OPA189, OPA2189, OPA4189 JAJSE34I - SEPTEMBER 2017 - REVISED OCTOBER 2021 # OPAx189 高精度、最低ノイズ、36V、ゼロドリフト、 14MHz、MUX フレンドリ、レール・ツー・レール出力オペアンプ # 1 特長 - 非常に高い精度 - ゼロドリフト: 0.005µV/℃ (OPA189) - 非常に小さいオフセット電圧:3µV 以下 (OPA189) - 非常に優れた DC 精度 - CMRR:168dB - 開ループ・ゲイン:170dB - 低ノイズ - 1kHz での e_n:5.2nV/√Hz - 0.1Hz~10Hz のノイズ: 0.1μV_{PP} - 非常に優れた動的性能 - ゲイン帯域幅:14MHz - スルーレート:20V/us - 高速セトリング:10V ステップ、0.01% まで 1.1μs - 堅牢性の高い設計 - MUX フレンドリな入力 - 入力の RFI/EMI フィルタ処理 - 広い電源電圧範囲:4.5V~36V - 静止電流:1.7mA 以下 - レール・ツー・レール出力 - 入力に負のレールも含む # 2 アプリケーション - バッテリ試験装置 - アナログ入力モジュール - 重量計 - DC 電源、AC 電源、電子負荷 - マルチファンクション・リレー OPAx189 は、スイッチまたは多重化されたアプリケー ションで、R-C セトリング性能を保持する ### 3 概要 OPA189、OPA2189、OPA4189 (OPAx189) 高精度オペ アンプは、非常にノイズが低くセトリングが高速なゼロドリフ トのデバイスで、レール・ツー・レール出力動作を行い、独 自の MUX フレンドリなアーキテクチャと、制御されたスタ ートアップ・システムが採用されています。これらの機能と、 非常に優れた AC 性能、およびオフセット電圧がわずか 0.4µV、シングル・チャネル・バージョンでは温度範囲にわ たってドリフト係数が 0.005µV/℃であることから、 OPAx189 は高精度の計測機器、信号測定、およびアク ティブ・フィルタ処理アプリケーションに最適です。さらに、 MUX フレンドリな入力アーキテクチャにより、大きな入力 差動電圧を印加するときに突入電流が防止され、マルチ・ チャネル・システムでセトリング性能が改善され、同時に輸 送時、取り扱い時、組み立て時における堅牢な ESD 保護 が行われます。 どのバージョンも、-40℃~+125℃で動作が規定されてい ます。 ### 制具情報 | ₩ CD 1月 干X | | | | | | |------------|----------------------|-----------------|--|--|--| | 部品番号 | パッケージ ⁽¹⁾ | 本体サイズ (公称) | | | | | | SOIC (8) | 4.90mm × 3.90mm | | | | | OPA189 | SOT-23 (5) | 2.90mm × 1.60mm | | | | | | VSSOP (8) | 3.00mm × 3.00mm | | | | | OPA2189 | SOIC (8) | 4.90mm × 3.90mm | | | | | OFA2109 | VSSOP (8) | 3.00mm × 3.00mm | | | | | OPA4189 | TSSOP (14) | 5.00mm × 4.40mm | | | | | 01 74 103 | SOIC (14) | 8.65mm × 3.91mm | | | | 提供されているすべてのパッケージについては、データシートの 末尾にあるパッケージ・オプションについての付録を参照してくだ さい。 Copyright © 2017, Texas Instruments Incorporated OPAx189 の MUX フレンドリ入力はスイッチ時に迅 速にセトリングし、高い入力インピーダンスを維持す る # **Table of Contents** | 1 符長 | 1 | 8.4 Device Functional Modes | | |--|--------------|--|------| | 2 アプリケーション | 1 | 9 Application and Implementation | | | 3 概要 | 1 | 9.1 Application Information | | | 4 Revision History | 2 | 9.2 Typical Applications | | | 5 Device Comparison Table | 4 | 9.3 System Examples | 33 | | 6 Pin Configuration and Functions | 5 | 10 Power Supply Recommendations | | | 7 Specifications | 7 | 11 Layout | | | 7.1 Absolute Maximum Ratings | | 11.1 Layout Guidelines | | | 7.2 ESD Ratings | 7 | 11.2 Layout Example | | | 7.3 Recommended Operating Conditions | 7 | 12 Device and Documentation Support | | | 7.4 Thermal Information: OPA189 | | 12.1 Device Support | | | 7.5 Thermal Information: OPA2189 | 8 | 12.2 Documentation Support | | | 7.6 Thermal Information: OPA4189 | 8 | 12.3 Receiving Notification of Documentation | | | 7.7 Electrical Characteristics | 9 | 12.4 サポート・リソース | | | 7.8 Typical Characteristics | 12 | 12.5 Trademarks | | | 8 Detailed Description | | 12.6 Electrostatic Discharge Caution | | | 8.1 Overview | | 12.7 Glossary | 37 | | 8.2 Functional Block Diagram | | 13 Mechanical, Packaging, and Orderable | | | 8.3 Feature Description | | Information | 37 | | 4 Revision History
資料番号末尾の英字は改訂を表しています。そ | この改訂履歴 | は英語版に準じています。 | | | Changes from Revision H (August 2021) | to Revision | I (September 2021) | Page | | OPA4189 を事前情報 (プレビュー) から量 | | | | | | | | | | Changes from Revision G (April 2021) to | | | | | | | ジュー) として追加alues | | | Changes from Revision F (July 2020) to F | Revision G (| April 2021) | Page | | • OPA4189 (TSSOP-14 (PW) パッケージ) を | 事前情報(| プレビュー) として追加 | 1 | | Changes from Revision E (May 2019) to F | Revision F (| July 2020) | Page | | | | から量産データ (アクティブ) に変更 | | | | | | | | Added Added input offset for OPA2189ID | | | | | Added Added input offset drift for OPA21 | 89IDGK | | 9 | | Changes from Revision D (December 201 | | · · · · · · · · · · · · · · · · · · · | Page | | • OPA388 の SOT-23 (DBV) パッケージをブ | ゚レビューから | 量産データ (アクティブ) に変更 | 1 | | · Changed Figure 3, Input Bias Current Pro | oduction Dis | tribution, to show updated data | 12 | | | | istribution, to show updated data | | | | | requency, for clarity | | | | | for clarity | | | | | | | | | | | | | Changes from Revision C (October 2018) | | · | Page | | OPA2189 の SOIC (D) パッケージをプレビ | ューから量産 | データに変更 | 1 | | · Added input bias current for OPA2189ID. | | | 9 | | Added input offset current for OPA2189ID | _ | | _ | ### www.tij.co.jp | 9 | |----------| | 12
12 | | Page | | 1 | | Page | | 9 | | 9 | | Page | | 1 | | | # **5 Device Comparison Table** | PRODUCT | FEATURES | |---------|--| | OPA188 | 25-μV, 0.085-μV/°C, 8.8-nV/√ Hz, Rail-to-Rail Output, 36-V, Zero-Drift CMOS | | OPA388 | 5-μV, 0.05-μV/°C, 7-nV/√ Hz, 10-MHz, <i>True</i> Rail-to-Rail Input/Output, 5.5-V, Zero-Drift CMOS | | OPA333 | 10-μV, 0.05-μV/°C, 25-μA, Rail-to-Rail Input/Output, 5.5-V, Zero-Drift CMOS | | OPA192 | 25-μV, 0.8-μV/°C, 1-mA, 10-MHz, Rail-to-Rail Input/Output, 36-V, e-Trim CMOS | | OPA140 | 120-μV, 10-MHz, 5.1-nV/√ Hz, 36-V JFET Input Industrial Op Amp | | OPA209 | 2.2-nV/√ Hz, 150-μV, 18-MHz, 36-V Bipolar Op Amp in SOT-23 package | # **6 Pin Configuration and Functions** ☑ 6-1. OPA189 D (8-Pin SOIC) and DGK (8-Pin VSSOP) Packages, Top View 図 6-2. OPA189 DBV (5-Pin SOT-23) Package, Top View 表 6-1. Pin Functions: OPA189 | | PIN | | | | | | | |------|-------------------------|--------------|-----|---|--|--|--| | NAME | D (SOIC)
DGK (VSSOP) | DBV (SOT-23) | I/O | DESCRIPTION | | | | | -IN | 2 | 4 | I | Inverting input | | | | | +IN | 3 | 3 | I | Noninverting input | | | | | NC | 1, 5, 8 | _ | _ | No internal connection (can be left floating) | | | | | OUT | 6 | 1 | 0 | Output | | | | | V- | 4 | 2 | _ | Negative (lowest) power supply | | | | | V+ | 7 | 5 | _ | Positive (highest) power supply | | | | | | | | | | | | | 図 6-3. OPA2189 D (8-Pin SOIC) and DGK (8-Pin VSSOP) Packages, Top View 表 6-2. Pin Functions: OPA2189 | PIN | | I/O | DESCRIPTION | | |-------|-----|-----|------------------------------|--| | NAME | NO. | 1/0 | DESCRIPTION | | | -IN A | 2 | I | Inverting input channel A | | | +IN A | 3 | I | Noninverting input channel A | | | –IN B | 6 | I | Inverting input channel B | | | +IN B | 5 | I | Noninverting input channel B | | | OUT A | 1 | 0 | Output channel A | | | OUT B | 7 | 0 | Output channel B | | | V- | 4 | _ | Negative supply | | | V+ | 8 | _ | Positive supply | | 図 6-4. OPA4189 D (14-Pin SOIC) and PW (14-Pin TSSOP) Packages, Top View 表 6-3. Pin Functions: OPA4189 | | PIN | | | | |-------|-----|-------|------------------------------|--| | NAME | NO. | - I/O | DESCRIPTION | | | –IN A | 2 | I | Inverting input channel A | | | +IN A | 3 | I | Noninverting input channel A | | | –IN B | 6 | I | Inverting input channel B | | | +IN B | 5 | I | Noninverting input channel B | | | –IN C | 9 | I | Inverting input channel C | | | +IN C | 10 | I | Noninverting input channel C | | | –IN D | 13 | I | Inverting input channel D | | | +IN D | 12 | I | Noninverting input channel D | | | OUT A | 1 | 0 | Output channel A | | | OUT B | 7 | 0 | Output channel B | | | OUT C | 8 | 0 | Output channel C | | | OUT D | 14 | 0 | Output channel D | | | V- | 11 | _ | Negative supply | | | V+ | 4 | _ | Positive supply | | # 7 Specifications # 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |-------------------------------------|---------------------------|---------------------------|------------|-------------------|------| | Supply voltage | \/ - (\/+) (\/) | Single-supply | | 40 | | | Supply voltage | $V_S = (V+) - (V-)$ | Dual-supply | | ±20 | V | | Signal input pins | Voltage | Common-mode | (V-) - 0.5 | (V+) + 0.5 | V | | | voitage | Differential | | (V+) - (V-) + 0.2 | | | | Current | | | ±10 | mA | | Output short circuit ⁽²⁾ | | | Continuous | Continuous | | | | Operating, T _A | Operating, T _A | | 150 | | | Temperature | Junction, T _J | Junction, T _J | | 150 | °C | | | Storage, T _{stg} | | -65 | 150 | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--|-------|----------| | V | | n-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ ±40 | | V | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±1000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ### 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | | |-------------------------------------|---------------|-------|---------|---------------------------------------|--| | Supply voltage, $V_S = (V+) - (V-)$ | Single-supply | 4.5 | 36 | · · · · · · · · · · · · · · · · · · · | | | | Dual-supply | ±2.25 | ±18 | v | | | Specified temperature | | -40 | 125 | °C | | ⁽²⁾ Short-circuit to ground, one amplifier per package. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ### 7.4 Thermal Information: OPA189 | | | | OPA189 | | | | |-----------------------|--|----------|-------------|-----------|------|--| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | DGK (VSSOP) | DBV (SOT) | UNIT | | | | | 8 PINS | 8 PINS | 5 PINS | | | | R _{θJA} | Junction-to-ambient thermal resistance | 122.0 | 166.4 |
134.5 | °C/W | | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 57.6 | 54.2 | 90.5 | °C/W | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 67.3 | 87.9 | 41.9 | °C/W | | | Ψ_{JT} | Junction-to-top characterization parameter | 12.7 | 5.5 | 22.5 | °C/W | | | Ψ_{JB} | Junction-to-board characterization parameter | 66.2 | 86.4 | 41.6 | °C/W | | | R _{θJC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | N/A | N/A | °C/W | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ### 7.5 Thermal Information: OPA2189 | | | OPA | OPA2189 | | | | |-----------------------|--|----------|-------------|------|--|--| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | DGK (VSSOP) | UNIT | | | | | | 8 PINS | 8 PINS | | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 115.7 | 150.2 | °C/W | | | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 51.1 | 43.9 | °C/W | | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 60.8 | 71.4 | °C/W | | | | Ψ_{JT} | Junction-to-top characterization parameter | 9.8 | 2.9 | °C/W | | | | Ψ_{JB} | Junction-to-board characterization parameter | 59.7 | 70 | °C/W | | | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | N/A | °C/W | | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. # 7.6 Thermal Information: OPA4189 | | | OPA | | | | |-----------------------|--|----------|------------|------|--| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | PW (TSSOP) | UNIT | | | | | 14 PINS | 14 PINS | | | | R _{θJA} | Junction-to-ambient thermal resistance | 73.4 | 106.4 | °C/W | | | R _{θJC(top)} | Junction-to-case (top) thermal resistance | 29.0 | 22.7 | °C/W | | | R _{θJB} | Junction-to-board thermal resistance | 30.2 | 52.0 | °C/W | | | Ψ_{JT} | Junction-to-top characterization parameter | 3.5 | 1.0 | °C/W | | | Ψ_{JB} | Junction-to-board characterization parameter | 29.8 | 50.8 | °C/W | | | R _{θJC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | N/A | °C/W | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. # 7.7 Electrical Characteristics at T_A = 25°C, V_S = ±18V, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10 k Ω connected to V_S / 2 (unless otherwise noted) | | PARAMETER | TEST CO | ONDITIONS | MIN TYP | MAX | UNIT | |----------------------|--|---|---|---------|--------|---------------------| | OFFSET \ | VOLTAGE | | | | | | | | Input offset voltage, | | | ±0.4 | ±3 | ., | | | OPA189 | T _A = -40°C to 125°C | | ±4 | μV | | | V _{os} | Input offset voltage, | V _S = ±2.25V | | ±0.5 | ±3 | μV | | | OPA2189IDGK & | V _S = ±18V | | ±0.8 | ±5 | μV | | | OPA4189IPW | $T_A = -40^{\circ}$ C to 125°C, $V_S = \pm 18$ | NV | | ±8 | μV | | | Input offset voltage, | | | ±1.5 | ±5 | μV | | | OPA2189ID | T _A = -40°C to 125°C | | ±8 | μV | | | | Input offset voltage drift,
OPA189 | T _A = -40°C to 125°C | | ±0.005 | ±0.02 | μV/°C | | | Input offset voltage drift, | T _A = 0°C to 85°C | | ±0.006 | ±0.015 | μV/°C | | dV _{OS} /dT | OPA2189IDGK & OPA4189IPW | T _A = -40°C to 125°C | | ±0.01 | ±0.03 | μV/°C | | | Input offset voltage drift, | T _A = 0°C to 85°C | | ±0.007 | ±0.03 | μV/°C | | | OPA2189ID | T _A = -40°C to 125°C | | ±0.01 | ±0.05 | μV/°C | | PSRR | Power-supply rejection ratio | T _A = -40°C to 125°C | | ±0.005 | ±0.05 | μV/V | | NPUT BI | AS CURRENT | 1 | l e | | | | | | | | | ±70 | ±300 | pА | | | Input bias current, OPA189 | | T _A = 0°C to 85°C | | ±1 | | | I _B | | | $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ | | ±10 | nA | | | | Z _{IN} = 100 kΩ 500 pF | | ±70 | ±300 | pA | | | Input bias current,
OPA2189 | | T _A = 0°C to 85°C | | ±1.5 | | | | | | $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ | | ±10 | nA | | | | | | ±70 | ±500 | pA | | | Input bias current,
OPA4189 | | T _A = 0°C to 85°C | | ±2 | | | | OFA4109 | | T _A = -40°C to 125°C | | ±15 | nA | | | Input offset current,
OPA189 | | | ±140 | ±600 | pA | | | | | T _A = 0°C to 85°C | | ±1.6 | | | | | | T _A = -40°C to 125°C | | ±3 | nA | | | Input offset current, OPA2189 Input offset current, OPA4189 | PA2189 ZIN = 100 kΩ 500 pr but offset current, | | ±140 | ±600 | pA | | os | | | T _A = 0°C to 85°C | | ±2.5 | | | | | | $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ | | ±5 | nA | | | | | | ±140 | ±1 | pA | | | | | T _A = 0°C to 85°C | | ±2.5 | | | | | | $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ | | ±5 | nA | | NOISE | | | | | | | | n | Input voltage noise | f = 0.1 Hz to 10 Hz | | 17 | | nV _{RMs} | | | , , | | | 0.1 | | μV _{PP} | | | | f = 10 Hz | | 5.2 | | | | n | Input voltage noise density | f = 100 Hz | | 5.2 | | nV/√ H : | | " | , 5 | f = 1 kHz | | 5.2 | | | | | | f = 10 kHz | 5.2 | | | | | n | Input current noise density | f = 1 kHz | | 165 | | fA/√Hz | # 7.7 Electrical Characteristics (continued) at T_A = 25°C, V_S = ±18V, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10 k Ω connected to V_S / 2 (unless otherwise noted) | | PARAMETER | TEST CONDITION | | MIN | TYP | MAX | UNIT | | |-----------------|-----------------------------------|---|---|------------|------------|------------|------------------------|--| | INPUT V | OLTAGE | | | | | | | | | V _{CM} | Common-mode voltage range | | | (V-) - 0.1 | | (V+) - 2.5 | V | | | CMRR | | $(V-) - 0.1 \text{ V} \le V_{CM} \le (V+) - 2.5 \text{ V}$ | V _S = ±2.25 V | 120 | 140 | | | | | | Common-mode rejection | | V _S = ±18 V | 146 | 168 | | dB | | | OWIN | ratio | $(V-) - 0.1 \text{ V} \le V_{CM} \le (V+) - 2.5 \text{ V},$ | V _S = ±18 V | 120 | | | uБ | | | | | $T_A = -40^{\circ}C$ to 125°C | $V_S = \pm 2.25 \text{ V}$ | 110 | | | | | | INPUT IN | MPEDANCE | | | | | | | | | z _{id} | Differential input impedance | | | | 0.1 5.5 | | $G\Omega \parallel pF$ | | | z _{ic} | Common-mode input impedance | | | | 60 1.7 | | TΩ pF | | | OPEN-LO | OOP GAIN | | | | | | | | | | | | $(V-) + 0.3 V < V_O < (V+)$
- 0.3 V,
$R_{LOAD} = 10 k\Omega$ | 150 | 170 | | | | | | One law when win | Open-loop voltage gain V _S = ±18 V | $(V-) + 0.3 V < V_O < (V+)$
- 0.3 V,
$R_{LOAD} = 10 k\Omega$,
$T_A = -40$ °C to 125°C | 140 | | | dB | | | A _{OL} | OL Open-loop voltage gain | | $(V-) + 0.6 V < V_O < (V+)$
- 0.6 V,
$R_{LOAD} = 2 k\Omega$ | 150 | 170 | | | | | | | | $(V-) + 0.6 V < V_O < (V+)$
- 0.6 V,
$R_{LOAD} = 2 k\Omega$,
$T_A = -40$ °C to 125°C | 140 | | | | | | FREQUE | NCY RESPONSE | | | | | | | | | UGB | Unity-gain Bandwith | A _V = 1 | | | 8 | | N/LI- | | | GBW | Gain-bandwith Product | A _V = 1000 | | | 14 | | - MHz | | | SR | Slew rate | G = 1, 10-V step | | | 20 | | V/µs | | | THD+N | Total harmonic distortion + noise | G = 1, f = 1 kHz, V _O = 3.5 V _{RMS} | | | 0.00006% | | | | | | Crosstalk | OPA2189ID, at dc | | | 150 | | dB | | | | Olosidik | OPA2189ID, f = 100 kHz | | | 120 | | - ab | | | to | Settling time | To 0.1% | V _S = ±18 V, G = 1, 10-V step | | 0.8 | | He | | | t _S | Setuing unie | To 0.01% | V _S = ±18 V, G = 1, 10-V step | | 1.1 | | μs | | | t _{OR} | Overload recovery time | $V_{IN} \times G = V_{S}$ | | | 320 | | ns | | Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated # 7.7 Electrical Characteristics (continued) at T_A = 25°C, V_S = ±18V, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10 k Ω connected to V_S / 2 (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |-------------------|----------------------------|---|---|-----|-----|-----|------| | OUTPUT | • | | | | | | | | | | Positive rail | No load | | 5 | 15 | | | | | | $R_{LOAD} = 10 \text{ k}\Omega$ | | 20 | 110 | mV | | | | | $R_{LOAD} = 2 k\Omega$ | | 80 | 500 | | | \ <i>/</i> | Voltage output swing from | Negative rail | No load | | 5 | 15 | | | Vo | rail | | $R_{LOAD} = 10 \text{ k}\Omega$ | | 20 | 110 | | | | | | $R_{LOAD} = 2 k\Omega$ | | 80 | 500 | | | | | T_A = -40°C to 125°C, both rails, R_{LOAD} = 10 k Ω | OPA189 & OPA2189 | | 20 | 120 | | | | | | OPA4189 | | 20 | 140 | | | I _{SC} | Short-circuit current | | | | ±65 | | mA | | C _{LOAD} | Capacitive load drive | See Small-Signal Overshoot vs Capacitive Load | | | | | | | Z _O | Open-loop output impedance | f = 1 MHz, I _O = 0 A, see Open-Loop Output Impedance vs
Frequency | | | 380 | | Ω | | POWER | SUPPLY | | , | | | ' | | | ı | Quiescent current per | $V_S = \pm 2.25 \text{ V to } \pm 18 \text{ V } (V_S = 4.5 \text{ V to } 36 \text{ V})$ | T _A = 25°C | | 1.3 | 1.7 | mΛ | | IQ | amplifier | | $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ | | | 1.8 | mA | # 7.8 Typical Characteristics at T_A = 25°C, V_S = ±18 V, V_{CM} = V_S / 2, R_{LOAD} = 10 k Ω connected to V_S / 2, and C_L = 100 pF (unless otherwise noted) # 表 7-1. Typical Characteristic Graphs | DESCRIPTION | aracteristic Graphs FIGURE | |--|----------------------------| | Offset Voltage Production Distribution | 図 7-1 | | Offset Voltage Drift Distribution From –40°C to 125°C | ☑ 7-2 | | Input Bias Current Production Distribution | ☑ 7-3 | | Input Offset Current Production Distribution | ☑ 7-4 | | Offset Voltage vs Temperature | ☑ 7-5 | | Offset Voltage vs
Common-Mode Voltage | ☑ 7-6 | | Offset Voltage vs Supply Voltage | 図 7-7 | | Open-Loop Gain and Phase vs Frequency | ☑ 7-8 | | Closed-Loop Gain vs Frequency | ☑ 7-9 | | Input Bias Current vs Common-Mode Voltage | ☑ 7-10 | | Input Bias Current and Offset vs Temperature | 図 7-11 | | Output Voltage Swing vs Output Current (Sourcing) | 図 7-12 | | Output Voltage Swing vs Output Current (Sinking) | ☑ 7-13 | | CMRR and PSRR vs Frequency | 図 7-14 | | CMRR vs Temperature | ☑ 7-15 | | PSRR vs Temperature | ☑ 7-16 | | 0.1-Hz to 10-Hz Voltage Noise | ☑ 7-17 | | Input Voltage Noise Spectral Density vs Frequency | ☑ 7-18 | | THD+N Ratio vs Frequency | ☑ 7-19 | | THD+N vs Output Amplitude | ☑ 7-20 | | Quiescent Current vs Supply Voltage | ☑ 7-21 | | Quiescent Current vs Temperature | ⊠ 7-22 | | Open-Loop Gain vs Temperature (10-kΩ) | ☑ 7-23 | | Open-Loop Gain vs Temperature (2-kΩ) | ⊠ 7-24 | | Open-Loop Output Impedance vs Frequency | ⊠ 7-25 | | Small-Signal Overshoot vs Capacitive Load (10-mV Step) | ⊠ 7-26 | | No Phase Reversal | ⊠ 7-27 | | Positive Overload Recovery | ☑ 7-28 | | Negative Overload Recovery | ☑ 7-29 | | Small-Signal Step Response (10-mV Step) | ☑ 7-30, ☑ 7-31 | | Large-Signal Step Response (10-V Step) | ⊠ 7-32, ⊠ 7-33 | | Settling Time | ☑ 7-34 | | Short-Circuit Current vs Temperature | ⊠ 7-35 | | Maximum Output Voltage vs Frequency | ☑ 7-36 | | EMIRR vs Frequency | ⊠ 7-37 | | OPA189 Long-Term Drift | ☑ 7-38 | | OPA2189 Long-Term Drift | ☑ 7-39 | | Channel Separation | 図 7-40 | at T_A = 25°C, V_S = ±18 V, V_{CM} = V_S / 2, R_{LOAD} = 10 k Ω connected to V_S / 2, and C_L = 100 pF (unless otherwise noted) ☑ 7-25. Open-Loop Output Impedance vs Frequency ☑ 7-26. Small-Signal Overshoot vs Capacitive Load 2 7-27. No Phase Reversal ☑ 7-28. Positive Overload Recovery 図 7-29. Negative Overload Recovery 図 7-30. Small-Signal Step Response # 8 Detailed Description ### 8.1 Overview The OPAx189 operational amplifiers combine precision offset and drift with excellent overall performance, making these devices an excellent choice for many precision applications. The precision offset drift of only 0.005 μ V/°C provides stability over the entire temperature range. In addition, these devices offer excellent linear performance with high CMRR, PSRR, and A_{OL}. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1- μ F capacitors are adequate. See the *Layout Guidelines* section for details and layout example. The OPAx189 are part of a family of zero-drift, MUX-friendly, rail-to-rail output operational amplifiers. These devices operate from 4.5 V to 36 V, are unity-gain stable, and are designed for a wide range of general-purpose and precision applications. The zero-drift architecture provides ultra-low input offset voltage and near-zero input offset voltage drift over temperature and time. This choice of architecture also offers outstanding ac performance, such as ultra-low broadband noise, zero flicker noise, and outstanding distortion performance when operating below the chopper frequency. ### 8.2 Functional Block Diagram The Functional Block Diagram shows a representation of the proprietary OPAx189 architecture. # 8.3 Feature Description The OPAx189 series of op amps can be used with single or dual supplies from an operating range of V_S = 4.5 V (±2.25 V) up to V_S = 36 V (±18 V). These devices do not require symmetrical supplies; they only require a minimum supply voltage of 4.5 V (±2.25 V). For V_S less than ±2.5 V, the common-mode input range does not include midsupply. Supply voltages higher than 40 V can permanently damage the device; see the *Absolute Maximum Ratings* table for details. Key parameters are given over the specified temperature range, $T_A = -40^{\circ}$ C to +125°C, in the *Electrical Characteristics* table. Key parameters that vary over the supply voltage, temperature range, or frequency are shown in the *Typical Characteristics* section. The OPAx189 is unity-gain stable and free from unexpected output phase reversal. This device uses a proprietary, periodic autocalibration technique to provide low input offset voltage and very low input offset voltage drift over time and temperature. For lowest offset voltage and precision performance, optimize circuit layout and mechanical conditions. Avoid temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed from connecting dissimilar conductors. Cancel these thermally-generated potentials by ensuring they are equal on both input pins. Other layout and design considerations include: - Use low thermoelectric-coefficient conditions (avoid dissimilar metals). - Thermally isolate components from power supplies or other heat sources. - Shield operational amplifier and input circuitry from air currents, such as cooling fans. Follow these guidelines to reduce the likelihood of junctions being at different temperatures, which may cause thermoelectric voltages of 0.1 μ V/°C or higher, depending on the materials used. See the *Layout Guidelines* section for details and a layout example. ### 8.3.1 Operating Characteristics The OPAx189 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V). Many specifications apply from – 40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the *Typical Characteristics* section. #### 8.3.2 Phase-Reversal Protection The OPAx189 has an internal phase-reversal protection. Many op amps exhibit a phase reversal when the input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The OPAx189 input prevents phase reversal with excessive common-mode voltage. Instead, the output limits into the appropriate rail. This performance is shown in \boxtimes 8-1. 図 8-1. No Phase Reversal ### 8.3.3 Input Bias Current Clock Feedthrough Zero-drift amplifiers such as the OPAx189 use switching on the inputs to correct for the intrinsic offset and drift of the amplifier. Charge injection from the integrated switches on the inputs can introduce short transients in the input bias current of the amplifier. The extremely short duration of these pulses prevents the pulses from amplifying, however the pulses may be coupled to the output of the amplifier through the feedback network. The most effective method to prevent transients in the input bias current from producing additional noise at the amplifier output is to use a low-pass filter such as an RC network. ### 8.3.4 EMI Rejection The OPAx189 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI interference from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the OPAx189 benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. 図 8-2 shows the results of this testing on the OPAx189. 表 8-1 lists the EMIRR +IN values for the OPAx189 at particular frequencies commonly encountered in real-world applications. Applications listed in 表 8-1 may be centered on or operated near the particular frequency shown. Detailed information can also be found in the *EMI Rejection Ratio of Operational Amplifiers* application report, available for download from www.ti.com. 図 8-2. EMIRR Testing 表 8-1. OPAx189 EMIRR IN+ for Frequencies of Interest | FREQUENCY | APPLICATION AND ALLOCATION | EMIRR IN+ | |-----------|--|-----------| | 400 MHz | Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications | 48.4 dB | | 900 MHz | Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications | 52.8 dB | | 1.8 GHz | GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz) | 69.1 dB | | 2.4 GHz | 802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz) | 88.9 dB | | 3.6 GHz | Radiolocation, aero communication and navigation, satellite, mobile, S-band | 82.5 dB | | 5 GHz | 802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz) | 95.5 dB | The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this section provides the EMIRR +IN, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for the following three reasons: - Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the supply or output pins. - The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit nearly matching EMIRR performance - EMIRR is more simple to measure on
noninverting pins than on other pins because the noninverting input terminal can be isolated on a PCB. This isolation allows the RF signal to be applied directly to the noninverting input terminal with no complex interactions from other components or connecting PCB traces. High-frequency signals conducted or radiated to any pin of the operational amplifier may result in adverse effects, as the amplifier would not have sufficient loop gain to correct for signals with spectral content outside the bandwidth. Conducted or radiated EMI on inputs, power supply, or output may result in unexpected DC offsets, transient voltages, or other unknown behavior. Take care to properly shield and isolate sensitive analog nodes from noisy radio signals and digital clocks and interfaces. The EMIRR +IN of the OPAx189 is plotted versus frequency as shown in \boxtimes 8-2. If available, any dual and quad op amp device versions have nearly similar EMIRR +IN performance. The OPAx189 unity-gain bandwidth is 14 MHz. EMIRR performance below this frequency denotes interfering signals that fall within the op amp bandwidth. ### 8.3.5 EMIRR +IN Test Configuration ⊠ 8-3 shows the circuit configuration for testing the EMIRR +IN. An RF source is connected to the op amp noninverting input terminal using a transmission line. The op amp is configured in a unity-gain buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the op amp input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. The multimeter samples and measures the resulting DC offset voltage. The LPF isolates the multimeter from residual RF signals that may interfere with multimeter accuracy. 図 8-3. EMIRR +IN Test Configuration #### 8.3.6 Electrical Overstress Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect from accidental ESD events both before and during product assembly. Having a good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. See 🗵 8-4 for an illustration of the ESD circuits contained in the OPAx189 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation. - (1) $V_{IN} = V + + 500 \text{ mV}.$ - (2) TVS: 40 V > $V_{TVSBR (min)}$ > V+; where $V_{TVSBR (min)}$ is the minimum specified value for the transient voltage suppressor breakdown voltage. - (3) Suggested value is approximately 5 $k\Omega$ in overvoltage conditions. ### 図 8-4. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-current pulse while discharging through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the protection circuitry is then dissipated as heat. When an ESD voltage develops across two or more amplifier device pins, current flows through one or more steering diodes. Depending on the path that the current takes, the absorption device may activate. The absorption device has a trigger or threshold voltage that is above the normal operating voltage of the OPAx189 but below the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly activates and clamps the voltage across the supply rails to a safe level. When the operational amplifier connects into a circuit (as shown in \boxtimes 8-4), the ESD protection components are intended to remain inactive and do not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. Should this condition occur, there is a risk that some internal ESD protection circuits may be biased on, and conduct current. Any such current flow occurs through steering-diode paths and rarely involves the absorption device. mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the current, one of the upper input steering diodes conducts and directs current to +V_S. Excessively high current levels can flow with increasingly higher V_{IN}. As a result, the data sheet specifications recommend that applications limit the input current to 10 mA. If the supply is not capable of sinking the current, V_{IN} may begin sourcing current to the operational amplifier, and then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings. Another common question involves what happens to the amplifier if an input signal is applied to the input while the power supplies V+ or V- are at 0 V. Again, this question depends on the supply characteristic while at 0 V, or at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational amplifier supply current may be supplied by the input source through the current-steering diodes. This state is not a normal bias condition; the amplifier most likely does not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the input source to deliver current, and any resistance in the input path. If there is any uncertainty about the ability of the supply to absorb this current, external zener diodes must be added to the supply pins, as shown in 🗵 8-4. The zener voltage must be selected such that the diode does not turn on during normal operation. However, the zener voltage must be low enough so that the zener diode conducts if the supply pin begins to rise above the safe operating supply voltage level. ### 8.3.7 MUX-Friendly Inputs The OPAx189 features a proprietary input stage design that allows an input differential voltage to be applied while maintaining high input impedance. Typically, high-voltage CMOS or bipolar-junction input amplifiers feature anti-parallel diodes that protect input transistors from large V_{GS} voltages that may exceed the semiconductor process maximum and permanently damage the device. Large V_{GS} voltages can be forced when applying a large input step, switching between channels, or attempting to use the amplifier as a comparator. OPAx189 solves these problems with a switched-input technique that prevents large input bias currents when large differential voltages are applied. This solves many issues seen in switched or multiplexed applications, where large disruptions to RC filtering networks are caused by fast switching between large potentials. OPAx189 offers outstanding settling performance due to these design innovations and built-in slew rate boost and wide bandwidth. The OPAx189 can also be used as a comparator. Differential and common-mode Absolute Maximum Ratings still apply relative to the power supplies. #### 8.3.8 Noise Performance № 8-5 shows the total circuit noise for varying source impedances with the operational amplifier in a unity-gain configuration (with no feedback resistor network and therefore no additional noise contributions). The OPAx189 and OPA211 are shown with total circuit noise calculated. The op amp itself contributes both a voltage noise component and a current noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low source impedance, current noise is negligible, and voltage noise generally dominates. The OPAx189 family has both low voltage noise and low current noise because of the CMOS input of the op amp. As a result, the current noise contribution of the OPAx189 series is negligible for any practical source impedance, which makes this device the better choice for applications with high source impedance. The equation in 🗵 8-5 shows the calculation of the total circuit noise, with these parameters: - e_n = voltage noise - i_n = current noise - R_S = source impedance - k = Boltzmann's constant = 1.38 × 10⁻²³ J/K - T = temperature in kelvins (K) For more details on calculating noise, see the Basic Noise Calculations section. NOTE: $R_S = 3.6 \text{ k}\Omega$ is indicated in \boxtimes 8-5. This is the source impedance above which OPAx189 is a lower noise option than the OPA211. 図 8-5. Noise Performance of the OPAx189 and OPA211 in Unity-Gain Buffer Configuration #### 8.3.9 Basic Noise Calculations Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the circuit is the root-sum-square combination of all noise components. The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance.
This function is plotted in \boxtimes 8-5. The source impedance is usually fixed; consequently, select the op amp and the feedback resistors to minimize the respective contributions to the total noise. ⊠ 8-6 illustrates both noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise. In general, the current noise of the op amp reacts with the feedback resistors to create additional noise components. However, the extremely low current noise of the OPAx189 means that the current noise contribution can be neglected. The feedback resistor values can generally be chosen to make these noise sources negligible. Low impedance feedback resistors load the output of the amplifier. The equations for total noise are shown for both configurations. For additional resources on noise calculations visit *TI's Precision Labs Series* #### (A) Noise in Noninverting Gain Configuration Noise at the output is given as Eo, where: (1) $$E_0 = \left(1 + \frac{R_2}{R_1}\right) \cdot \sqrt{(e_S)^2 + (e_N)^2 + \left(e_{R_1 \parallel R_2}\right)^2 + (i_N \cdot R_S)^2 + \left(i_N \cdot \left[\frac{R_1 \cdot R_2}{R_1 + R_2}\right]\right)^2} \quad [V_{RMS}]$$ (2) $$e_S = \sqrt{4 \cdot k_B \cdot T(K) \cdot R_S} \quad \left[\frac{V}{\sqrt{Hz}} \right]$$ Thermal noise of Rs (3) $$e_{R_1 \parallel R_2} = \sqrt{4 \cdot k_B \cdot T(K) \cdot \left[\frac{R_1 \cdot R_2}{R_1 + R_2}\right]} \quad \left[\frac{V}{\sqrt{Hz}}\right]$$ Thermal noise of R₁ | (4) $$k_B = 1.38065 \cdot 10^{-23} \left[\frac{J}{K} \right]$$ Boltzmann Constant (5) $$T(K) = 273.15 + T({}^{\circ}C)$$ [K] Temperature in kelvins #### (B) Noise in Inverting Gain Configuration Noise at the output is given as Eo, where: (6) $$E_{0} = \left(1 + \frac{R_{2}}{R_{S} + R_{1}}\right) \cdot \sqrt{(e_{N})^{2} + \left(e_{R_{1} + R_{S} \parallel R_{2}}\right)^{2} + \left(i_{N} \cdot \left[\frac{(R_{S} + R_{1}) \cdot R_{2}}{R_{S} + R_{1} + R_{2}}\right]\right)^{2}} \quad [V_{RMS}]$$ (7) $$e_{R_1+R_S\parallel R_2} = \sqrt{4 \cdot k_B \cdot T(K) \cdot \left[\frac{(R_S+R_1) \cdot R_2}{R_S+R_1+R_2} \right]} \quad \left[\frac{V}{\sqrt{Hz}} \right]$$ Thermal noise of (R₁ + R_S) || R₂ (8) $$k_B = 1.38065 \cdot 10^{-23} \left[\frac{J}{K} \right]$$ Boltzmann Constant (9) $$T(K) = 273.15 + T({}^{\circ}C)$$ [K] Temperature in kelvins ### where: - e_n is the voltage noise spectral density of the amplifier. For the OPAx189 series of operational amplifiers, e_n = $5.2 \text{ nV} / \sqrt{\text{Hz}}$ at 1 kHz. - i_n is the current noise spectral density of the amplifier. For the OPAx189 series of operational amplifiers, i_n = 165 fA/ $\sqrt{\text{Hz}}$ at 1 kHz. ### 図 8-6. Noise Calculation in Gain Configurations #### 8.4 Device Functional Modes The OPAx189 has a single functional mode, and is operational when the power-supply voltage is greater than $4.5 \text{ V} (\pm 2.25 \text{ V})$. The maximum power supply voltage for the OPAx189 is $36 \text{ V} (\pm 18 \text{ V})$. # 9 Application and Implementation ### Note 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ### 9.1 Application Information The OPAx189 operational amplifier combines precision offset and drift with excellent overall performance, making the series an excellent for many precision applications. The precision offset drift of only 0.005 μ V/°C provides stability over the entire temperature range. In addition, the device pairs excellent CMRR, PSRR, and A_{OL} dc performance with outstanding low-noise operation. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1- μ F capacitors are adequate. The following application examples highlight only a few of the circuits where the OPAx189 can be used. ### 9.2 Typical Applications #### 9.2.1 25-kHz Low-Pass Filter Copyright © 2017, Texas Instruments Incorporated 図 9-1. 25-kHz Low-Pass Filter ### 9.2.1.1 Design Requirements Low-pass filters are commonly employed in signal processing applications to reduce noise and prevent aliasing. The OPAx189 devices are designed to construct high-speed, high-precision active filters. 9-1 shows a second-order, low-pass filter commonly encountered in signal processing applications. Use the following parameters for this design example: - Gain = 5 V/V (inverting gain) - Low-pass cutoff frequency = 25 kHz - · Second-order Chebyshev filter response with 3-dB gain peaking in the passband ### 9.2.1.2 Detailed Design Procedure The infinite-gain multiple-feedback circuit for a low-pass network function is shown in \boxtimes 9-1. Use $\not\equiv$ 1 to calculate the voltage transfer function. $$\frac{Output}{Input}(s) = \frac{-1/R_1R_3C_2C_5}{s^2 + (s/C_2)(1/R_1 + 1/R_3 + 1/R_4) + 1/R_3R_4C_2C_5}$$ (1) This circuit produces a signal inversion. For this circuit, the gain at dc and the low-pass cutoff frequency are calculated by Equation 2: Gain = $$\frac{R_4}{R_1}$$ $f_C = \frac{1}{2\pi} \sqrt{(1/R_3 R_4 C_2 C_5)}$ (2) Software tools are readily available to simplify filter design. WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH® Filter Designer lets the user create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners. Available as a web based tool from the WEBENCH Design Center, WEBENCH Filter Designer allows board-level designers to create, optimize, and simulate complete multistage active filter solutions within minutes. ### 9.2.1.3 Application Curve 図 9-2. OPAx189 Second-Order, 25-kHz, Chebyshev, Low-Pass Filter # 9.2.2 Discrete INA + Attenuation for ADC With 3.3-V Supply #### Note The TINA-TI[™] software files shown in the following sections require that either the TINA[™] software (from DesignSoft[™]) or TINA-TI simulation software be installed. See セクション 12.1.1.1 for more information. № 9-3 shows an example of how the OPAx189 is used as a high-voltage, high-impedance front end for a precision, discrete instrumentation amplifier with attenuation. The INA159 provides the attenuation that allows this circuit to simply interface with 3.3-V or 5-V analog-to-digital converters (ADCs). Click the following link download the TINA-TI software file: Discrete INA. Copyright © 2017, Texas Instruments Incorporated (1) $V_{OUT} = V_{DIFF} \times (41/5) + (Ref 1)/2$. 図 9-3. Discrete INA + Attenuation for ADC With 3.3-V Supply ### 9.2.3 Bridge Amplifier ☑ 9-4 shows the basic configuration for a bridge amplifier. Click the following link to download the TINA-TI software file: Bridge Amplifier Circuit. Copyright © 2017, Texas Instruments Incorporated 図 9-4. Bridge Amplifier #### 9.2.4 Low-Side Current Monitor \boxtimes 9-5 shows the OPAx189 configured in a low-side current-sensing application. The load current (I_{LOAD}) creates a voltage drop across the shunt resistor (R_{SHUNT}). This voltage is amplified by the OPAx189, with a gain of 201. In this example the load current is set from 0 A to 500 mA, which corresponds to an output voltage range from 0 V to 10 V. The output range can be adjusted by changing the shunt resistor or gain of the configuration. Click the following link to download the TINA-TI software file: Current-Sensing Circuit. 図 9-5. Low-Side Current Monitor ### 9.2.5 Programmable Power Supply № 9-6 shows the OPAx189 configured as a precision programmable power supply using the 16-bit, voltage output DAC8581 and the OPA548 high-current amplifier. This application amplifies the digital-to-analog converter (DAC) voltage by a value of five, and handles a large variety of capacitive and current loads. The OPAx189 in the front-end provides precision and low drift across a wide range of inputs and conditions. Click the following link to download the TINA-TI software file: Programmable Power-Supply Circuit. Copyright © 2017, Texas Instruments Incorporated 図 9-6. Programmable Power Supply ### 9.2.6 RTD Amplifier With Linearization See *Analog Linearization of Resistance Temperature Detectors* for an in-depth analysis of 🗵 9-7. Click the following link to download the TINA-TI software file: RTD Amplifier with Linearization. (1) R_5 provides positive-varying excitation to linearize output. 図 9-7. RTD Amplifier With Linearization # 9.3 System Examples ### 9.3.1 24-Bit, Delta-Sigma, Differential Load Cell or Strain Gauge Sensor Signal Conditioning OPAx189 is used in a 24-bit, differential load cell or strain gauge sensor signal conditioning system alongside the ADS1225. A pair of OPAx189 amplifiers are configured in a two-amp instrumentation amplifier (IA) configuration and are band-limited to reduce noise and allow heavy capacitive drive. The load cell is powered by an excitation voltage (denoted V_{EX}) of 5-V and provides a differential voltage proportional to force applied. The differential voltage can be quite small and both outputs are biased to V_{EX} / 2. In this example the OPAx189 is employed here due to the excellent input offset voltage (0.4 μ V) and input offset voltage drift (0.005 μ V/°C), the low broadband noise (5.2 nV/ $\sqrt{\text{Hz}}$) and zero-flicker noise, and excellent linearity and high input impedance. The two-amp IA configuration removes the dc bias and amplifies the differential signal of interest and drives the 24-bit, delta-sigma ADS1225 analog-to-digital converter (ADC) for acquisition and conversion. The ADS1225 features a 100-SPS data rate, single-cycle settling, and simple conversion control with the dedicated START pin. Copyright © 2017, Texas Instruments Incorporated 図 9-8. 24-Bit, Differential Load Cell or Strain Gauge Sensor Signal Conditioning Schematic # 10 Power Supply Recommendations The OPAx189 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many
specifications apply from –40°C to +125°C. The *Typical Characteristics* section presents parameters that can exhibit significant variance with regard to operating voltage or temperature. ### **CAUTION** Supply voltages larger than 40 V can permanently damage the device (see the *Absolute Maximum Ratings* table). Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see the *Layout* section. # 11 Layout # 11.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: - Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp itself. Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. - Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close as possible to the device. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. - Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. For more detailed information, see *The*PCB is a component of op amp design technical brief. - To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace. - Place the external components as close as possible to the device. As illustrated in ☑ 11-1, keeping RF and RG close to the inverting input minimizes parasitic capacitance. - Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. - Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. - For best performance, TI recommends cleaning the PCB following board assembly. - Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, TI recommends baking the PCB assembly to remove moisture introduced into the device packaging during the cleaning process. A low temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances. ## 11.2 Layout Example Copyright © 2017, Texas Instruments Incorporated 図 11-1. Operational Amplifier Board Layout for Difference Amplifier Configuration # 12 Device and Documentation Support # 12.1 Device Support ### 12.1.1 Development Support ### 12.1.1.1 TINA-TI™ Simulation Software (Free Download) TINA-TI simulation software is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINA software, preloaded with a library of macromodels in addition to a range of both passive and active models. TINA-TI simulation software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities. Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool. #### Note These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed. Download the free TINA-TI simulation software from the TINA-TI folder. #### 12.1.1.2 TI Precision Designs TI Precision Designs are available online at http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI's precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits. ### 12.2 Documentation Support ### 12.2.1 Related Documentation For related documentation see the following: - Texas Instruments, Zero-drift Amplifiers: Features and Benefits application brief - Texas Instruments, The PCB is a component of op amp design technical brief - Texas Instruments, Operational amplifier gain stability, Part 3: AC gain-error analysis technical brief - · Texas Instruments, Operational amplifier gain stability, Part 2: DC gain-error analysis technical brief - Texas Instruments, Using infinite-gain, MFB filter topology in fully differential active filters technical brief - Texas Instruments, Op Amp Performance Analysis application bulletin - Texas Instruments, Single-Supply Operation of Operational Amplifiers application bulletin - Texas Instruments, *Tuning in Amplifiers* application bulletin - Texas Instruments, Shelf-Life Evaluation of Lead-Free Component Finishes application report - Texas Instruments, Feedback Plots Define Op Amp AC Performance application bulletin - Texas Instruments, *EMI Rejection Ratio of Operational Amplifiers (With OPA333 and OPA333-Q1 as an Example)* application report - Texas Instruments, Analog linearization of resistance temperature detectors technical brief - Texas Instruments, TI Precision Design TIPD102 High-Side Voltage-to-Current (V-I) Converter reference guide # 12.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ## 12.4 サポート・リソース TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。 ### 12.5 Trademarks TINA-TI[™] and TI E2E[™] are trademarks of Texas Instruments. TINA[™] and DesignSoft[™] are trademarks of DesignSoft, Inc. Bluetooth® is a registered trademark of Bluetooth SIG, Inc. WEBENCH® is a registered trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 # 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 12.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. ## 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com i.com 17-Jun-2025 # **PACKAGING INFORMATION** | Orderable part number | Status (1) | Material type | Package Pins | Package qty Carrier | RoHS (3) | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|------------|---------------|------------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------| | OPA189ID | Active | Production | SOIC (D) 8 | 75 TUBE | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA189 | | OPA189ID.B | Active | Production | SOIC (D) 8 | 75 TUBE | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA189 | | OPA189IDBVR | Active | Production | SOT-23 (DBV) 5 | 3000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 1CTV | | OPA189IDBVR.B | Active | Production | SOT-23 (DBV) 5 | 3000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 1CTV | | OPA189IDBVT | Active | Production | SOT-23 (DBV) 5 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 1CTV | | OPA189IDBVT.B | Active | Production | SOT-23 (DBV) 5 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 1CTV | | OPA189IDBVTG4 | Active | Production | SOT-23 (DBV) 5 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 1CTV | | OPA189IDBVTG4.B | Active | Production | SOT-23 (DBV) 5 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 1CTV | | OPA189IDGKR | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | NIPDAUAG | Level-2-260C-1 YEAR | -40 to 125 | 1CS6 | | OPA189IDGKR.B | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | NIPDAUAG | Level-2-260C-1 YEAR | -40 to 125 | 1CS6 | | OPA189IDGKT | Active | Production | VSSOP (DGK) 8 | 250 SMALL T&R | Yes | NIPDAUAG | Level-2-260C-1 YEAR | -40 to 125 | 1CS6 | | OPA189IDGKT.B | Active | Production | VSSOP (DGK) 8 | 250 SMALL T&R | Yes | NIPDAUAG | Level-2-260C-1 YEAR | -40 to 125 | 1CS6 | | OPA189IDR | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA189 | | OPA189IDR.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes |
NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA189 | | OPA189IDRG4 | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA189 | | OPA189IDRG4.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA189 | | OPA2189ID | Active | Production | SOIC (D) 8 | 75 TUBE | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OP2189 | | OPA2189ID.B | Active | Production | SOIC (D) 8 | 75 TUBE | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OP2189 | | OPA2189IDGKR | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | 1VQQ | | OPA2189IDGKR.B | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | 1VQQ | | OPA2189IDGKT | Active | Production | VSSOP (DGK) 8 | 250 SMALL T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | 1VQQ | | OPA2189IDGKT.B | Active | Production | VSSOP (DGK) 8 | 250 SMALL T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | 1VQQ | | OPA2189IDR | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OP2189 | | OPA2189IDR.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OP2189 | | OPA4189IDR | Active | Production | SOIC (D) 14 | 3000 LARGE T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OPA4189 | | OPA4189IDR.B | Active | Production | SOIC (D) 14 | 3000 LARGE T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OPA4189 | | OPA4189IDT | Active | Production | SOIC (D) 14 | 250 SMALL T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OPA4189 | | OPA4189IDT.B | Active | Production | SOIC (D) 14 | 250 SMALL T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OPA4189 | | OPA4189IPWR | Active | Production | TSSOP (PW) 14 | 3000 LARGE T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OPA4189 | 17-Jun-2025 www.ti.com | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | (., | (=) | | | (0) | (4) | (5) | | (0) | | OPA4189IPWR.B | Active | Production | TSSOP (PW) 14 | 3000 LARGE T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OPA4189 | | OPA4189IPWT | Active | Production | TSSOP (PW) 14 | 250 SMALL T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OPA4189 | | OPA4189IPWT.B | Active | Production | TSSOP (PW) 14 | 250 SMALL T&R | Yes | SN | Level-2-260C-1 YEAR | -40 to 125 | OPA4189 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. www.ti.com 24-Jul-2025 # TAPE AND REEL INFORMATION | Γ | A0 | Dimension designed to accommodate the component width | |---|----|---| | | В0 | Dimension designed to accommodate the component length | | | K0 | Dimension designed to accommodate the component thickness | | | W | Overall width of the carrier tape | | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | OPA189IDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA189IDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA189IDBVTG4 | SOT-23 | DBV | 5 | 250 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA189IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA189IDGKT | VSSOP | DGK | 8 | 250 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA189IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA189IDRG4 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA2189IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.25 | 3.35 | 1.25 | 8.0 | 12.0 | Q1 | | OPA2189IDGKT | VSSOP | DGK | 8 | 250 | 330.0 | 12.4 | 5.25 | 3.35 | 1.25 | 8.0 | 12.0 | Q1 | | OPA2189IDR | SOIC | D | 8 | 2500 | 330.0 | 12.8 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA4189IDR | SOIC | D | 14 | 3000 | 330.0 | 16.4 | 6.5 | 9.5 | 2.1 | 8.0 | 16.0 | Q1 | | OPA4189IDT | SOIC | D | 14 | 250 | 330.0 | 16.4 | 6.5 | 9.5 | 2.1 | 8.0 | 16.0 | Q1 | | OPA4189IPWR | TSSOP | PW | 14 | 3000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | OPA4189IPWT | TSSOP | PW | 14 | 250 | 180.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 24-Jul-2025 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | OPA189IDBVR | SOT-23 | DBV | 5 | 3000 | 213.0 | 191.0 | 35.0 | | OPA189IDBVT | SOT-23 | DBV | 5 | 250 | 213.0 | 191.0 | 35.0 | | OPA189IDBVTG4 | SOT-23 | DBV | 5 | 250 | 213.0 | 191.0 | 35.0 | | OPA189IDGKR | VSSOP | DGK | 8 | 2500 | 366.0 | 364.0 | 50.0 | | OPA189IDGKT | VSSOP | DGK | 8 | 250 | 366.0 | 364.0 | 50.0 | | OPA189IDR | SOIC | D | 8 | 2500 | 353.0 | 353.0 | 32.0 | | OPA189IDRG4 | SOIC | D | 8 | 2500 | 353.0 | 353.0 | 32.0 | | OPA2189IDGKR | VSSOP | DGK | 8 | 2500 | 366.0 | 364.0 | 50.0 | | OPA2189IDGKT | VSSOP | DGK | 8 | 250 | 366.0 | 364.0 | 50.0 | | OPA2189IDR | SOIC | D | 8 | 2500 | 366.0 | 364.0 | 50.0 | | OPA4189IDR | SOIC | D | 14 | 3000 | 366.0 | 364.0 | 50.0 | | OPA4189IDT | SOIC | D | 14 | 250 | 366.0 | 364.0 | 50.0 | | OPA4189IPWR | TSSOP | PW | 14 | 3000 | 353.0 | 353.0 | 32.0 | | OPA4189IPWT | TSSOP | PW | 14 | 250 | 213.0 | 191.0 | 35.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jul-2025 # **TUBE** *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |-------------|--------------|--------------|------|-----|--------|--------|--------|--------| | OPA189ID | D | SOIC | 8 | 75 | 506.6 | 8 | 3940 | 4.32 | | OPA189ID.B | D | SOIC | 8 | 75 | 506.6 | 8 | 3940 | 4.32 | | OPA2189ID | D | SOIC | 8 | 75 | 517 | 7.87 | 635 | 4.25 | | OPA2189ID.B | D | SOIC | 8 | 75 | 517 | 7.87 | 635 | 4.25 | - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm, per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side. - 5. Reference JEDEC registration MS-012, variation AB. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board
fabrication site. - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. - 4. This dimension does not include interlead flash. - 5. Reference JEDEC registration MS-012, variation AA. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. SMALL OUTLINE TRANSISTOR - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC MO-178. - 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side. - 5. Support pin may differ or may not be present. SMALL OUTLINE TRANSISTOR NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE TRANSISTOR - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. PowerPAD is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-187. - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. - 9. Size of metal pad may vary due to creepage requirement. - 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 12. Board assembly site may have different recommendations for stencil design. # 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated