100 mV _{PP} , G = 2	100		N411-	0
Small-signal bandwidth	V _{OUT} = 100 mV _{PP} , G = 5	28		MHz	С
	V _{OUT} = 100 mV _{PP} , G = 10	11.8			
Gain-bandwidth product	V _{OUT} = 100 mV _{PP} , G = 10	118		MHz	С
Large-signal bandwidth	V _{OUT} = 2 V _{PP} , G = 2	87		MHz	С
Bandwidth for 0.1-dB flatness	V _{OUT} = 2 V _{PP} , G = 2	29		MHz	С
Slew rate, rise	V _{OUT} = 2-V Step, G = 2	560		V/µs	С
Slew rate, fall	V _{OUT} = 2-V Step, G = 2	580		V/µs	С
Rise time	V _{OUT} = 2-V Step, G = 2	3		ns	С
Fall time	V _{OUT} = 2-V Step, G = 2	3		ns	С
AC PERFORMANCE (continued)				'	
Settling time to 1%, rise	V _{OUT} = 2-V Step, G = 2	22		ns	С
Settling time to 1%, fall	V _{OUT} = 2-V Step, G = 2	22		ns	С
Settling time to 0.1%, rise	V _{OUT} = 2-V Step, G = 2	30		ns	С
Settling time to 0.1%, fall	V _{OUT} = 2-V Step, G = 2	30		ns	С
Settling time to 0.01%, rise	V _{OUT} = 2-V Step, G = 2	40		ns	С
Settling time to 0.01%, fall	V _{OUT} = 2-V Step, G = 2	45		ns	С
Overshoot/Undershoot	V _{OUT} = 2-V Step, G = 2	7.5%/5%			С
Second-order harmonic distortion	f = 10 kHz	-133			
	f = 100 kHz	-120		dBc	С
	f = 1 MHz	-85			
	f = 10 kHz	-140			
Third-order harmonic distortion	f = 100 kHz	-130		dBc	С
	f = 1 MHz	-105			
Second-order intermodulation distortion	f = 1 MHz, 200 kHz Tone Spacing, V _{OUT} Envelope = 2 V _{PP}	-79		dBc	С
Third-order intermodulation distortion	f = 1 MHz, 200 kHz Tone Spacing, V _{OUT} Envelope = 2 V _{PP}	-91		dBc	С
Signal-to-noise ratio, SNR	f = 1 kHz, V _{OUT} = 1 V _{RMS} ,	0.00013%			С
orginal to Holod rade, Critic	22 kHz bandwidth	-117.6		dBc	
Total harmonic distortion, THD	f = 1 kHz, V _{OUT} = 1 V _{RMS}	0.00003%			С
Total Harmonic distortion, TTD	1 - 1 K(12, VOU) - 1 VRMS	-130		dBc	
Input voltage noise	f = 100 KHz	4.6		nV/√ Hz	С
Voltage noise 1/f corner frequency		215		Hz	С
Input current noise	f > 1 MHz	0.75		pA/√ Hz	С
Current noise 1/f corner frequency		31.7		kHz	С
Overdrive recovery time, over/under	Overdrive = 0.5 V	55/60		ns	С
Closed-loop output impedance	f = 100 kHz	0.02		Ω	С
Channel to channel crosstalk (OPA2836)	f = 10 kHz	-120		dB	С
DC PERFORMANCE					
Open-loop voltage gain (A _{OL})		100 122		dB	Α
	T _A = 25°C	-400 ±65	400		Α
Input referred offset voltage	T _A = 0°C to 70°C	-685	685 765		
input reieneu onset voltage	$T_A = -40$ °C to 85°C	-765			В
	T _A = -40°C to 125°C	-1080			

7.7 Electrical Characteristics: $V_S = 5 V$ (continued)

at V_{S+} = +5 V, V_{S-} = 0 V, V_{OUT} = 2 V_{PP} , R_F = 0 Ω , R_L = 1 k Ω , G = 1 V/V, input and output referenced to mid-supply. T_A = 25°C, unless otherwise noted.

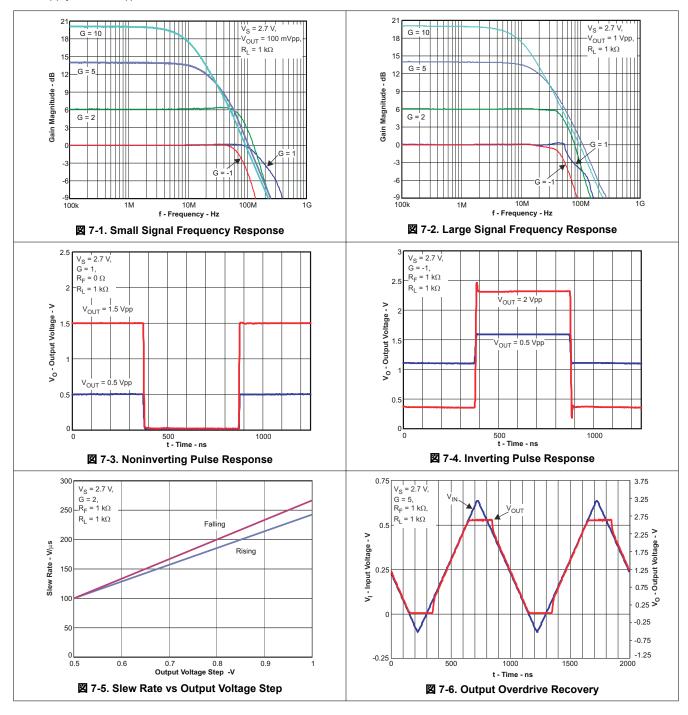
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	TEST LEVEL ⁽¹⁾
	T _A = 0°C to 70°C	-6.3	±1.05	6.3		
Input offset voltage drift ⁽²⁾	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	-6.1	±1	6.1	μV/°C	В
	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	-6.8	±1.1	6.8		
	T _A = 25°C	300	650	1000		Α
(3)	T _A = 0°C to 70°C	190		1400		
Input bias current ⁽³⁾	$T_A = -40$ °C to 85°C	120		1550	nA	В
	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	120		1850		
	T _A = 0°C to 70°C		±0.34	±2		
Input bias current drift ⁽²⁾	$T_A = -40$ °C to 85°C		±0.34	±2	nA/°C	В
	T _A = -40°C to 125°C		±0.38	±2.3		
DC PERFORMANCE (continued)						
	T _A = 25°C		±30	±180		Α
_	T _A = 0°C to 70°C		±30	±200		
Input offset current	T _A = -40°C to 85°C		±30	±215	nA	В
	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		±30	±250		
	T _A = 0°C to 70°C		±80	±480		
Input offset current drift(2)	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$		±100	±600	pA/°C	В
	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		±110	±660	,	
INPUT	^					
	T _A = 25°C, < 3-dB degradation in CMRR limit		-0.2	0	V	Α
Common-mode input range low	T _A = -40°C to 125°C, < 3-dB degradation in CMRR limit		-0.2	0	V	В
Common-mode input range high	T _A = 25°C, < 3-dB degradation in CMRR limit	3.8	3.9		V	Α
Common-mode input range nigh	$T_A = -40$ °C to 125°C, < 3-dB degradation in CMRR limit	3.8	3.9		V	В
Input linear operating voltage range	T _A = 25°C, < 6-dB degradation in THD	_	-0.3 to 4.05		V	С
Common-mode rejection ratio		94	116		dB	Α
Input impedance common mode			100 1.2		MΩ pF	С
Input impedance differential mode			100 1		kΩ pF	С
OUTPUT						
Output voltage low	T _A = 25°C, G = 5		0.15	0.2	V	Α
output voltage low	$T_A = -40^{\circ}C$ to 125°C, $G = 5$		0.15	0.2	V	В
Output voltage high	T _A = 25°C, G = 5	4.75	4.8		V	Α
Output voltage mgn	$T_A = -40$ °C to 125°C, G = 5	4.75	4.8		V	В
Output saturation voltage, high/low	T _A = 25°C, G = 5		100/50		mV	С
Output current drive	T _A = 25°C	±40	±50		mA	Α
Output current unive	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	±40	±50		mA	В
GAIN SETTING RESISTORS (OPA836IRUN C	ONLY)					
Resistor FB1 to FB2	DC resistance	1584	1600	1616	Ω	Α
Resistor FB2 to FB3	DC resistance	1188	1200	1212	Ω	Α
Resistor FB3 to FB4	DC resistance	396	400	404	Ω	Α
Resistor tolerance	DC resistance	-1		1%		Α
Resistor temperature coefficient	DC resistance		<10		PPM	С
POWER SUPPLY						
Specified operating voltage		2.5		5.5	V	В

Submit Document Feedback

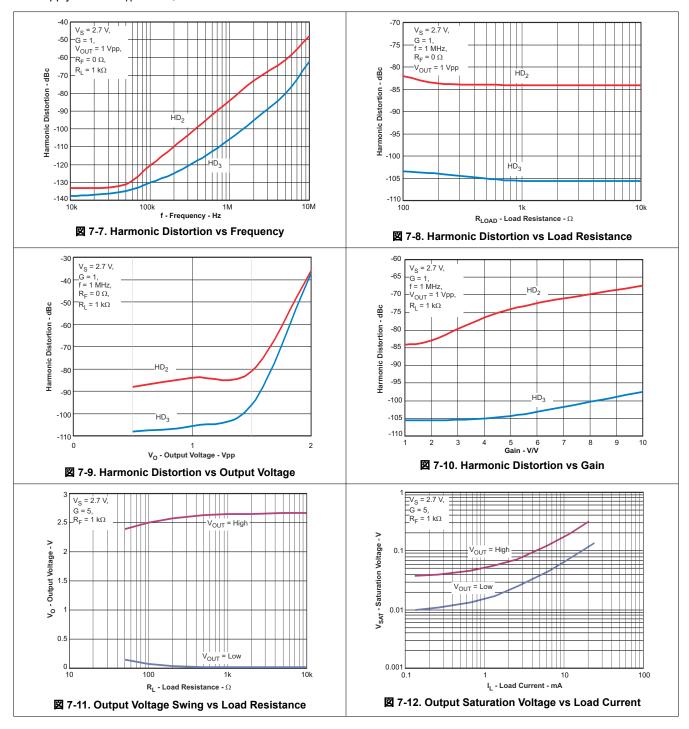
Copyright © 2022 Texas Instruments Incorporated

7.7 Electrical Characteristics: V_S = 5 V (continued)

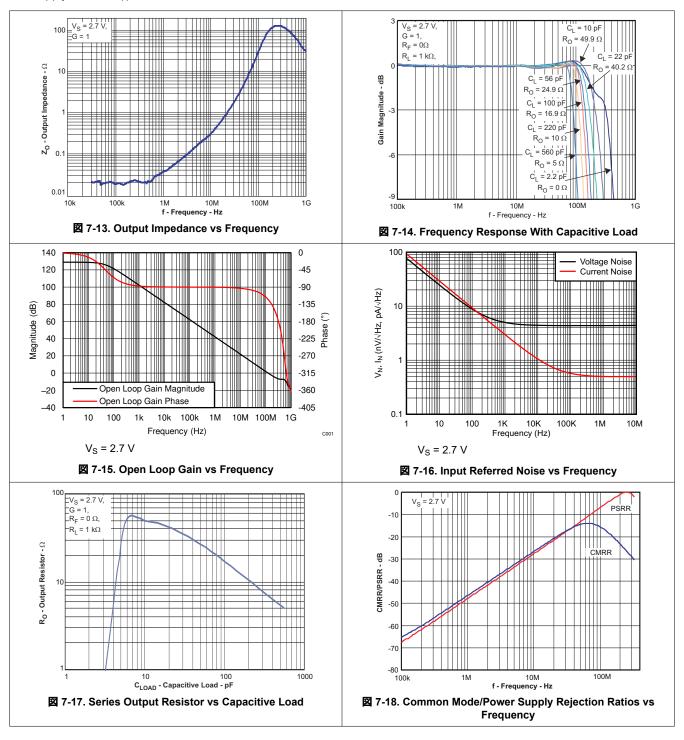
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	TEST LEVEL ⁽¹⁾
Quiescent enerating current per amplifier	T _A = 25°C	0.8	1.0	1.2	mA	Α
Quiescent operating current per amplifier	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	0.65		1.5	mA	В
Power supply rejection (±PSRR)		94	108		dB	Α
POWER DOWN						
Enable voltage threshold	Specified "on" above V _S _+ 2.1 V			2.1	V	Α
Disable voltage threshold	Specified "off" below V _S _+ 0.7 V	0.7			V	Α
Power-down pin bias current	PD = 0.5 V		20	500	nA	Α
Power-down quiescent current	PD = 0.5 V		0.5	1.5	μA	Α
Turnon time delay	Time from \overline{PD} = high to V_{OUT} = 90% of final value		170		ns	С
Turnoff time delay	Time from \overline{PD} = low to V_{OUT} = 10% of original value		35		ns	С


⁽¹⁾ Test levels (all values set by characterization and simulation): **(A)** 100% tested at 25°C; over temperature limits by characterization and simulation. **(B)** Not tested in production; limits set by characterization and simulation. **(C)** Typical value only for information.

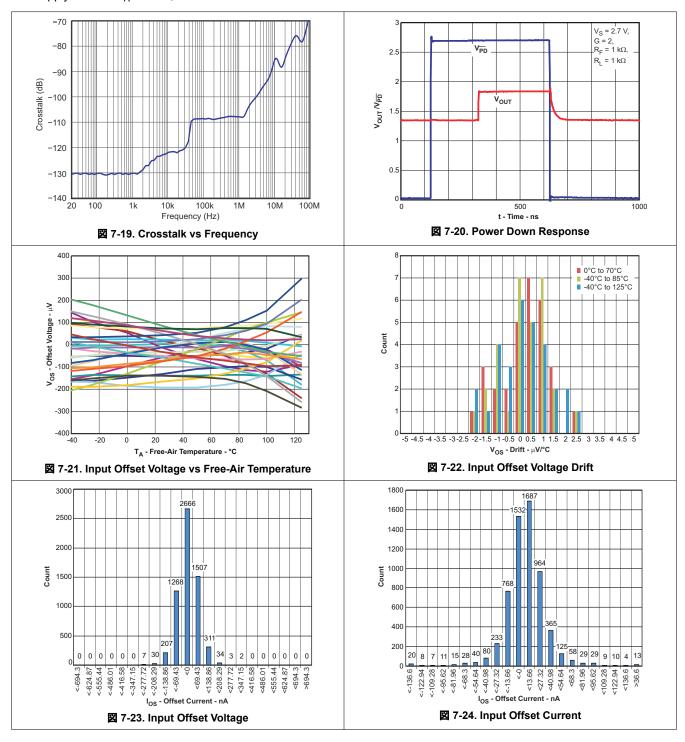
⁽²⁾ Input Offset Voltage Drift, Input Bias Current Drift, and Input Offset Current Drift are average values calculated by taking data at the end points, computing the difference, and dividing by the temperature range.


⁽³⁾ Current is considered positive out of the pin.

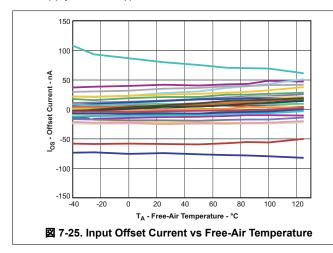
7.8 Typical Characteristics: $V_S = 2.7 \text{ V}$

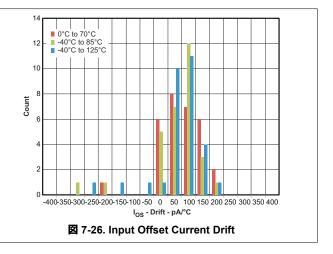


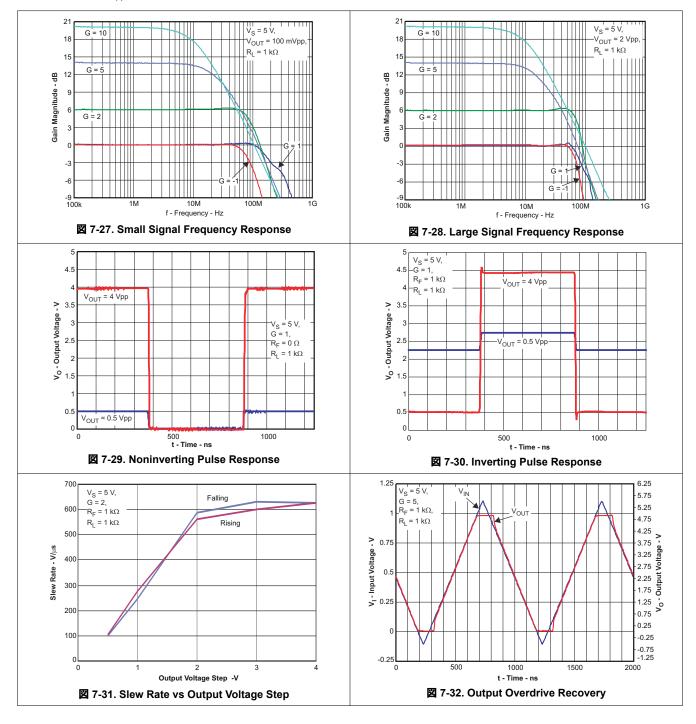
7.8 Typical Characteristics: $V_S = 2.7 \text{ V}$



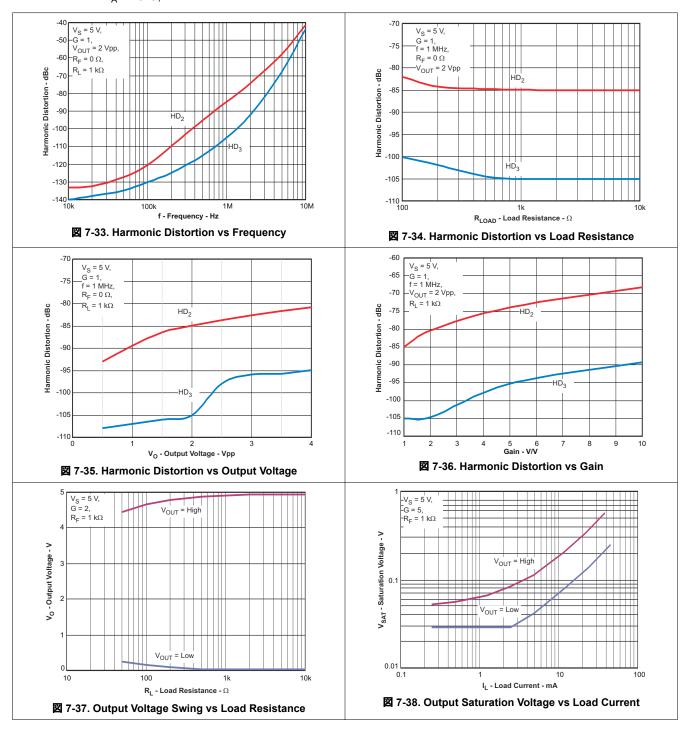
7.8 Typical Characteristics: V_S = 2.7 V



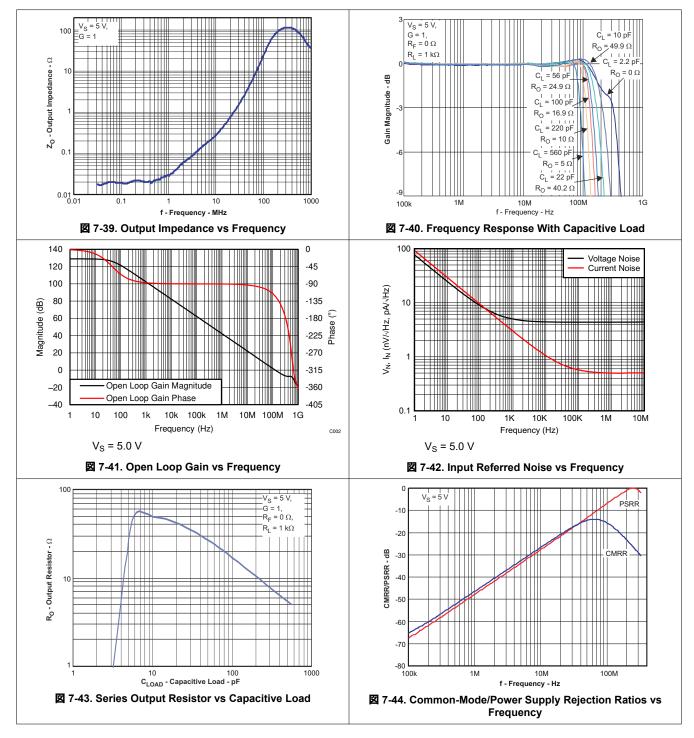

7.8 Typical Characteristics: $V_S = 2.7 \text{ V}$



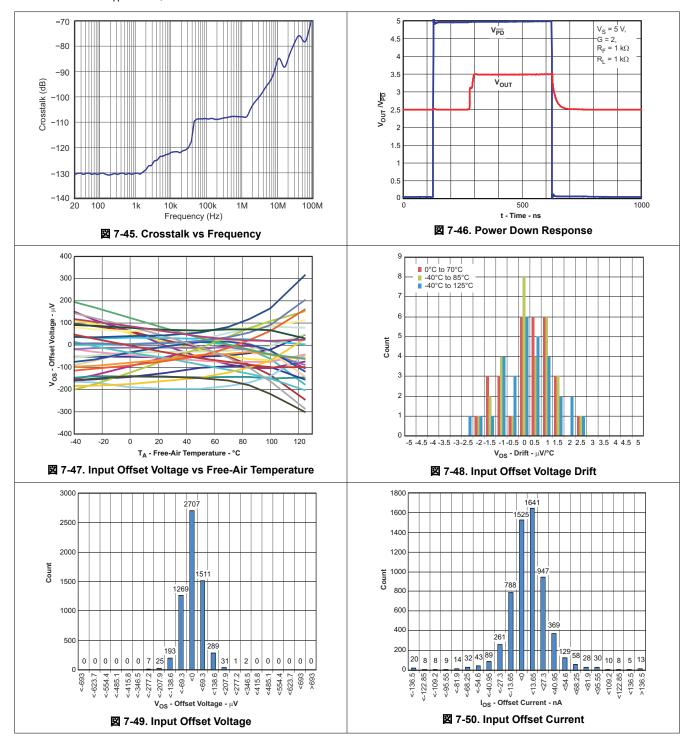
7.8 Typical Characteristics: $V_S = 2.7 \text{ V}$ (continued)



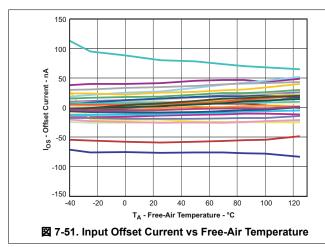
7.9 Typical Characteristics: $V_S = 5 V$

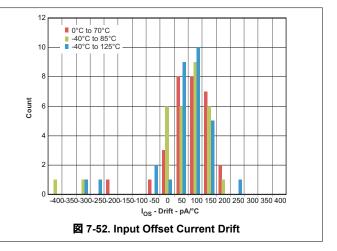


7.9 Typical Characteristics: V_S = 5 V



7.9 Typical Characteristics: $V_S = 5 V$





7.9 Typical Characteristics: V_S = 5 V

7.9 Typical Characteristics: $V_S = 5 V$ (continued)

8 Detailed Description

8.1 Overview

The OPAx836 family of bipolar-input operational amplifiers offers excellent bandwidth of 205 MHz with ultra-low THD of 0.00003% at 1 kHz. The OPAx836 device can swing to within 200 mV of the supply rails while driving a 1-k Ω load. The input common-mode of the amplifier can swing to 200 mV below the negative supply rail. This level of performance is achieved at 1 mA of quiescent current per amplifier channel.

8.2 Functional Block Diagrams

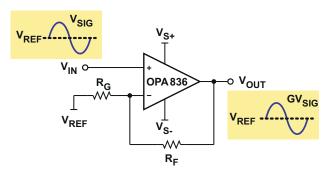


図 8-1. Noninverting Amplifier

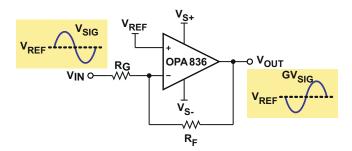


図 8-2. Inverting Amplifier

8.3 Feature Description

8.3.1 Input Common-Mode Voltage Range

When the primary design goal is a linear amplifier with high CMRR, it is important to not violate the input common-mode voltage range (V_{ICR}) of an operational amplifier.

The common-mode input range specifications in the table data use CMRR to set the limit. The limits are selected to ensure CMRR will not degrade more than 3 dB below the CMRR limit if the input voltage is kept within the specified range. The limits cover all process variations and most parts will be better than specified. The typical specifications are from 0.2 V below the negative rail to 1.1 V below the positive rail.

Assuming the operational amplifier is in linear operation, the voltage difference between the input pins is small (ideally 0 V) and input common-mode voltage is analyzed at either input pin with the other input pin assumed to be at the same potential. The voltage at V_{IN+} is simple to evaluate. In noninverting configuration, \boxtimes 8-1, the input signal, V_{IN} , must not violate the V_{ICR} . In inverting configuration, \boxtimes 8-2, the reference voltage, V_{REF} , must be within the V_{ICR} .

The input voltage limits have fixed headroom to the power rails and track the power supply voltages. For one 5-V supply, the linear input voltage ranges from -0.2 V to 3.9 V and from -0.2 V to 1.6 V for a 2.7-V supply. The delta headroom from each power supply rail is the same in either case: -0.2 V and 1.1 V.

8.3.2 Output Voltage Range

The OPA836 and OPA2836 devices are rail-to-rail output (RRO) operational amplifiers. Rail-to-rail output typically means the output voltage swings within a couple hundred millivolts of the supply rails. There are different ways to specify this: one is with the output still in linear operation and another is with the output saturated. Saturated output voltages are closer to the power supply rails than linear outputs, but the signal is not a linear representation of the input. Linear output is a better representation of how well a device performs when used as a linear amplifier. Saturation and linear operation limits are affected by the output current, where higher currents lead to more loss in the output transistors.

□ 7-11 and □ 7-37 show saturated voltage-swing limits versus output load resistance and □ 7-12 and □ 7-38 show the output saturation voltage versus load current. Given a light load, the output voltage limits have nearly constant headroom to the power rails and track the power supply voltages. For example, with a 2-kΩ load and single 5-V supply, the linear output voltage ranges from 0.15 V to 4.8 V, and ranges from 0.15 V to 2.5 V for a 2.7-V supply. The delta from each power supply rail is the same in either case: 0.15 V and 0.2 V.

With devices like the OPA836 and OPA2836, where the input range is lower than the output range, typically the input will limit the available signal swing only in noninverting gain of 1. Signal swing in noninverting configurations in gains > +1 and inverting configurations in any gain is typically limited by the output voltage limits of the operational amplifier.

8.3.3 Power-Down Operation

The OPA836 and OPA2836 devices include a power-down mode. Under logic control, the amplifiers can switch from normal operation to a standby current of < 1.5 μ A. When the \overline{PD} pin is connected high, the amplifier is active. Connecting \overline{PD} pin low disables the amplifier and places the output in a high-impedance state. When the amplifier is configured as a unity-gain buffer, the output stage is in a high dc-impedance state. To protect the input stage of the amplifier, the devices use internal, back-to-back ESD diodes between the inverting and noninverting input pins. This configuration creates a parallel low-impedance path from the amplifier output to the noninverting pin when the differential voltage between the pins exceeds a diode voltage drop. When the op amp is configured in other gains, the feedback (RF) and gain (RG) resistor network forms a parallel load.

The PD pin must be actively driven high or low and must not be left floating. If the power-down mode is not used, PD must be tied to the positive supply rail.

 \overline{PD} logic states are TTL with reference to the negative supply rail and V_{S-} . When the operational amplifier is powered from single-supply and ground and driven from logic devices with similar V_{DD} , voltages to the operational amplifier do not require any special consideration. When the operational amplifier is powered from a split supply, with V_{S-} below ground, an open-collector type of interface with pullup resistor is more appropriate. Pullup resistor values must be lower than 100 k Ω . Additionally, the drive logic must be negated due to the inverting action of an open-collector gate.

8.3.4 Low-Power Applications and the Effects of Resistor Values on Bandwidth

The OPA836 and OPA2836 devices are designed for the nominal value of R_F to be 1 k Ω in gains other than +1. This gives excellent distortion performance, maximum bandwidth, best flatness, and best pulse response, but it also loads the amplifier. For example; in gain of 2 with $R_F = R_G = 1$ k Ω , R_G to ground, and $V_{OUT} = 4$ V, 2 mA of current will flow through the feedback path to ground. In gain of +1, R_G is open and no current will flow to ground. In low-power applications, it is desirable to reduce the current in the feedback by increasing the gain-setting resistors values. Using larger value gain resistors has two primary side effects (other than lower power) due to their interaction with parasitic circuit capacitance:

- · Lowers the bandwidth
- Lowers the phase margin
 - This causes peaking in the frequency response
 - This also causes overshoot and ringing in the pulse response

 \boxtimes 8-3 shows the small-signal frequency response on OPA836EVM for noninverting gain of 2 with R_F and R_G equal to 1 kΩ, 10 kΩ, and 100 kΩ. The test was done with R_L = 1 kΩ. Due to loading effects of R_L, lower R_L values may reduce the peaking, but higher values will not have a significant effect.

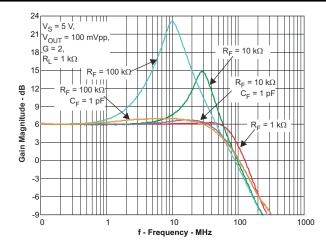


図 8-3. Frequency Response With Various Gain-Setting Resistor Values

As expected, larger value gain resistors cause lower bandwidth and peaking in the response (peaking in the frequency response is synonymous with overshoot and ringing in the pulse response). Adding 1-pF capacitors in parallel with R_F helps compensate the phase margin and restores flat frequency response. \boxtimes 8-4 shows the test circuit.

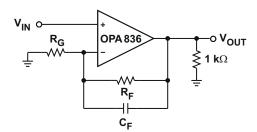


図 8-4. G = 2 Test Circuit for Various Gain-Setting Resistor Values

8.3.5 Driving Capacitive Loads

The OPA836 and OPA2836 devices can drive up to a nominal capacitive load of 2.2 pF on the output with no special consideration. When driving capacitive loads greater than 2.2 pF, TI recommends using a small resister (R_O) in series with the output as close to the device as possible. Without R_O , capacitance on the output interacts with the output impedance of the amplifier causing phase shift in the loop gain of the amplifier that will reduce the phase margin. This will cause peaking in the frequency response and overshoot and ringing in the pulse response. Interaction with other parasitic elements may lead to instability or oscillation. Inserting R_O will isolate the phase shift from the feedback path and restore the phase margin; however, R_O can limit the bandwidth slightly.

 \boxtimes 8-5 shows the test circuit and \boxtimes 7-43 shows the recommended values of R_O versus capacitive loads, C_L. See \boxtimes 7-40 for the frequency response with various values.

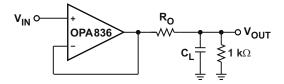


図 8-5. Ro versus CL Test Circuit

8.4 Device Functional Modes

8.4.1 Split-Supply Operation (±1.25 V to ±2.75 V)

To facilitate testing with common lab equipment, the OPA836 EVM (see *OPA835DBV, OPA836DBV EVM*, SLOU314) is built to allow for split-supply operation. This configuration eases lab testing because the mid-point between the power rails is ground, and most signal generators, network analyzers, oscilloscopes, spectrum analyzers and other lab equipment have inputs and outputs with a ground reference.

 \boxtimes 8-6 shows a simple noninverting configuration analogous to \boxtimes 8-1 with ±2.5-V supply and V_{REF} equal to ground. The input and output will swing symmetrically around ground. For ease of use, split supplies are preferred in systems where signals swing around ground.

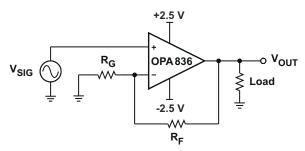


図 8-6. Split-Supply Operation

8.4.2 Single-Supply Operation (2.5 V to 5.5 V)

Often, newer systems use a single power supply to improve efficiency and reduce the cost of the power supply. The OPA836 and OPA2836 devices are designed for use with a single supply with no change in performance compared to a split supply, as long as the input and output are biased within the linear operation of the device.

To change the circuit from split supply to single supply, level shift of all voltages by half the difference between the power supply rails. For example, changing from ±2.5-V split supply to 5-V single supply is shown in \boxtimes 8-7.

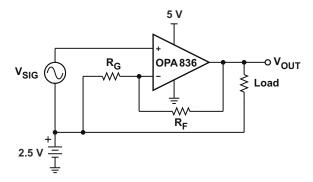


図 8-7. Single-Supply Concept

A practical circuit will have an amplifier or other circuit providing the bias voltage for the input, and the output of this amplifier stage provides the bias for the next stage.

 \boxtimes 8-8 shows a typical noninverting amplifiercircuit. With 5-V single-supply, a mid-supply reference generator is needed to bias the negative side through R_G. To cancel the voltage offset that would otherwise be caused by the input bias currents, R₁ is selected to be equal to R_F in parallel with R_G. For example, if gain of 2 is required and R_F = 1 kΩ, select R_G = 1 kΩ to set the gain and R₁ = 499 Ω for bias-current cancellation. The value for C depends on the reference; TI recommends a value of at least 0.1 μF to limit noise.

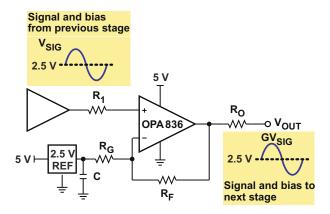


図 8-8. Noninverting Single Supply With Reference

 \boxtimes 8-9 shows a similar noninverting single-supply scenario with the reference generator replaced by the Thevenin equivalent using resistors and the positive supply. R_G ' and R_G " form a resistor divider from the 5-V supply and are used to bias the negative side with their parallel sum equal to the equivalent R_G to set the gain. To cancel the voltage offset that would otherwise be caused by the input bias currents, R_1 is selected to be equal to R_F in parallel with R_G ' in parallel with R_G ' in parallel with R_G ' ($R_1 = R_F \parallel R_G$ ' $\parallel R_G$ '). For example, if gain of 2 is required and $R_F = 1 \text{ k}\Omega$, selecting R_G ' = R_G " = 2 kΩ gives equivalent parallel sum of 1 kΩ, sets the gain to 2, and references the input to mid supply (2.5 V). R_1 is then set to 499 Ω for bias-current cancellation. The resistor divider costs less than the 2.5 V reference in \boxtimes 8-8 but may increase the current from the 5-V supply.

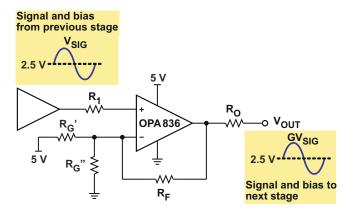


図 8-9. Noninverting Single Supply With Resistors

 \boxtimes 8-10 shows a typical inverting amplifier situation. With 5-V single supply, a mid-supply reference generator is needed to bias the positive side through R₁. To cancel the voltage offset that would otherwise be caused by the input bias currents, R₁ is selected to be equal to R_F in parallel with R_G. For example if gain of –2 is required and R_F = 1 kΩ, select R_G = 499 Ω to set the gain and R₁ = 332 Ω for bias-current cancellation. The value for C is dependent on the reference, but TI recommends a value of at least 0.1 μF to limit noise into the operational amplifier.

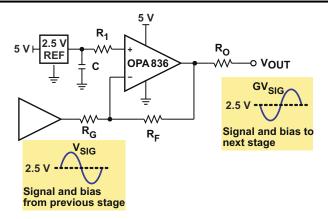


図 8-10. Inverting Single Supply With Reference

 \boxtimes 8-11 shows a similar inverting single-supply scenario with the reference generator replaced by the Thevenin equivalent using resistors and the positive supply. R_1 and R_2 form a resistor divider from the 5-V supply and are used to bias the positive side. To cancel the voltage offset that would otherwise be caused by the input bias currents, set the parallel sum of R_1 and R_2 equal to the parallel sum of R_F and R_G . C must be added to limit coupling of noise into the positive input. For example if gain of -2 is required and $R_F = 1$ k Ω , select $R_G = 499$ Ω to set the gain. $R_1 = R_2 = 665$ Ω for mid-supply voltage bias and for operational amplifier input bias-current cancellation. A good value for C is 0.1 μ F. The resistor divider costs less than the 2.5-V reference in \boxtimes 8-10 but may increase the current from the 5-V supply.

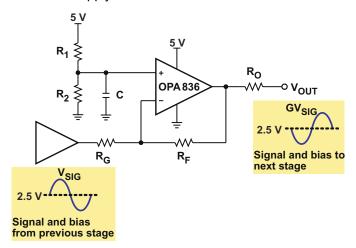


図 8-11. Inverting Single Supply With Resistors

9 Application and Implementation

注

以下のアプリケーション情報は、TI の製品仕様に含まれるものではなく、TI ではその正確性または完全性を 保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことに なります。また、お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要がありま

9.1 Application Information

9.1.1 Noninverting Amplifier

The OPA836 and OPA2836 devices can be used as noninverting amplifiers with signal input to the noninverting input, $V_{\text{IN+}}$. A basic block diagram of the circuit is shown in \boxtimes 8-1.

If $V_{IN} = V_{REF} + V_{SIG}$, then the output of the amplifier may be calculated according to ± 1 .

$$V_{OUT} = V_{SIG} \left(1 + \frac{R_F}{R_G} \right) + V_{REF}$$
 (1)

$$G = 1 + \frac{R_F}{}$$

G = 1 + $\frac{R_F}{R_G}$, and V_{REF} provides a reference around which the input and The signal gain of the circuit is set by output signals swing. Output signals are in-phase with the input signals.

The OPA836 and OPA2836 devices are designed for the nominal value of R_F to be 1 k Ω in gains other than +1. This gives excellent distortion performance, maximum bandwidth, best flatness, and best pulse response. R_F = 1 kΩ must be used as a default unless other design goals require changing to other values. All test circuits used to collect data for this data sheet had $R_F = 1 \text{ k}\Omega$ for all gains other than +1. Gain of +1 is a special case where R_F is shorted and R_G is left open.

9.1.2 Inverting Amplifier

The OPA836 and OPA2836 devices can be used as inverting amplifiers with signal input to the inverting input, V_{IN−}, through the gain setting resistor R_G. A basic block diagram of the circuit is shown in ⊠ 8-2.

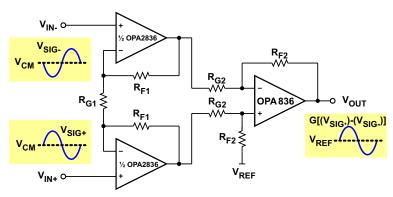
If $V_{IN} = V_{REF} + V_{SIG}$, then the output of the amplifier may be calculated according to ± 2 .

$$V_{OUT} = V_{SIG} \left(\frac{-R_F}{R_G} \right) + V_{REF}$$
 (2)

$$G = \frac{-R_F}{}$$

 $G = \frac{-R_F}{R_G}$, and V_{REF} provides a reference point around which the input signals. The nominal value of R_F The signal gain of the circuit is set by and output signals swing. Output signals are 180° out-of-phase with the input signals. The nominal value of R_F must be 1 k Ω for inverting gains.

9.1.3 Instrumentation Amplifier


🗵 9-1 is an instrumentation amplifier that combines the high input impedance of the differential-to-differential amplifier circuit and the common-mode rejection of the differential-to-single-ended amplifier circuit. This circuit is often used in applications where high input impedance is required (such as taps from a differential line) or in cases where the signal source has a high output impedance.

If $V_{IN+} = V_{CM} + V_{SIG+}$ and $V_{IN-} = V_{CM} + V_{SIG-}$, then the output of the amplifier may be calculated according to \pm

$$V_{OUT} = (V_{IN+} - V_{IN-}) \times \left(1 + \frac{2R_{F1}}{R_{G1}}\right) \left(\frac{R_{F2}}{R_{G2}}\right) + V_{REF}$$
 (3)

 $G = \left(1 + \frac{2R_{F1}}{R_{G1}}\right) \left(\frac{R_{F2}}{R_{G2}}\right)$. V_{CM} is rejected, and V_{REF} provides a level The signal gain of the circuit is set by shift around which the output signal swings. The single-ended output signal is in-phase with the differential input signal.

☑ 9-1. Instrumentation Amplifier

Integrated solutions are available, but the OPA836 device provides a much lower-power, high-frequency solution. For best CMRR performance, resistors must be matched. A good guideline to follow is CMRR ≈ the resistor tolerance; so, 0.1% tolerance will provide approximately 60-dB CMRR.

9.1.4 Attenuators

The noninverting circuit of 🗵 8-1 has minimum gain of 1. To implement attenuation, a resistor divider can be placed in series with the positive input, and the amplifier set for gain of 1 by shorting V_{OUT} to V_{IN} and removing R_G. Because the operational amplifier input is high impedance, the resistor divider sets the attenuation.

The inverting circuit of ⊠ 8-2 can be used as an attenuator by making R_G larger than R_F. The attenuation is the resistor ratio. For example, a 10:1 attenuator can be implemented with $R_F = 1 \text{ k}\Omega$ and $R_G = 10 \text{ k}\Omega$.

9.1.5 Single-Ended-to-Differential Amplifier

☑ 9-2 shows an amplifier circuit that is used to convert single-ended signals to differential, and provides gain and level shifting. This circuit can be used for converting signals to differential in applications like line drivers for Cat5 cabling or driving differential-input SAR and $\Delta\Sigma$ ADCs.

With $V_{IN} = V_{REF} + V_{SIG}$, the output of the amplifier may be calculated according to ± 4 .

$$V_{OUT+} = G \times V_{IN} + V_{REF}$$
 and $V_{OUT-} = -G \times V_{IN} + V_{REF}$ Where: $G = 1 + \frac{R_F}{R_G}$ (4)

The differential-signal gain of the circuit is 2 × G, and V_{REF} provides a reference around which the output signal swings. The differential output signal is in-phase with the single-ended input signal.

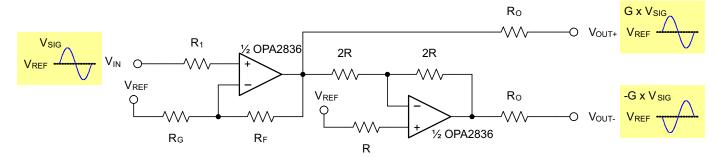


図 9-2. Single Ended to Differential Amplifier

Line termination on the output can be accomplished with resistors R_O. The differential impedance seen from the line will be $2 \times R_0$. For example, if $100-\Omega$ Cat5 cable is used with double termination, the amplifier is typically set for a differential gain of 2 V/V (6 dB) with R_F = 0 Ω (short), R_G = open, 2R = 1 k Ω , R_I = 0 Ω , R_I = 499 Ω to balance the input bias currents, and R_0 = 49.9 Ω for output line termination. This configuration is shown in \square 9-3.

For driving a differential-input ADC the situation is similar, but the output resistors, Ro are selected with a capacitor across the ADC input for optimum filtering and settling-time performance.

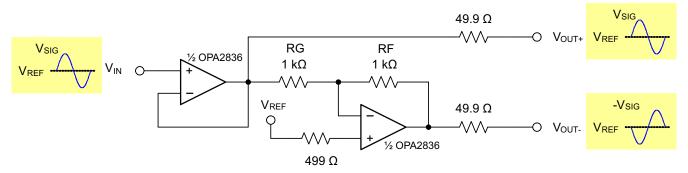


図 9-3. Cat5 Line Driver With Gain = 2 V/V (6 dB)

9.1.6 Differential-to-Signal-Ended Amplifier

 ☑ 9-4 shows a differential amplifier that is used to convert differential signals to single-ended and provides gain (or attenuation) and level shifting. This circuit can be used in applications like a line receiver for converting a differential signal from a Cat5 cable to a single-ended signal.

If $V_{IN+} = V_{CM} + V_{SIG+}$ and $V_{IN-} = V_{CM} + V_{SIG-}$, then the output of the amplifier may be calculated according to \pm

$$V_{OUT} = \left(V_{IN+} - V_{IN-}\right) \times \left(\frac{R_F}{R_G}\right) + V_{REF}$$
(5)

$$G = \frac{R_F}{R_F}$$

 $G = \frac{R_F}{R_G} \ , \ V_{CM} \ \, \text{is rejected, and } V_{REF} \ \, \text{provides a level shift around which the differential input signal.}$ The signal gain of the circuit is output signal swings. The single ended output signal is in-phase with the differential input signal.

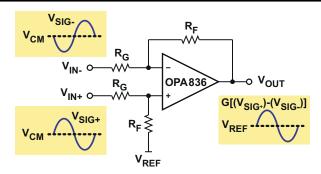


図 9-4. Differential to Single-Ended Amplifier

Line termination can be accomplished by adding a shunt resistor across the VIN+ and VIN- inputs. The differential impedance is the shunt resistance in parallel with the input impedance of the amplifier circuit, which is usually much higher. For low gain and low line impedance, the resistor value to add is approximately the impedance of the line. For example if $100-\Omega$ Cat5 cable is used with a gain of 1 amplifier and $R_F = R_G = 1 k\Omega$, adding a 100- Ω shunt across the input will give a differential impedance of 98 Ω , which is adequate for most applications.

For best CMRR performance, resistors must be matched. Assuming CMRR ≈ the resistor tolerance, a 0.1% tolerance will provide about 60-dB CMRR.

9.1.7 Differential-to-Differential Amplifier

2 9-5 shows a differential amplifier that is used to amplify differential signals. This circuit has high input impedance and is used in differential line driver applications where the signal source is a high-impedance driver (for example, a differential DAC) that must drive a line.

If $V_{IN\pm} = V_{CM} + V_{SIG\pm}$, then the output of the amplifier may be calculated according to \pm 6.

$$V_{OUT \pm} = V_{IN\pm} \times \left(1 + \frac{2R_F}{R_G}\right) + V_{CM}$$
 (6)

$$G = 1 + \frac{2R_F}{}$$

 $G = 1 + \frac{2R_F}{R_G}$, and V_{CM} passes with unity gain. The amplifier in essence The signal gain of the circuit is set by combines two noninverting amplifiers into one differential amplifier that shares the R_G resistor, which makes R_G effectively half its value when calculating the gain. The output signals are in-phase with the input signals.

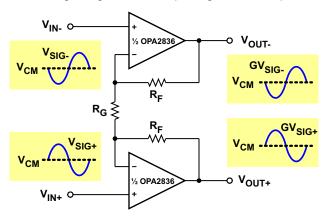


図 9-5. Differential to Differential Amplifier

9.1.8 Gain Setting With OPA836 RUN Integrated Resistors

The OPA836 RUN package option includes integrated gain-setting resistors for smallest possible footprint on a printed circuit board (\approx 2.00 mm \times 2.00 mm). By adding circuit traces on the PCB, gains of +1, -1, -1.33, +2, +2.33, -3, +4, -4, +5, -5.33, +6.33, -7, +8 and inverting attenuations of -0.1429, -0.1875, -0.25, -0.33, -0.75 can be achieved.

図 9-6 shows a simplified view of how the OPA836IRUN integrated gain-setting network is implemented. 表 9-1 lists the required pin connections for various noninverting and inverting gains (reference 図 8-1 and 図 8-2). 表 9-2 shows the required pin connections for various attenuations using the inverting-amplifier architecture (reference 図 8-2). Due to ESD protection devices being used on all pins, the absolute maximum and minimum input-voltage range, $V_{S-} - 0.7 \text{ V}$ to $V_{S+} + 0.7 \text{ V}$, applies to the gain-setting resistors, so attenuation of large input voltages requires external resistors to implement.

The gain-setting resistors are laser trimmed to 1% tolerance with nominal values of 1.6 k Ω , 1.2 k Ω , and 400 Ω . The gain-setting resistors have excellent temperature coefficients, and gain drift is superior to the drift with external gain-setting resistors. The 500- Ω and 1.5-pF capacitor in parallel with the 1.6-k Ω gain-setting resistor provide compensation for best stability and pulse response.

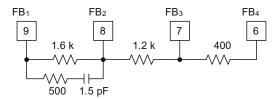


図 9-6. OPA836IRUN Gain-Setting Network

NONINVERTING GAIN (⊠ 8-1)	INVERTING GAIN (図 8-2)	SHORT PINS	SHORT PINS	SHORT PINS	SHORT PINS
1 V/V (0 dB)	_	1 to 9			_
2 V/V (6.02 dB)	-1 V/V (0 dB)	1 to 9	2 to 8	6 to GND	_
2.33 V/V (7.36 dB)	-1.33 V/V (2.5 dB)	1 to 9	2 to 8	7 to GND	_
4 V/V (12.04 dB)	-3 V/V (9.54 dB)	1 to 8	2 to 7	6 to GND	_
5 V/V (13.98 dB)	-4 V/V (12.04 dB)	1 to 9	2 to 7 or 8	7 to 8	6 to GND
6.33 V/V (16.03 dB)	-5.33 V/V (14.54 dB)	1 to 9	2 to 6 or 8	6 to 8	7 to GND
8 V/V (18.06 dB)	-7 V/V (16.90 dB)	1 to 9	2 to 7	6 to GND	_

表 9-1. Gain Settings

表 9-2. Attenuator Settings	表	9-2.	Atten	uator	Settin	as
----------------------------	---	------	-------	-------	--------	----

		: /	.99	
INVERTING GAIN (⊠ 8-2)	SHORT PINS	SHORT PINS	SHORT PINS	SHORT PINS
-0.75 V/V (-2.5 dB)	1 to 7	2 to 8	9 to GND	_
-0.333 V/V (-9.54 dB)	1 to 6	2 to 7	8 to GND	_
-0.25 V/V (-12.04 dB)	1 to 6	2 to 7 or 8	7 to 8	9 to GND
-0.1875 V/V (-14.54 dB)	1 to 7	2 to 6 or 8	6 to 8	9 to GND
-0.1429 V/V (-16.90 dB)	1 to 6	2 to 7	9 to GND	_

Submit Document Feedback

9.1.9 Pulse Application With Single-Supply

For pulsed applications, where the signal is at ground and pulses to a positive or negative voltage, the circuit bias-voltage considerations differ from those in an application with a signal that swings symmetrical about a reference point. \boxtimes 9-7 shows a circuit where the signal is at ground (0 V) and pulses to a positive value.

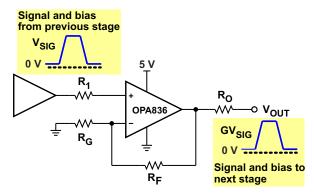


図 9-7. Noninverting Single Supply With Pulse

If the input signal pulses negative from ground, an inverting amplifier is more appropriate as shown in \boxtimes 9-8. A key consideration in noninverting and inverting cases is that the input and output voltages are kept within the limits of the amplifier. Because the V_{ICR} of the OPA836 device includes the negative supply rail, the OPA836 operational amplifier is well-suited to this application.

図 9-8. Inverting Single Supply With Pulse

9.1.10 ADC Driver Performance

The OPA836 device provides excellent performance when driving high-performance delta-sigma ($\Delta\Sigma$) and successive-approximation-register (SAR) ADCs in low-power audio and industrial applications.

To show achievable performance, the OPA836 device is tested as the drive amplifier for the ADS8326. The ADS8326 is a 16-bit, micro power, SAR ADC with pseudodifferential inputs and sample rates up to 250 kSPS. The device offers excellent noise and distortion performance in a small 8-pin SOIC or VSSOP (MSOP) package. Low power and small size make the ADS8326 and OPA836 devices an ideal solution for portable and battery-operated systems, remote data-acquisition modules, simultaneous multichannel systems, and isolated data acquisition.

With the circuit shown in \boxtimes 9-9 to test the performance, \boxtimes 9-10 shows the FFT plot with a 10-kHz input signal. The tabulated AC analysis is in $\not\equiv$ 9-3.

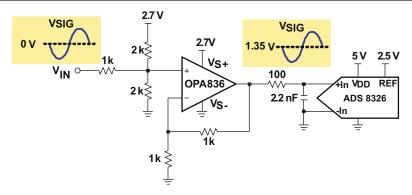


図 9-9. OPA836 and ADS8326 Test Circuit

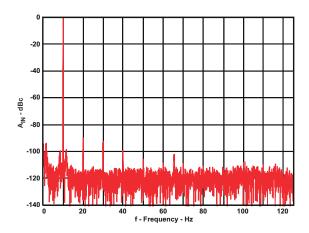
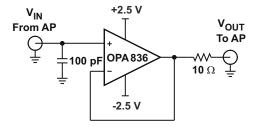


図 9-10. ADS8326 and OPA836 10-kHz FFT

表 9-3. AC Analysis


TONE (Hz)	SIGNAL (dBFS)	SNR (dBc)	THD (dBc)	SINAD (dBc)	SFDR (dBc)
10k	-0.85	83.3	-86.6	81.65	88.9

9.2 Typical Applications

9.2.1 Audio Frequency Performance

The OPA836 and OPA2836 devices provide excellent audio performance with low quiescent power. To show performance in the audio band, an audio analyzer from Audio Precision (2700 series) tests THD+N and FFT at 1 V_{RMS} output voltage.

☑ 9-11 shows the circuit used for the audio-frequency performance test.

The 100-pF capacitor to ground on the input helped to decouple noise pick up in the lab and improved noise performance.

図 9-11. OPA836 Audio Precision Analyzer Test Circuit

9.2.1.1 Design Requirements

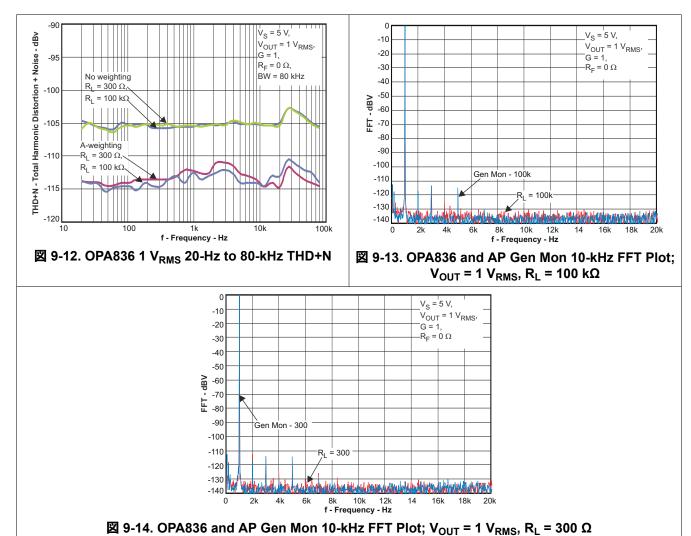
Design a low distortion, single-ended input to single-ended output audio amplifier using the OPA836 device. The 2700-series audio analyzer from Audio Precision is used as the signal source and also as the measurement system.

表 9-4. Design Requirements

CONFIGURATION	CONFIGURATION INPUT EXCITATION		R _{Load}		
OPA836 Unity Gain Config.	1 KHz Tone Frequency	>110 dBc SFDR	300 Ω and 100 kΩ		

9.2.1.2 Detailed Design Procedure

The OPA836 device is tested in this application in a unity-gain buffer configuration. A buffer configuration is selected for maximum loop gain of the amplifier circuit. At higher closed-loop gains, the loop gain of the circuit reduces, which increases the harmonic distortion. The relationship between distortion and closed-loop gain at a fixed input frequency is shown in \boxtimes 7-36 in 7-36


注

The 100-pF capacitor to ground on the input helped to decouple noise pickup in the lab and improved noise performance.

The Audio Precision was configured as a single-ended output in this application circuit. In applications where a differential output is available, the OPA836 device can be configured as a differential-to-single-ended amplifier as shown in \boxtimes 9-4. Power-supply bypassing is critical to reject noise from the power supplies. A 2.2- μ F supply decoupling capacitor must be placed within 2 inches of the device and can be shared with other operational amplifiers on the same board. A 0.1- μ F supply decoupling capacitor must be placed as close to the supply pins as possible, preferably within 0.1 inch. For a split supply, a capacitor is required for both supplies. A 0.1- μ F capacitor placed directly between the supplies is also beneficial for improving system noise performance. If the output load is heavy, such as 16 Ω to 32 Ω , performance of the amplifier could begin to degrade. To drive such heavy loads, both channels of the OPA2836 device can be paralleled with their outputs isolated with 1- Ω resistors to reduce the loading effects.

9.2.1.3 Application Curves

 $\ensuremath{\mathbb{Z}}$ 9-12 shows the THD+N performance with 100-kΩ and 300-Ω loads, and with A-weighting and with no weighting. Both loads show similar performance. With no weighting, the THD+N performance is dominated by the noise for both loads. A-weighting provides filtering that improves the noise, revealing the increased distortion with RL = 300 Ω.

9.2.2 Active Filters

The OPA836 and OPA2836 devices are good choices for active filters. ☑ 9-15 and ☑ 9-16 show MFB and Sallen-Key circuits designed using the *WEBENCH*® *Filter Designer* to implement second-order low-pass Butterworth filter circuits. ☑ 9-17 shows the frequency response.

Other MFB and Sallen-Key filter circuits offer similar performance. The main difference is the MFB is an inverting amplifier in the pass-band and the Sallen-Key is noninverting. The primary advantage for each is the Sallen-Key in unity gain has no resistor gain-error term, and thus no sensitivity to gain error, while the MFB has better attenuation properties beyond the bandwidth of the operational amplifier.

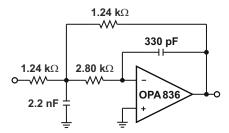


図 9-15. MFB 100-kHz Second-Order Low-Pass Butterworth Filter Circuit

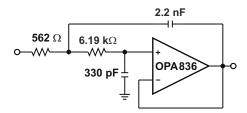


図 9-16. Sallen-Key 100-kHz Second-Order Low-Pass Butterworth Filter Circuit

9.2.2.1 Application Curve

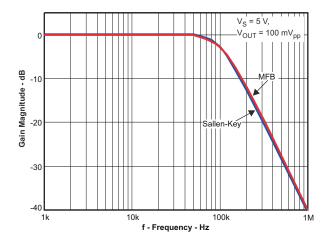
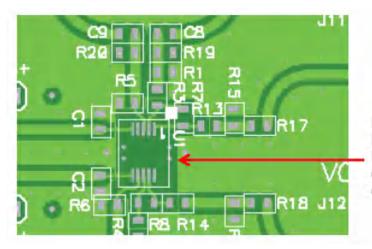


図 9-17. MFB and Sallen-Key Second Order Low-Pass Butterworth Filter Response

10 Power Supply Recommendations

The OPAx836 devices are intended to work in a supply range of 2.7 V to 5 V. Supply-voltage tolerances are supported with the specified operating range of 2.5 V (7% on a 2.7-V supply) and 5.5 V (10% on a 5-V supply). Good power-supply bypassing is required. Minimize the distance (< 0.1 inch) from the power-supply pins to high frequency, 0.1- μ F decoupling capacitors. A larger capacitor (2.2 μ F is typical) is used along with a high frequency, 0.1- μ F supply decoupling capacitor at the device supply pins. For single-supply operation, only the positive supply has these capacitors. When a split supply is used, use these capacitors for each supply to ground. If necessary, place the larger capacitors farther from the device and share these capacitors among several devices in the same area of the PCB. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. An optional supply decoupling capacitor across the two power supplies (for bipolar operation) reduces second harmonic distortion.

11 Layout


11.1 Layout Guidelines

The *OPA835DBV*, *OPA836DBV EVM* (SLOU314) can be used as a reference when designing the circuit board. TI recommends following the EVM layout of the external components near the amplifier, ground-plane construction, and power routing. General guidelines are listed as follows:

- 1. Signal routing must be direct and as short as possible into and out of the operational amplifier.
- 2. The feedback path must be short and direct avoiding vias if possible especially with G = +1.
- 3. Ground or power planes must be removed from directly under the negative input and output pins of the amplifier.
- 4. TI recommends placing a series output resistor as close to the output pin as possible. See *Series Output Resistor vs Capacitive Load* (☒ 7-17) for recommended values for the expected capacitive load.
- 5. A 2.2-µF power-supply decoupling capacitor must be placed within two inches of the device and can be shared with other operational amplifiers. For spit supply, a capacitor is required for both supplies.
- 6. A 0.1-μF power-supply decoupling capacitor must be placed as close to the power supply pins as possible, preferably within 0.1 inch. For split supply, a capacitor is required for both supplies.
- 7. The PD pin uses TTL logic levels. If the pin is not used, it must be tied to the positive supply to enable the amplifier. If the pin is used, it must be actively driven. A bypass capacitor is not necessary, but is used for robustness in noisy environments.

11.2 Layout Example

Dark green areas indicate regions of the PCB where the underlying Ground and Power Planes have been removed in order to minimize parasitic capacitance on the sensitive input and output nodes.

図 11-1. Top Layer

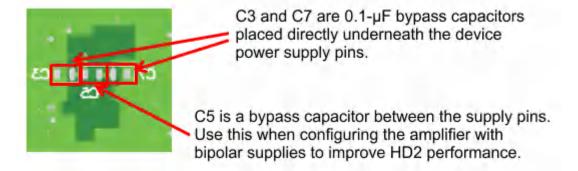


図 11-2. Bottom Layer

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

WEBENCH® Filter Designer

12.1.2 Related Documentation

For related documentation see the following:

• Texas Instruments, OPA835DBV, OPA836DBV EVM user's guide

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

12.4 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい ESD 対策をとらないと、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

12.5 用語集

TI 用語集 この用語集には、用語や略語の一覧および定義が記載されています。

12.6 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

WEBENCH® is a registered trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
OPA2836ID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836ID.B	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IDGS	Active	Production	VSSOP (DGS) 10	80 TUBE	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IDGS.B	Active	Production	VSSOP (DGS) 10	80 TUBE	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IDGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IDGSR.B	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IDR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IDRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IDRG4.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRMCR	Active	Production	UQFN (RMC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRMCR.B	Active	Production	UQFN (RMC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRMCRG4	Active	Production	UQFN (RMC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRMCRG4.B	Active	Production	UQFN (RMC) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRMCT	Active	Production	UQFN (RMC) 10	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRMCT.B	Active	Production	UQFN (RMC) 10	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRUNR	Active	Production	QFN (RUN) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRUNR.B	Active	Production	QFN (RUN) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRUNRG4	Active	Production	QFN (RUN) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRUNRG4.B	Active	Production	QFN (RUN) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRUNT	Active	Production	QFN (RUN) 10	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA2836IRUNT.B	Active	Production	QFN (RUN) 10	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2836
OPA836IDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	QTL
OPA836IDBVR.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	QTL
OPA836IDBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	QTL
OPA836IDBVT.B	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	QTL
OPA836IRUNR	Active	Production	QFN (RUN) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	836
OPA836IRUNR.B	Active	Production	QFN (RUN) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	836
OPA836IRUNRG4	Active	Production	QFN (RUN) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	836

9-Nov-2025 www.ti.com

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
OPA836IRUNRG4.B	Active	Production	QFN (RUN) 10	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	836
OPA836IRUNT	Active	Production	QFN (RUN) 10	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	836
OPA836IRUNT.B	Active	Production	QFN (RUN) 10	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	836

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
- (3) RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

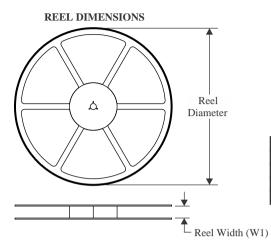
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

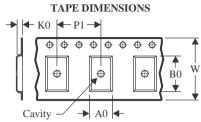
OTHER QUALIFIED VERSIONS OF OPA2836:

Automotive : OPA2836-Q1

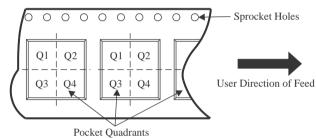
PACKAGE OPTION ADDENDUM

www.ti.com 9-Nov-2025


NOTE. Qualified version Delifficion	Qualified Version Definitio	ns
-------------------------------------	-----------------------------	----

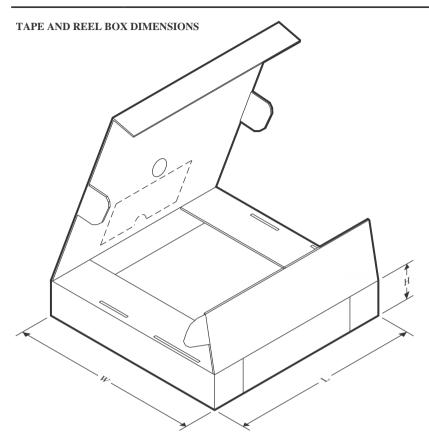

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

www.ti.com 23-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

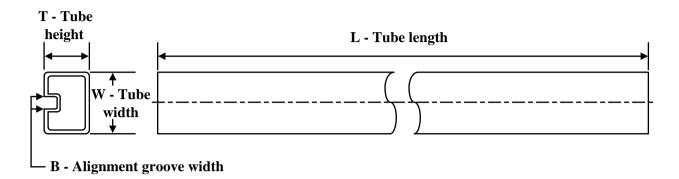
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

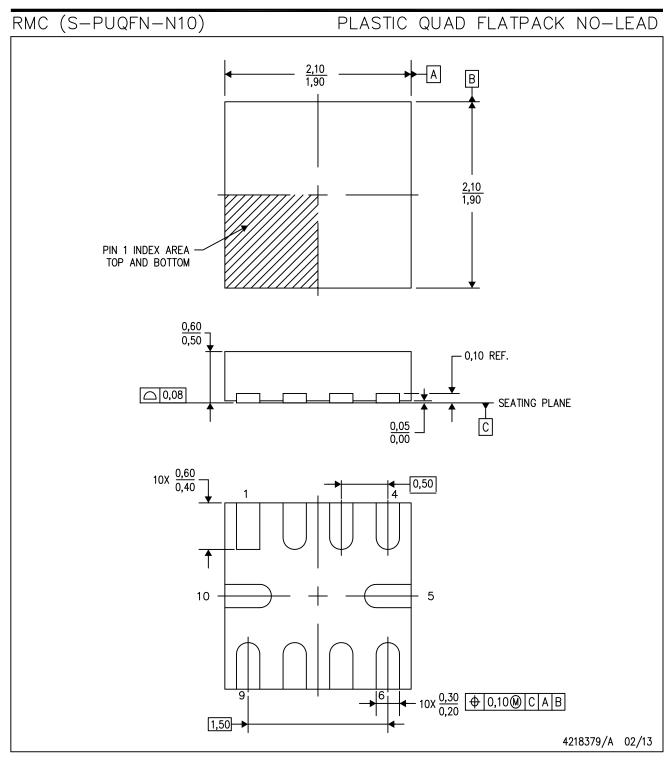
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2836IDGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2836IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA2836IDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA2836IRMCR	UQFN	RMC	10	3000	180.0	9.5	2.3	2.3	1.1	2.0	8.0	Q2
OPA2836IRMCRG4	UQFN	RMC	10	3000	180.0	9.5	2.3	2.3	1.1	2.0	8.0	Q2
OPA2836IRMCT	UQFN	RMC	10	250	180.0	9.5	2.3	2.3	1.1	2.0	8.0	Q2
OPA2836IRUNR	QFN	RUN	10	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
OPA2836IRUNRG4	QFN	RUN	10	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
OPA2836IRUNT	QFN	RUN	10	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
OPA836IDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
OPA836IDBVT	SOT-23	DBV	6	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
OPA836IRUNR	QFN	RUN	10	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
OPA836IRUNRG4	QFN	RUN	10	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
OPA836IRUNT	QFN	RUN	10	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

www.ti.com 23-Jul-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2836IDGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
OPA2836IDR	SOIC	D	8	2500	353.0	353.0	32.0
OPA2836IDRG4	SOIC	D	8	2500	353.0	353.0	32.0
OPA2836IRMCR	UQFN	RMC	10	3000	205.0	200.0	30.0
OPA2836IRMCRG4	UQFN	RMC	10	3000	205.0	200.0	30.0
OPA2836IRMCT	UQFN	RMC	10	250	205.0	200.0	30.0
OPA2836IRUNR	QFN	RUN	10	3000	213.0	191.0	35.0
OPA2836IRUNRG4	QFN	RUN	10	3000	213.0	191.0	35.0
OPA2836IRUNT	QFN	RUN	10	250	213.0	191.0	35.0
OPA836IDBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
OPA836IDBVT	SOT-23	DBV	6	250	180.0	180.0	18.0
OPA836IRUNR	QFN	RUN	10	3000	213.0	191.0	35.0
OPA836IRUNRG4	QFN	RUN	10	3000	213.0	191.0	35.0
OPA836IRUNT	QFN	RUN	10	250	213.0	191.0	35.0

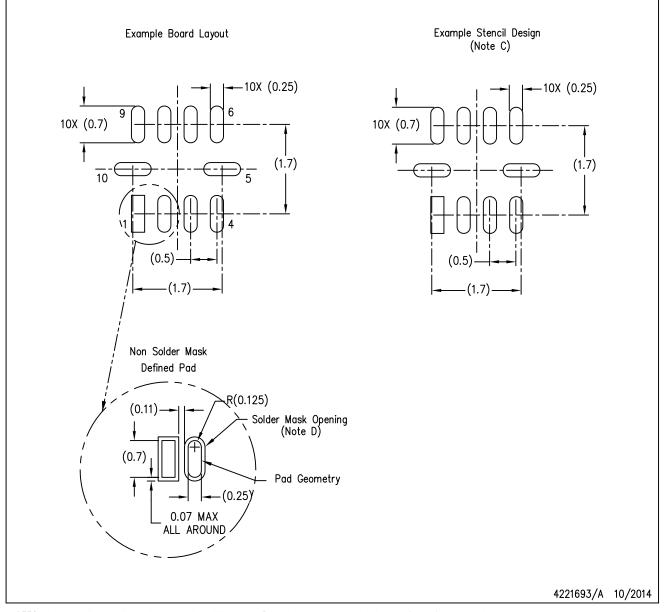
PACKAGE MATERIALS INFORMATION


www.ti.com 23-Jul-2025

TUBE

*All dimensions are nominal

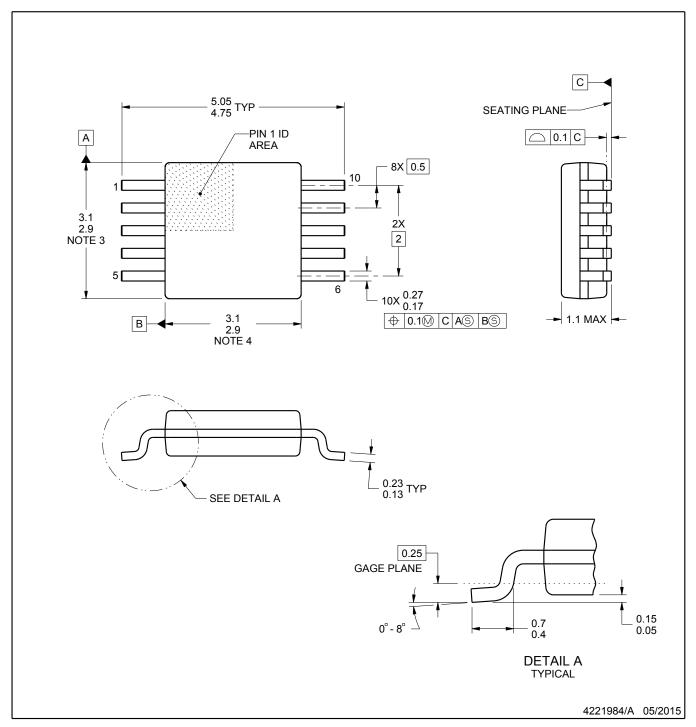
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
OPA2836ID	D	SOIC	8	75	507	8	3940	4.32
OPA2836ID.B	D	SOIC	8	75	507	8	3940	4.32
OPA2836IDGS	DGS	VSSOP	10	80	330	6.55	500	2.88
OPA2836IDGS.B	DGS	VSSOP	10	80	330	6.55	500	2.88


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.

RMC (S-PUQFN-N10)

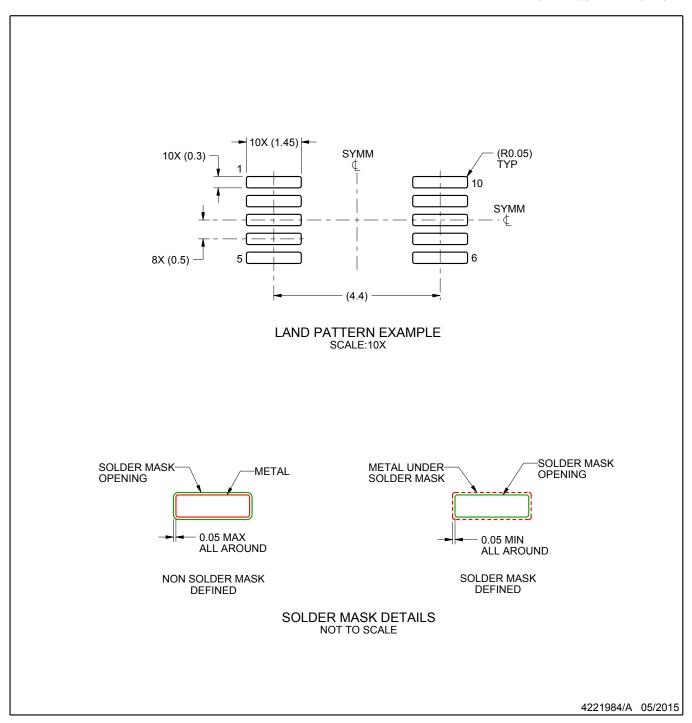
PLASTIC QUAD FLATPACK NO-LEAD



- NOTES: A. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only.
 - B. This drawing is subject to change without notice.
 - C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

SMALL OUTLINE PACKAGE

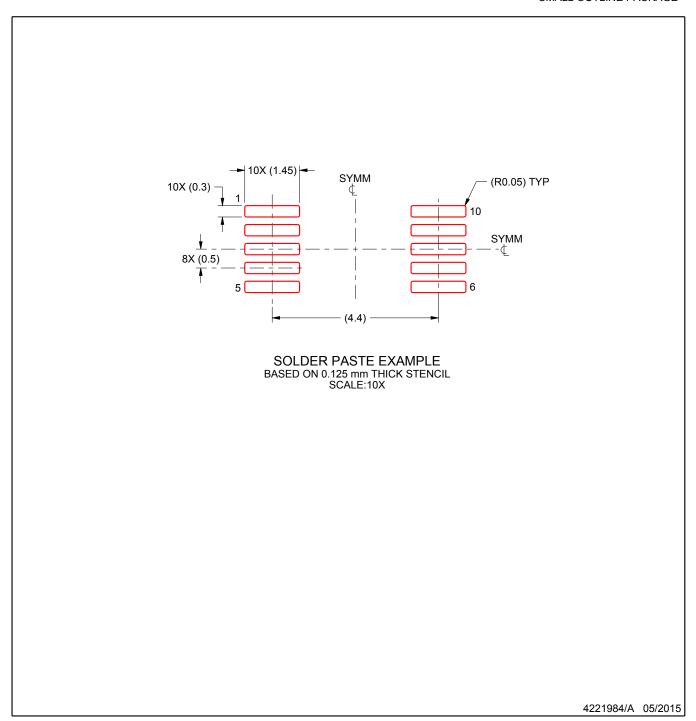
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE

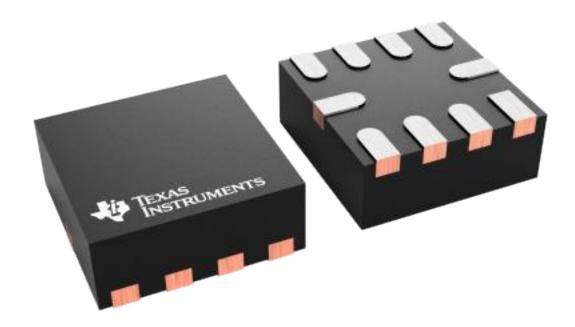

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

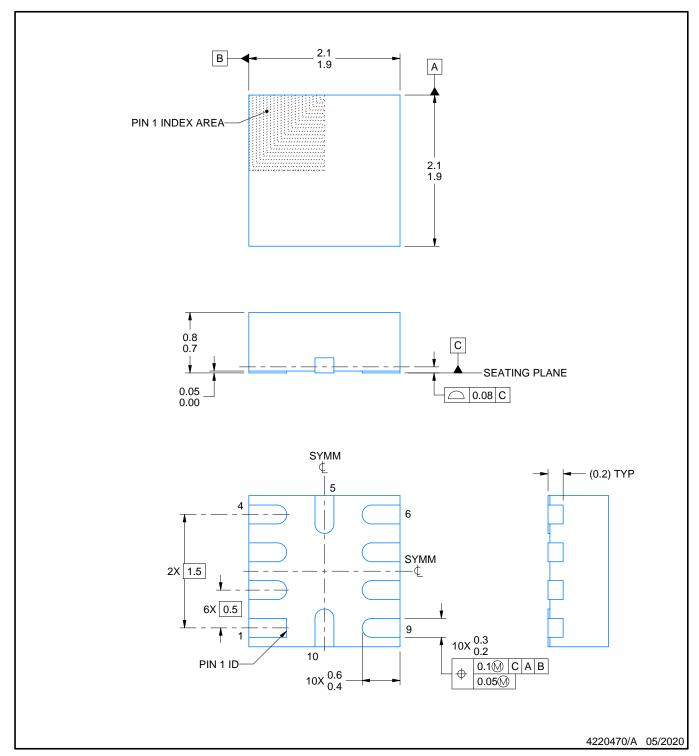
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

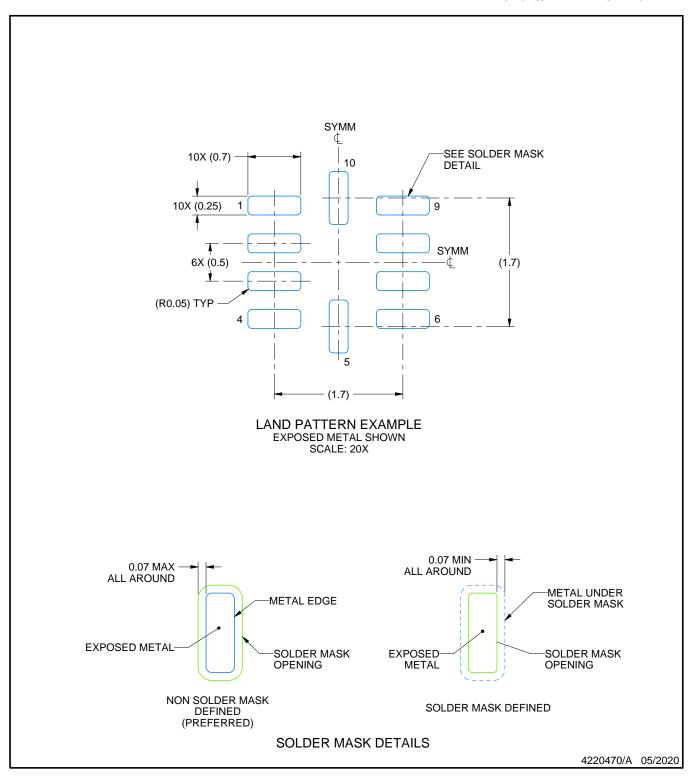

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

2 X 2, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

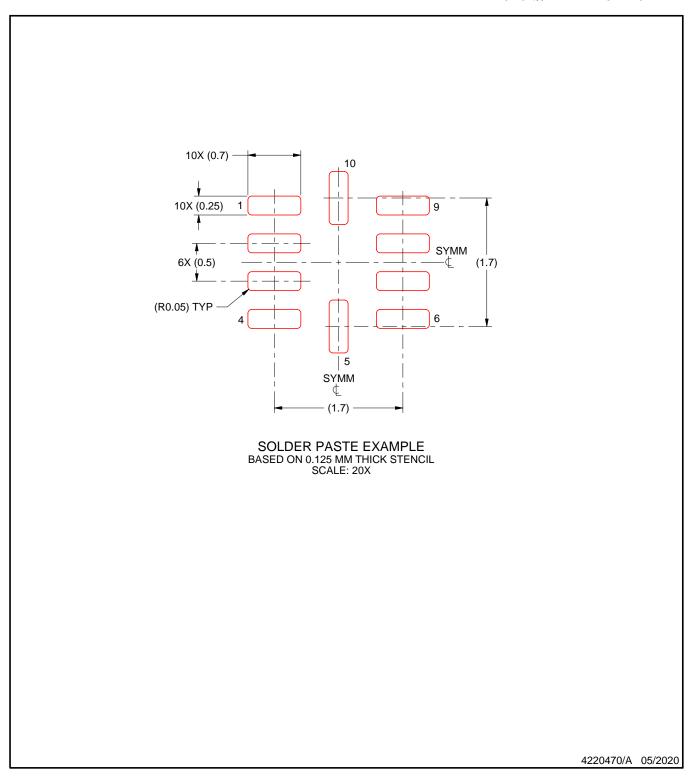
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.

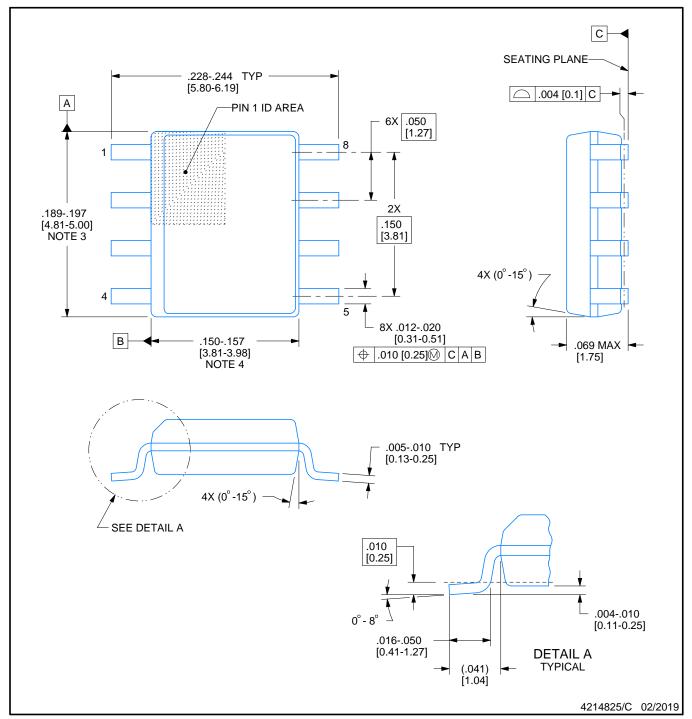
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

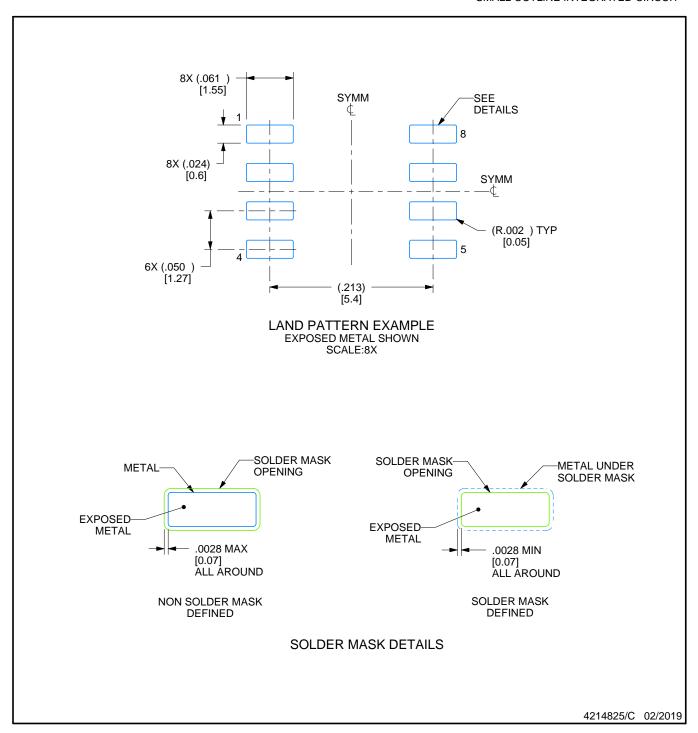
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

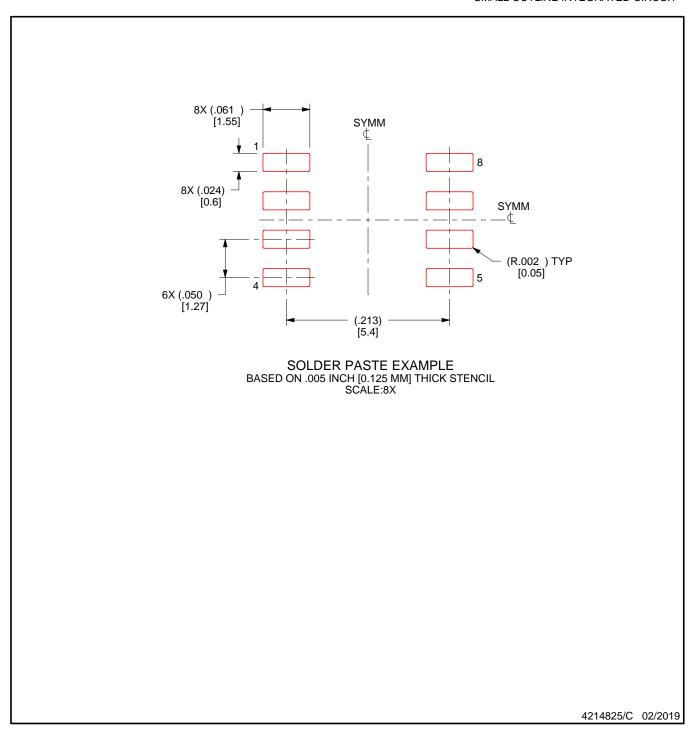
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

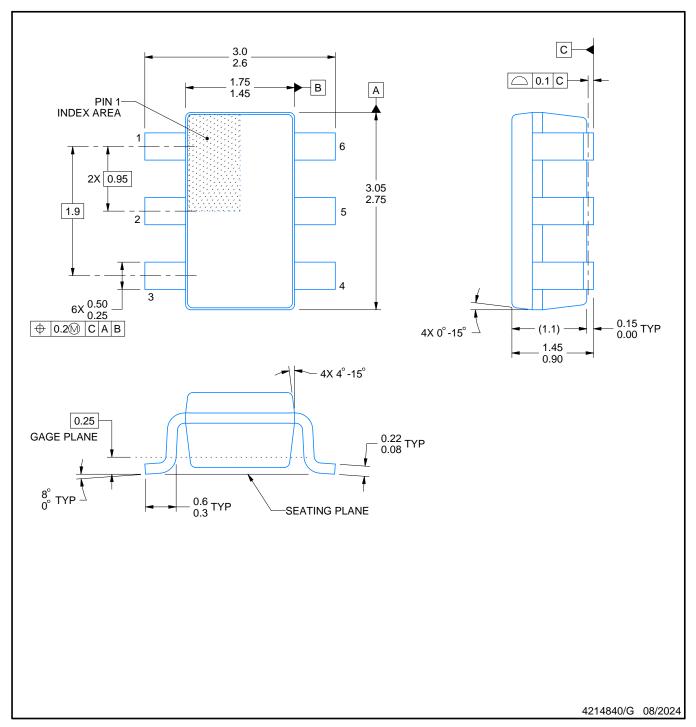
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

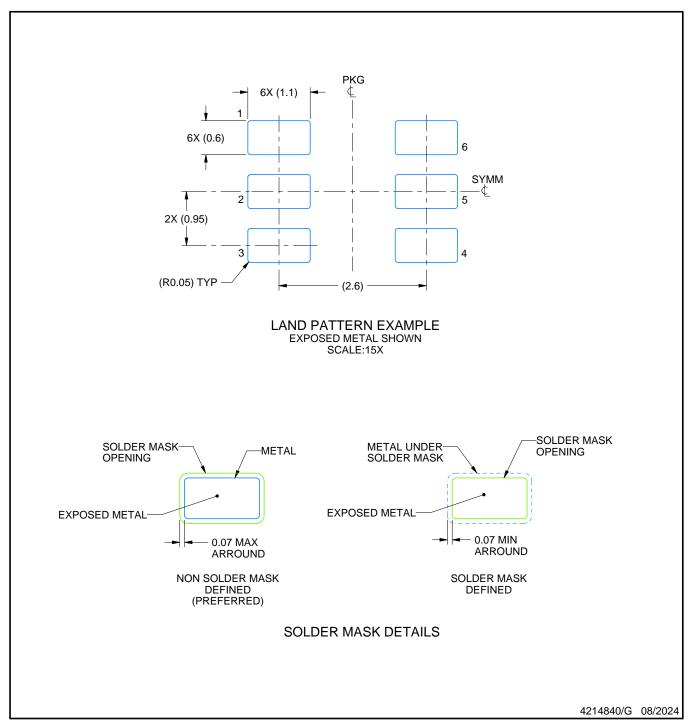

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE TRANSISTOR

NOTES:

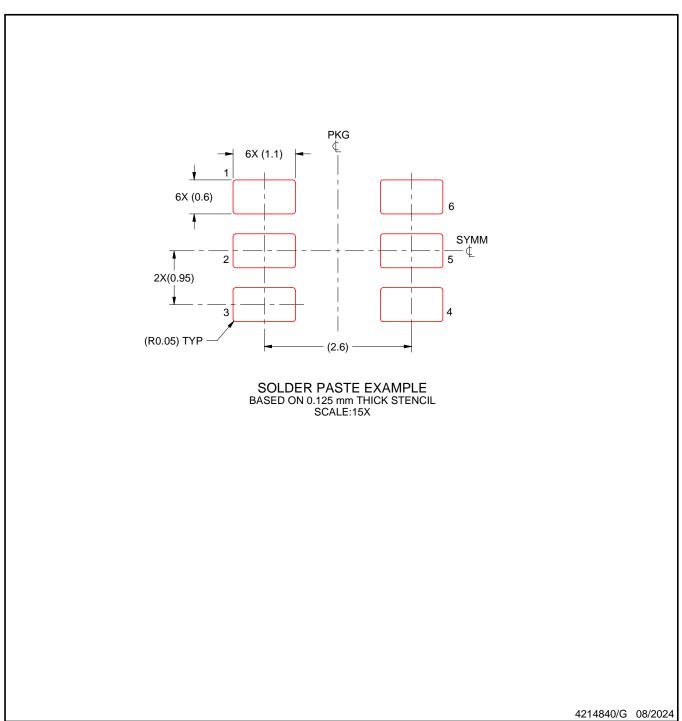
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月