OPA310-Q1

OPAx310-Q1 車載向け、シャットダウン機能搭載、 大出力電流、5V、RRIO、3MHz オペアンプ

1 特長

- 大出力電流:標準値 ±150mA の I_{SC} (5.5V 時)
- シャットダウンからの高速イネーブル:0.9µs (標準値)
- 広い動作電源電圧範囲:1.5V~5.5V
- 低い入力オフセット電圧: ±250µV (標準値)
- フェイルセーフ入力:入力から V+ へのダイオードなし
- 最適化された静止電流: 1.6mA/ch (標準値)
- レールツーレール入出力
- ゲイン帯域幅積:5.5V において 3MHz (標準値)
- 熱ノイズ フロア:16nV/√Hz (標準値)
- ユニティゲイン安定
- 持続的な発振なしで最大 250pF を駆動
- 内部 RFI および EMI フィルタ付きの入力ピン
- 動作温度範囲:-40℃~125℃

2 アプリケーション

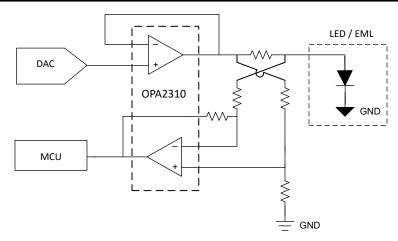
- AEC-Q100 グレード 1 アプリケーションに最適化
- トラクション インバータ
- バッテリ管理システム (BMS)
- オンボード充電器 (OBC) およびワイヤレス充電器
- HEV/EV の DC/DC コンバータ
- ボディエレクトロニクスおよび照明

3 概要

OPAx310-Q1 ファミリのオペアンプには、シングル (OPA310-Q1)、デュアル (OPA2310-Q1)、およびクワッド チャネル (OPA4310-Q1) のレール ツー レール入出力ス イング能力を備えた低電圧 (1.5V~5.5V)、大出力電流オ ペアンプがあります。また、OPA310S-Q1 バリアントは、非 常に高速なシャットダウン応答を備えており、イネーブル時 間は 0.9µs (代表値) です。これにより、アプリケーションで アンプ信号チェーンのデューティサイクル調整が必要な 場合に電力を削減できます。OPAx310-Q1 ファミリは、入 力と正の電源レールの間にダイオードが接続されていな いフェイルセーフ入力 ESD 構造を採用し、堅牢な ESD 性能を実現しています。

OPAx310-Q1 は、パワー パッド付き、標準、小型パッケー ジのバリアントで供給され、電流制限保護、サーマル シャ ットダウン保護機能を内蔵しているため、大出力電流で動 作しているときにも優れた堅牢性を実現しています。 OPAx310-Q1 は、レールに非常に近いスイングが可能で あり、5.5V 電源では動作温度範囲全体にわたって短絡電 流は 75mA (最小値) です。複数のオペアンプを適切に 並列接続することにより、さらに大きい出力電流性能を実 現できます。OPAx310-Q1 デバイスは、LED ドライバおよ びその他の大電流アプリケーションに最適であり、リファレ ンス バッファ、ガード アンプ、ディスクリート LDO としても 使用できます。

OPAx310-Q1 ファミリは、堅牢に設計されているため、回 路設計を簡素化できます。これらのオペアンプは、RFI お よび EMI 除去フィルタを内蔵し、入力オーバードライブ状 態で位相反転がありません。また、3MHz のゲイン帯域幅 による優れた AC 性能を備えており、持続的な発振なしで 最大 250pF の容量性負荷を駆動できるため、設計者は 性能向上および消費電力低減の両方を達成できます。


魁品情報

AT HI HI SA						
部品番号	チャネル数	パッケージ (1)	パッケージ サイズ ⁽⁴⁾			
OPA310-Q1	シンゲル	DBV (SOT-23, 5)	2.9mm × 2.8 mm			
OFASTO-QT		DCK (SC70, 5)	2.9mm × 2.8 mm 2mm × 2.1 mm 2.9mm × 2.8 mm 2mm × 2.1 mm 4.9mm × 6 mm 3mm × 4.9 mm 8.65mm × 6 mm			
OPA310S-Q1	シングル、シャットダウ	DBV (SOT-23, 6)	2.9mm × 2.8 mm			
OPASTOS-QT	\[\nu \]	DCK (SC70, 6)	2mm × 2.1 mm			
OPA2310-Q1 ⁽²⁾	デュアル	D (SOIC, 8) ⁽³⁾ 4.9mm × 6 mm				
OFA2310-Q1V	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DGK (VSSOP, 8)(3)	3mm × 4.9 mm			
OPA4310-Q1 ⁽²⁾	bra 18	D (SOIC, 14)(3)	8.65mm × 6 mm			
OPA4310-Q1-7	クワッド	PW (TSSOP, 14) ⁽³⁾	5mm × 6.4 mm			

- 詳細は、セクション 10 を参照してください。
- 部品番号はプレビュー専用です。
- パッケージはプレビュー専用です。
- パッケージ サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。

English Data Sheet: SBOSAI0

LED/EML のバイアス、電流センス付き

English Data Sheet: SBOSAI0

目次

1 特長	1
2アプリケーション	
3 概要	
4ピン構成および機能	
5 仕様	
5.1 絶対最大定格	
5.2 ESD 定格	
5.3 推奨動作条件	
5.4 シングル チャネルの熱に関する情報	
5.5 デュアル チャネルの熱に関する情報	8
5.6 クワッド チャネルの熱に関する情報	
5.7 電気的特性	
5.8 代表的特性	
6 詳細説明	22
6.1 概要	
62機能ブロック図	

6.3 機能説明	24
6.4 デバイスの機能モード	28
7 アプリケーションと実装	
7.1 アプリケーション情報	
7.2 代表的なアプリケーション	29
7.3 電源に関する推奨事項	
7.4 レイアウト	31
8 デバイスおよびドキュメントのサポート	
8.1ドキュメントのサポート	33
8.2ドキュメントの更新通知を受け取る方法	33
8.3 サポート・リソース	33
8.4 静電気放電に関する注意事項	
8.5 用語集	
9 改訂履歴	
10 メカニカル、パッケージ、および注文情報.	34

4 ピン構成および機能

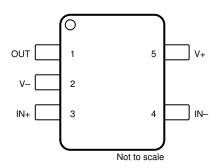


図 4-1. OPA310-Q1 パッケージ 5 ピン SOT-23 (上面図)

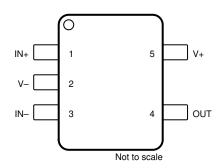


図 4-2. OPA310-Q1 DCK パッケージ 5 ピン SC70 (上面図)

表 4-1. ピンの機能: OPA310-Q1

	ピン		種類 (1)	3X BB		
名称	SOT-23	SC70	1里沒、/	説明		
IN-	4	3	I	反転入力		
IN+	3	1	I	非反転入力		
OUT	1	4	0	出力		
V-	2	2	I	負 (低) 電源またはグランド (単電源動作の場合)		
V+	5	5	I	正 (高) 電源		

(1) I = 入力、O = 出力

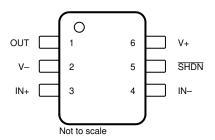


図 4-3. OPA310S-Q1 パッケージ 6 ピン SOT-23 (上面図)

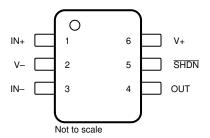


図 4-4. OPA310S-Q1 DCK パッケージ 6 ピン SC70 (上面図)

表 4-2. ピンの機能: OPA310S-Q1

	ピン		種類 (1)	説明	
名称	SOT-23	SC70		₩ ### ################################	
IN-	4	3	I	反転入力	
IN+	3	1	I	非反転入力	
OUT	1	4	0	出力	
SHDN	5	5	I	シャットダウン:Low = アンプがディセーブル、High = アンプがイネーブル 詳細については「シャットダウン機能」を参照	
V-	2	2	I	負(低)電源またはグランド(単電源動作の場合)	
V+	6	6	ı	正 (高) 電源	

(1) I=入力、O=出力

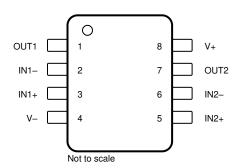


図 4-5. OPA2310-Q1 D および DGK パッケージ 8 ピン SOIC および VSSOP (上面図)

表 4-3. ピンの機能: OPA2310-Q1

ピン		種類 (1)	説明	
名称	番号	1里決員、/	ניט בענ	
IN1-	2	I	反転入力、チャネル 1	
IN1+	3	I	非反転入力、チャネル 1	
IN2-	6	I	反転入力、チャネル 2	
IN2+	5	I	非反転入力、チャネル 2	
OUT1	1	0	出力、チャネル 1	
OUT2	7	0	出力、チャネル 2	
V-	4	I	(低) 電源またはグランド (単電源動作の場合)	
V+	8	I	正(高)電源	

(1) I = 入力、O = 出力

5

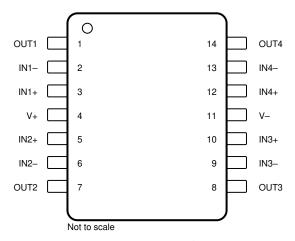


図 4-6. OPA4310-Q1 D および PW パッケージ 14 ピン SOIC および TSSOP (上面図)

表 4-4. ピンの機能: OPA4310-Q1

ピン		種類 (1)	÷× na
名称	番号	世親(**)	説明
IN1-	2	I	反転入力、チャネル 1
IN1+	3	1	非反転入力、チャネル 1
IN2-	6	1	反転入力、チャネル 2
IN2+	5	1	非反転入力、チャネル 2
IN3-	9	1	反転入力、チャネル3
IN3+	10	1	非反転入力、チャネル3
IN4-	13	1	反転入力、チャネル 4
IN4+	12	1	非反転入力、チャネル 4
OUT1	1	0	出力、チャネル 1
OUT2	7	0	出力、チャネル 2
OUT3	8	0	出力、チャネル 3
OUT4	14	0	出力、チャネル 4
V-	11	1	負 (低) 電源またはグランド (単電源動作の場合)
V+	4	ı	正 (高) 電源

(1) I = 入力、O = 出力

5 仕様

5.1 絶対最大定格

動作時周囲温度範囲内 (特に記述のない限り)(1)

		最小値	最大値	単位
電源電圧、V _S = (V+) - (V-)	電源電圧、V _S = (V+) - (V-)	0	7	V
	同相電圧 (2) (3)	-0.5	6.0	V
信号入力ピン	差動電圧 (2) (3)		±6.0	V
	電流 (3)	-10	10	mA
出力短絡 ⁽⁴⁾ 連続		連続		
動作時周囲温度、TA		-55	150	°C
接合部温度、TJ			150	°C
保管温度、T _{stg}		-65	150	°C

- (1) 「絶対最大定格」の範囲を超える動作は、デバイスの永続的な損傷の原因となる可能性があります。「絶対最大定格」は、これらの条件において、または「推奨動作条件」に示された値を超える他のいかなる条件でも、本製品が正しく動作することを暗に示すものではありません。「絶対最大定格」の範囲内であっても「推奨動作条件」の範囲外で使用した場合、本デバイスは完全に機能するとは限らず、このことが本デバイスの信頼性、機能、性能に影響を及ぼし、本デバイスの寿命を縮める可能性があります。
- (2) 入力ピンは、6.0V 以内に維持されている限り、(V+)を超えるスイングが可能です。入力ピンから (V+)までのダイオード構造はありません。
- (3) 入力ピンは (V-) に対してダイオード クランプされています。(V-) より 0.3V 低い入力信号は、電流を 10mA 以下に制限する必要があります。
- (4) グランドへの短絡、パッケージあたり 1 台のアンプ。

5.2 ESD 定格

部品番号				値	単位
OPA310-Q1	V _(ESD)	静電気放電	人体モデル (HBM)、ANSI/ESDA/JEDEC JS-001 準拠 ⁽¹⁾	±8000	V
OPA310-Q1	V _(ESD)	静電気放電	デバイス帯電モデル (CDM)、JEDEC 仕様 JS-002 準拠 ⁽²⁾	±1500	V

- (1) JEDEC ドキュメント JEP155 には、500V HBM であれば標準的な ESD 管理プロセスにより安全な製造が可能であると記載されています。
- (2) JEDEC のドキュメント JEP157 には、250V CDM であれば標準的な ESD 管理プロセスにより安全な製造が可能であると記載されています。

5.3 推奨動作条件

動作時周囲温度範囲内 (特に記述のない限り)

		最小値	最大値	単位
Vs	電源電圧、(V+) - (V-)	1.5	5.5	V
VI	入力電圧範囲 (仕様温度範囲全体) 1.5V ≦ V _S < 2V	(V-)	(V+)	V
VI	入力電圧範囲 (仕様温度範囲全体) 2V ≦ V _S ≦ 5.5V	(V-) - 0.1	(V+) + 0.1	V
VI	入力電圧範囲	-0.1	5.6	V
V _{IH}	シャットダウン ピンでの High レベル入力電圧 (アンプがイネーブル)	(V-) + 1.2	(V+)	V
V _{IL}	シャットダウン ピンでの Low レベル入力電圧 (アンプがディセーブル)	(V-)	(V-) + 0.2	V
T _A	仕様温度範囲	-40	125	°C

7

5.4 シングル チャネルの熱に関する情報

熱評価基準 ⁽¹⁾		OPA3	10-Q1	OPA31	0S-Q1	
		DBV (SOT-23)	DCK (SC70)	DBV (SOT-23)	DCK (SC70)	単位
		5ピン	5ピン	6ピン	6ピン	
$R_{\theta JA}$	接合部から周囲への熱抵抗	211.5	214.6	190.7	195.8	°C/W
R _{0JC(top)}	接合部からケース (上面) への熱抵抗	109.4	110.0	110.5	122.9	°C/W
R _{θJB}	接合部から基板への熱抵抗	77.8	60.7	70.8	55.5	°C/W
ΨЈТ	接合部から上面への特性パラメータ	45.2	32.1	47.4	38.3	°C/W
ΨЈВ	接合部から基板への特性パラメータ	77.5	60.4	70.5	55.2	°C/W
R _{θJC(bot)}	接合部からケース (底面) への熱抵抗	該当なし	該当なし	該当なし	該当なし	°C/W

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポート、SPRA953 を参照してください。

5.5 デュアル チャネルの熱に関する情報

		OPA2	310-Q1
	熱評価基準 ⁽¹⁾	D (SOIC)	DGK (VSSOP)
		8 ピン	8 ピン
$R_{\theta JA}$	接合部から周囲への熱抵抗	139.0	187.7
R _{0JC(top)}	接合部からケース (上面) への熱抵抗	81.2	78.1
$R_{\theta JB}$	接合部から基板への熱抵抗	82.4	109.5
Ψ _J Τ	接合部から上面への特性パラメータ	31.3	17.9
ΨЈВ	接合部から基板への特性パラメータ	81.6	107.9
$R_{\theta JC(bot)}$	接合部からケース (底面) への熱抵抗	該当なし	N/A

(1) 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション レポート、SPRA953 を参照してください。

5.6 クワッド チャネルの熱に関する情報

		OPA4			
	熱評価基準 ⁽¹⁾	D (SOIC)	PW (TSSOP)	単位	
		14 ピン	14 ピン		
R _{θJA}	接合部から周囲への熱抵抗	101.5	128.2	°C/W	
R ₀ JC(top)	接合部からケース (上面) への熱抵抗	57.8	58.7	°C/W	
R _{0JB}	接合部から基板への熱抵抗	58.0	71.4	°C/W	
ΨЈТ	接合部から上面への特性パラメータ	20.9	13.0	°C/W	
ΨЈВ	接合部から基板への特性パラメータ	57.6	70.8	°C/W	
R _{0JC(bot)}	接合部からケース (底面) への熱抵抗	該当なし	該当なし	°C/W	

(1) 従来および最新の熱測定基準の詳細については、アプリケーションレポート『半導体および IC パッケージの熱評価基準』、SPRA953 を参照してください。

資料に関するフィードバック (ご意見やお問い合わせ) を送信

Copyright © 2024 Texas Instruments Incorporated

5.7 電気的特性

 V_S = (V+) - (V-) = 1.5V~5.5V (±0.75V~±2.75V) の場合 (T_A = 25°C時)、 R_L = 10k Ω を $V_S/2$ 、 V_{CM} = $V_S/2$ 、および $V_{O\ UT}$ = $V_S/2$ に接続 (特に記述のない限り)。

	パラメータ	テスト条件		最小值	標準値	最大值	単位
オフセット電	武 圧						
\/	1 ナーマル 1 乗回	V _{CM} = V-			±0.25	±1.3	mV
V _{OS}	入力オフセット電圧	V _{CM} = V-	T _A = -40°C~125°C			±1.4	mv
dV _{OS} /dT	入力オフセット電圧ドリフ ト	V _{CM} = V-	T _A = -40°C~125°C		±0.5		μV/°C
PSRR	入力オフセット電圧と電 源との関係	V _S = 1.5V~5.5V, V _{CM} = V-		±10	±50	μV/V	
	チャネル セパレーション	f = 10kHz		±1		μV/V	
入力バイア	ス電流						
I _B	入力バイアス電流(1)	V _S = 1.8V, V _S = 5V			±1	±30	pА
I _{os}	入力オフセット電流 (1)	V _S = 1.8V, V _S = 5V			±0.5	±25	pА
ノイズ			'				
E _N	入力電圧ノイズ	f = 0.1~10Hz			4		μV _{PP}
	入力電圧ノイズ密度	f = 100Hz		32			
e _N		f = 1kHz			nV/√ Hz		
		f = 10kHz		13			
i _N	入力電流ノイズ (3)	f = 1kHz			10		fA/√ Hz
入力電圧範	色 田						
V	同相電圧範囲 (1)	V _S = 1.8V	T _A = -40°C~125°C	(V-)		(V+)	V
V _{CM}	同相電圧範囲 (1)	V _S = 5.5V	T _A = -40°C~125°C	(V-) - 0.1		(V+) + 0.1	V
		$V_S = 1.8V, (V-) \le V_{CM} \le (V+) - 0.6V$		75	85		dB
		$V_S = 1.8V, (V-) \le V_{CM} \le (V+) - 0.6V$	T _A = -40°C~125°C	65	78		dB
		$V_S = 5.5V, (V-) \le V_{CM} \le (V+) - 0.6V$		83	95		dB
CMRR	同相信号 除去比	$V_S = 5.5V, (V-) \le V_{CM} \le (V+) - 0.6V$	T _A = -40°C~125°C	75	85		
		フルレンジ: V _S = 1.8V、(V−) ≦ V _{CM} ≦ (V+)	T _A = -40°C~125°C	57.5	57.5 70		dB
		フルレンジ: V _S = 5.5V (V−) − 0.1V ≦ V _{CM} ≦ (V+) + 0.1V	T _A = -40°C~125°C	66.5 80			
入力インピ	ーダンス		•				
Z _{ID}	差動 入力 インピーダンス				80 1.4		GΩ pF
Z _{ICM}	同相モード 入力 インピーダンス			100 0.5			GΩ pF

5.7 電気的特性 (続き)

 $V_S = (V+) - (V-) = 1.5V \sim 5.5V (\pm 0.75V \sim \pm 2.75V)$ の場合 $(T_A = 25^{\circ}C$ 時)、 $R_L = 10k\Omega$ を $V_S/2$ 、 $V_{CM} = V_S/2$ 、および $V_{O\ UT} = V_S/2$ に接続 (特に記述のない限り)。

	パラメータ	テスト条件		最小値	標準値	最大値	単位
開ループ ク	デイン						
	開ループ電圧ゲイン	V_S = 1.8 V 、(V –) + 0.05 V < V_O < (V +) - 0.05 V 、 R_L = 10 $k\Omega$ $\&$ $V_S/2$ C E % $\&$		102	115		dB
	開ループ電圧ゲイン(2)	V_S = 1.8 V 、(V -) + 0.10 V < V_O < (V +) - 0.10 V 、 R_L = 2 $k\Omega$ を V_S /2 に接続		95	105		dB
Aol	州ルーク電圧ケイン()	V_S = 5.5V、(V–) + 0.10V < V_O < (V+) - 0.10V、 R_L = 10k Ω を $V_S/2$ に接続		109	125		dB
		V_S = 5.5V、(V-) + 0.15V < V_O < (V+) - 0.15V、 R_L = 2k Ω を $V_S/2$ に接続		105	115		dB
		V_S = 1.8V、(V-) + 0.05V < V_O < (V+) - 0.05V、 R_L = 10k Ω を $V_S/2$ に接続		90	100		dB
	開ループ電圧ゲイン	V_S = 1.8V、(V-) + 0.10V < V_O < (V+) - 0.10V、 R_L = 2k Ω を $V_S/2$ に接続	T = 40°C 405°C		90		
		V_S = 5.5V、(V–) + 0.10V < V_O < (V+) - 0.10V、 R_L = 10k Ω を $V_S/2$ に接続	— T _A = -40°C∼125°C		105		
		V_S = 5.5 V 、(V-) + 0.15 V < V_O < (V+) - 0.15 V 、 R_L = 2 $k\Omega$ を V_S /2 に接続		90	100		
	開ループ電圧ゲイン (6)	$V_S = 3.3V$, (V-) + 0.25V < V_O < (V+) - 0.25V, $I_L = \pm 50 \text{mA}$	80	102		dB	
周波数応答	F						
GBW	V _S = 1.8V、G = +1、R _L = 10kΩ、C _L = 100pF				2.5		MHz
OBW	クイン市場側側	$V_S = 5.5V, G = +1, R_L = 10k\Omega, C_L = 100pF$		3		MHz	
SR	スルー レート	$V_S = 1.8V, G = +1, R_L = 10k\Omega$		2.8		V/µs	
OIX		$V_S = 5.5V, G = +1, R_L = 10k\Omega$		3		V/µs	
		V_S = 5.5V, G = +1, V_O = 1 V_{RMS} , f = 1 k Hz, R_L = 10 k Ω $\stackrel{.}{\sim}$ V_S /2 $\stackrel{.}{\sim}$			0.0005		%
THD+N	全高調波歪み + ノイズ (4)	V_S = 5.5V、 G = +1、 V_O = 1 V_{RMS} 、 f = 1 kHz 、 R_L = 2 $k\Omega$ を V_S /2 に接続		0.0035		%	
		V_S = 5.5V, G = +1, V_O = 1 V_{RMS} , f = 1 kHz , R_L = 600 Ω $& V_S/2$ に接続			0.0080		%
		0.1% まで、 $V_S = 5.5V$ 、 $V_{STEP} = 4V$ 、 $G = +1$ 、 $C_L = 10pF$			1.8		
	ふいいが カノ)	0.1% まで、V _S = 5.5V、V _{STEP} = 2V、G = +1、C _L =	1.3				
t _S	セトリング タイム	0.01% まで、V _S = 5.5V、V _{STEP} = 4V、G = +1、C _L		2.3		μs	
		0.01% まで、V _S = 5.5V、V _{STEP} = 2V、G = +1、C _L		1.6			
PM	位相マージン	G = +1、 R_L = 10k Ω を $V_S/2$ に接続、 C_L = 10pF			60		۰
		G = +1、 R_L = 10 $k\Omega$ を $V_S/2$ に接続、位相マージン	= 40°		75		pF
C _L の駆動	容量性負荷駆動能力	$G=+1$ 、 $R_L=10k\Omega$ を $V_S/2$ に接続、 持続的な発振なし			250		pF
t _{overload}	過負荷回復時間	V _{IN} ×ゲイン>V _S			0.6		μs
EMIRR	電磁干渉除去比	f = 1.8GHz, V _{IN EMIRR} = 100mV			75		dB

Copyright © 2024 Texas Instruments Incorporated

10

5.7 電気的特性 (続き)

 V_S = (V+) - (V-) = 1.5V~5.5V (±0.75V~±2.75V) の場合 (T_A = 25°C時)、 R_L = 10k Ω を $V_S/2$ 、 V_{CM} = $V_S/2$ 、および $V_{O\ UT}$ = $V_S/2$ に接続 (特に記述のない限り)。

	パラメータ	テスト条件		最小値	標準値	最大値	単位
出力							
		V_S = 1.8 V 、 R_L = 2 $k\Omega$ を V_S /2 に接続			10	21	
		V_S = 1.8 V 、 R_L = 10 $k\Omega$ を $V_S/2$ に接続			2	11	
		V_S = 1.8 V 、 R_L = 2 $k\Omega$ を V_S /2 に接続	T _A = -40°C~125°C			51	
V _{OH}	正電圧レールからの電	V_S = 1.8 V 、 R_L = 10 $k\Omega$ を $V_S/2$ に接続	T _A = -40°C~125°C			26	
VOH	圧出力スイング	V_S = 5.5 V 、 R_L = $2k\Omega$ を $V_S/2$ に接続			3.5	20	
		V_S = 5.5 V 、 R_L = 10 $k\Omega$ を $V_S/2$ に接続			0.75	9	
		V_S = 5.5 V 、 R_L = $2k\Omega$ を $V_S/2$ に接続	T _A = -40°C~125°C			30	
		V_S = 5.5V、 R_L = 10k Ω を V_S /2 に接続	T _A = -40°C~125°C			14	mV
		V_S = 1.8 V 、 R_L = 2 $k\Omega$ を V_S /2 に接続			5.5	15	IIIV
		V_S = 1.8 V 、 R_L = 10 $k\Omega$ を $V_S/2$ に接続			1.2	10	
V _{OL}	負電圧レールからの電 圧出力スイング	V_S = 1.8 V 、 R_L = 2 $k\Omega$ を V_S /2 に接続	R _L = 2kΩ を V _S /2 に接続 T _A = -40℃~125℃			45	
		V_S = 1.8 V 、 R_L = 10 $k\Omega$ を $V_S/2$ に接続	T _A = -40°C~125°C	40°C∼125°C		25	
		V_S = 5.5 V 、 R_L = $2k\Omega$ を $V_S/2$ に接続			3.5	17.5	
		V_S = 5.5V、 R_L = 10k Ω を V_S /2 に接続			0.75	10	
		V_S = 5.5 V 、 R_L = $2k\Omega$ を $V_S/2$ に接続	T _A = -40°C~125°C			27.5	
		V_S = 5.5V、 R_L = 10k Ω を V_S /2 に接続	T _A = -40°C~125°C			11	
	短絡電流 (5)	V _S = 1.8V			±20		mA
SC	短絡電流 (2) (5)	V _S = 1.8V, T _A = -40°C~125°C		±6			mA
	短絡電流 (5)	V _S = 5.5V, OPA2310 -Q1		±75	±150		mA
sc	短絡電流 (5)	V _S = 5.5V、OPA310-Q1 および OPA4310-Q1		±110			mA
Z _O	開ループ出力インピー ダンス	f = 10kHz			1000		Ω
電源							
		$V_S = 1.5V$, $I_O = 0A$, v_{Y}			165	190	μΑ
Q	静止電流 (アンプあたり)	$V_S = 1.5V$, $I_O = 0A$, $v + y + y + y + y + y + y + y + y + y + $	T _A = -40°C~125°C		165	210	μA
		$V_S = 5.5V$, $I_O = 0A$, v_{YV} v_{YV} v_{YV} v_{YV}			165	200	μA
		SHDN = V+	T _A = -40°C~125°C			215	μΑ
	パワーオン時間	$T_A = 25$ °C, $V_S = 5.5$ V, $V_S \ni \mathcal{V} \mathcal{V} \vdash \mathcal{V} \vdash \mathcal{V} \rightarrow 0.3$ V/ μ s			125		μs

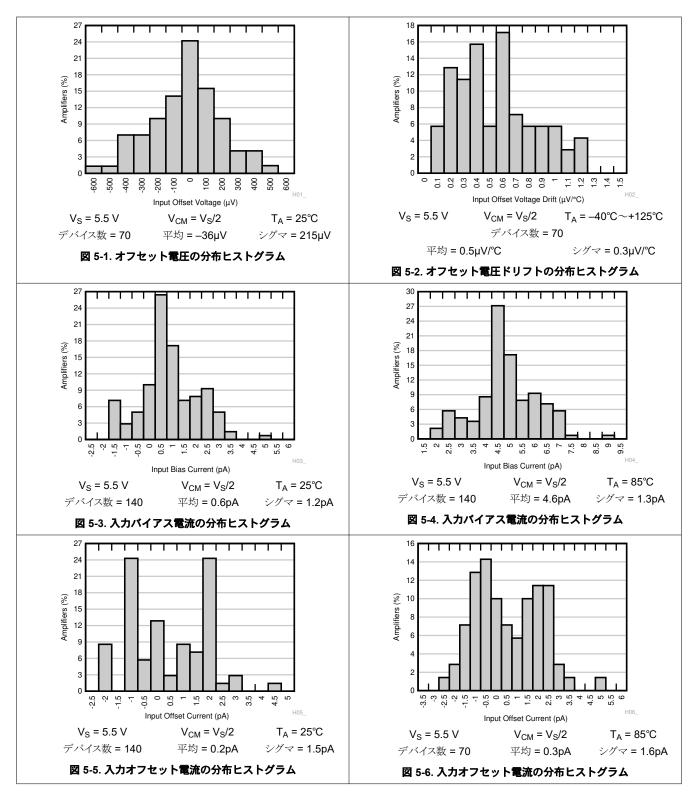
5.7 電気的特性 (続き)

 $V_S = (V+) - (V-) = 1.5V \sim 5.5V (\pm 0.75V \sim \pm 2.75V)$ の場合 $(T_A = 25^{\circ}C$ 時)、 $R_L = 10k\Omega$ を $V_S/2$ 、 $V_{CM} = V_S/2$ 、および $V_{OUT} = V_S/2$ に接続 (特に記述のない限り)。

	パラメータ	テスト条件	最小値	標準値	最大値	単位
シャットダウン	/		•			
I _{Q_SHDN}	アンプごとのシャットダウ ン電流	すべてのアンプを無効化、SHDN = V-、OPA310S-Q1		0.265	0.475	μA
I _{Q_SHDN}	アンプごとのシャットダウ ン電流 ⁽¹⁾	すべてのアンプを無効化、SHDN = V−、T _A = -40°C~85°C、OPA310S-Q1			0.700	μΑ
Z _{OUT_SHDN}	シャットダウン時の出力 インピーダンス	アンプがディセーブル		43 11.5		GΩ pF
V _{SHDN_IH}	ロジック High 電圧 (アン プがイネーブル)		(V-) + 1.2			V
V _{SHDN_IL}	ロジック Low 電圧 (アン プがディセーブル)				(V-) + 0.2	V
t _{ON}	アンプのイネーブル時間 (フル シャットダウン) (7) (1)	G = +1、 V_{CM} = $V_S/2$ 、 V_O = $0.9 \times V_S/2$ 、 R_L を V - に接続		1	1.6	μs
t _{OFF}	アンプのディセーブル時間 (7)	G = +1、 V_{CM} = $V_S/2$ 、 V_O = 0.1 × $V_S/2$ 、 R_L を V - に接続		1		μs
1	SHDN ピンの入力バイ	IDN ピンの入力バイ (V+) ≧ SHDN ≧ (V-) + 1V		50		nΛ
I _{B_SHDN}	アス電流 (ピンごと)	(ピンごと) (V-) ≦ SHDN ≦ (V-) + 0.2V		100		nA

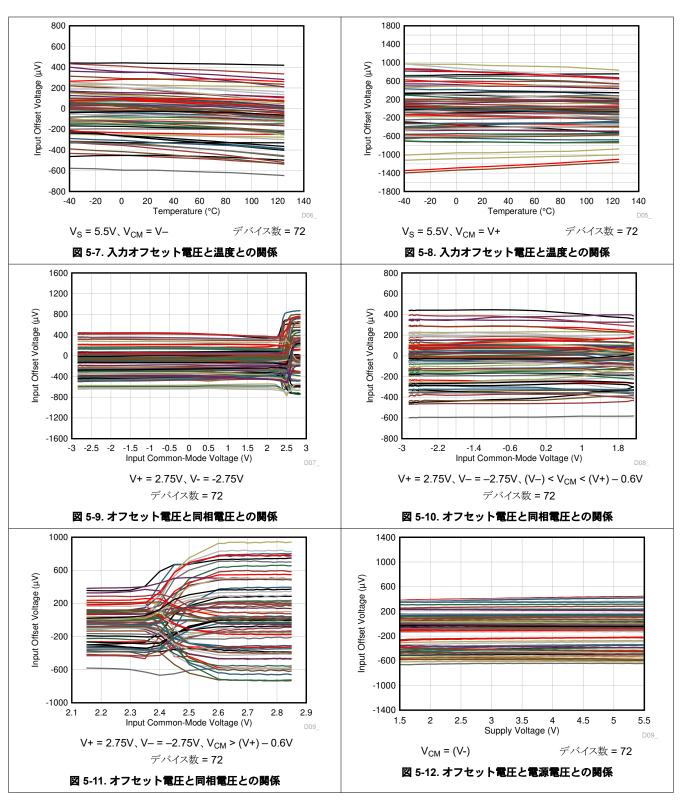
- (1) 最大データは特性評価結果に基づいて規定されています。
- (2) 最小データは特性評価結果に基づいて規定されています。
- (3) 入力電流ノイズデータの標準値は、設計シミュレーションの結果に基づいて規定されています。
- (4) 3 次フィルタ、-3dB で帯域幅 = 80kHz。
- (5) ここで規定されている短絡電流は、短絡電流のソースとシンクの平均値です。
- (6) A_{OL} は、 $(V_{OSA} V_{OSB})$ / $(V_{OUTA} V_{OUTB})$ の差として測定されます。 V_{OSA} は OUT ピンが (V+) 0.25V でバイアスされ、デバイスが 50mA をソースしたときに測定されるオフセットであり、VOSB は OUT ピンが (V-) + 0.25V でバイアスされ、デバイスが 50mA をシンクしたときに測定されるオフセットです。
- (7) ディセーブル時間 (t_{OFF}) とイネーブル時間 (t_{ON}) は、 \overline{SHDN} ピンに印加される信号の 50% ポイントと、出力電圧が 10% (ディセーブル) または 90% (イネーブル) レベルに達する時点との時間間隔として定義されます。

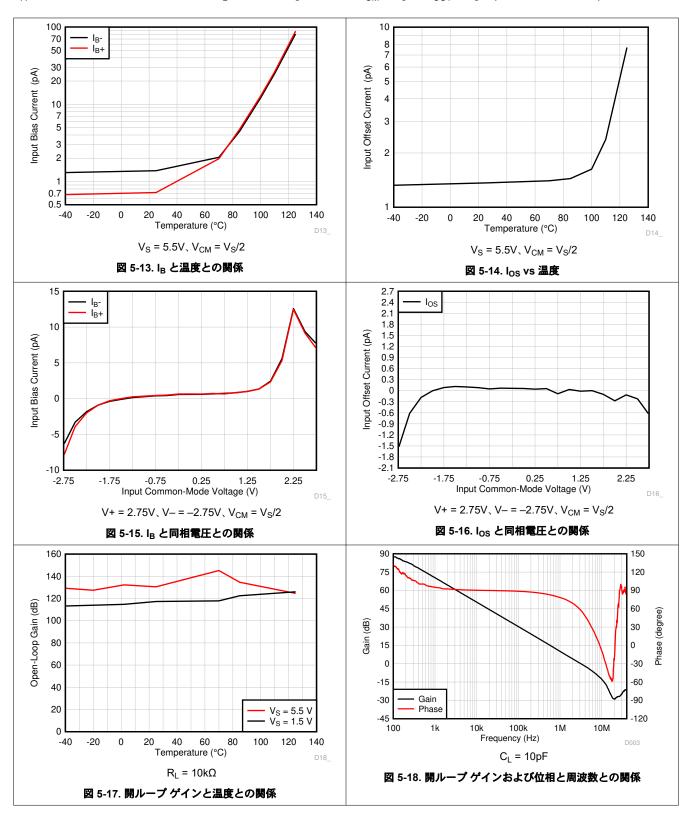
資料に関するフィードバック (ご意見やお問い合わせ) を送信


Copyright © 2024 Texas Instruments Incorporated

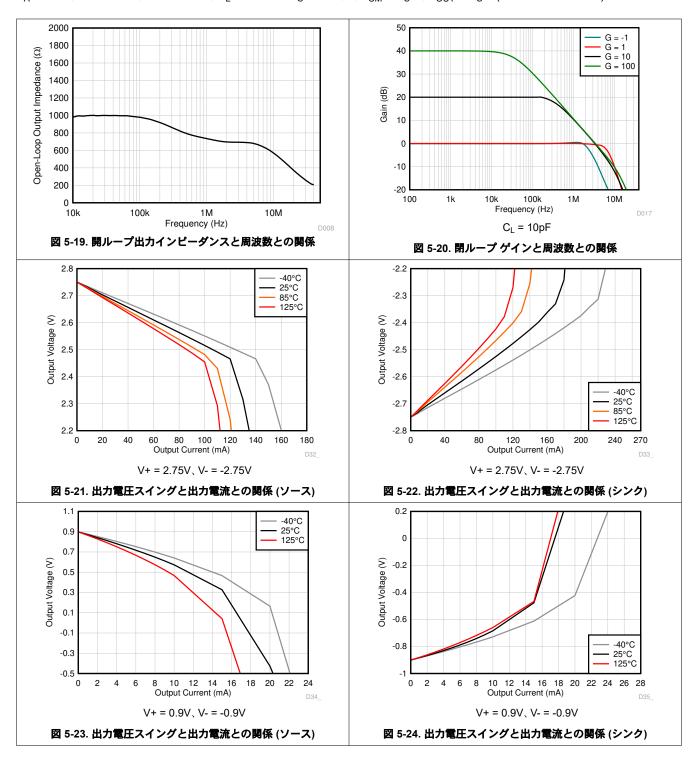
English Data Sheet: SBOSAI0

5.8 代表的特性

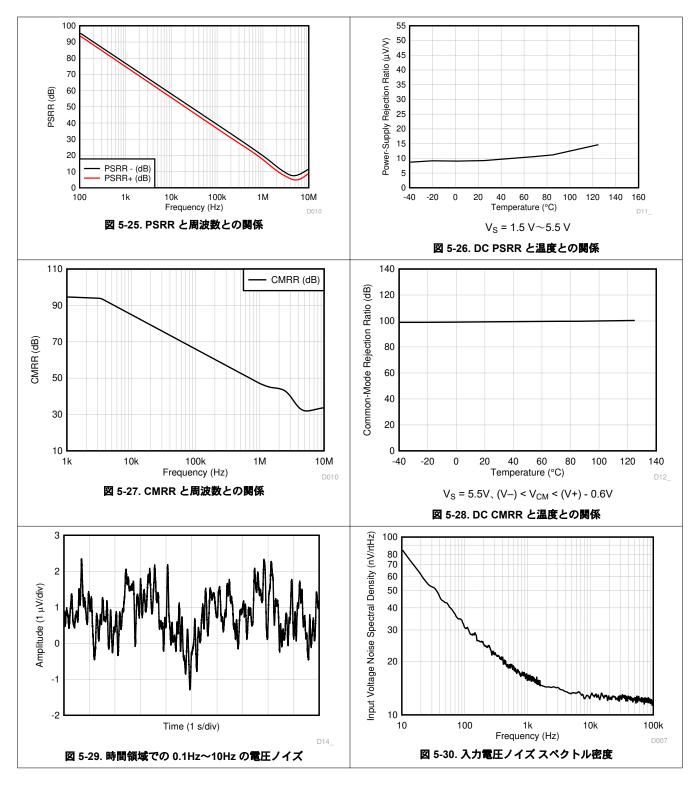

 T_A = 25°C、V+ = 2.75V、V- = -2.75V、 R_L = 10k Ω を $V_S/2$ に接続、 V_{CM} = $V_S/2$ 、 V_{OUT} = $V_S/2$ (特に記述のない限り)


English Data Sheet: SBOSAI0

 T_A = 25°C、V+ = 2.75V、V- = -2.75V、 R_L = 10k Ω を V_S /2 に接続、 V_{CM} = V_S /2、 V_{OUT} = V_S /2 (特に記述のない限り)

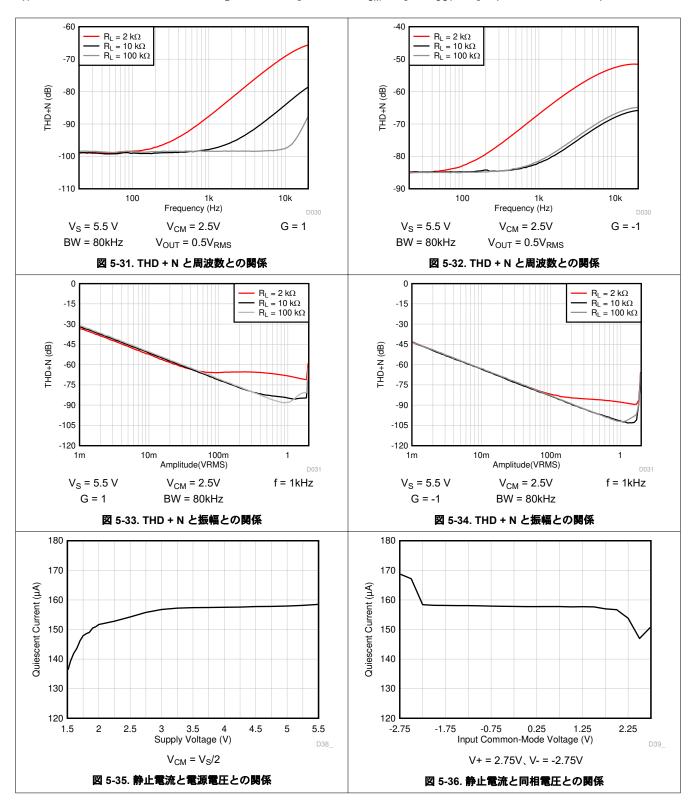

 T_A = 25°C、V+ = 2.75V、V- = -2.75V、 R_L = 10k Ω を $V_S/2$ に接続、 V_{CM} = $V_S/2$ 、 V_{OUT} = $V_S/2$ (特に記述のない限り)

15

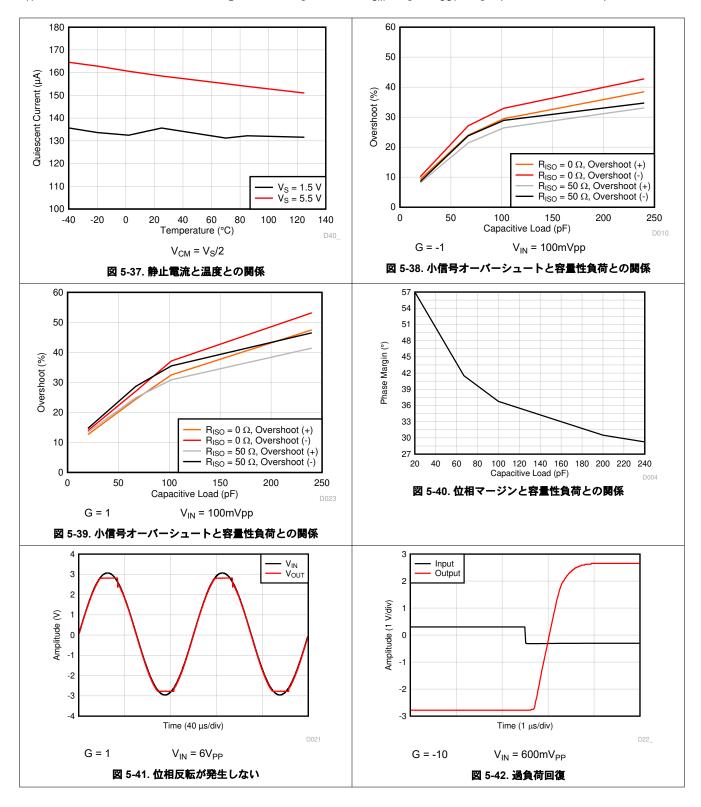


 $T_A = 25$ °C、 $V_{+} = 2.75$ V、 $V_{-} = -2.75$ V、 $V_{-} = -2.75$ V、 $V_{-} = 10$ kΩ を $V_{S}/2$ に接続、 $V_{CM} = V_{S}/2$ 、 $V_{OUT} = V_{S}/2$ (特に記述のない限り)

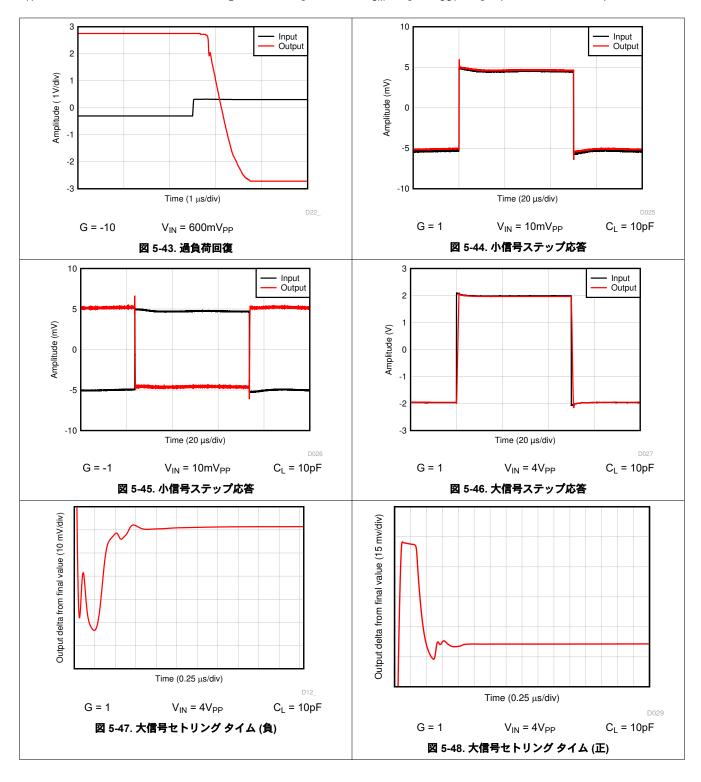
 T_A = 25°C、V+ = 2.75V、V- = -2.75V、 R_L = 10k Ω を $V_S/2$ に接続、 V_{CM} = $V_S/2$ 、 V_{OUT} = $V_S/2$ (特に記述のない限り)


Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信


17

 T_A = 25°C、V+ = 2.75V、V- = -2.75V、 R_L = 10k Ω を $V_S/2$ に接続、 V_{CM} = $V_S/2$ 、 V_{OUT} = $V_S/2$ (特に記述のない限り)


 T_A = 25°C、V+ = 2.75V、V- = -2.75V、 R_L = 10k Ω を $V_S/2$ に接続、 V_{CM} = $V_S/2$ 、 V_{OUT} = $V_S/2$ (特に記述のない限り)


19

 $T_A = 25$ °C、 $V_{+} = 2.75$ V、 $V_{-} = -2.75$ V、 $R_L = 10$ kΩ を $V_S/2$ に接続、 $V_{CM} = V_S/2$ 、 $V_{OUT} = V_S/2$ (特に記述のない限り)

 $T_A = 25$ °C、 $V_{+} = 2.75$ V、 $V_{-} = -2.75$ V、 $V_{-} = -2.75$ V、 $V_{-} = 10$ kΩ を $V_{S}/2$ に接続、 $V_{CM} = V_{S}/2$ 、 $V_{OUT} = V_{S}/2$ (特に記述のない限り)

21

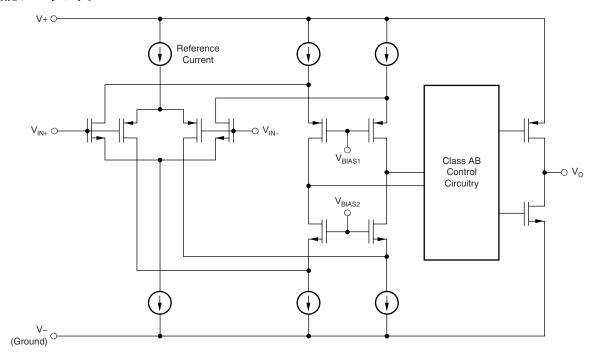
6 詳細説明

6.1 概要

OPAx310-Q1 ファミリのオペアンプには、シングル (OPA310-Q1)、デュアル (OPA2310-Q1)、およびクワッド チャネル (OPA4310-Q1) のレール ツー レール入出力スイング能力を備えた超低電圧 (1.5V~5.5V)、大出力電流オペアンプがあります。OPAx310-Q1 は非常に高速なシャットダウン応答も特長としており、イネーブル時間仕様の標準値はわずか0.9μs です。この機能により、アプリケーションでアンプのシグナル チェーンのデューティ サイクルが必要な場合に、消費電力を削減できます。OPAx310-Q1 は、入力から正の電源レールに向かってダイオードが接続されていないフェイルセーフ入力 ESD 構造を採用し、堅牢な ESD 性能を実現しています。

OPAx310-Q1 は、標準パッケージで供給され、電流制限、サーマル シャットダウン保護機能を内蔵しているため、大出力電流で動作しているときにも優れた堅牢性を実現しています。OPAx310-Q1 は、レールに非常に近いスイングが可能であり、5.5V 電源では温度範囲全体にわたって短絡電流は ±75mA (最小値) で、静止電流はわずか 165μA です。低電圧、低 IQ、高出力電流の組み合わせにより、このデバイスは非常に独特で、幅広い汎用および高電流アプリケーションに最適です。複数のオペアンプを並列接続することにより、さらに大きい出力電流性能を簡単に実現できます。これらのデバイスは、LEDドライバ、その他の大電流アプリケーションに最適であり、リファレンス バッファ、ガード アンプ、ディスクリート LDOとしても使用できます。

入力同相電圧範囲には両方のレールが含まれているため、OPAx310-Q1 シリーズは多くの単電源構成またはデュアル電源構成で使用できます。レール ツー レールの入力および出力スイングにより、特に低電源アプリケーションでダイナミック レンジが大幅に拡大するため、サンプリング A/D コンバータ (ADC) の駆動に最適です。さらに、Class AB 出力段は、V+とグランド間の任意のポイントに接続される、小さい抵抗性負荷を駆動できます。


OPAx310-Q1 は、位相マージン 40° (代表値) で最大 75pF を駆動でき、3MHz のゲイン帯域幅積、3V/ μ s のスルーレート、4 μ V $_{p-p}$ の統合ノイズ (0.1Hz \sim 10Hz) を特長とし、チャネルあたりの消費電流はわずか 165 μ A であるため、非常に低い消費電力で優れた AC 性能を実現できます。DC アプリケーションでも、低い入力バイアス電流 (代表値 1 μ A)、良好な入力オフセット電圧 (代表値 0.25 μ A)、良好な PSRR (代表値 10 μ V/V)、CMRR (代表値 80dB)、A $_{OL}$ (代表値 125dB) であることが有益となります。

OPAx310-Q1 ファミリは、堅牢に設計されているため、回路設計を簡素化できます。これらのオペアンプは、無線周波数 干渉 (RFI) と電磁干渉 (EMI) の除去フィルタ、ユニティ ゲイン安定性、および入力オーバードライブ状態での無位相反 転を備えています。

Copyright © 2024 Texas Instruments Incorporated

6.2 機能ブロック図

23

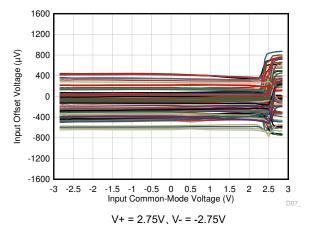
6.3 機能説明

6.3.1 動作電圧

OPAx310-Q1 シリーズのオペアンプは 1.8V~5.5V での動作が完全に規定されており、1.5V~1.8V でのアンプ動作が テストされています。また、多くの仕様は −40°Cから 125°Cまで適用されます。動作電圧または温度によって大きく変化するパラメータについては、「代表的特性」に示します。 テキサス・インスツルメンツでは、0.01µF 以上のセラミック コンデン サを使用して電源ピンをバイパスすることを強く推奨します。

6.3.2 レール ツー レール入力

OPAx310-Q1 シリーズの入力同相モード電圧範囲は、両方の電源レールまで及びます。これは、1.5V という非常に低い電源電圧で動作している場合でも、標準電源電圧の 5.5V で動作している場合でも同様です。この性能は、コンプリメンタリ入力段 (P チャネル差動ペアと並んで配置された N チャネル入力差動ペア) により達成されています。詳細については、「機能ブロック図」を参照してください。


相補入力段を持つほとんどのアンプでは、入力ペアの 1 つ (通常は P チャネル入力ペア) は、入力オフセット電圧、オフセットドリフトにおいて、N チャネル ペアよりもわずかに優れた性能を実現するように設計されています。そのため、P チャネル ペアが同相範囲の大部分をカバーし、正のレールからの特定のスレッショルド電圧で、N チャネル ペアが徐々に引き継ぎ始めるように設計されています。スレッショルド電圧の直後、遷移領域と呼ばれる狭い範囲の間は、両方の入力ペアが動作します。この領域を超えると、N チャネル ペアが完全に動作を引き継ぎます。この遷移領域内では、この領域の外側でデバイスが動作しているときと比較して、PSRR、CMRR、オフセット電圧、オフセットドリフト、THD が劣化する可能性があります。したがって、ほとんどのアプリケーションでは一般的に、性能が多少向上する P チャネル入力範囲での動作が好まれます。

OPAx310-Q1 の場合、P チャネル ペアは通常 (V-)~(V+) - 0.4V の入力電圧でアクティブになり、N チャネル ペアは通常、正電源から (V+) - 0.4V までの入力電圧でアクティブになります。この遷移領域は通常、(V+) - 0.5V から (V+) - 0.3V まで発生し、この範囲では両方のペアがオンになります。上記の電圧レベルは、トランジスタのスレッショルド電圧に関連するプロセスの変動によって変化する可能性があります。OPAx310-Q1 では、上記の 200mV の遷移領域は、どちらの方向でも最大 200mV 変動する可能性があります。したがって、過渡領域 (両方の段がオンになる) は、Low では (V+) - 0.7V~(V+) - 0.5V、High 側では最大 (V+) - 0.3V~(V+) - 0.1V の範囲になる可能性があります。

P チャネル入力ペアは通常、N チャネル入力ペアよりも性能が優れていることを考慮し、OPAx310-Q1 は、業界で最も優れた入力アンプと比較して、P チャネル入力ペアの範囲が大幅に広がるように設計されています。下に OPAx310-Q1 と TLV900x を並べて比較しています。 TLV900x は、正のレールから 1.4V までのみ P チャネル ペアで動作するように設計されており、OPAx310-Q1 は正のレールから 0.7V まで P チャネル ペアで動作するように設計されています。この OPAx310-Q1 における追加の 700mV の P チャネル入力ペア範囲は、P チャネル入力範囲が通常非常に制限される低電源電圧 (1.5V、1.8V など)で動作する場合に特に有益です。

そのため、入力信号の広い同相スイングは、OPAx310-Q1のPチャネル入力ペアの範囲でより容易に対応でき、遷移領域を回避できる可能性が高いため、直線性を維持できます。

Copyright © 2024 Texas Instruments Incorporated

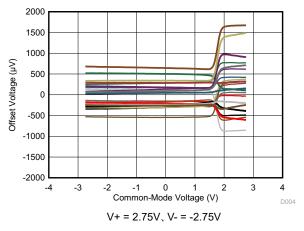


図 6-1. OPAx310-Q1 オフセット電圧と同相電圧との 関係

図 6-2. TLV900x のオフセット電圧と同相電圧との関係

6.3.3 レール ツー レール出力

OPAx310-Q1 は、マイクロパワー、大出力電流のオペアンプとして設計されており、堅牢な出力駆動能力を実現します。 共通ソーストランジスタを使用した Class AB 出力段を使用して、完全なレール ツー レールの出力スイングを実現できます。室温で抵性負荷が最大 2kΩ の場合、5.5V 電源では、出力は両方の電源レールから最大 20mV までの範囲でスイングします。アンプがレールのどれだけ近くまでスイングできるかは、負荷条件によって変化します。

6.3.4 容量性負荷および安定度

OPAx310-Q1 は、容量性負荷の駆動が必要なアプリケーションで使用するように設計されています。すべてのオペアンプと同様に、OPAx310-Q1 が不安定になる特定の状況があり得ます。アンプが動作時に安定するかどうかを判断するには、そのオペアンプの回路構成、レイアウト、ゲイン、出力負荷などの要因を考慮します。容量性負荷を駆動するユニティゲイン (1V/V) バッファ構成のオペアンプは、より高いノイズ ゲインで動作するアンプよりも不安定になる傾向があります。容量性負荷は、オペアンプの出力抵抗と相まって、位相マージンを劣化させる極を帰還ループ内に形成します。容量性負荷が大きくなると、位相マージンの劣化が大きくなります。ユニティゲイン構成で動作している場合、OPAx310-Q1 は最大約 75pF の純粋な容量性負荷で安定した状態を維持し、標準値 40°の良好な位相マージンを確保しており、250pF まで持続的な発振はありません。一部の大容量コンデンサ (1 μ F よりも大きい値の μ C の等価直列抵抗 (ESR)は、アンプが安定した状態を維持するように帰還ループの位相特性を変えるのに十分です。アンプの閉ループ ゲインを大きくすると、アンプはさらに大きな容量を駆動できます。より高い電圧ゲインでのアンプのオーバーシュート応答を測定すると、この能力の向上は明らかです。

ユニティゲイン構成で動作するアンプの容量性負荷駆動能力を向上する 1 つの手法は、図 6-3 に示すように、出力と直列に小さな抵抗 (標準的には $10\Omega \sim 20\Omega$) を挿入することです。この抵抗は、大きな容量性負荷に伴うオーバーシュートとリンギングを大幅に低減します。ただし、この手法によって起こりうる 1 つの問題は、追加された直列抵抗と、容量性負荷と並列に接続されたすべての抵抗とによって分圧器が形成されることです。この分圧器は、出力スイングを低減させる出力ゲイン誤差を生じさせます。

25

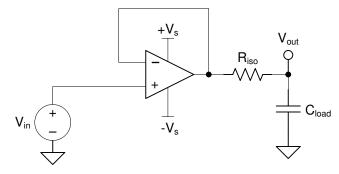


図 6-3. 容量性負荷駆動能力の向上

6.3.5 過負荷からの回復

過負荷からの回復は、オペアンプの出力が飽和状態から線形状態に回復するために必要な時間として定義されます。高い入力電圧または高いゲインが原因で、出力電圧が定格動作電圧を超えると、オペアンプの出力デバイスは飽和領域に入ります。いずれかの出力デバイスが飽和領域に入った後、出力段はリニア動作状態に戻るために追加の時間 (過負荷復帰時間)を必要とします。出力段が線形状態に戻ると、アンプは指定されたスルーレートでスルーを開始します。したがって、過負荷状態の場合の伝搬遅延は、過負荷復帰時間とスルー時間の合計になります。

OPAx310-Q1 ファミリの過負荷復帰時間は約 0.75µs (標準値) です。

6.3.6 EMI 除去

OPAx310-Q1 は、内蔵の電磁干渉 (EMI) フィルタリングを使用して、ワイヤレス通信 (無線周波数干渉:RFI) や、アナログ信号チェーンとデジタル コンポーネントを組み合わせた高密度実装の基板などのソースから引き起こされる EMI の影響を低減します。EMI 耐性は回路設計手法により改善可能で、OPAx310-Q1 はこのような設計の改善を活用しています。テキサス・インスツルメンツは、10MHz から 6GHz までの幅広い周波数スペクトルにわたって、オペアンプの耐性を正確に測定および数量化する機能を開発しました。OPAx310-Q1 でこのテストを行った結果を、図 6-4 に示します。実際のアプリケーションで一般的に発生する、特定の周波数における OPAx310-Q1 の EMIRR IN+ 値を、表 6-1 に示します。『オペアンプの EMI 除去率』アプリケーションレポートには、オペアンプに関連する EMIRR 性能の詳細情報が記載されており、www.tij.co.jp からダウンロードできます。

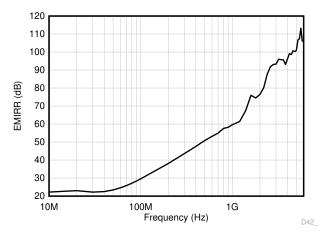


図 6-4. EMIRR テスト

資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2024 Texas Instruments Incorporated

V. W. T.
表 6-1. 対象周波数における OPAx310-Q1 EMIRR IN+

FREQUENCY	アプリケーションまたは割り当て	EMIRR IN+			
400 MHz	モバイル無線、モバイル衛星、宇宙での運用、気象、レーダー、極超短波 (UHF) アプリケーション	48 dB			
900MHz	GSM (モバイル通信) アプリケーション向けのグローバル システム、無線通信、ナビゲーション、GPS (最高 1.6GHz まで)、GSM、航空モバイル、UHF アプリケーション				
1.8GHz	GSM アプリケーション、モバイル パーソナル通信、ブロードバンド、衛星、L バンド (1GHz~2GHz)	75 dB			
2.4GHz	802.11b、802.11g、802.11n、Bluetooth®、モバイル パーソナル通信、産業用、科学用および医療用 (ISM) 無線帯域、アマチュア無線および衛星、S バンド (2GHz~4GHz)	90 dB			
3.6GHz	無線測位、航空通信およびナビゲーション、衛星、モバイル、Sバンド	95 dB			
5GHz	802.11a、802.11n、航空通信とナビゲーション、モバイル通信、宇宙と衛星での運用、C バンド (4GHz~8GHz)	102 dB			

6.3.7 ESD および電気的オーバーストレス

設計者は、オペアンプが電気的オーバーストレスにどの程度耐えられるのかという質問をすることがよくあります。これらの質問は、主にデバイスの入力に関するものですが、電源電圧ピンや、さらに出力ピンにも関係する場合があります。これらの各ピンの機能には、特定の半導体製造プロセスの電圧ブレークダウン特性と、ピンに接続された特定の回路とで決まる電気的ストレスの制限値があります。また、これらの回路には内部静電気放電 (ESD) 保護機能が組み込まれており、製品の組み立て前と組み立て中の両方で、偶発的な ESD イベントから保護します。

この基本的な ESD 回路と、電気的オーバーストレス イベントとの関連性を十分に理解しておくと役に立ちます。 OPAx310-Q1 デバイスに搭載されている ESD 回路を、図 6-5 に示します。 ESD 保護回路には、いくつかの電流ステアリング ダイオードが含まれており、これらは入力ピンや出力ピンから接続され、内部の電源ラインに戻るようルーティングされます。 入力ピンおよび出力ピンは、オペアンプ内部の吸収デバイスで接続されます。 この保護回路は、通常の回路動作中は非アクティブに保たれるよう設計されます。

OPAx310-Q1 には、入力と正電源ピンの間に電流ステアリング ダイオードが接続されていないことに注意してください。

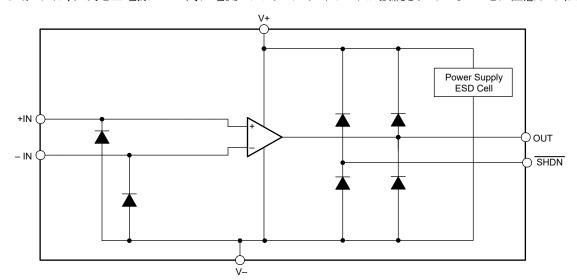


図 6-5. 内部 ESD 等価回路

27

6.3.8 入力 ESD 保護

OPAx310-Q1 ファミリには、すべてのピンに内部 ESD 保護回路が組み込まれています。入力では、この保護は主にフェイルセーフ ESD 入力構造で構成され、図 6-5 に示すように、入力ピンと正電源ピンの間に電流ステアリング ダイオードが接続されていないことが特長です。この機能は、正の電源レールの前に入力信号が存在する可能性がある電源シーケンスシナリオで非常に有益です。フェイルセーフ入力 ESD 構造により、入力と正電源の間の短絡が防止されます。

6.3.9 シャットダウン機能

OPAx310-Q1 S デバイスには、オペアンプをディセーブルして低消費電力のスタンバイ モードに移行する SHDN ピンが 搭載されています。このモードでは、室温でのオペアンプの消費電流は通常 500nA 未満です。 SHDN ピンはアクティブ Low なので、SHDN ピンへの入力が有効なロジック High のとき、シャットダウン モードがイネーブルになります。

SHDN ピンは、オペアンプの負の電源レールを基準としています。シャットダウン機能のスレッショルドは約 500mV (標準値) で、電源電圧に応じて変化しません。スムーズなスイッチング特性を提供するため、スイッチング スレッショルドにはヒステリシスが含まれています。最適なシャットダウン動作を確保するため、SHDN ピンは有効なロジック信号で駆動する必要があります。有効なロジック Low は、V-と (V-) + 0.2V の間の電圧と定義されます。有効なロジック High は、(V-) + 1.2V と V+の間の電圧と定義されます。アンプをイネーブルするには、SHDN ピンを有効なロジック High に駆動する必要があります。アンプをディセーブルするには、SHDN ピンを有効なロジック Low に駆動する必要があります。TI では、シャットダウン ピンを有効な High 電圧または Low 電圧に接続するか、駆動することを強く推奨します。SHDN ピンで許容される最高電圧は (V+) + 0.5V です。この電圧レベルを超えると、デバイスが損傷します。

SHDN ピンは高インピーダンスの CMOS 入力です。デュアル オペアンプのバージョンは独立に、クワッド オペアンプの バージョンはペア単位で、ロジック入力により制御されます。バッテリ駆動のアプリケーションでは、この機能を使用すること によって平均電流を大幅に低下させ、バッテリ駆動時間を延長できます。すべてのチャネルを完全にシャットダウンするためのイネーブルおよびディセーブル時間は $1\mu s$ 未満にすることを目標としています。ディセーブル状態のとき、出力は高インピーダンス状態です。このアーキテクチャにより、OPAx310S-Q1 はゲート式アンプとして動作したり(デバイスの出力を共通のアナログ出力バスに多重化したりできます)。シャットダウン時間 (t_{OFF}) は負荷条件に依存し、負荷抵抗が増加すると増加します。特定のシャットダウン時間内にシャットダウン(ディセーブル)を確実に実行するには、指定された $10k\Omega$ 負荷を中間電源 ($V_S/2$) に接続する必要があります。

6.4 デバイスの機能モード

OPAx310-Q1 デバイスには、1 つの機能モードがあります。電源電圧が 1.5V (\pm 0.75V) と 5.5V (\pm 2.75V) の間にある限り、これらのデバイスは機能します。

OPAx310-Q1S デバイスにはシャットダウン ピンがあり、オペアンプを低消費電力モードに設定するため使用できます。 詳細については、「シャットダウン機能」セクションを参照してください。

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SBOSAI0

7アプリケーションと実装

注

以下のアプリケーション情報は、テキサス・インスツルメンツの製品仕様に含まれるものではなく、テキサス・インスツルメンツではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。また、お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

7.1 アプリケーション情報

OPAx310-Q1 ファミリのレール ツー レール入出力オペアンプは、大出力電流アプリケーション専用に設計されています。本デバイスは 1.5V~5.5V で動作し、ユニティ ゲインで安定しているため、幅広い汎用アプリケーションに適しています。 Class AB 出力段は、デバイスが強制的に短絡モードやサーマル シャットダウン モードに移行していなければ、V+と V- 間の任意のポイントに接続された小さな抵抗負荷を駆動できます。 入力同相電圧範囲には両方のレールが含まれているため、 OPAx310-Q1 シリーズは多くの単電源構成またはデュアル電源構成で使用できます。

7.2 代表的なアプリケーション

7.2.1 OPAx310-Q1 ローサイド電流センシング アプリケーション

図 7-1 に、ローサイド電流センシング アプリケーション用に構成された OPAx310-Q1 を示します。

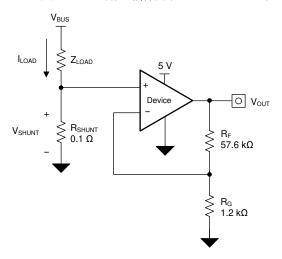


図 7-1. OPAx310-Q1 ローサイド電流センシング アプリケーションの

29

7.2.1.1 設計要件

この設計の設計要件は次のとおりです。

負荷電流:0A~1A最大出力電圧:4.9V

• 最大シャント電圧:100mV

7.2.1.2 詳細な設計手順

図 7-1 の回路の伝達関数は、式 1 に示すとおりです。

$$V_{OUT} = I_{LOAD} \times R_{SHUNT} \times Gain$$
 (1)

負荷電流 (I_{LOAD}) により、シャント抵抗 (R_{SHUNT}) の両端で電圧降下が発生します。負荷電流は 0A~1A の範囲で設定されます。最大負荷電流時のシャント電圧を 100mV 未満に維持するために、最大シャント抵抗は 式 2 を使用して示されます。

$$R_{SHUNT} = \frac{V_{SHUNT_MAX}}{I_{LOAD_MAX}} = \frac{100 \text{ mV}}{1 \text{ A}} = 100 \text{ m}\Omega$$
 (2)

式 2 から、 R_{SHUNT} は $100m\Omega$ と計算されます。 I_{LOAD} と R_{SHUNT} によって生成される電圧降下は OPAx310-Q1 によって 増幅され、約 $OV \sim 4.9V$ の出力電圧を生成します。OPAx310-Q1 が必要な出力電圧を生成するために必要なゲイン は、式 $OV \sim 4.9V$ の出ます。

$$Gain = \frac{V_{OUT_MAX} - V_{OUT_MIN}}{V_{IN_MAX} - V_{IN_MIN}}$$
(3)

式 3 から、必要なゲインは 49V/V と計算されます。これは抵抗 R_F と R_G で設定します。OPAx310-Q1 のゲインを 49V/V に設定するための抵抗 R_F および R_G のサイズは式 4 で計算します。

$$Gain = 1 + \frac{R_F}{R_G} \tag{4}$$

 R_F に 57.6k Ω 、 R_G に 1.2k Ω を選択すると、組み合わせで 49V/V に等しくなります。図 7-1 に示す回路で測定された伝達関数を、図 7-2 に示します。ゲインは、帰還抵抗とゲイン抵抗のみの関数であることに注意します。このゲインは抵抗の比を変化させることで調整され、実際の抵抗値は設計者が設定しようとするインピーダンス レベルによって決定されます。インピーダンス レベルによって、電流ドレイン、浮遊容量の影響、その他 V くつかの動作が決まります。最適なインピーダンスの選択はシステムごとに異なるので、システムのパラメータに合わせて最適なインピーダンスを選択する必要があります。

7.2.1.3 アプリケーション曲線

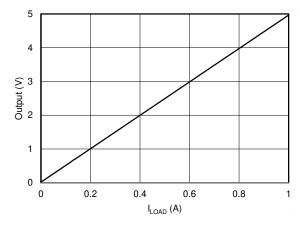


図 7-2. ローサイド、電流検出の伝達関数

7.3 電源に関する推奨事項

OPAx310-Q1 ファミリは、1.5V~5.5V (±0.75V~±2.75V) で動作することが規定されています。また、多くの仕様は -40℃~125℃で適用されます。動作電圧または温度によって大きく変動するパラメータを「電気的特性」セクションに示します。

注意

7V を超える電源電圧を印加すると、デバイスに永続的な損傷を与える可能性があります。「絶対最大定格」表を参照してください。

電源ピンの近くに 0.1µF のバイパス コンデンサを配置すると、ノイズの多い電源や高インピーダンスの電源からの結合による誤差を低減できます。 バイパス コンデンサの配置の詳細については、「レイアウトのガイドライン」 セクションを参照してください。

7.4 レイアウト

7.4.1 レイアウトのガイドライン

デバイスで最高の動作性能を実現するため、以下のような優れた PCB レイアウト手法を使用してください。

- ノイズは、基板の電源接続を経由してアナログ回路に伝播し、オペアンプ自体の電源ピンに伝搬することがあります。 バイパスコンデンサは、グランドへの低インピーダンスなパスを設置して、結合ノイズを低減するために使用されます。
 - 各電源ピンとグランドとの間に、低 ESR の 0.1μF セラミック バイパス コンデンサを接続し、可能な限りデバイスの 近くに配置します。単一電源アプリケーションの場合は、V+ からグランドに対して 1 つのバイパス コンデンサを接続すれば十分です。
- 回路のアナログ部分とデジタル部分のグランドを分離することは、ノイズを抑制する最も簡単かつ効果的な方法の 1 つです。 通常、 多層 PCB のうち 1 つ以上の層はグランド プレーン専用です。 グランド プレーンは熱の分散に役立ち、 EMI (電磁干渉) ノイズを拾いにくくなります。 デジタル グランドとアナログ グランドを物理的に分離し、グランド電流の流れに注意を払います。
- 寄生カップリングを低減するには、入力配線を電源配線または出力配線からできるだけ離して配置します。これらの配線を分離しておけない場合、敏感な配線をノイズの多い配線と平行にするよりは、垂直に交差させる方がはるかに良い結果が得られます。
- 外付け部品は、可能な限りデバイスに近く配置します (「レイアウト例」を参照)。 R_1 と R_2 を反転入力に近付けて配置すると、寄生容量を最小化できます。
- 入力配線はできる限り短くします。入力配線は回路の最も敏感な部分であることに注意します。
- 重要な配線の周囲に、駆動される低インピーダンスのガードリングを配置することを検討します。ガードリングを使用すると、付近に存在する、さまざまな電位の配線からのリーク電流を大幅に低減できます。
- TIでは、最高の性能を得るために、基板組み立ての後で PCB をクリーニングすることを推奨します。
- 高精度の集積回路では、プラスチック パッケージへの水分の侵入により性能が変化する場合があります。TI では、PCB を水で洗浄した後で、PCB アセンブリをベーキングして、クリーニング中にデバイスのパッケージに取り込まれた水分を除去することを推奨します。ほとんどの状況では、クリーニング後に 85℃で 30 分間の低温ベーキングを行えば十分です。

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

31

7.4.2 レイアウト例

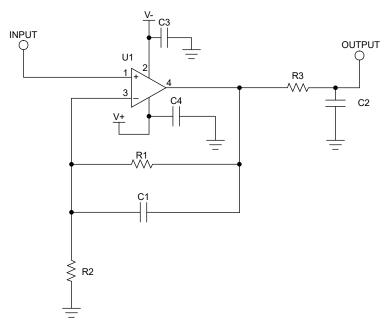


図 7-3. 非反転構成のレイアウト例の回路図

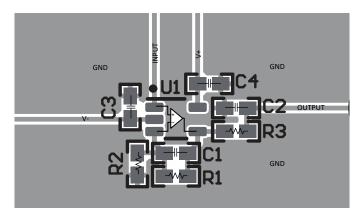


図 7-4. 非反転構成用オペアンプの基板レイアウト - SC70 (DCK) パッケージ

English Data Sheet: SBOSAI0

8 デバイスおよびドキュメントのサポート

8.1 ドキュメントのサポート

8.1.1 関連資料

関連資料については、以下を参照してください。

- テキサス・インスツルメンツ、『オペアンプの EMI 除去率 (OPA333 および OPA333-Q1 を使用した例)』 アプリケーション・レポート
- テキサス・インスツルメンツ、『QFN/SON の PCB 実装』アプリケーション・レポート
- テキサス・インスツルメンツ、『クワッド・フラットパック・リード端子なしロジック・パッケージ』アプリケーション・レポート

8.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

8.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

商標

テキサス・インスツルメンツ E2E™ is a trademark of Texas Instruments.

Bluetooth® is a registered trademark of Bluetooth SIG, Inc.

すべての商標は、それぞれの所有者に帰属します。

8.4 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

8.5 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

9 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision A (May 2024) to Revision B (September 2024)

Page

• DBV (SOT-23、5) および DBV (SOT-23、6) パッケージのステータスを「事前情報」から「量産データ」に変更 1

Changes from Revision * (December 2023) to Revision A (May 2024)

Pag

- データシートのステータスを次のように変更:「事前情報」から*「混流生産」.....*

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

33

10 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は指定したデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用されている場合は、画面左側のナビゲーションをご覧ください。

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SBOSAI0

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
OPA310QDBVRQ1	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	O310Q
OPA310QDBVRQ1.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	O310Q
OPA310QDCKRQ1	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1P1
OPA310QDCKRQ1.A	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1P1
OPA310SQDBVRQ1	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	O31QS
OPA310SQDBVRQ1.A	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	O31QS
OPA310SQDCKRQ1	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1QD
OPA310SQDCKRQ1.A	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1QD
POPA310QDBVRQ1	Active	Preproduction	SOT-23 (DBV) 5	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
POPA310QDBVRQ1.A	Active	Preproduction	SOT-23 (DBV) 5	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
POPA310SQDBVRQ1	Active	Preproduction	SOT-23 (DBV) 6	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
POPA310SQDBVRQ1.A	Active	Preproduction	SOT-23 (DBV) 6	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA310-Q1:

Catalog: OPA310

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated