

🕳 Order

Now

OPA197, OPA2197, OPA4197

JAJSEY7C – JANUARY 2016 – REVISED MARCH 2018

OPAx197 36V、高精度、レール・ツー・レール入力/出力、 低オフセット電圧オペアンプ

特長 1

Texas

INSTRUMENTS

- 低いオフセット電圧: ±100µV (最大値)
- 低いオフセット電圧ドリフト係数: ±2.5µV/℃ (最 大値)
- 低ノイズ: 1kHz時に5.5nV/√Hz
- 高い同相除去: 120dB (最小値)
- 低いバイアス電流: ±5pA (標準値)
- レール・ツー・レール入出力
- 広い帯域幅: 10MHz GBW
- 高いスルー・レート: 20V/µs
- 低い静止電流: アンプごとに1mA (標準値)
- 広い電源電圧範囲: ±2.25V~±18V、+4.5V~+36V
- EMIおよびRFIフィルタ入力
- 差動入力電圧範囲は電源レールまで
- 高い容量性負荷駆動能力: 1nF
- 業界標準パッケージ
 - シングル: SOIC-8、SOT-5、VSSOP-8
 - デュアル: SOIC-8、VSSOP-8
 - クワッド: SOIC-14およびTSSOP-14

2 アプリケーション

- 多重化データ収集システム
- テストおよび計測機器
- 高分解能のADCドライバ・アンプ
- SAR ADCリファレンス・バッファ
- プログラマブル・ロジック・コントローラ
- ハイサイドおよびローサイドの電流センシング
- 高精度のコンパレータ

ÆΑ

3 概要

OPAx197ファミリ(OPA197、OPA2197、OPA4197)は新 世代の36Vオペアンプです。

これらのデバイスは、レール・ツー・レールの入力/出力、 低いオフセット(標準値±25µV)、低いオフセット・ドリフト係 数(標準値±0.25µV/℃)、10MHz帯域幅など、DC精度と AC特性が非常に優れています。

電源レールまでの差動入力電圧範囲、大きな出力電流(± 65mA)、1nFまでの大きな容量性負荷の駆動能力、高い スルー・レート(20V/µs)など独自の特長から、OPA197 は高電圧の産業アプリケーション向けの、堅牢で高性能な オペアンプです。

OPA197ファミリのオペアンプは標準のパッケージで供給 され、-40℃~+125℃で動作が規定されています。

製品情報(1)						
型番 パッケージ 本体サイズ(公称)						
	SOIC (8)	4.90mm×3.90mm				
OPA197	SOT (5)	2.90mm×1.60mm				
	VSSOP (8)	3.00mm×3.00mm				
ODA2107	SOIC (8)	4.90mm×3.90mm				
0FA2197	VSSOP (8)	3.00mm×3.00mm				
004407	SOIC (14)	8.65mm×3.90mm				
UPA4197	TSSOP (14)	5.00mm×4.40mm				

(1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にあるパッケージ・オプションについての付録を参照してくださ V۰,

高電圧の多重化データ収集システムにおけるOPA197

英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、www.ti.comで閲覧でき、その内 容が常に優先されます。TIでは翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。 English Data Sheet: SBOS737

OPA197, OPA2197, OPA4197

JAJSEY7C – JANUARY 2016 – REVISED MARCH 2018

目次

1	特長	
2	アプ	リケーション1
3	概要	<u>.</u> 1
4	改訂	「履歴2
5	Pin	Configuration and Functions 3
6	Spe	cifications5
	6.1	Absolute Maximum Ratings5
	6.2	ESD Ratings 5
	6.3	Recommended Operating Conditions 5
	6.4	Thermal Information: OPA197 6
	6.5	Thermal Information: OPA2197 6
	6.6	Thermal Information: OPA4197 6
	6.7	Electrical Characteristics: $V_S = \pm 4$ V to ± 18 V ($V_S = 8$ V to 36 V)
	6.8	Electrical Characteristics: $V_S = \pm 2.25$ V to ± 4 V ($V_S = 4.5$ V to 8 V)
	6.9	Typical Characteristics 11
7	Deta	ailed Description 19
	7.1	Overview 19
	7.2	Functional Block Diagram 19

8	Appli	ication and Implementation 27
	8.1	Application Information 27
	8.2	Typical Applications 27
9	Powe	er Supply Recommendations
10	Layo	out
	10.1	Layout Guidelines
	10.2	Layout Example 31
11	デバ	イスおよびドキュメントのサポート
	11.1	デバイス・サポート32
	11.2	ドキュメントのサポート32
	11.3	関連リンク 32
	11.4	ドキュメントの更新通知を受け取る方法
	11.5	コミュニティ・リソース
	11.6	商標
	11.7	静電気放電に関する注意事項 33
	11.8	Glossary
12	メカニ	ニカル、パッケージ、および注文情報

4 改訂履歴

Revision B (October 2016) から Revision C に変更

•	「低いオフセット電圧: ±250µV (最大値)」を「低いオフセット電圧: ±100µV (最大値)」に 変更	1
•	Changed <i>Electrical Characteristics:</i> $V_S = \pm 4 \text{ V}$ to $\pm 18 \text{ V}$ ($V_S = 8 \text{ V}$ to 36 V) Input offset voltage $V_S = \pm 18 \text{ V}$ under OFFSET VOLTAGE from " ± 250 " to " ± 100 "; remove " $T_A = 0^{\circ}$ C to 85° C" and " $T_A = -40^{\circ}$ C to $\pm 125^{\circ}$ C" rows from same	7
•	Changed <i>Electrical Characteristics:</i> $V_S = \pm 4 V \text{ to } \pm 18 V (V_S = 8 V \text{ to } 36 V)$ Input offset voltage $V_{CM} = (V+) - 1.5 V$ under OFFSET VOLTAGE from "±250" to "±100"; remove "T _A = 0°C to 85°C" and "T _A = -40°C to +125°C" rows from same	7
•	Changed <i>Electrical Characteristics:</i> $V_S = \pm 2.25$ V to ± 4 V ($V_S = 4.5$ V to 8 V) Input offset voltage $V_S = \pm 2.25$ V, $V_{CM} = (V+) - 3$ V under OFFSET VOLTAGE from " ± 250 " to " ± 100 "; remove " $T_A = 0^{\circ}$ C to 85° C" and " $T_A = -40^{\circ}$ C to $\pm 125^{\circ}$ C" rows from same.	9
•	Changed <i>Electrical Characteristics:</i> $V_S = \pm 4 \text{ V}$ to $\pm 18 \text{ V}$ ($V_S = 8 \text{ V}$ to 36 V) Input offset voltage $V_S = \pm 3 \text{ V}$, $V_{CM} = (V+) - 1.5 \text{ V}$ under OFFSET VOLTAGE from " ± 250 " to " ± 100 "; remove " $T_A = 0^{\circ}$ C to 85° C" and " $T_A = -40^{\circ}$ C to $\pm 125^{\circ}$ C" rows from same.	9
•	Changed "0" on Frequency (Hz) axis to "0.1"	11
•	Changed "to achieve a very low offset voltage of 250 μ V (max)" to "to achieve a very low offset voltage of 100 μ V (maximum)"	19

R	evision A (July 2016) から Revision B に変更	Page
•	Added new row for PW package to Input bias current parameter	7
•	Added new row for PW package to Input offset current parameter	7
•	Added new footnote (1) to Open-loop gain parameter	7
•	Changed Slew rate parameter from 20 V/µs : to 14 V/µs	10
-		

2016年1月発行のものから更新 Page Added OPA2197 and OPA4197 CDM values to ESD Ratings table...... 5

7.3 Feature Description..... 20

www.ti.com

Page

OPA197, OPA2197, OPA4197 JAJSEY7C – JANUARY 2016–REVISED MARCH 2018

5 Pin Configuration and Functions

DBV Package: OPA197 5-Pin SOT Top View

OPA197, OPA2197, OPA4197

JAJSEY7C-JANUARY 2016-REVISED MARCH 2018

www.ti.com

NSTRUMENTS

FEXAS

Pin Functions: OPA197

PIN					
	OPA197		1/0	DESCRIPTION	
NAME	D (SOIC), DGK (VSSOP)	DBV (SOT)			
+IN	3	3	Ι	Noninverting input	
–IN	2	4	I	Inverting input	
NC	1, 5, 8	—	—	No internal connection (can be left floating)	
OUT	6	1	0	Output	
V+	7	5	—	Positive (highest) power supply	
V-	4	2	—	Negative (lowest) power supply	

Pin Functions: OPA2197 and OPA4197

	PIN				
	OPA2197	OPA4197	1/0	DESCRIPTION	
NAME	D (SOIC), DGK (VSSOP)	D (SOIC), PW (TSSOP)			
+IN A	3	3	I	Noninverting input, channel A	
+IN B	5	5	I	Noninverting input, channel B	
+IN C	_	10	I	Noninverting input, channel C	
+IN D	—	12	I	Noninverting input, channel D	
–IN A	2	2	I	Inverting input, channel A	
–IN B	6	6	I	Inverting input, channel B	
–IN C	—	9	I	Inverting input,,channel C	
–IN D	_	13	I	Inverting input, channel D	
OUT A	1	1	0	Output, channel A	
OUT B	7	7	0	Output, channel B	
OUT C	—	8	0	Output, channel C	
OUT D	—	14	0	Output, channel D	
V+	8	4		Positive (highest) power supply	
V–	4	11		Negative (lowest) power supply	

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
Supply voltage, $V_S = (V+) - (V-)$		Dual supply	±20		N/	
		Single supply		40		
	Voltago	Common-mode	(V–) – 0.5	(V+) + 0.5	V	
Signal input pins	vollage	Differential		(V+) - (V-) + 0.2	v	
	Current			±10	mA	
Output short circuit ⁽²⁾				Continuous		
	Operating, T _A		-55	150		
Temperature	Junction, T _J			150	°C	
	Storage, T _{stg}		-65	150		

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Short-circuit to ground, one amplifier per package.

6.2 ESD Ratings

			VALUE	UNIT
ALL DEV	ICES			
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
OPA197				
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V
OPA2197				
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±750	V
OPA4197			·	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT	
Supply voltage $M = M(1)$	Dual supply	±2.25	±18		
Supply voltage, $v_S = (v+) - (v-)$	Single supply	4.5	36	v	
Operating temperature, T _A		-40	125	°C	

OPA197, OPA2197, OPA4197

JAJSEY7C – JANUARY 2016 – REVISED MARCH 2018

www.ti.com

6.4 Thermal Information: OPA197

		OPA197			
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DBV (SOT)	DGK (VSSOP)	UNIT
		8 PINS	5 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	115.8	158.8	180.4	°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance	60.1	60.7	67.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	56.4	44.8	102.1	°C/W
τιΨ	Junction-to-top characterization parameter	12.8	1.6	10.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	55.9	4.2	100.3	°C/W
R _{0JC(bot)}	Junction-to-case(bottom) thermal resistance	N/A	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Thermal Information: OPA2197

		OPA		
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DGK (VSSOP)	UNIT
		8 PINS	8 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	107.9	158	°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance	53.9	48.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	48.9	78.7	°C/W
ΤLΨ	Junction-to-top characterization parameter	6.6	3.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	48.3	77.3	°C/W
R _{0JC(bot)}	Junction-to-case(bottom) thermal resistance	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Thermal Information: OPA4197

		OPA	4197	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	PW (TSSOP)	UNIT
		14 PINS	14 PINS	
$R_{ hetaJA}$	Junction-to-ambient thermal resistance	86.4	92.6	°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance	46.3	27.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	41.0	33.6	°C/W
ΨJT	Junction-to-top characterization parameter	11.3	1.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	40.7	33.1	°C/W
R _{0JC(bot)}	Junction-to-case(bottom) thermal resistance	N/A	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.7 Electrical Characteristics: $V_s = \pm 4 V$ to $\pm 18 V$ ($V_s = 8 V$ to 36 V) at $T_A = 25^{\circ}$ C, $V_{CM} = V_{OUT} = V_s / 2$, and $R_{LOAD} = 10 k\Omega$ connected to $V_s / 2$, (unless otherwise noted)

			MIN	ТҮР	ΜΔΧ	LINIT		
OFFSET		1201 001	billono			ШАЛ	UNIT	
OTTOET		$V_{-} = \pm 18 V_{-}$			+25	+100		
V _{OS}	Input offset voltage	$V_{\rm ov} = (V_{\rm +}) - 15 V_{\rm -}$			+10	+100	μV	
		$V_{0} = \pm 18 \text{ V}$ $V_{04} = (V_{+}) - 3 \text{ V}$			+0.5	+2.5		
dV _{OS} /dT	Input offset voltage drift	$V_{c} = \pm 18 \text{ V}, V_{cM} = (V+) - 15 \text{ V}$	$T_A = -40$ °C to +125°C		+0.8	+4 5	µV/°C	
	Power-supply rejection				_0.0	2		
PSRR	ratio	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			±1	±3	μV/V	
INPUT BIA	AS CURRENT							
					±5	±20	рА	
I _B Input bias current	$T_{1} = -40^{\circ}$ C to $\pm 125^{\circ}$ C				±5	nΔ		
		T _A = -40 C t0 +123 C	PW package only			±15	ПА	
					±2	±20	рА	
I _{OS}	Input offset current	$T_{1} = -40^{\circ}$ C to $\pm 125^{\circ}$ C				±2	nΔ	
			PW package only			±10	ПА	
NOISE			1					
E Input voltage poise	$(V-) - 0.1 V < V_{CM} < (V+) - 3 V$	f = 0.1 Hz to 10 Hz		1.30		uVaa		
⊾n		$(V+) - 1.5 V < V_{CM} < (V+) + 0.1 V$	f = 0.1 Hz to 10 Hz		4	P • PP		
e _n Input voltage noise density	$(V_{-}) = 0.1 V_{-} V_{-} = 0.1 V_{-}$	f = 100 Hz		10.5				
	Input voltage noise	(v-) - 0.1 v < v _{EM} < (v+) - 3 v	f = 1 kHz		5.5		nV/√ Hz	
	density	(V+) − 1.5 V < V _{CM} < (V+) + 0.1 V	f = 100 Hz		32			
		$(v_{+}) = 1.3 v < v_{CM} < (v_{+}) + 0.1 v$	f = 1 kHz		12.5			
i _n	Input current noise density	f = 1 kHz			1.5		fA/√Hz	
INPUT VO	LTAGE							
V _{CM}	Common-mode voltage range			(V–) – 0.1		(V+) + 0.1	V	
		$V_{\rm S} = \pm 18 \rm V,$		120	140			
		$(V-) - 0.1 V < V_{CM} < (V+) - 3 V$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	110	126		dD	
CMRR	Common-mode	$V_{\rm S} = \pm 18 \rm V,$		100	120		uБ	
	rejection ratio	$(V+) - 1.5 V < V_{CM} < (V+)$	$T_A = -40^{\circ}C$ to +125°C	80	100			
		$V_{S} = \pm 18 \text{ V},$ (V+) - 3 V < V _{CM} < (V+) - 1.5 V		Se	e Typical (Characteristic	s	
INPUT IM	PEDANCE							
Z _{ID}	Differential				100 1.6		$M\Omega \parallel pF$	
Z _{IC}	Common-mode				1 6.4		$10^{13}\Omega \parallel pF$	
OPEN-LO	OP GAIN							
		$V_{S} = \pm 18 V$,		120	134			
	Open loop veltage	$ (V-) + 0.6 V < V_0 < (V+) - 0.6 V,$ R _{LOAD} = 2 kΩ	$T_A = -40^{\circ}C$ to +125°C	110	126			
A _{OL}	gain ⁽¹⁾	Pen-loop voltage $r_{LOAD} = 2 r_{S2}$ in ⁽¹⁾ $V_{C} = \pm 18 V$		120	143		dB	
guin	y	$(V -) + 0.3 V < V_0 < (V+) - 0.3 V,$ R _{LOAD} = 10 kΩ	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	110	134			

(1) For OPA2197, OPA4197: When driving high current loads on multiple channels, make sure the junction temperature does not exceed 125°C.

ÈXAS NSTRUMENTS

www.ti.com

Electrical Characteristics: $V_s = \pm 4 V$ to $\pm 18 V$ ($V_s = 8 V$ to 36 V) (continued)

at T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10 k Ω connected to V_S / 2, (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
FREQUE	NCY RESPONSE						
GBW	Unity gain bandwidth				10		MHz
SR	Slew rate	V _S = ± 18 V, G = 1, 10-V step			20		V/µs
		T- 0.040/	V _S = ±18 V, G = 1, 10-V step		1.4		
		10 0.01%	V _S = ±18 V, G = 1, 5-V step		0.9		
ι _s	Settling time	To 0.0019/	V _S = ±18 V, G = 1, 10-V step		2.1		μs
		10 0.001%	$V_{S} = \pm 18 V, G = 1, 5-V step$		1.8		
t _{OR}	Overload recovery time	$V_{IN} \times G = V_S$			200		ns
THD+N	Total harmonic distortion + noise	G = 1, f = 1 kHz, V_0 = 3.5 V_{RMS}		C	.00008%		
OUTPUT							
			No load		5	25	
		Positive rail	$R_{LOAD} = 10 \ k\Omega$		95	125	mV
V	Voltage output swing		$R_{LOAD} = 2 \ k\Omega$		430	500	
vo	from rail		No load		5	25	
		Negative rail	$R_{LOAD} = 10 \ k\Omega$		95	125	
			$R_{LOAD} = 2 \ k\Omega$		430	500	
I _{SC}	Short-circuit current	$V_{S} = \pm 18 V$			±65		mA
C _{LOAD}	Capacitive load drive			Se	e Typical Cha	aracteristics	3
Zo	Open-loop output impedance	$f = 1 \text{ MHz}, I_0 = 0 \text{ A}, \text{ See Figure 2}$	6		375		Ω
POWER S	SUPPLY						
	Quiescent current per	I _O = 0 A			1	1.3	0
IQ	amplifier	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C, I_O = 0 \text{ A}$			1.5	MA	
TEMPERA	ATURE						
	Thermal protection ⁽²⁾				140		°C

(2) For a detailed description of thermal protection, see the *Thermal Protection* section.

6.8 Electrical Characteristics: $V_s = \pm 2.25$ V to ± 4 V ($V_s = 4.5$ V to 8 V)

at $T_A = 25^{\circ}$ C, $V_{CM} = V_{OUT} = V_S / 2$, and $R_{LOAD} = 10 \text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted)

	PARAMETER	TEST CON		MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE						
		$V_{S} = \pm 2.25 \text{ V}, V_{CM} = (V+) - 3 \text{ V}$			±5	±100	μV
Vos	Input offset voltage	$(V+) - 3.5 V < V_{CM} < (V+) - 1.5 V$	See Comm	See Common-Mode Voltage Range sectior			
		$V_{\rm S} = \pm 3$ V, $V_{\rm CM} = (V+) - 1.5$ V			±10	±100	μV
N/ / IT		$V_{S} = \pm 2.25 \text{ V}, V_{CM} = (V+) - 3 \text{ V}$	T 4000 / 40500		±0.5	±2.5	24/20
dV _{OS} /d1	Input offset voltage drift	$V_{\rm S} = \pm 2.25$ V, $V_{\rm CM} = (V+) - 1.5$ V	$I_A = -40^{\circ}$ C to +125°C		±0.8	±4.5	μv/°C
PSRR	Power-supply rejection ratio	$T_A = -40^{\circ}$ C to +125°C, $V_{CM} = V_S / 2$	2 – 0.75 V		±2		μV/V
INPUT B	IAS CURRENT						
	Insut biog ourrent				±5	±20	pА
IB	input bias current	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				±5	nA
	Input offect ourrent				±2	±20	pА
IOS	input onset current	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				±2	nA
NOISE							
E	Input voltago poiso	$(V-) - 0.1 V < V_{CM} < (V+) - 3 V$, f = 0.1 Hz to 10 Hz			1.30		
⊾n	input voltage noise	$(V+) - 1.5 V < V_{CM} < (V+) + 0.1 V, 1$	f = 0.1 Hz to 10 Hz		4		μvpp
e _n Input voltage noise density	(1/2) = 0.1 $(1/2) = 0.1$	f = 100 Hz		10.5			
	Input voltage noise	$(v -) = 0.1 v < v_{CM} < (v +) = 3 v$	f = 1 kHz		5.5		
	$(V_{+}) = 15 V < V_{out} < (V_{+}) + 0.1 V$	f = 100 Hz		32		110/ 112	
		(())) 1.5 (()) (()) () () ()	f = 1 kHz		12.5		
i _n	Input current noise density		f = 1 kHz		1.5		fA/√Hz
INPUT V	OLTAGE						
V _{CM}	Common-mode voltage range			(V–) – 0.1		(V+) + 0.1	V
		V _S = ±2.25 V,		90	110		
		$(V-) - 0.1 V < V_{CM} < (V+) - 3 V$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	88	104		dB
CMRR	Common-mode	V _S = ±2.25 V,		94	120		üb
-	rejection ratio	$(V+) - 1.5 V < V_{CM} < (V+)$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	77	100		
		$V_{S} = \pm 2.25 \text{ V},$ (V+) - 3 V < V _{CM} < (V+) - 1.5 V		Se	e Typical (Characteristic	s
INPUT IN	IPEDANCE						
Z _{ID}	Differential				100 1.6		MΩ pF
Z _{IC}	Common-mode				1 6.4		$10^{13}\Omega \parallel pF$
OPEN-LC	DOP GAIN						
		$V_{\rm S} = \pm 2.25 \text{ V},$		104	126		
		$(v-) + 0.6 v < v_0 < (v+) - 0.6 V,$ $R_{LOAD} = 2 k\Omega$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	100	114		
A _{OL}	Open-loop voltage gain	V _S = ±2.25 V,		104	134		dB
	$(V-) + 0.3 V < V_0 < (V+) - 0.3 V,$ $R_{LOAD} = 10 k\Omega$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	100	120			

Electrical Characteristics: $V_s = \pm 2.25$ V to ± 4 V ($V_s = 4.5$ V to 8 V) (continued)

at T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10 k Ω connected to V_S / 2 (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
FREQU	ENCY RESPONSE						
GBW	Unity gain bandwidth				10		MHz
SR	Slew rate	G = 1, 1-V step			14		V/µs
ts	Settling time	To 0.01%	V _S = ±3 V, G = 1, 5-V step		1		μs
t _{OR}	Overload recovery time	$V_{IN} \times G = V_S$			200		ns
OUTPU	т						
			No load		5	25	
Volta	F Voltage output swing	Positive rail	$R_{LOAD} = 10 \ k\Omega$		95	125	
			$R_{LOAD} = 2 \ k\Omega$		430	500	mV
Vo	from rail	rom rail	No load		5	25	
		Negative rail	$R_{LOAD} = 10 \ k\Omega$		95	125	
			$R_{LOAD} = 2 \ k\Omega$		430	500	
I _{SC}	Short-circuit current	V _S = ±2.25 V			±65		mA
C _{LOAD}	Capacitive load drive			Se	e Typical Cha	aracteristic	s
Zo	Open-loop output impedance	$f = 1 \text{ MHz}, I_0 = 0 \text{ A}, \text{ see Figure 2}$	6		375		Ω
POWER	SUPPLY						
	Quiescent current per				1	1.3	4
IQ	amplifier	$I_{O} = 0 A$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$			1.5	MA
TEMPE	RATURE		· · ·				
	Thermal protection ⁽¹⁾				140		°C

(1) For a detailed description of thermal protection, see the *Thermal Protection* section.

6.9 Typical Characteristics

Table 1. Table of Graphs

DESCRIPTION	FIGURE
Offset Voltage Production Distribution	Figure 1, Figure 2, Figure 3
Offset Voltage Drift Distribution	Figure 4
Offset Voltage vs Temperature	Figure 5
Offset Voltage vs Common-Mode Voltage	Figure 6, Figure 7, Figure 8
Offset Voltage vs Power Supply	Figure 9
Open-Loop Gain and Phase vs Frequency	Figure 10
Closed-Loop Gain and Phase vs Frequency	Figure 11
Input Bias Current vs Common-Mode Voltage	Figure 12
Input Bias Current vs Temperature	Figure 13
Output Voltage Swing vs Output Current (maximum supply)	Figure 14, Figure 15
CMRR and PSRR vs Frequency	Figure 16
CMRR vs Temperature	Figure 17
PSRR vs Temperature	Figure 18
0.1-Hz to 10-Hz Noise	Figure 19
Input Voltage Noise Spectral Density vs Frequency	Figure 20
THD+N Ratio vs Frequency	Figure 21
THD+N vs Output Amplitude	Figure 22
Quiescent Current vs Supply Voltage	Figure 23
Quiescent Current vs Temperature	Figure 24
Open Loop Gain vs Temperature	Figure 25
Open Loop Output Impedance vs Frequency	Figure 26
Small Signal Overshoot vs Capacitive Load (100-mV output step)	Figure 27, Figure 28
No Phase Reversal	Figure 29
Positive Overload Recovery	Figure 30
Negative Overload Recovery	Figure 31
Small-Signal Step Response (100 mV)	Figure 32, Figure 33
Large-Signal Step Response	Figure 34
Settling Time	Figure 35, Figure 36, ,
Short-Circuit Current vs Temperature	Figure 37
Maximum Output Voltage vs Frequency	Figure 38
Propagation Delay Rising Edge	Figure 39
Propagation Delay Falling Edge	Figure 40

ISTRUMENTS

XAS

www.ti.com

OPA197, OPA2197, OPA4197

JAJSEY7C – JANUARY 2016 – REVISED MARCH 2018

XAS STRUMENTS

www.ti.com

at $T_A = 25^{\circ}$ C, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

OPA197, OPA2197, OPA4197 JAJSEY7C - JANUARY 2016-REVISED MARCH 2018

www.ti.com

at $T_A = 25^{\circ}$ C, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

OPA197, OPA2197, OPA4197 JAJSEY7C – JANUARY 2016–REVISED MARCH 2018 TEXAS INSTRUMENTS

www.ti.com

at $T_A = 25^{\circ}$ C, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

7 Detailed Description

7.1 Overview

The OPAx197 uses a patented two-temperature trim architecture to achieve a very low offset voltage of 250 μ V (max) and low voltage offset drift of 0.75 μ V/°C (maximum) over the full specified temperature range. This level of precision performance at wide supply voltages makes these amplifiers useful for high-impedance industrial sensors, filters, and high-voltage data acquisition.

7.2 Functional Block Diagram

OPA197, OPA2197, OPA4197 JAJSEY7C – JANUARY 2016 – REVISED MARCH 2018

www.ti.com

7.3 Feature Description

7.3.1 Input Protection Circuitry

The OPAx197 uses a unique input architecture to eliminate the need for input protection diodes, but still provides robust input protection under transient conditions. Conventional input diode protection schemes shown in Figure 41 can be activated by fast transient step responses and can introduce signal distortion and settling time delays because of alternate current paths, as shown in Figure 42. For low-gain circuits, these fast-ramping input signals forward-bias back-to-back diodes, causing an increase in input current, and resulting in extended settling time, as shown in Figure 43.

Figure 41. OPA197 Input Protection Does Not Limit Differential Input Capability

Input Low Pass Filter

Simplified Mux Model

Buffer Amplifier

Figure 42. Back-to-Back Diodes Create Settling Issues

Figure 43. OPA197 Protection Circuit Maintains Fast-Settling Transient Response

Feature Description (continued)

The OPAx197 family of operational amplifiers provides a true high-impedance differential input capability for highvoltage applications. This patented input protection architecture does not introduce additional signal distortion or delayed settling time, making the device an optimal op amp for multichannel, high-switched, input applications. The OPA197 can tolerate a maximum differential swing (voltage between inverting and noninverting pins of the op amp) of up to 36 V, making the device suitable for use as a comparator or in applications with fast-ramping input signals such as multiplexed data-acquisition systems, as shown in Figure 53.

7.3.2 EMI Rejection

The OPAx197 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the OPAx197 benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure 44 shows the results of this testing on the OPA197. Table 2 shows the EMIRR IN+ values for the OPA197 at particular frequencies commonly encountered in real-world applications. Applications listed in Table 2 may be centered on or operated near the particular frequency shown. Detailed information can also be found in the application report *EMI Rejection Ratio of Operational Amplifiers*, SBOA128, available for download from www.ti.com.

Figure 44. EMIRR Testing

FREQUENCY	APPLICATION OR ALLOCATION	EMIRR IN+
400 MHz	Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications	44.1 dB
900 MHz	Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications	52.8 dB
1.8 GHz	GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)	61.0 dB
2.4 GHz	802.11b, 802.11g, 802.11n, Bluetooth [®] , mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)	69.5 dB
3.6 GHz	Radiolocation, aero communication and navigation, satellite, mobile, S-band	88.7 dB
5.0 GHz	802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)	105.5 dB

OPA197, OPA2197, OPA4197

JAJSEY7C – JANUARY 2016 – REVISED MARCH 2018

www.ti.com

7.3.3 Phase Reversal Protection

The OPAx197 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The OPAx197 is a rail-to-rail input op amp; therefore, the common-mode range can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits into the appropriate rail. This performance is shown in Figure 45.

Figure 45. No Phase Reversal

7.3.4 Thermal Protection

The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This phenomenon is called *self heating*. The absolute maximum junction temperature of the OPAx197 is 150°C. Exceeding this temperature causes damage to the device. The OPAx197 has a thermal protection feature that prevents damage from self heating. The protection works by monitoring the temperature of the device and turning off the op amp output drive for temperatures above 140°C. Figure 46 shows an application example for the OPA197 that has significant self heating (159°C) because of its power dissipation (0.81 W). Thermal calculations indicate that for an ambient temperature of 65°C the device junction temperature. Figure 46 depicts how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so the output is 3 V. When self heating causes the device junction temperature to increase above 140°C, the thermal protection forces the output to a high-impedance state and the output is pulled to ground through resistor RL.

Figure 46. Thermal Protection

7.3.5 Capacitive Load and Stability

The OPAx197 features a patented output stage capable of driving large capacitive loads, and in a unity-gain configuration, directly drives up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of the amplifier to drive greater capacitive loads; see Figure 47 and Figure 48. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an amplifier will be stable in operation.

OPA197, OPA2197, OPA4197

JAJSEY7C – JANUARY 2016 – REVISED MARCH 2018

For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small ($10-\Omega$ to $20-\Omega$) resistor, R_{ISO} , in series with the output, as shown in Figure 49. This resistor significantly reduces ringing while maintaining dc performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created, introducing a gain error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio R_{ISO} / R_L , and is generally negligible at low output levels. A high capacitive load drive makes the OPA197 well suited for applications such as reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 49 uses an isolation resistor, R_{ISO} , to stabilize the output of an op amp. R_{ISO} modifies the open-loop gain of the system for increased phase margin, and results using the OPA197 are summarized in Table 3. For additional information on techniques to optimize and design using this circuit, TI Precision Design TIDU032 details complete design goals, simulation, and test results.

Figure 49. Extending Capacitive Load Drive with the OPA197

Table 3. OPA197	Capacitive Load Drive	Solution Using	Isolation Re	esistor Com	nparison of (Calculated and
	-	Measured R	lesults		•	

PARAMETER		VALUE									
Capacitive Load	100 pF		bad 100 pF		.oad 100 pF 1000 pF 0.01 μF		0.1 µF		1 µF		
Phase Margin	45°	60°	45°	60°	45°	60°	45°	60°	45°	60°	
R _{ISO} (Ω)	47.0	360.0	24.0	100.0	20.0	51.0	6.2	15.8	2.0	4.7	
Measured Overshoot (%)	23.2 8.6	10.4	22.5	9.0	22.1	8.7	23.1	8.6	21.0	8.6	
Calculated PM	45.1°	58.1°	45.8°	59.7°	46.1°	60.1°	45.2°	60.2°	47.2°	60.2°	

For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results, refer to TI Precision Design TIDU032, *Capacitive Load Drive Solution using an Isolation Resistor*.

OPA197, OPA2197, OPA4197

JAJSEY7C - JANUARY 2016-REVISED MARCH 2018

7.3.6 Common-Mode Voltage Range

The OPAx197 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel and P-channel differential input pairs, as shown in Figure 50. The N-channel pair is active for input voltages close to the positive rail, typically (V+) - 3 V to 100 mV above the positive supply. The P-channel pair is active for input sfrom 100 mV below the negative supply to approximately (V+) - 1.5 V. There is a small transition region, typically (V+) - 3 V to (V+) - 1.5 V in which both input pairs are on. This transition region can vary modestly with process variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise and THD performance may be degraded compared to operation outside this region.

Figure 50. Rail-to-Rail Input Stage

To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when possible. The OPAx197 uses a precision trim for both the N-channel and P-channel regions. This technique enables significantly lower levels of offset than previous-generation devices, causing variance in the transition region of the input stages to appear exaggerated relative to offset over the full common-mode voltage range, as shown in Figure 51.

7.3.7 Electrical Overstress

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress

OPA197, OPA2197, OPA4197

JAJSEY7C – JANUARY 2016 – REVISED MARCH 2018

(EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. See Figure 52 for an illustration of the ESD circuits contained in the OPAx197 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

Figure 52. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application

An ESD event is very short in duration and very high voltage (for example, 1 kV, 100 ns), whereas an EOS event is long duration and lower voltage (for example, 50 V, 100 ms). The ESD diodes are designed for out-of-circuit ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB). During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit (labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.

Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.

7.3.8 Overload Recovery

Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the rated operating voltage, either due to the high input voltage or the high gain. After the device enters the saturation region, the charge carriers in the output devices require time to return back to the linear state. After the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time. The overload recovery time for the OPAx197 is approximately 200 ns.

7.4 Device Functional Modes

The OPAx197 has a single functional mode and is operational when the power-supply voltage is greater than 4.5 V (± 2.25 V). The maximum power supply voltage for the OPAx197 is 36 V (± 18 V).

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The OPAx197 family offers outstanding dc precision and ac performance. These devices operate up to 36-V supply rails and offer true rail-to-rail input/output, ultralow offset voltage and offset voltage drift, as well as 10-MHz bandwidth and high capacitive load drive. These features make the OPAx197 a robust, high-performance operational amplifier for high-voltage industrial applications.

8.2 Typical Applications

8.2.1 16-Bit Precision Multiplexed Data-Acquisition System

Figure 53 shows a 16-bit, differential, 4-channel, multiplexed data-acquisition system. This example is typical in industrial applications that require low distortion and a high-voltage differential input. The circuit uses the ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along with a precision, high-voltage, signal-conditioning front end, and a 4-channel differential multiplexer (mux). This application example explains the process for optimizing the precision, high-voltage, front-end drive circuit using the OPA197 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864.

Typical Applications (continued)

8.2.1.1 Design Requirements

The primary objective is to design a ± 20 V, differential 4-channel multiplexed data acquisition system with lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10 kHz full-scale pure sine-wave input. The design requirements for this block design are:

- System Supply Voltage: ±15 V
- ADC Supply Voltage: 3.3 V
- ADC Sampling Rate: 400 kSPS
- ADC Reference Voltage (REFP): 4.096 V
- System Input Signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency (f_{IN}) of 10 kHz are applied to each differential input of the mux.

8.2.1.2 Detailed Design Procedure

The purpose of this precision design is to design an optimal high voltage multiplexed data acquisition system for highest system linearity and fast settling. The overall system block diagram is shown in Figure 53. The circuit is a multichannel data acquisition signal chain consisting of an input low-pass filter, multiplexer (mux), mux output buffer, attenuating SAR ADC driver, digital counter for mux and the reference driver. The architecture allows fast sampling of multiple channels using a single ADC, providing a low-cost solution. The two primary design considerations to maximize the performance of a precision multiplexed data acquisition system are the mux input analog front-end and the high-voltage level translation SAR ADC driver design. However, carefully design each analog circuit block based on the ADC performance specifications in order to achieve the fastest settling at 16-bit resolution and lowest distortion system. The diagram includes the most important specifications for each individual analog block.

This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the design is to understand the requirement for extremely low impedance input-filter design for the mux. This understanding helps in the decision of an appropriate input filter and selection of a mux to meet the system settling requirements. The next important step is the design of the attenuating analog front end (AFE) used to level translate the high-voltage input signal to a low-voltage ADC input while maintaining the amplifier stability. The next step is to design a digital interface to switch the mux input channels with minimum delay. The final design challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference voltage with low offset, drift, and noise contributions.

8.2.1.3 Application Curve

Figure 54. ADC 16-Bit Linearity Error for the Multiplexed Data Acquisition Block

For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, refer to TI Precision Design TIDU181, 16-bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High Voltage Inputs with Lowest Distortion.

8.2.2 Slew Rate Limit for Input Protection

In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages. By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and down at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high output current and slew rate of the OPAx197 make the device an optimal amplifier to achieve slew rate control for both dual- and single-supply systems.Figure 55 shows the OPA197 in a slew-rate limit design.

Figure 55. Slew Rate Limiter Uses One Op Amp

For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, refer to TI Precision Design TIDU026, *Slew Rate Limiter Uses One Op Amp*.

OPA197, OPA2197, OPA4197

JAJSEY7C - JANUARY 2016-REVISED MARCH 2018

www.ti.com

8.2.3 Precision Reference Buffer

The OPAx197 features high output current drive capability and low input offset voltage, making the device an excellent reference buffer to provide an accurate buffered output with ample drive current for transients. For the 10- μ F ceramic capacitor shown in Figure 56, R_{ISO}, a 37.4- Ω isolation resistor, provides separation of two feedback paths for optimal stability. Feedback path number one is through R_F and is directly at the output, V_{OUT}. Feedback path number two is through R_{Fx} and C_F and is connected at the output of the op amp. The optimized stability components shown for the 10- μ F load give a closed-loop signal bandwidth at V_{OUT} of 4 kHz, while still providing a loop gain phase margin of 89°. Any other load capacitances require recalculation of the stability components: R_F, R_{Fx}, C_F, and R_{ISO}.

Figure 56. Precision Reference Buffer

9 Power Supply Recommendations

The OPAx197 is specified for operation from 4.5 V to 36 V (± 2.25 V to ± 18 V); many specifications apply from -40° C to $\pm 125^{\circ}$ C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the *Typical Characteristics*.

CAUTION

Supply voltages larger than 40 V can permanently damage the device; see the *Absolute Maximum Ratings*.

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement, refer to the *Layout* section.

www.tij.co.jp

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
 methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground
 planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically
 separate digital and analog grounds paying attention to the flow of the ground current. For more detailed
 information refer to *Circuit Board Layout Techniques*, SLOA089.
- In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. As shown in Figure 57, keeping RF and RG close to the inverting input minimizes parasitic capacitance.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.
- Cleaning the PCB following board assembly is recommended for best performance.
- Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to remove moisture introduced into the device packaging during the cleaning process. A low temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.

10.2 Layout Example

TEXAS INSTRUMENTS

www.tij.co.jp

11 デバイスおよびドキュメントのサポート

11.1 デバイス・サポート

11.1.1 開発サポート

11.1.1.1 TINA-TI™(無料のダウンロード・ソフトウェア)

TINA™は、SPICEエンジンをベースにした単純かつ強力な、使いやすい回路シミュレーション・プログラムです。また、 TINA-TIは、TINAソフトウェアの完全な機能を持つ無償バージョンで、パッシブ・モデルとアクティブ・モデルに加えて、マク ロ・モデルのライブラリがプリロードされています。TINA-TIには、SPICEの標準的なDC解析、過渡解析、周波数ドメイン解 析などの全機能に加え、追加の設計機能が搭載されています。

TINA-TIはAnalog eLab Design Centerから無料でダウンロードでき、ユーザーが結果をさまざまな方法でフォーマットできる、広範な後処理機能を備えています。仮想計測器により、入力波形を選択し、回路ノード、電圧、および波形をプローブして、動的なクイック・スタート・ツールを作成できます。

注 これらのファイルを使用するには、TINA ソフトウェア(DesignSoft™製)またはTINA-TIソフトウェ アがインストールされている必要があります。TINA-TIフォルダから、無料のTINA-TIソフトウェアを ダウンロードしてください。

11.1.1.2 TI Precision Designs

OPA197はいくつかのTI Precision Designsに使用されており、これらはTI Precision Designs Webサイトからオンライン で入手できます。TI Precision Designsは、TIの高精度アナログ・アプリケーションの専門家により作成されたアナログ・ソ リューションで、多くの有用な回路に関して、動作理論、コンポーネント選択、シミュレーション、完全なPCB回路図とレイア ウト、部品表、性能測定結果を提供します。

11.2 ドキュメントのサポート

11.2.1 関連資料

関連資料については、以下を参照してください。

- 『基板のレイアウト技法』(SLOA089)
- 『誰でも使えるオペアンプ』(SLOD006)

11.3 関連リンク

表 4 に、クイック・アクセス・リンクの一覧を示します。カテゴリには、技術資料、サポートおよびコミュニティ・リソース、ツール とソフトウェア、およびサンプル注文またはご購入へのクイック・アクセスが含まれます。

製品	プロダクト・フォルダ	サンプルとご購入	技術資料	ツールとソフトウェア	サポートとコミュニティ
OPA197	ここをクリック	ここをクリック	ここをクリック	ここをクリック	ここをクリック
OPA2197	ここをクリック	ここをクリック	ここをクリック	ここをクリック	ここをクリック
OPA4197	ここをクリック	ここをクリック	ここをクリック	ここをクリック	ここをクリック

表 4. 関連リンク

www.tij.co.jp

11.4 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通 知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の 詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.5 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™オンライン・コミュニティ TIのE2E(Engineer-to-Engineer)コミュニティ。エンジニア間の共同作 業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有 し、アイディアを検討して、問題解決に役立てることができます。

設計サポート TIの設計サポート 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることが できます。技術サポート用の連絡先情報も参照できます。

11.6 商標

E2E is a trademark of Texas Instruments. TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc. Bluetooth is a registered trademark of Bluetooth SIG, Inc. TINA, DesignSoft are trademarks of DesignSoft, Inc. All other trademarks are the property of their respective owners.

11.7 静電気放電に関する注意事項

すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

11.8 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。これらの情報は、指定のデバイスに対して提供されている最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
OPA197ID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA197
OPA197ID.B	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA197
OPA197IDBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12MV
OPA197IDBVR.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12MV
OPA197IDBVT	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12MV
OPA197IDBVT.B	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12MV
OPA197IDBVTG4	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12MV
OPA197IDBVTG4.B	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12MV
OPA197IDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12ST
OPA197IDGKR.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12ST
OPA197IDGKT	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12ST
OPA197IDGKT.B	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12ST
OPA197IDGKTG4	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12ST
OPA197IDGKTG4.B	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	12ST
OPA197IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA197
OPA197IDR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA197
OPA197IDRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA197
OPA197IDRG4.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA197
OPA2197ID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2197
OPA2197ID.B	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2197
OPA2197IDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4HV
OPA2197IDGKR.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4HV
OPA2197IDGKRG4	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4HV
OPA2197IDGKRG4.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4HV
OPA2197IDGKT	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4HV
OPA2197IDGKT.B	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4HV
OPA2197IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2197
OPA2197IDR.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2197
OPA2197IDRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2197

17-Jun-2025

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
OPA2197IDRG4.B	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2197
OPA4197ID	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	OPA4197
OPA4197ID.B	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	OPA4197
OPA4197IDR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	OPA4197
OPA4197IDR.B	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	OPA4197
OPA4197IPW	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	SN	Level-3-260C-168 HR	-40 to 125	OPA4197
OPA4197IPW.B	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	SN	Level-3-260C-168 HR	-40 to 125	OPA4197
OPA4197IPWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	OPA4197
OPA4197IPWR.B	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	OPA4197

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA197, OPA2197, OPA4197 :

• Automotive : OPA197-Q1, OPA2197-Q1, OPA4197-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

Texas

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	1											
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA197IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
OPA197IDBVT	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
OPA197IDBVTG4	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
OPA197IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA197IDGKT	VSSOP	DGK	8	250	177.8	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA197IDGKTG4	VSSOP	DGK	8	250	177.8	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA197IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA197IDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA2197IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2197IDGKRG4	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2197IDGKT	VSSOP	DGK	8	250	177.8	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2197IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA2197IDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA4197IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
OPA4197IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

24-Jul-2025

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)			
OPA197IDBVR	SOT-23	DBV	5	3000	223.0	270.0	35.0			
OPA197IDBVT	SOT-23	DBV	5	250	223.0	270.0	35.0			
OPA197IDBVTG4	SOT-23	DBV	5	250	223.0	270.0	35.0			
OPA197IDGKR	VSSOP	DGK	8	2500	346.0	346.0	29.0			
OPA197IDGKT	VSSOP	DGK	8	250	223.0	270.0	35.0			
OPA197IDGKTG4	VSSOP	DGK	8	250	223.0	270.0	35.0			
OPA197IDR	SOIC	D	8	2500	353.0	353.0	32.0			
OPA197IDRG4	SOIC	D	8	2500	353.0	353.0	32.0			
OPA2197IDGKR	VSSOP	DGK	8	2500	346.0	346.0	29.0			
OPA2197IDGKRG4	VSSOP	DGK	8	2500	346.0	346.0	29.0			
OPA2197IDGKT	VSSOP	DGK	8	250	223.0	270.0	35.0			
OPA2197IDR	SOIC	D	8	2500	353.0	353.0	32.0			
OPA2197IDRG4	SOIC	D	8	2500	353.0	353.0	32.0			
OPA4197IDR	SOIC	D	14	2500	353.0	353.0	32.0			
OPA4197IPWR	TSSOP	PW	14	2000	353.0	353.0	32.0			

TEXAS INSTRUMENTS

www.ti.com

24-Jul-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
OPA197ID	D	SOIC	8	75	506.6	8	3940	4.32
OPA197ID.B	D	SOIC	8	75	506.6	8	3940	4.32
OPA2197ID	D	SOIC	8	75	506.6	8	3940	4.32
OPA2197ID.B	D	SOIC	8	75	506.6	8	3940	4.32
OPA4197ID	D	SOIC	14	50	506.6	8	3940	4.32
OPA4197ID.B	D	SOIC	14	50	506.6	8	3940	4.32
OPA4197IPW	PW	TSSOP	14	90	508	8.5	3250	2.8
OPA4197IPW.B	PW	TSSOP	14	90	508	8.5	3250	2.8

D0014A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

D0014A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0014A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

PW0014A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

PW0014A

EXAMPLE BOARD LAYOUT

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PW0014A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

DBV0005A

PACKAGE OUTLINE

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

DBV0005A

EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DBV0005A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

DGK0008A

PACKAGE OUTLINE

VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

DGK0008A

EXAMPLE BOARD LAYOUT

[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown

on this view. It is recommended that vias under paste be filled, plugged or tented.

9. Size of metal pad may vary due to creepage requirement.

DGK0008A

EXAMPLE STENCIL DESIGN

[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みま す)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある 「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証 も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様 のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様の アプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任 を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツル メンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらの リソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権の ライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、 費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは 一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ ースを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated