LMT86-Q1 JAJSMQ5A – OCTOBER 2017 – REVISED JUNE 2022 # LMT86-Q1 2.2-V、SC70、 アナログ温度センサ # 1 特長 - LMT86-Q1-Q1 は車載用アプリケーション向けに AEC-Q100 認定済み: - デバイス温度グレード 0:-40℃~+150℃ - デバイス HBM ESD 分類レベル 2 - デバイス CDM ESD 分類レベル C6 - 機能安全対応 - 機能安全システムの設計に役立つ資料を利用可能 - 非常に高精度:±0.4°C (標準値) - 低電圧 2.2V で動作 - 平均センサ・ゲイン:-10.9mV/℃ - 低い静止電流:5.4µA - 広い温度範囲:-50°C~150°C - 出力短絡保護 - 駆動能力 ±50µA のプッシュプル出力 - 業界標準の LM20/19 および LM35 温度センサとフットプリント互換 - コスト効率に優れたサーミスタの代替 # 2 アプリケーション - 重載用 - インフォテインメントおよびクラスタ - パワートレイン・システム - 煙および熱検出器 - ・ドローン - 家電製品 * 高速な熱応答 NTC 熱時定数 ## 3 概要 LMT86-Q1 は、高精度の CMOS 温度センサであり、標準精度は ±0.4℃ (最大値±2.7℃)で、リニアなアナログ出力電圧を備え、この電圧は温度に反比例します。2.2Vの電源電圧で動作し、静止電流が 5.4µA、パワーオン時間が 0.7ms で、効果的なパワーサイクリング・アーキテクチャを実現し、ドローンやセンサ・ノードなどバッテリ駆動のアプリケーションで消費電力を最小化できます。LMT86-Q1-Q1 デバイス は、AEC-Q100 グレード 0 認定済みで、較正なしで全動作温度範囲にわたって ±2.7℃ の最大精度を維持します。このため、LMT86-Q1-Q1 はインフォテインメント、クラスタ、パワートレイン・システムなどの車載アプリケーションに適しています。広い動作範囲にわたる精度や、その他の特長から、LMT86-Q1 はサーミスタの優れた代替となります。 異なる平均センサ・ゲインおよび類似の精度を持つデバイスについては、「*類似の代替デバイス*」で、LMT8x ファミリの他のデバイスを参照してください。 # 製品情報(1) | 部品番号 | パッケージ | 本体サイズ (公称) | |----------|---------|---------------| | LMT86-Q1 | SOT (5) | 2.00mm×1.25mm | (1) 利用可能なパッケージについては、このデータシートの末尾にある注文情報を参照してください。 出力電圧と温度との関係 # **Table of Contents** | 1 特長 | 1 | 8.3 Feature Description | 8 | |--------------------------------------|---|---|-----| | 2 アプリケーション | | 8.4 Device Functional Modes | | | 3 概要 | | 9 Application and Implementation | 12 | | 4 Revision History | | 9.1 Application Information | 12 | | 5 Device Comparison | | 9.2 Typical Applications | 12 | | 6 Pin Configuration and Functions | | 10 Power Supply Recommendations | 13 | | 7 Specifications | | 11 Layout | 14 | | 7.1 Absolute Maximum Ratings | | 11.1 Layout Guidelines | 14 | | 7.2 ESD Ratings | | 11.2 Layout Example | 14 | | 7.3 Recommended Operating Conditions | | 12 Device and Documentation Support | 15 | | 7.4 Thermal Information | | 12.1 Receiving Notification of Documentation Update | s15 | | 7.5 Accuracy Characteristics | | 12.2 サポート・リソース | 15 | | 7.6 Electrical Characteristics | | 12.3 Trademarks | 15 | | 7.7 Typical Characteristics | | 12.4 Electrostatic Discharge Caution | 15 | | 8 Detailed Description | | 12.5 Glossary | | | 8.1 Overview | | 13 Mechanical, Packaging, and Orderable | | | 8.2 Functional Block Diagram | | Information | 15 | | -3 | | | | # **4 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | С | hanges from Revision * (October 2017) to Revision A (June 2022) | Page | |---|---|------| | • | 文書全体にわたって表、図、相互参照の採番方法を更新 | 1 | | • | 「 <i>特長</i> 」セクションに機能安全の箇条書き項目を追加 | 1 | # **5 Device Comparison** # 表 5-1. Available Device Packages | ORDER NUMBER ⁽¹⁾ | PACKAGE | PIN | BODY SIZE (NOM) | MOUNTING TYPE | |-----------------------------|--------------------------------------|-----|-------------------|------------------------------| | LMT86DCK | SOT (AKA ⁽²⁾ : SC70, DCK) | 5 | 2.00 mm × 1.25 mm | Surface Mount | | LMT86LP | TO-92 (AKA ⁽²⁾ : LP) | 3 | 4.30 mm × 3.50 mm | Through-hole; straight leads | | LMT86LPG | TO-92S (AKA ⁽²⁾ : LPG) | 3 | 4.00 mm × 3.15 mm | Through-hole; straight leads | | LMT86LPM | TO-92 (AKA ⁽²⁾ : LPM) | 3 | 4.30 mm × 3.50 mm | Through-hole; formed leads | | LMT86DCK-Q1 | SOT (AKA ⁽²⁾ : SC70, DCK) | 5 | 2.00 mm × 1.25 mm | Surface Mount | - (1) For all available packages and complete order numbers, see the Package Option addendum at the end of the data sheet. - (2) AKA = Also Known As 表 5-2. Comparable Alternative Devices | DEVICE NAME | AVERAGE OUTPUT SENSOR GAIN | POWER SUPPLY RANGE | |-------------|----------------------------|--------------------| | LMT84-Q1 | −5.5 mV/°C | 1.5 V to 5.5 V | | LMT85-Q1 | −8.2 mV/°C | 1.8 V to 5.5 V | | LMT86-Q1 | –10.9 mV/°C | 2.2 V to 5.5 V | | LMT87-Q1 | −13.6 mV/°C | 2.7 V to 5.5 V | # **6 Pin Configuration and Functions** 図 6-1. 5-Pin SOT (SC70) DCK Package (TOP VIEW) 表 6-1. Pin Functions | PIN | | TYPE | DE | ESCRIPTION | |----------|---------------------|------------------|------------------------|---| | NAME | IAME SOT (SC70) | | EQUIVALENT CIRCUIT | FUNCTION | | GND | 1, 2 ⁽¹⁾ | Ground | N/A | Power Supply Ground | | OUT | 3 | Analog
Output | V _{DD}
GND | Outputs a voltage that is inversely proportional to temperature | | V_{DD} | 4, 5 | Power | N/A | Positive Supply Voltage | (1) Direct connection to the back side of the die # 7 Specifications # 7.1 Absolute Maximum Ratings See (1) (2) | | MIN | MAX | UNIT | |---|-----------|-------------------------|------| | Supply voltage | -0.3 | 6 | V | | Voltage at output pin | -0.3 | (V _{DD} + 0.5) | V | | Output current | -7 | 7 | mA | | Input current at any pin (3) | -5 | 5 | mA | | Maximum junction temperature (T _{JMAX}) | | 150 | °C | | Storage temperature, T _{stg} | -65 | 150 | °C | - (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability - (2) Soldering process must comply with TI's Reflow Temperature Profile specifications. Refer to www.ti.com/packaging. Reflow temperature profiles are different for lead-free and non-lead-free packages. - (3) When the input voltage (V_I) at any pin exceeds power supplies (V_I < GND or V_I > V), the current at that pin should be limited to 5 mA. # 7.2 ESD Ratings | | | | VALUE | UNIT | |-----------------------------|-------------------------|---|-------|------| | LMT86DCK-Q1 in SC70 package | | | | | | V _(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002 ⁽¹⁾ | ±2500 | W | | | Electrostatic discharge | Charged-device model (CDM), per AEC Q100-011 | ±1000 | V | ⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. ## 7.3 Recommended Operating Conditions | | MIN | MAX | UNIT | |-----------------------------------|-------------------------------|-----|------| | Specified temperature | $T_{MIN} \le T_A \le T_{MAX}$ | | °C | | | -50 ≤ T _A ≤ 150 | | °C | | Supply voltage (V _{DD}) | 2.2 | 5.5 | V | ## 7.4 Thermal Information | | | LMT86-Q1 | | | |-----------------------|--|----------------|------|--| | | THERMAL METRIC ⁽¹⁾ (2) | DCK (SOT/SC70) | UNIT | | | | | 5 PINS | | | | R _{θJA} | Junction-to-ambient thermal resistance (3) (4) | 275 | °C/W | | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 84 | °C/W | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 56 | °C/W | | | ΨЈТ | Junction-to-top characterization parameter | 1.2 | °C/W | | | ΨЈВ | Junction-to-board characterization parameter | 55 | °C/W | | - (1) For information on self-heating and thermal response time, see section Mounting and Thermal Conductivity. - (2) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report. - (3) The junction to ambient thermal resistance (R_{θJA}) under natural convection is obtained in a simulation on a JEDEC-standard, High-K board as specified in JESD51-7, in an environment described in JESD51-2. Exposed pad packages assume that thermal vias are included in the PCB, per JESD 51-5. - (4) Changes in output due to self-heating can be computed by multiplying the internal dissipation by the thermal resistance. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated # 7.5 Accuracy Characteristics These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in 表 8-1. | PARAMETER | CONDITIONS | MIN ⁽¹⁾ | TYP ⁽²⁾ | MAX ⁽¹⁾ | UNIT | |-------------------------------------|---|--------------------|--------------------|--------------------|------| | | 40°C to 150°C; V _{DD} = 2.2 V to 5.5 V | -2.7 | ±0.4 | 2.7 | °C | | | 0°C to 40°C; V _{DD} = 2.4 V to 5.5 V | -2.7 | ±0.7 | 2.7 | °C | | Temperature accuracy ⁽³⁾ | 0°C to 70°C; V _{DD} = 3.0 V to 5.5 V | | ±0.3 | | °C | | | –50°C to 0°C; V _{DD} = 3.0 V to 5.5 V | -2.7 | ±0.7 | 2.7 | °C | | | -50°C to 0°C; V _{DD} = 3.6 V to 5.5 V | | ±0.25 | | °C | - (1) Limits are specified to TI's AOQL (Average Outgoing Quality Level). - (2) Typicals are at $T_1 = T_A = 25^{\circ}$ C and represent most likely parametric norm. - (3) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not include load regulation; they assume no dc load. ### 7.6 Electrical Characteristics Unless otherwise noted, these specifications apply for $+V_{DD}$ = 2.2 V to 5.5 V. MIN and MAX limits apply for T_A = T_J = T_{MIN} to T_{MAX} , unless otherwise noted; typical values apply for T_A = T_J = 25°C. | | PARAMETER | TEST CONDITIONS | MIN ⁽¹⁾ | TYP ⁽²⁾ | MAX ⁽¹⁾ | UNIT | |----|--|--|--------------------|--------------------|--------------------|-------| | | Average sensor gain (output transfer function slope) | -30°C and 90°C used to calculate average sensor gain | | -10.9 | | mV/°C | | | Load regulation ⁽³⁾ | Source \leq 50 μ A, $(V_{DD} - V_{OUT}) \geq$ 200 mV | -1 | -0.22 | | mV | | | Load regulation (*) | Sink ≤ 50 μA, V _{OUT} ≥ 200 mV | | 0.26 | 1 | mV | | | Line regulation ⁽⁴⁾ | | | 200 | | μV/V | | 1- | Supply current | $T_A = 30^{\circ}C \text{ to } 150^{\circ}C, (V_{DD} - V_{OUT}) \ge 100 \text{ mV}$ | | 5.4 | 8.1 | μΑ | | IS | Зирріу сипепі | $T_A = -50^{\circ}C \text{ to } 150^{\circ}C, (V_{DD} - V_{OUT}) \ge 100 \text{ mV}$ | | 5.4 | 9 | μA | | CL | Output load capacitance | | | 1100 | | pF | | | Power-on time ⁽⁵⁾ | C _L = 0 pF to 1100 pF | | 0.7 | 1.9 | ms | | | Output drive | $T_A = T_J = 25$ °C | -50 | | 50 | μΑ | - (1) Limits are specific to TI's AOQL (Average Outgoing Quality Level). - (2) Typicals are at $T_J = T_A = 25$ °C and represent most likely parametric norm. - (3) Source currents are flowing out of the LMT86-Q1. Sink currents are flowing into the LMT86-Q1. - (4) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Output Voltage Shift. - (5) Specified by design and characterization. # 7.7 Typical Characteristics # 7.7 Typical Characteristics (continued) ☑ 7-9. Output Voltage vs Supply Voltage # 8 Detailed Description ## 8.1 Overview The LMT86-Q1 is an analog output temperature sensor. The temperature-sensing element is comprised of a simple base emitter junction that is forward biased by a current source. The temperature-sensing element is then buffered by an amplifier and provided to the OUT pin. The amplifier has a simple push-pull output stage thus providing a low impedance output source. ### 8.2 Functional Block Diagram Full-Range Celsius Temperature Sensor (-50°C to +150°C) ## 8.3 Feature Description #### 8.3.1 LMT86-Q1 Transfer Function 表 8-1 shows the output voltage of the LMT86-Q1 across the complete operating temperature range. This table is the reference from which the LMT86-Q1 accuracy specifications (listed in the *Accuracy Characteristics* table) are determined. This table can be used, for example, in a host processor look-up table. A file containing this data is available for download at LMT86-Q1 product folder under *Tools and Software Models*. TEMP TEMP TEMP **TEMP** TEMP V_{OUT} (mV) V_{OUT} (mV) V_{OUT} (mV) V_{OUT} (mV) V_{OUT} (mV) (°C) (°C) (°C) (°C) (°C) -49 -9 -48 -8 -47 -7 -46 -6 -45 -5 -44 -4 -43 -3 -42 -2 -41 -1 -40 -39 -38 -37 -36 -35 表 8-1. LMT86-Q1 Transfer Table INSTRUMENTS www.tij.co.jp ### 表 8-1. LMT86-Q1 Transfer Table (continued) | TEMP
(°C) | V _{OUT} (mV) | TEMP
(°C) | V _{OUT}
(mV) | |--------------|-----------------------|--------------|--------------------------|--------------|--------------------------|--------------|--------------------------|--------------|--------------------------| | -34 | 2460 | 6 | 2036 | 46 | 1602 | 86 | 1155 | 126 | 699 | | -33 | 2449 | 7 | 2025 | 47 | 1591 | 87 | 1144 | 127 | 688 | | -32 | 2439 | 8 | 2014 | 48 | 1580 | 88 | 1133 | 128 | 676 | | -31 | 2429 | 9 | 2004 | 49 | 1569 | 89 | 1122 | 129 | 665 | | -30 | 2418 | 10 | 1993 | 50 | 1558 | 90 | 1110 | 130 | 653 | | -29 | 2408 | 11 | 1982 | 51 | 1547 | 91 | 1099 | 131 | 642 | | -28 | 2397 | 12 | 1971 | 52 | 1536 | 92 | 1088 | 132 | 630 | | -27 | 2387 | 13 | 1961 | 53 | 1525 | 93 | 1076 | 133 | 618 | | -26 | 2376 | 14 | 1950 | 54 | 1514 | 94 | 1065 | 134 | 607 | | -25 | 2366 | 15 | 1939 | 55 | 1503 | 95 | 1054 | 135 | 595 | | -24 | 2355 | 16 | 1928 | 56 | 1492 | 96 | 1042 | 136 | 584 | | -23 | 2345 | 17 | 1918 | 57 | 1481 | 97 | 1031 | 137 | 572 | | -22 | 2334 | 18 | 1907 | 58 | 1470 | 98 | 1020 | 138 | 560 | | -21 | 2324 | 19 | 1896 | 59 | 1459 | 99 | 1008 | 139 | 549 | | -20 | 2313 | 20 | 1885 | 60 | 1448 | 100 | 997 | 140 | 537 | | -19 | 2302 | 21 | 1874 | 61 | 1436 | 101 | 986 | 141 | 525 | | -18 | 2292 | 22 | 1864 | 62 | 1425 | 102 | 974 | 142 | 514 | | -17 | 2281 | 23 | 1853 | 63 | 1414 | 103 | 963 | 143 | 502 | | -16 | 2271 | 24 | 1842 | 64 | 1403 | 104 | 951 | 144 | 490 | | -15 | 2260 | 25 | 1831 | 65 | 1391 | 105 | 940 | 145 | 479 | | -14 | 2250 | 26 | 1820 | 66 | 1380 | 106 | 929 | 146 | 467 | | -13 | 2239 | 27 | 1810 | 67 | 1369 | 107 | 917 | 147 | 455 | | -12 | 2228 | 28 | 1799 | 68 | 1358 | 108 | 906 | 148 | 443 | | -11 | 2218 | 29 | 1788 | 69 | 1346 | 109 | 895 | 149 | 432 | | | | | | | | | | 150 | 420 | Although the LMT86-Q1 is very linear, its response does have a slight umbrella parabolic shape. 表 8-1 very accurately reflects this shape. The Transfer Table can be calculated by using the parabolic equation (式 1). $$V_{TEMP}(mV) = 1777.3mV - \left[10.888 \frac{mV}{^{\circ}C} (T - 30^{\circ}C)\right] - \left[0.00347 \frac{mV}{^{\circ}C^{2}} (T - 30^{\circ}C)^{2}\right]$$ (1) The parabolic equation is an approximation of the transfer table and the accuracy of the equation degrades slightly at the temperature range extremes. 式 1 can be solved for T resulting in: $$T = \frac{10.888 - \sqrt{\left(-10.888\right)^2 + 4 \times 0.00347 \times \left(1777.3 - V_{TEMP} \text{ (mV)}\right)}}{2 \times \left(-0.00347\right)} + 30 \tag{2}$$ For an even less accurate linear approximation, a line can easily be calculated over the desired temperature range from the table using the two-point equation (式 3): $$V - V_1 = \left(\frac{V_2 - V_1}{T_2 - T_1}\right) \times (T - T_1)$$ (3) #### where - V is in mV. - T is in °C, - T_1 and V_1 are the coordinates of the lowest temperature, - and T₂ and V₂ are the coordinates of the highest temperature. For example, if the user wanted to resolve this equation, over a temperature range of 20°C to 50°C, they would proceed as follows: $$V - 1885 \text{ mV} = \left(\frac{1558 \text{ mV} - 1885 \text{ mV}}{50^{\circ}\text{C} - 20^{\circ}\text{C}}\right) \times (\text{T} - 20^{\circ}\text{C})$$ (4) V - 1885 mV = $$(-10.9 \text{ mV} / {}^{\circ}\text{C}) \times (\text{T} - 20 {}^{\circ}\text{C})$$ (5) $$V = (-10.9 \text{ mV} / {}^{\circ}\text{C}) \times \text{T} + 2103 \text{ mV}$$ (6) Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest. #### 8.4 Device Functional Modes ## 8.4.1 Mounting and Thermal Conductivity The LMT86-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface. To ensure good thermal conductivity, the backside of the LMT86-Q1 die is directly attached to the GND pin. The temperatures of the lands and traces to the other leads of the LMT86-Q1 will also affect the temperature reading. Alternatively, the LMT86-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LMT86-Q1 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground or V_{DD}, the output from the LMT86-Q1 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces. The thermal resistance junction to ambient ($R_{\theta JA}$ or θ_{JA}) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. Use \precsim 7 to calculate the rise in the LMT86-Q1 die temperature: $$T_{J} = T_{A} + \theta_{JA} \left[(V_{DD}I_{S}) + (V_{DD} - V_{O}) I_{L} \right]$$ (7) ### where - T_A is the ambient temperature, - I_S is the supply current, - · ILis the load current on the output, - and V_O is the output voltage. For example, in an application where $T_A = 30^{\circ}\text{C}$, $V_{DD} = 5 \text{ V}$, $I_S = 5.4 \,\mu\text{A}$, $V_O = 1777 \,\text{mV}$ junction temp 30.014°C self-heating error of 0.014°C . Because the junction temperature of the LMT86-Q1 is the actual temperature being measured, take care to minimize the load current that the LMT86-Q1 is required to drive. The *Thermal Information* table shows the thermal resistance of the LMT86-Q1. # 8.4.2 Output Noise Considerations A push-pull output gives the LMT86-Q1 the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. The LMT86-Q1 is ideal for this and other applications which require strong source or sink current. The LMT86-Q1 supply-noise gain (the ratio of the AC signal on V_{OUT} to the AC signal on V_{DD}) was measured during bench tests. \boxtimes 7-8 shows the typical attenuation found in the *Typical Characteristics* section. A load capacitor on the output can help to filter noise. For operation in very noisy environments, some bypass capacitance should be present on the supply within approximately 5 centimeters of the LMT86-Q1. ### 8.4.3 Capacitive Loads The LMT86-Q1 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, \boxtimes 8-1 shows how the LMT86-Q1 can drive a capacitive load less than or equal to 1100 pF. For capacitive loads greater than 1100 pF, \boxtimes 8-2 shows how a series resistor may be required on the output. 図 8-1. LMT86-Q1 No Decoupling Required for Capacitive Loads Less Than 1100 pF 図 8-2. LMT86-Q1 With Series Resistor for Capacitive Loading Greater Than 1100 pF | 20 21 11000111111011010 | COLLEGE LEGISLOS FULLAGO | |--------------------------------|--------------------------| | C _{LOAD} | MINIMUM R _S | | 1.1 nF to 99 nF | 3 kΩ | | 100 nF to 999 nF | 1.5 kΩ | | 1 μF | 800 Ω | 表 8-2. Recommended Series Resistor Values ## 8.4.4 Output Voltage Shift The LMT86-Q1 device is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of V_{DD} and V_{OUT} . The shift typically occurs when $V_{DD} - V_{OUT} = 1 \text{ V}$. This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in V_{DD} or V_{OUT} . Because the shift takes place over a wide temperature change of 5°C to 20°C, V_{OUT} is always monotonic. The accuracy specifications in the *Accuracy Characteristics* table already include this possible shift. # 9 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ## 9.1 Application Information The LMT86-Q1 features make it suitable for many general temperature-sensing applications. It can operate down to 2.2-V supply with 5.4-µA power consumption, making it ideal for battery-powered devices. # 9.2 Typical Applications #### 9.2.1 Connection to an ADC 図 9-1. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage ### 9.2.1.1 Design Requirements Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LMT86 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor, C_{FIITER}. ## 9.2.1.2 Detailed Design Procedure The size of C_{FILTER} depends on the size of the sampling capacitor and the sampling frequency. Because not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only. ### 9.2.1.3 Application Curve 図 9-2. Analog Output Transfer Function Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ### 9.2.2 Conserving Power Dissipation With Shutdown 図 9-3. Conserving Power Dissipation With Shutdown ## 9.2.2.1 Design Requirements Because the power consumption of the LMT86-Q1 is less than 9 μ A, it can simply be powered directly from any logic gate output and therefore not require a specific shutdown pin. The device can even be powered directly from a microcontroller GPIO. In this way, it can easily be turned off for cases such as battery-powered systems where power savings are critical. # 9.2.2.2 Detailed Design Procedure Simply connect the V_{DD} pin of the LMT86-Q1 directly to the logic shutdown signal from a microcontroller. ### 9.2.2.3 Application Curves # 10 Power Supply Recommendations The low supply current and supply range (2.2 V to 5.5 V) of the LMT86-Q1 allow the device to easily be powered from many sources. Power supply bypassing is optional and is mainly dependent on the noise on the power supply used. In noisy systems, it may be necessary to add bypass capacitors to lower the noise that is coupled to the output of the LMT86-Q1. # 11 Layout # 11.1 Layout Guidelines The LMT86-Q1 is simple to layout. If a power-supply bypass capacitor is used, the *Layout Example* shows how to connect the capacitor to the device. # 11.2 Layout Example 図 11-1. SC70 Package Recommended Layout # 12 Device and Documentation Support # 12.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. # 12.2 サポート・リソース TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。 #### 12.3 Trademarks TI E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ## 12.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. # 12.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. ## 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 24-Jul-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking | |-----------------------|----------|---------------|----------------|-----------------------|------|-------------------------------|----------------------------|--------------|--------------| | | (1) | (2) | | | (3) | (4) | (5) | | (6) | | LMT86QDCKRQ1 | Active | Production | SC70 (DCK) 5 | 3000 LARGE T&R | Yes | SN | Level-1-260C-UNLIM | -50 to 150 | BTA | | LMT86QDCKRQ1.A | Active | Production | SC70 (DCK) 5 | 3000 LARGE T&R | Yes | SN | Level-1-260C-UNLIM | -50 to 150 | BTA | | LMT86QDCKRQ1.B | Active | Production | SC70 (DCK) 5 | 3000 LARGE T&R | - | SN | Level-1-260C-UNLIM | -50 to 150 | BTA | | LMT86QDCKTQ1 | Obsolete | Production | SC70 (DCK) 5 | - | - | Call TI | Call TI | -50 to 150 | BTA | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF LMT86-Q1: ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE OPTION ADDENDUM** www.ti.com 24-Jul-2025 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product # **PACKAGE MATERIALS INFORMATION** www.ti.com 20-Feb-2024 # TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | LMT86QDCKRQ1 | SC70 | DCK | 5 | 3000 | 178.0 | 8.4 | 2.25 | 2.45 | 1.2 | 4.0 | 8.0 | Q3 | # PACKAGE MATERIALS INFORMATION www.ti.com 20-Feb-2024 # *All dimensions are nominal | Ì | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |---|--------------|--------------|-----------------|------|------|-------------|------------|-------------|--| | ı | LMT86QDCKRQ1 | SC70 | DCK | 5 | 3000 | 208.0 | 191.0 | 35.0 | | SMALL OUTLINE TRANSISTOR ### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC MO-203. - 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC. - 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side SMALL OUTLINE TRANSISTOR NOTES: (continued) 7. Publication IPC-7351 may have alternate designs.8. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE TRANSISTOR NOTES: (continued) - 9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 10. Board assembly site may have different recommendations for stencil design. # 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated