
Community

LMR36006 JAJSF64C - APRIL 2018 - REVISED OCTOBER 2019

LMR36006 4.2V~60V、0.6A 超小型同期整流降圧コンバータ

特長

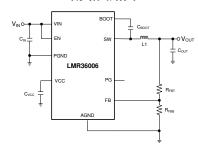
- 堅牢な高信頼性アプリケーション用に設計
 - 最大 66V の入力過渡保護
 - 接合部温度範囲:-40°C~+150°C
 - 保護機能:サーマル・シャットダウン、入力低電圧 誤動作防止、サイクル単位の電流制限、ヒカップ短 絡保護
 - 0.6A 負荷でドロップアウト 0.2V (標準値)
- スケーラブルな産業用電源に最適
 - 次の製品とピン互換
 - LMR36015 (60V, 1.5A)
 - LMR33620/LMR33630 (36V、2A または 3A)
 - 1MHz、2.1MHz の周波数オプション
- 負荷スペクトラム全体にわたって低消費電力
 - 1MHz で 87% の効率 (24V_{IN}、5V_{OUT}、0.6A)
 - 1MHz で 92% の効率 (12V_{IN}、5V_{OUT}、0.6A)
 - PFM で軽負荷時の効率向上
 - 低い動作時静止電流:26µA
- 小型の 2mm x 3mm HotRod™ パッケージ
- 外付け部品数の少ないソリューション
- LMR36006-Q1 および LMR36015-Q1 は 400kHz および 2.1MHz、可変出力、および固定 3.3V_{OUT} で供給
- 超低 EMI 要件に対して最適化
 - CISPR25 Class 5 規格に適合
 - Hotrod™パッケージによりスイッチ・ノード・リンギン グを最小化
 - 並列入力パスにより寄生インダクタンスを最小化
 - スペクトラム拡散によりピーク・エミッションを削減
- WEBENCH® Power Designer により、LMR36006 を使用するカスタム設計を作成

2 アプリケーション

- フィールド・トランスミッタおよびセンサ、PLC モジュール
- サーモスタット、ビデオ監視、HVAC システム
- AC およびサーボ・ドライブ、ロータリー・エン
- 産業用輸送、アセット・トラッキング

3 概要

LMR36006 レギュレータは使いやすい同期整流降圧 DC/DC コンバータです。ハイサイドとローサイドのパワー MOSFET が内蔵されており、4.2~60V の広い入力電圧 範囲にわたって最大 0.6A の出力電流を供給できます。 耐圧は最高 66V です。この過渡耐性により、過電圧から の保護や IEC 61000-4-5 のサージ耐性要件を満たすた めに必要な設計作業が軽減されます。


LMR36006 はピーク電流モード制御を採用し、最適な効 率と出力電圧精度を実現しています。高精度のイネーブ ルにより広い範囲の入力電圧と直接接続でき、デバイスの スタートアップおよびシャットダウンを正確に制御できるた め、柔軟に使用できます。パワー・グッド・フラグと内蔵の フィルタ処理および遅延により、システムの実際の状態を 示すことができ、外部スーパバイザが不要になります。

製品情報(1)

型番	パッケージ	本体サイズ(公称)
LMR36006	VQFN-HR (12)	2.00mm×3.00mm

(1) 提供されているすべてのパッケージについては、このデータシート の末尾にある注文情報を参照してください。

概略回路図

_	٠
Ħ	ίĽ

1	特長 1		9.3 Feature Description	12
2	アプリケーション1		9.4 Device Functional Modes	17
3	概要1	10	Application and Implementation	20
4	改訂履歴		10.1 Application Information	20
5	概要(続き)3		10.2 Typical Application	21
6	Device Comparison Table 4		10.3 What to Do and What Not to Do	35
7	•	11	Power Supply Recommendations	36
8	Pin Configuration and Functions	12	Layout	37
0	Specifications 6		12.1 Layout Guidelines	37
	8.1 Absolute Maximum Ratings		12.2 Layout Example	
	8.2 ESD Ratings	13	デバイスおよびドキュメントのサポート	40
	8.3 Recommended Operating Conditions		13.1 デバイス・サポート	40
	8.4 Thermal Information 7 8.5 Electrical Characteristics 7		13.2 ドキュメントのサポート	
			13.3 ドキュメントの更新通知を受け取る方法	40
	8.6 Timing Requirements		13.4 サポート・リソース	41
	8.8 Typical Characteristics		13.5 商標	41
9			13.6 静電気放電に関する注意事項	41
9	Detailed Description		13.7 Glossary	41
	9.1 Overview	14	メカニカル、パッケージ、および注文情報	
	9.2 Functional Block Diagram			

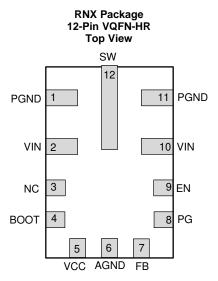
4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Revision B (February 2019) から Revision C に変更	Page
「特長」に EMI の記述を追加	1
Added 図 33 through 図 42	
Revision A (November 2018) から Revision B に変更	Page
Updated package quantities in Device Comparison Table	4
2018年4月発行のものから更新	Page
生産データを用いたデータシートの初版	1

5 概要(続き)

LMR36006 は HotRod™ パッケージの採用により、低ノイズ、高効率、最小の占有面積を実現しています。このデバイス は必要な外付け部品が少なく、PCB レイアウトが単純になるようにピン配置が設計されています。小型で機能豊富な LMR36006 は、スペースの制約がある超小型のフィールド・トランスミッタやビジョン・センサなど、幅広い最終機器を簡単 に実装できるように設計されています。



6 Device Comparison Table

ORDERABLE PART NUMBER	OUTPUT VOLTAGE	FPWM	f _{SW}	PACKAGE QUANTITY
LMR36006BRNXT	Adjustable	No	1 MHz	250
LMR36006BRNXR	Adjustable	No	1 MHz	3000
LMR36006CRNXT	Adjustable	No	2.1 MHz	250
LMR36006CRNXR	Adjustable	No	2.1 MHz	3000

7 Pin Configuration and Functions

Pin Functions

NO.	NAME	TYPE	DESCRIPTION
1, 11	PGND	G	Power ground terminal. Connect to system ground and AGND. Connect to C _{IN} with short wide traces.
2, 10	VIN	Р	Input supply to regulator. Connect to C _{IN} with short wide traces.
3	NC	_	Connect the SW pin to NC on the PCB. This simplifies the connection from the C_{BOOT} capacitor to the SW pin. This pin has no internal connection to the regulator.
4	воот	Р	Boot-strap supply voltage for internal high-side driver. Connect a high-quality 100-nF capacitor from this pin to the SW pin. Connect the SW pin to NC on the PCB. This simplifies the connection from the C_{BOOT} capacitor to the SW pin.
5	VCC	Р	Internal 5-V LDO output. Used as supply to internal control circuits. Do not connect to external loads. Can be used as logic supply for power-good flag. Connect a high-quality 1-µF capacitor from this pin to GND.
6	AGND	G	Analog ground for regulator and system. Ground reference for internal references and logic. All electrical parameters are measured with respect to this pin. Connect to system ground on PCB.
7	FB	А	Feedback input to regulator. Connect to tap point of feedback voltage divider. DO NOT FLOAT. DO NOT GROUND.
8	PG	А	Open drain power-good flag output. Connect to suitable voltage supply through a current limiting resistor. High = power OK, low = power bad. Goes low when EN = Low. Can be open or grounded when not used.
9	EN	Α	Enable input to regulator. High = ON, low = OFF. Can be connected directly to VIN; DO NOT FLOAT.
12	sw	Р	Regulator switch node. Connect to power inductor. Connect the SW pin to NC on the PCB. This simplifies the connection from the C_{BOOT} capacitor to the SW pin.
A = Ana	log, P = Power	r, G = Grou	nd

8 Specifications

8.1 Absolute Maximum Ratings

Over operating junction temperature range of -40°C to 150°C (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Input voltage	VIN to PGND	-0.3	66	V
Input voltage	EN to AGND	-0.3	66.3	V
Input voltage	FB to AGND	-0.3	5.5	V
Input voltage	PG to AGND	-0.3	22	V
Input voltage	AGND to PGND	-0.3	0.3	V
Output voltage	SW to PGND	-0.3	66.3	V
Output voltage	SW to PGND less than 10-ns transients	-3.5	66.3	V
Output voltage	CBOOT to SW	-0.3	5.5	V
Output voltage	VCC to AGND	-0.3	5.5	V
Junction Temper	ature T _J	-40	150	°C
Storage tempera	ture, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM) ⁽¹⁾	±2500	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM) ⁽²⁾	±750	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

Over the recommended operating junction temperature range of -40 °C to 150 °C (unless otherwise noted)(1)

		MIN	MAX	UNIT
Input voltage	VIN to PGND	4.2	60	V
	EN to PGND ⁽²⁾	0	60	V
	PG to PGND ⁽²⁾	0	18	V
Output current	I _{OUT}	0	0.6	Α

- (1) Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications, see *Electrical Characteristics*.
- (2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.

8.4 Thermal Information

		LMR36006	
	THERMAL METRIC ⁽¹⁾	RNX (VQFN-HR)	UNIT
		12 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	72.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	35.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	23.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	23.5	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

8.5 Electrical Characteristics

Limits apply over operating junction temperature (T_J) range of -40° C to +150°C, unless otherwise stated. Minimum and Maximum limits⁽¹⁾ are specified through test, design or statistical correlation. Typical values represent the most likely parametric norm at T_J = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions apply: V_{IN} = 24 V.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VOL	TAGE (VIN PIN)					
I _{Q-nonSW}	Operating quiescent current (non-switching) (2)	V _{EN} = 3.3 V (PFM variant only)	18	26	36	μΑ
I _{SD}	Shutdown quiescent current; measured at VIN pin	V _{EN} = 0 V		5		μΑ
ENABLE (EN	PIN)					
V _{EN-VCC-H}	Enable input high level for V _{CC} output	V _{ENABLE} rising			1.14	V
V _{EN-VCC-L}	Enable input low level for V _{CC} output	V _{ENABLE} falling	0.3			V
V _{EN-VOUT-H}	Enable input high level for V _{OUT}	V _{ENABLE} rising	1.157	1.231	1.3	V
V _{EN-VOUT-HYS}	Enable input hysteresis for V _{OUT}	Hysteresis below V _{ENABLE-H} ; falling		110		mV
I _{LKG-EN}	Enable input leakage current	V _{EN} = 3.3V		0.2		nA
INTERNAL LI	DO (VCC PIN)					
V _{CC}	Internal V _{CC} voltage	6 V ≤ V _{IN} ≤ 60 V	4.75	5	5.25	V
V _{CC-UVLO-} Rising	Internal V _{CC} undervoltage lockout	V _{CC} rising	3.6	3.8	4.0	V
V _{CC-UVLO} - Falling	Internal V _{CC} undervoltage lockout	V _{CC} falling	3.1	3.3	3.5	V
VOLTAGE RE	FERENCE (FB PIN)					
V _{FB}	Feedback voltage		0.985	1	1.015	V
I _{LKG-FB}	Feedback leakage current	FB = 1 V		0.2		nA
CURRENT LII	MITS AND HICCUP					
I _{SC}	High-side current limit ⁽³⁾		0.8	1	1.2	Α
I _{LS-LIMIT}	Low-side current limit (3)		0.6	0.8	0.95	Α
I _{L-ZC}	Zero cross detector threshold	PFM variants only		0.02		Α
I _{PEAK-MIN}	Minimum inductor peak current ⁽³⁾			0.18		Α

⁽¹⁾ MIN and MAX limits are 100% production tested at 25°C. Limits over the operating temperature range verified through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).

⁽²⁾ This is the current used by the device open loop. It does not represent the total input current of the system when in regulation.

⁽³⁾ The current limit values in this table are tested, open loop, in production. They may differ from those found in a closed loop application.

Electrical Characteristics (continued)

Limits apply over operating junction temperature (T_J) range of -40° C to +150°C, unless otherwise stated. Minimum and Maximum limits⁽¹⁾ are specified through test, design or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}$ C, and are provided for reference purposes only. Unless otherwise stated, the following conditions apply: $V_{IN} = 24 \text{ V}$.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER GO	OD (PGOOD PIN)		•			
V _{PG-HIGH-UP}	Power-Good upper threshold - rising	% of FB voltage	105%	107%	110%	
V _{PG-LOW-DN}	Power-Good lower threshold - falling	% of FB voltage	90%	93%	95%	
V _{PG-HYS}	Power-Good hysteresis (rising & falling)	% of FB voltage		2%		
T _{PG}	Power-Good rising/falling edge deglitch delay		80	140	200	μs
V _{PG-VALID}	Minimum input voltage for proper Power-Good function				2	V
R _{PG}	Power-Good on-resistance	V _{EN} = 2.5 V		80	165	Ω
R _{PG}	Power-Good on-resistance	V _{EN} = 0 V		35	90	Ω
OSCILLATO	R				•	
Fosc	Internal oscillator frequency	2.1-MHz variant	1.95	2.1	2.35	MHz
Fosc	Internal oscillator frequency	1-MHz variant	0.85	1	1.15	MHz
MOSFETS			·			
R _{DS-ON-HS}	High-side MOSFET ON-resistance	I _{OUT} = 0.5 A		225	435	mΩ
R _{DS-ON-LS}	Low-side MOSFET ON-resistance	I _{OUT} = 0.5 A		150	280	mΩ

8.6 Timing Requirements

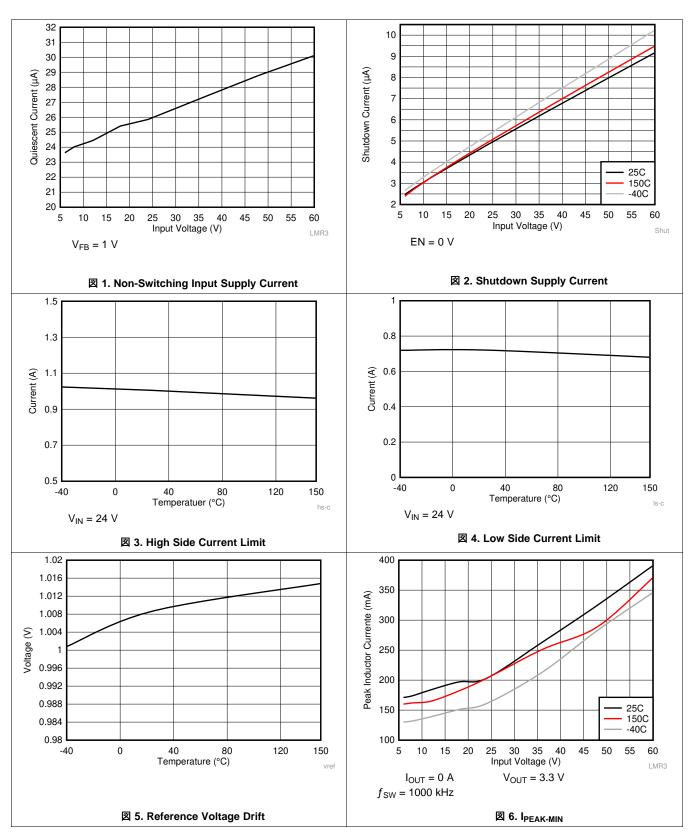
Limits apply over operating junction temperature (T_J) range of -40° C to +150°C, unless otherwise stated. Minimum and Maximum limits⁽¹⁾ are specified through test, design or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}$ C, and are provided for reference purposes only. Unless otherwise stated, the following conditions apply: $V_{IN} = 24 \text{ V}$.

		MIN	NOM	MAX	UNIT
t _{ON-MIN}	Minimum switch on-time		55	83	ns
t _{OFF-MIN}	Minimum switch off-time		53	73	ns
t _{ON-MAX}	Maximum switch on-time		7	12	μs
t _{SS}	Internal soft-start time	3	4.5	6	ms

⁽¹⁾ MIN and MAX limits are 100% production tested at 25°C. Limits over the operating temperature range verified through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).

8.7 System Characteristics

The following specifications apply to a typical application circuit with nominal component values. Specifications in the typical (TYP) column apply to $T_{IJ} = 25^{\circ}$ C only. Specifications in the minimum (MIN) and maximum (MAX) columns apply to the case of typical components over the temperature range of $T_J = -40$ °C to 150°C. These specifications are not ensured by production testing.


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IN}	Operating input voltage range		4.2		60	V	
V _{OUT}	Adjustable output voltage regulation ⁽¹⁾	PFM operation	-1.5%		2.5%		
I _{SUPPLY}	Input supply current when in regulation	V_{IN} = 24 V, V_{OUT} = 3.3 V, I_{OUT} = 0 A, R_{FBT} = 1 M Ω , PFM variant		26		μΑ	
D _{MAX}	Maximum switch duty cycle ⁽²⁾			98%			
V _{HC}	FB pin voltage required to trip short-circuit hiccup mode			0.4		V	
t _{HC}	Time between current-limit hiccup burst			94		ms	
t _D	Switch voltage dead time			2		ns	
T _{SD}	Thermal shutdown temperature	Shutdown temperature		170		°C	
T _{SD}	Thermal shutdown temperature	Recovery temperature		158		°C	

Deviation in V_{OUT} from nominal output voltage value at V_{IN} = 24 V, I_{OUT} = 0 A to 0.6A In dropout the switching frequency drops to increase the effective duty cycle. The lowest frequency is clamped at approximately: F_{MIN} = 1 / $(t_{ON-MAX} + t_{OFF-MIN})$. $D_{MAX} = t_{ON-MAX} / (t_{ON-MAX} + t_{OFF-MIN})$.

TEXAS INSTRUMENTS

8.8 Typical Characteristics

Unless otherwise specified the following conditions apply: $T_A = 25$ °C. $V_{IN} = 24$ V.

9 Detailed Description

9.1 Overview

The LMR36006 is a synchronous peak-current-mode buck regulator designed for a wide variety of industrial applications. The regulator automatically switches modes between PFM and PWM depending on load. At heavy loads, the device operates in PWM at a constant switching frequency. At light loads the mode changes to PFM, with diode emulation allowing DCM. This reduces the input supply current and keeps efficiency high. The device features internal loop compensation which reduces design time and requires fewer external components than externally compensated regulators.

The LMR36006 is designed with a flip-chip or HotRod™ technology, greatly reducing the parasitic inductance of pins. In addition, the layout of the device allows for reduction in the radiated noise generated by the switching action through partial cancellation of the current generated magnetic field. As a result the switch-node waveform exhibits less overshoot and ringing.

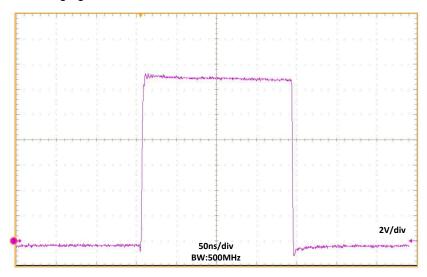
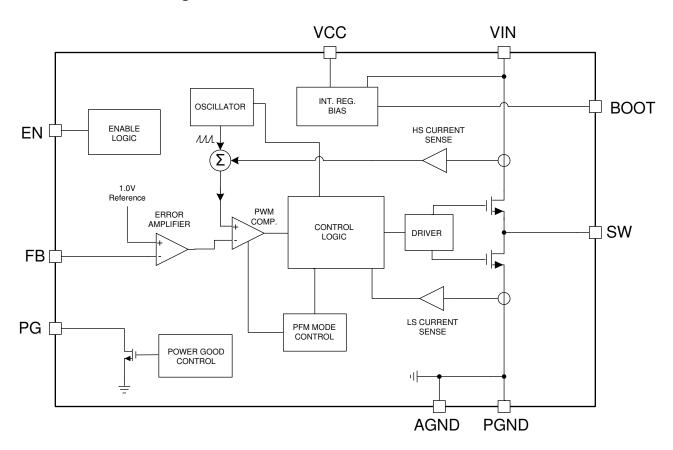



図 7. Switch Node Waveform

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Power-Good Flag Output

The power-good flag function (PG output pin) of the LMR36006 can be used to reset a system microprocessor whenever the output voltage is out of regulation. This open-drain output goes low under fault conditions, such as current limit and thermal shutdown, as well as during normal start-up. A glitch filter prevents false flag operation for short excursions of the output voltage, such as during line and load transients. Output voltage excursions lasting less than t_{PG} do not trip the power-good flag. Power-good operation can best be understood by reference to 2 8 and 2 9. Note that during initial power-up a delay of about 4 ms (typical) is inserted from the time that EN is asserted to the time that the power-good flag goes high. This delay only occurs during start-up and is not encountered during normal operation of the power-good function.

The power-good output consists of an open drain NMOS; requiring an external pullup resistor to a suitable logic supply. It can also be pulled up to either VCC or V_{OUT} , through an appropriate resistor, as desired. If this function is not needed, the PG pin must be grounded. When EN is pulled low, the flag output is also forced low. With EN low, power good remains valid as long as the input voltage is $\geq 2 \text{ V}$ (typical). Limit the current into this pin to $\leq 4 \text{ mA}$.

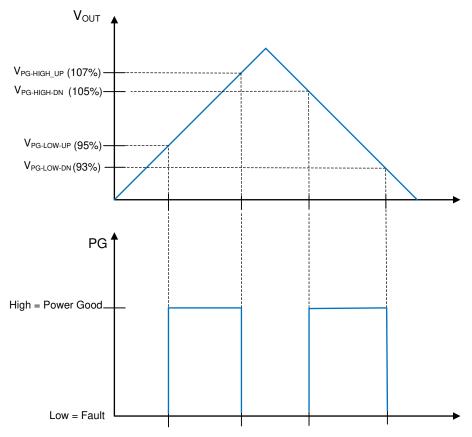
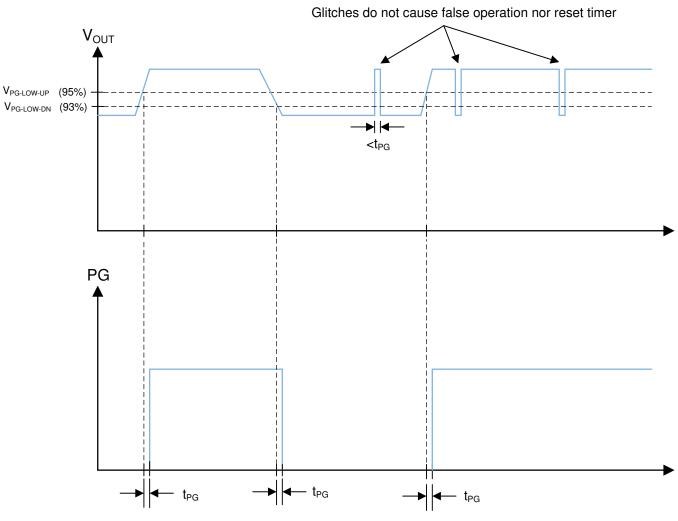
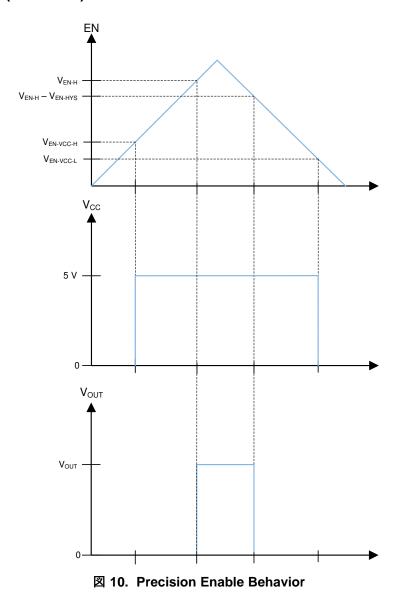


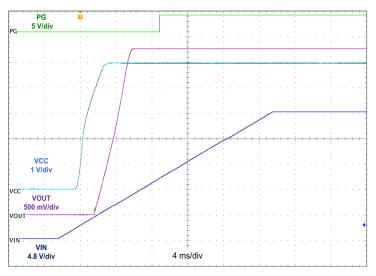
図 8. Static Power-Good Operation

TEXAS INSTRUMENTS

Feature Description (continued)




図 9. Power-Good-Timing Behavior


9.3.2 Enable and Start-up

Start-up and shutdown are controlled by the EN input. This input features precision thresholds, allowing the use of an external voltage divider to provide an adjustable input UVLO (see the section). Applying a voltage of $\geq V_{EN-VCC-H}$ causes the device to enter standby mode, powering the internal VCC, but not producing an output voltage. Increasing the EN voltage to $V_{EN-OUT-H}$ (V_{EN-H} in \boxtimes 10) fully enables the device, allowing it to enter start-up mode and beginning the soft-start period. When the EN input is brought below $V_{EN-OUT-H}$ (V_{EN-H} in \boxtimes 10) by $V_{EN-OUT-HYS}$ (V_{EN-HYS} in \boxtimes 10), the regulator stops running and enters standby mode. Further decrease in the EN voltage to below $V_{EN-VCC-L}$ completely shuts down the device. This behavior is shown in \boxtimes 10. The EN input may be connected directly to VIN if this feature is not needed. This input must not be allowed to float. The values for the various EN thresholds can be found in the *Electrical Characteristics Electrical Characteristics* table.

The LMR36006 utilizes a reference-based soft start that prevents output voltage overshoots and large inrush currents as the regulator is starting up. A typical start-up waveform is shown in ☒ 11 along with typical timings. The rise time of the output voltage is about 4 ms.

2 11. Typical Start-up Behavior $V_{IN} = 24 \text{ V}, V_{OUT} = 3.3 \text{ V}, I_{OUT} = 0.6 \text{ A}$

9.3.3 Current Limit and Short Circuit

The LMR36006 incorporates valley current limit for normal overloads and for short-circuit protection. In addition the high-side power MOSFET is protected from excessive current by a peak current limit circuit. Cycle-by-cycle current limit is used for overloads, while hiccup mode is used for short circuits. Finally, a zero current detector is used on the low-side power MOSFET to implement diode emulation mode (DEM) at light loads (see *Glossary*).

During overloads the low-side current limit, I_{LIMIT} , determines the maximum load current that the LMR36006 can supply. When the low-side switch turns on, the inductor current begins to ramp down. If the current does not fall below I_{LIMIT} before the next turnon cycle, then that cycle is skipped, and the low-side MOSFET is left on until the current falls below I_{LIMIT} . This is somewhat different than the more typical peak current limit and results in \pm 1 for the maximum load current.

$$I_{OUT}\big|_{max} \ = I_{LIMIT} + \frac{\left(V_{IN} - V_{OUT}\right)}{2 \cdot f_{SW} \cdot L} \cdot \frac{V_{OUT}}{V_{IN}}$$

where

• f_{SW} = switching frequency

If, during current limit, the voltage on the FB input falls below about 0.4 V due to a short circuit, the device enters into hiccup mode. In this mode the device stops switching for t_{HC} or about 94 ms, and then goes through a normal re-start with soft start. If the short-circuit condition remains, the device runs in current limit for about 20 ms (typical) and then shuts down again. This cycle repeats, as shown in $\boxed{2}$ 12 as long as the short-circuit condition persists. This mode of operation helps to reduce the temperature rise of the device during a hard short on the output. Of course the output current is greatly reduced during hiccup mode. Once the output short is removed and the hiccup delay is passed, the output voltage recovers normally as shown in $\boxed{2}$ 12.

The high-side-current limit trips when the peak inductor current reaches I_{SC} . This is a cycle-by-cycle current limit and does not produce any frequency or load current fold back. It is meant to protect the high-side MOSFET from excessive current. Under some conditions, such as high input voltages, this current limit may trip before the low-side protection. Under this condition, I_{SC} determines the maximum output current. Note that I_{SC} varies with duty cycle.

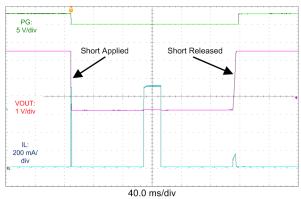
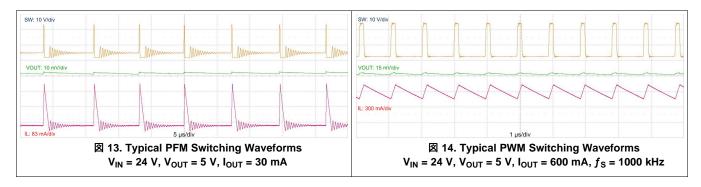


図 12. Short-Circuit Transient and Recovery

9.3.4 Undervoltage Lockout and Thermal Shutdown

The LMR36006 incorporates an undervoltage-lockout feature on the output of the internal LDO (at the VCC pin). When VCC reaches 3.8 V (typ.), the device receives the EN signal and starts switching. When VCC falls below 3.3 V (typ.), the device shuts down, regardless of EN status. Because the LDO is in dropout during these transitions, the previously mentioned values roughly represent the input voltage levels during the transitions.

Thermal shutdown is provided to protect the regulator from excessive junction temperature. When the junction temperature reaches about 170°C, the device shuts down; re-start occurs when the temperature falls to about 158°C.

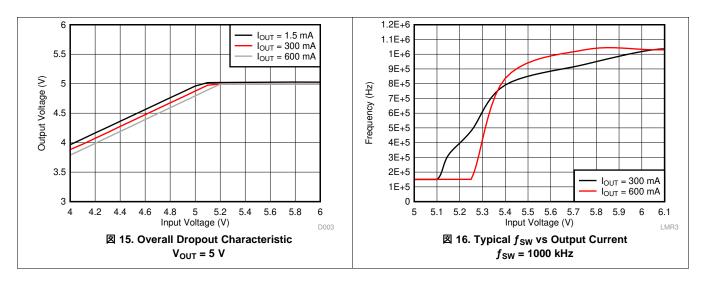

9.4 Device Functional Modes

9.4.1 Auto Mode

In auto mode the device moves between PWM and PFM as the load changes. At light loads the regulator operates in PFM. At higher loads the mode changes to PWM.

In PWM the regulator operates as a constant frequency, current mode, full synchronous converter using PWM to regulate the output voltage. While operating in this mode the output voltage is regulated by switching at a constant frequency and modulating the duty cycle to control the power to the load. This provides excellent line and load regulation and low output voltage ripple.

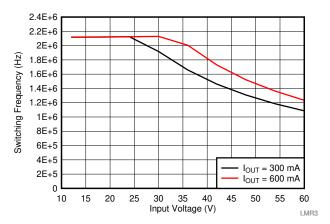
In PFM the high-side MOSFET is turned on in a burst of one or more pulses to provide energy to the load. The duration of the burst depends on how long it takes the inductor current to reach I_{PEAK-MIN}. The frequency of these bursts is adjusted to regulate the output, while diode emulation (DEM) is used to maximize efficiency (see *Glossary*). This mode provides high light-load efficiency by reducing the amount of input supply current required to regulate the output voltage at small loads. This trades off very good light-load efficiency for larger output voltage ripple and variable switching frequency. Also, a small increase in output voltage occurs at light loads. The actual switching frequency and output voltage ripple depends on the input voltage, output voltage, and load. Typical switching waveforms in PFM and PWM are shown in 2 13 and 14. See the *Application Curves* for output voltage variation with load in auto mode.



Device Functional Modes (continued)

9.4.2 Dropout

The dropout performance of any buck regulator is affected by the $R_{\rm DSON}$ of the power MOSFETs, the DC resistance of the inductor, and the maximum duty cycle that the controller can achieve. As the input voltage is reduced to near the output voltage, the off-time of the high-side MOSFET starts to approach the minimum value. Beyond this point the switching may become erratic and/or the output voltage falls out of regulation. To avoid this problem the LMR36006 automatically reduces the switching frequency to increase the effective duty cycle and maintain regulation. In this data sheet the dropout voltage is defined as the difference between the input and output voltage when the output has dropped by 1% of its nominal value. Under this condition the switching frequency has dropped to its minimum value of about 140 kHz. Note that the 0.4 V short circuit detection threshold is not activated when in dropout mode. Typical dropout characteristics can be found in \boxtimes 15 and \boxtimes 16.


9.4.3 Minimum Switch On-Time

Every switching regulator has a minimum controllable on-time dictated by the inherent delays and blanking times associated with the control circuits. This imposes a minimum switch duty cycle and therefore a minimum conversion ratio. The constraint is encountered at high input voltages and low output voltages. To help extend the minimum controllable duty cycle, the LMR36006 automatically reduces the switching frequency when the minimum on-time limit is reached. In this way the converter can regulate the lowest programmable output voltage at the maximum input voltage. An estimate for the approximate input voltage, for a given output voltage, before frequency foldback occurs is found in 式 2. As the input voltage is increased, the switch on-time (duty cycle) reduces to regulate the output voltage. When the on-time reaches the limit, the switching frequency drops, while the on-time remains fixed.

$$V_{IN} \le \frac{V_{OUT}}{t_{ON} \cdot f_{SW}} \tag{2}$$

Device Functional Modes (continued)

 \boxtimes 17. Switching Frequency vs Input Voltage V_{OUT} = 3.3 V

10 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. Ti's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The LMR36006 step-down DC-to-DC converter is typically used to convert a higher DC voltage to a lower DC voltage with a maximum output current of 0.6 A. The following design procedure can be used to select components for the LMR36006. Alternately, the WEBENCH® Design Tool may be used to generate a complete design. This tool utilizes an iterative design procedure and has access to a comprehensive database of components. This allows the tool to create an optimized design and allows the user to experiment with various options.

注

All of the capacitance values given in the following application information refer to effective values; unless otherwise stated. The effective value is defined as the actual capacitance under DC bias and temperature; not the rated or nameplate values. Use high-quality, low-ESR, ceramic capacitors with an X7R or better dielectric throughout. All high value ceramic capacitors have a large voltage coefficient in addition to normal tolerances and temperature effects. Under DC bias the capacitance drops considerably. Large case sizes and/or higher voltage ratings are better in this regard. To help mitigate these effects, multiple capacitors can be used in parallel to bring the minimum effective capacitance up to the required value. This can also ease the RMS current requirements on a single capacitor. A careful study of bias and temperature variation of any capacitor bank should be made in order to ensure that the minimum value of effective capacitance is provided.

10.2 Typical Application

図 18 shows a typical application circuit for the LMR36006. This device is designed to function over a wide range of external components and system parameters. However, the internal compensation is optimized for a certain range of external inductance and output capacitance. As a quick start guide, 表 1 provides typical component values for a range of the most common output voltages.

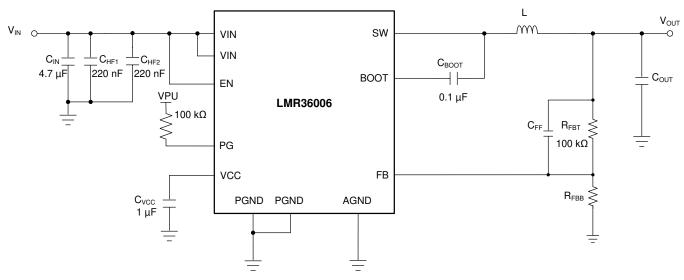


図 18. Example Applications Circuit

表 1. Typical External Component	: Values
---------------------------------	----------

f _{SW} (kHz)	V _{OUT} (V)	L (µH)	Nominal C _{OUT} (rated capacitance) (1)	Minimum C _{OUT} (rated capacitance) (2)	R _{FBT} (Ω)	R _{FBB} (Ω)	C _{IN}	C _{FF}
1000	3.3	10	2 × 15 µF	1 × 15 µF	100 k	43.2 k	4.7 µF + 2 × 220 nF	20 pF
2100	3.3	6.8	2 × 15 µF	1 × 15 µF	100 k	43.2 k	4.7 µF + 2 × 220 nF	20 pF
1000	5	15	2 x 15 µF	1 × 15 µF	100 k	24.9 k	4.7 µF + 2 × 220 nF	20 pF
2100	5	10	2 x 15 µF	1 × 15 µF	100 k	24.9 k	4.7 µF + 2 × 220 nF	20 pF
1000	12	33	2 × 15 µF	1 × 15µF	100 k	9.09 k	4.7 μF + 2 × 220 nF	20 pF
2100	12	22	2 × 15 μF	1 × 15 µF	100 k	9.09 k	4.7 μF + 2 × 220 nF	20 pF

⁽¹⁾ Optimized for superior load transient performance from 0 to 100% rated load.

⁽²⁾ Optimized for size constrained end applications.

10.2.1 Design 1: Low Power 24-V, 600-mA PFM Converter

10.2.1.1 Design Requirements

Example requirements for a typical 5-V or 3.3-V application. The input voltages are here for illustration purposes only. See *Specifications* for the operating input voltage range.

表 2. Detailed Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage	12 V to 24 V steady state, 4.2 V to 60-V transients
Output voltage	5 V/3.3 V
Maximum output current	0 A to 0.6 A
Switching frequency	1000 kHz
Current consumption at 0-A load	Critical: Need to ensure low current consumption to reduce battery drain
Switching frequency at 0-A load	Not critical: Need fixed frequency operation at high load only

表 3. List of Components for Design 1

V _{OUT}	FREQUENCY	R _{FBB}	C _{OUT}	L	U1
5 V	1000 kHz	24.9 kΩ	1 × 15 μF	10 μH, 45 m Ω	LMR36006BRNX
3.3 V	1000 KHz	43.3 kΩ	1 × 15 μF	10 μH, 45 m Ω	LMR36006BRNX

10.2.1.2 Detailed Design Procedure

The following design procedure applies to 図 18 and 表 2.

10.2.1.2.1 Custom Design With WEBENCH Tools

Click here to create a custom design using the LMR36006 device and the WEBENCH Power Designer.

- 1. Start by entering the input voltage, output voltage, and output current requirements
- 2. Optimize the design for key performance such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases the following features are available with this tool:

- Run electrical simulations to see important waveforms and circuit performance.
- Run thermal simulations to help understand board thermal performance.
- Export customized schematic and layout into popular CAD formats.
- Print full design reports in PDF.

Get more information at ti.com

10.2.1.2.2 Choosing the Switching Frequency

The choice of switching frequency is a compromise between conversion efficiency and overall solution size. Lower switching frequency implies reduced switching losses and usually results in higher system efficiency. However, higher switching frequency allows the use of smaller inductors and output capacitors, and hence a more compact design. For this example 1 MHz is used.

10.2.1.2.3 Setting the Output Voltage

The output voltage of LMR36006 is externally adjustable using a resistor divider network. The range of recommended output voltage is found in the table. The divider network is comprised of R_{FBT} and R_{FBB} , and closes the loop between the output voltage and the converter. The converter regulates the output voltage by holding the voltage on the FB pin equal to the internal reference voltage, V_{REF} . The resistance of the divider is a compromise between excessive noise pick-up and excessive loading of the output. Smaller values of resistance reduce noise sensitivity but also reduce the light-load efficiency. The recommended value for R_{FBT} is 100 k Ω ; with a maximum value of 1 M Ω . If a 1 M Ω is selected for R_{FBT} , then a feed-forward capacitor must be used across this resistor to provide adequate loop phase margin (see C_{FF} Selection). Once R_{FBT} is selected, is used to select R_{FBB} . V_{REF} is nominally 1 V.

$$R_{FBB} = \frac{R_{FBT}}{\left[\frac{V_{OUT}}{V_{REF}} - 1\right]}$$
(3)

For this 5-V example values are: R_{FBT} = 100 $k\Omega$ and R_{FBB} = 24.9 $k\Omega$.

10.2.1.2.4 Inductor Selection

The parameters for selecting the inductor are the inductance and saturation current. The inductance is based on the desired peak-to-peak ripple current and is normally chosen to be in the range of 20% to 40% of the maximum output current. Experience shows that the best value for inductor ripple current is 30% of the maximum load current. Note that when selecting the ripple current for applications with much smaller maximum load than the maximum available from the device, use the maximum device current. \pm 4 can be used to determine the value of inductance. The constant K is the percentage of inductor current ripple. For this example we choose K = 0.4 and find an inductance L = 16.4 μ H; we select the standard value of 10 μ H.

$$L = \frac{\left(V_{IN} - V_{OUT}\right)}{f_{SW} \cdot K \cdot I_{OUTmax}} \cdot \frac{V_{OUT}}{V_{IN}}$$
(4)

Ideally, the saturation current rating of the inductor is at least as large as the high-side switch current limit, I_{SC} . This ensures that the inductor does not saturate even during a short circuit on the output. When the inductor core material saturates, the inductance falls to a very low value, causing the inductor current to rise very rapidly. Although the valley current limit, I_{LIMIT} , is designed to reduce the risk of current runaway, a saturated inductor can cause the current to rise to high values very rapidly. This may lead to component damage; do not allow the inductor to saturate! Inductors with a ferrite core material have very *hard* saturation characteristics, but usually have lower core losses than powdered iron cores. Powered iron cores exhibit a *soft* saturation, allowing some relaxation in the current rating of the inductor. However, they have more core losses at frequencies above about 1 MHz. In any case, the inductor saturation current must not be less than the device low-side current limit, I_{LIMIT} . In order to avoid sub-harmonic oscillation, the inductance value must not be less than that given in \vec{x} 5:

$$L_{\text{MIN}} \ge 0.28 \cdot \frac{V_{\text{OUT}}}{f_{\text{SW}}} \tag{5}$$

(6)

10.2.1.2.5 Output Capacitor Selection

The value of the output capacitor, and its ESR, determine the output voltage ripple and load transient performance. The output capacitor bank is usually limited by the load transient requirements, rather than the output voltage ripple. 式 6 can be used to estimate a lower bound on the total output capacitance, and an upper bound on the ESR, required to meet a specified load transient.

$$C_{OUT} \geq \frac{\Delta I_{OUT}}{f_{SW} \cdot \Delta V_{OUT} \cdot K} \cdot \left\lceil \left(1 - D\right) \cdot \left(1 + K\right) + \frac{K^2}{12} \cdot \left(2 - D\right) \right\rceil$$

$$\mathsf{ESR} \leq \frac{\left(2 + \mathsf{K}\right) \cdot \Delta \mathsf{V}_{\mathsf{OUT}}}{2 \cdot \Delta \mathsf{I}_{\mathsf{OUT}} \left[1 + \mathsf{K} + \frac{\mathsf{K}^2}{12} \cdot \left(1 + \frac{1}{(1 - \mathsf{D})}\right)\right]}$$

$$D = \frac{V_{OUT}}{V_{IN}}$$

where

- ΔV_{OUT} = output voltage transient
- ΔI_{OUT} = output current transient
- K = Ripple factor from Inductor Selection

Once the output capacitor and ESR have been calculated, 式 7 can be used to check the output voltage ripple.

$$V_r \cong \Delta I_L \cdot \sqrt{\text{ESR}^2 + \frac{1}{\left(8 \cdot f_{SW} \cdot C_{OUT}\right)^2}}$$

where

•
$$V_r = \text{peak-to-peak output voltage ripple}$$
 (7)

The output capacitor and ESR can then be adjusted to meet both the load transient and output ripple requirements.

In practice the output capacitor has the most influence on the transient response and loop phase margin. Load transient testing and bode plots are the best way to validate any given design and must always be completed before the application goes into production. In addition to the required output capacitance, a small ceramic placed on the output can help to reduce high frequency noise. Small case size ceramic capacitors in the range of 1 nF to 100 nF can be very helpful in reducing spikes on the output caused by inductor and board parasitics.

Limit the maximum value of total output capacitance to about 10 times the design value, or 1000 μ F, whichever is smaller. Large values of output capacitance can adversely affect the start-up behavior of the regulator as well as the loop stability. If values larger than noted here must be used, then a careful study of start-up at full load and loop stability must be performed.

10.2.1.2.6 Input Capacitor Selection

The ceramic input capacitors provide a low impedance source to the regulator in addition to supplying the ripple current and isolating switching noise from other circuits. A minimum ceramic capacitance of 4.7-µF is required on the input of the LMR36006. This must be rated for at least the maximum input voltage that the application requires; preferably twice the maximum input voltage. This capacitance can be increased to help reduce input voltage ripple and/or maintain the input voltage during load transients. In addition a small case size 220-nF ceramic capacitor must be used at the input, as close a possible to the regulator. This provides a high frequency bypass for the control circuits internal to the device. For this example a 4.7-µF, 100-V, X7R (or better) ceramic capacitor is chosen. The 220 nF must also be rated at 100-V with an X7R dielectric. The VQFN package provides two input voltage pins and two power ground pins on opposite sides of the package. This allows the input capacitors to be split, and placed optimally with respect to the internal power MOSFETs, thus improving the effectiveness of the input bypassing. In this example, place two 220-nF ceramic capacitors at each VIN-PGND location.

It is often desirable to use an electrolytic capacitor on the input in parallel with the ceramics. This is especially true if long leads/traces are used to connect the input supply to the regulator. The moderate ESR of this capacitor can help damp any ringing on the input supply caused by the long power leads. The use of this additional capacitor also helps with voltage dips caused by input supplies with unusually high impedance.

Most of the input switching current passes through the ceramic input capacitor(s). The approximate RMS value of this current can be calculated from 式 8 and should be checked against the manufacturers' maximum ratings.

$$I_{RMS} \cong \frac{I_{OUT}}{2}$$
 (8)

10.2.1.2.7 C_{BOOT}

The LMR36006 requires a bootstrap capacitor connected between the BOOT pin and the SW pin. This capacitor stores energy that is used to supply the gate drivers for the power MOSFETs. A high-quality ceramic capacitor of 100 nF and at least 16 V is required.

10.2.1.2.8 VCC

The VCC pin is the output of the internal LDO used to supply the control circuits of the regulator. This output requires a 1- μ F, 16-V ceramic capacitor connected from VCC to GND for proper operation. In general this output must not be loaded with any external circuitry. However, this output can be used to supply the pullup for the power-good function (see *Power-Good Flag Output*). A value in the range of 10 k Ω to 100 k Ω is a good choice in this case. The nominal output voltage on VCC is 5 V.

10.2.1.2.9 C_{FF} Selection

In some cases a feed-forward capacitor can be used across R_{FBT} to improve the load transient response or improve the loop-phase margin. This is especially true when values of $R_{FBT} > 100 \text{ k}\Omega$ are used. Large values of R_{FBT} , in combination with the parasitic capacitance at the FB pin, can create a small signal pole that interferes with the loop stability. A C_{FF} can help to mitigate this effect. ± 9 can be used to estimate the value of C_{FF} . The value found with ± 9 is a starting point; use lower values to determine if any advantage is gained by the use of a C_{FF} capacitor. The Optimizing Transient Response of Internally Compensated DC-DC Converters with Feedforward Capacitor Application Report is helpful when experimenting with a feed-forward capacitor.

$$C_{FF} < \frac{V_{OUT} \cdot C_{OUT}}{120 \cdot R_{FBT} \cdot \sqrt{\frac{V_{REF}}{V_{OUT}}}}$$
(9)

10.2.1.2.9.1 External UVLO

In some cases an input UVLO level different than that provided internal to the device is needed. This can be accomplished by using the circuit shown in \boxtimes 19 can be used. The input voltage at which the device turns on is designated V_{ON} ; while the turnoff voltage is V_{OFF} . First a value for R_{ENB} is chosen in the range of 10 k Ω to 100 k Ω and then $\vec{\pm}$ 10 is used to calculate R_{ENT} and V_{OFF} .

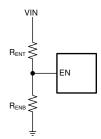


図 19. Set-up for External UVLO Application

$$R_{ENT} = \left(\frac{V_{ON}}{V_{EN-H}} - 1\right) \cdot R_{ENB}$$

$$V_{OFF} = V_{ON} \cdot \left(1 - \frac{V_{EN-HYS}}{V_{EN}}\right)$$

where

• V_{ON} = V_{IN} turnon voltage

•
$$V_{OFF} = V_{IN}$$
 turnoff voltage (10)

10.2.1.2.10 Maximum Ambient Temperature

As with any power conversion device, the LMR36006 dissipates internal power while operating. The effect of this power dissipation is to raise the internal temperature of the converter above ambient. The internal die temperature (T_J) is a function of the ambient temperature, the power loss and the effective thermal resistance, $R_{\theta JA}$ of the device and PCB combination. The maximum internal die temperature for the LMR36006 must be limited to 150°C. This establishes a limit on the maximum device power dissipation and therefore the load current. \pm 11 shows the relationships between the important parameters. It is easy to see that larger ambient temperatures (T_A) and larger values of $R_{\theta JA}$ reduce the maximum available output current. The converter efficiency can be estimated by using the curves provided in this data sheet. If the desired operating conditions cannot be found in one of the curves, then interpolation can be used to estimate the efficiency. Alternatively, the EVM can be adjusted to match the desired application requirements and the efficiency can be measured directly. The correct value of $R_{\theta JA}$ is more difficult to estimate. As stated in *Semiconductor and IC Package Thermal Metrics*, the values given in *Thermal Information* are not valid for design purposes and must not be used to estimate the thermal performance of the application. The values reported in that table were measured under a specific set of conditions that are rarely obtained in an actual application.

$$I_{OUT}|_{MAX} = \frac{\left(T_{J} - T_{A}\right)}{R_{\theta JA}} \cdot \frac{\eta}{\left(1 - \eta\right)} \cdot \frac{1}{V_{OUT}}$$

where

•
$$\eta = \text{Efficiency}$$
 (11)

The effective $R_{\theta JA}$ is a critical parameter and depends on many factors such as power dissipation, air temperature/flow, PCB area, copper heat-sink area, number of thermal vias under the package, and adjacent component placement; to mention just a few. Due to the ultra-miniature size of the VQFN (RNX) package, a DAP is not available. This means that this package exhibits a somewhat greater $R_{\theta JA}$. A typical example of $R_{\theta JA}$ vs copper board area can be found in 20. Note that the data given in this graph is for illustration purposes only, and the actual performance in any given application depends on all of the factors mentioned above.

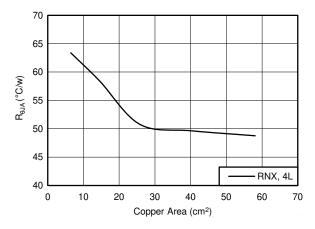
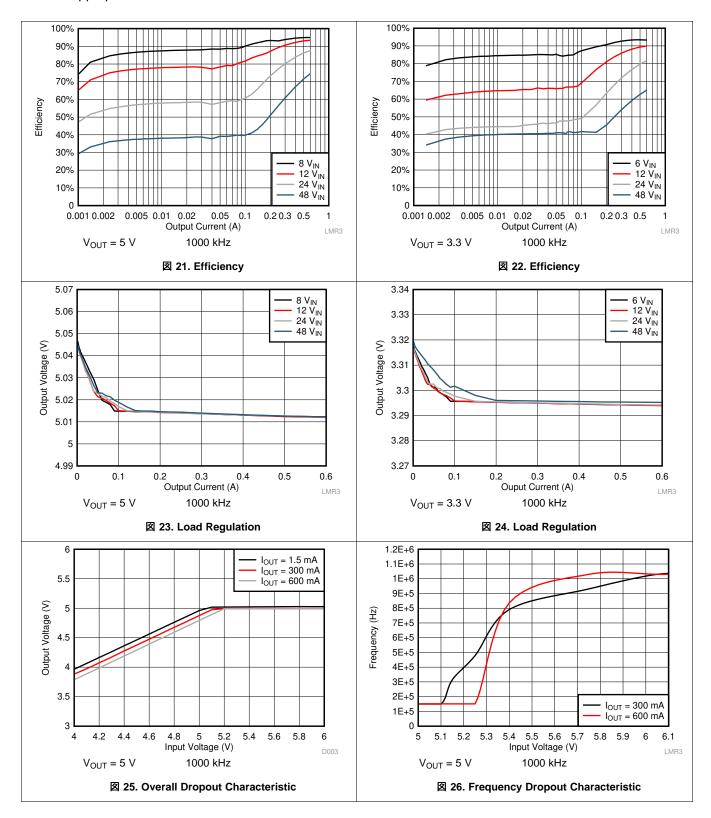
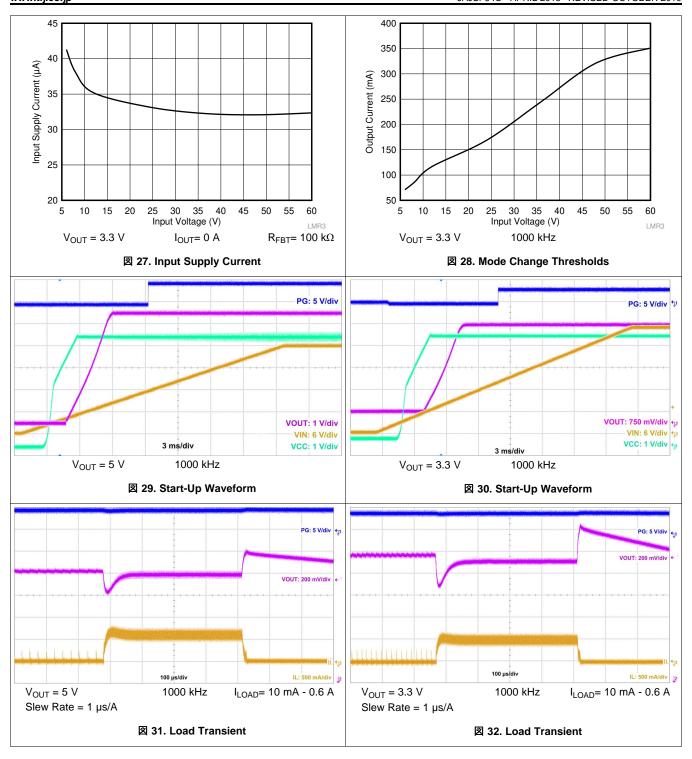


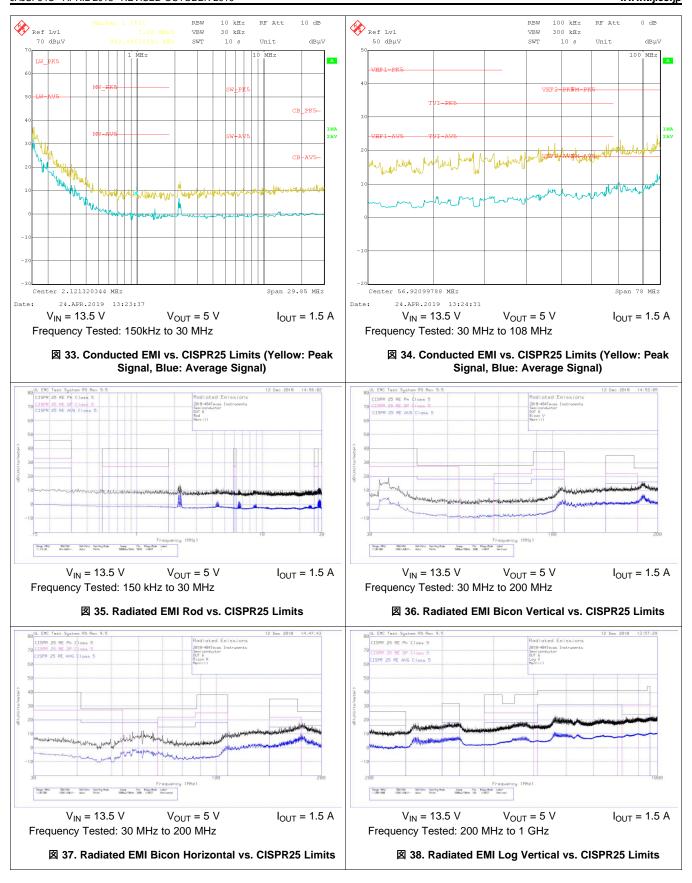
図 20. R_{BJA} versus Copper Board Area for the VQFN (RNX) Package

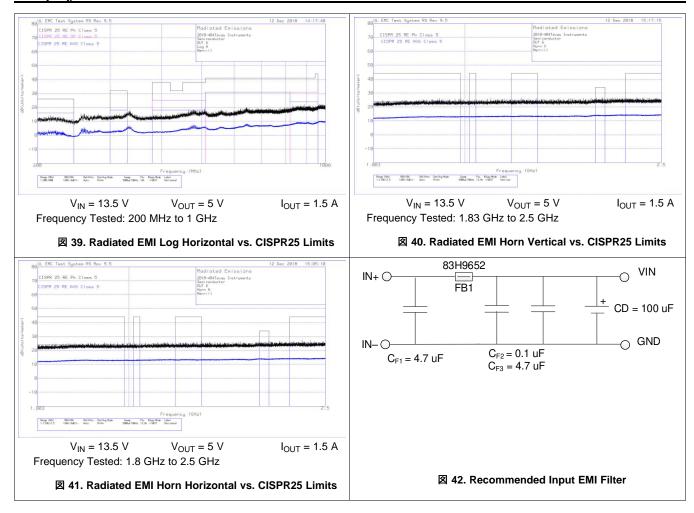

Use the following resources as guides to optimal thermal PCB design and estimating $R_{\theta JA}$ for a given application environment:

- Thermal Design by Insight not Hindsight Application Report
- Semiconductor and IC Package Thermal Metrics Application Report
- Thermal Design Made Simple with LM43603 and LM43602 Application Report
- Using New Thermal Metrics Application Report



10.2.2 Application Curves


Unless otherwise specified the following conditions apply: $V_{IN} = 24 \text{ V}$, $T_A = 25^{\circ}\text{C}$. The circuit is shown in \boxtimes 18, with the appropriate BOM from $\frac{1}{5}$ 3.



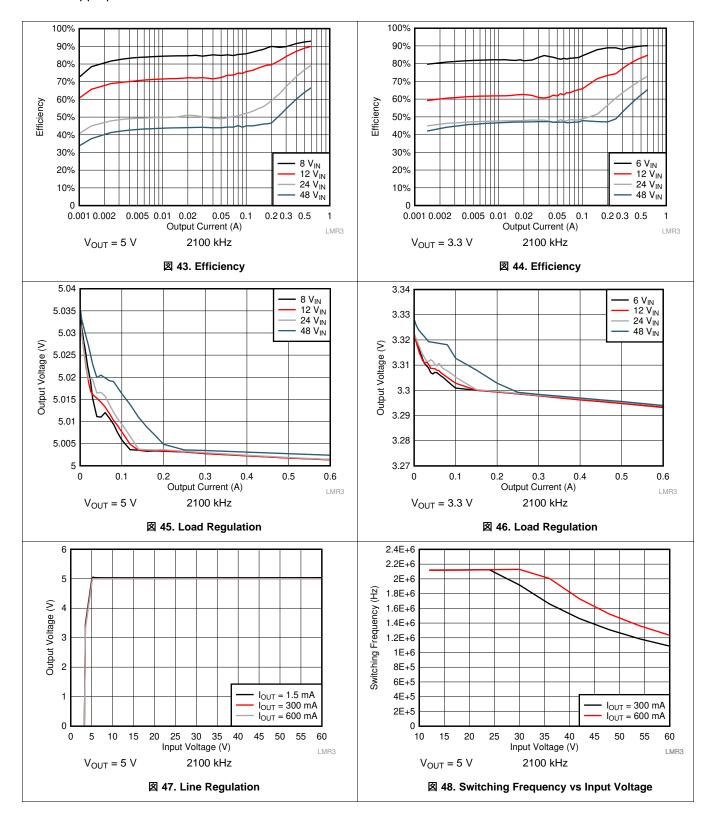
10.2.3 Design 2: High Density 24-V, 600-mA PFM Converter

10.2.3.1 Design Requirements

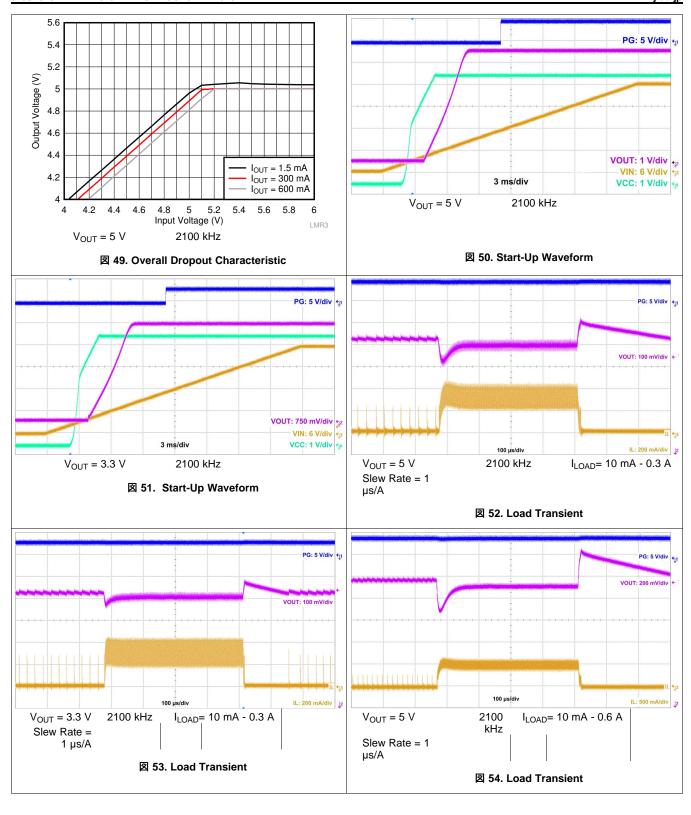
Example requirements for a typical 5-V or 3.3-V application. The input voltages are here for illustration purposes only. See *Specifications* for minimum operating input voltage.

表 4. Detailed Design Parameters

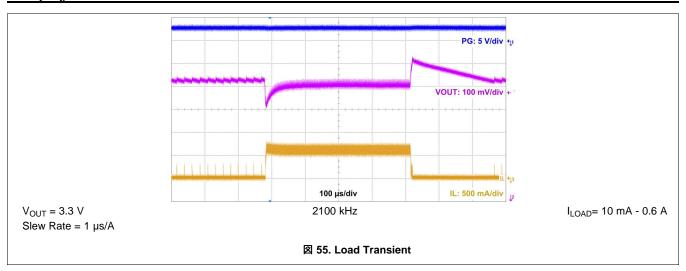
DESIGN PARAMETER	EXAMPLE VALUE
Input voltage	18-V to 24-V steady state, 4.2-V to 60-V transients
Output voltage	3.3 V/5 V
Maximum output current	0 A to 600 mA
Switching frequency	2100 kHz
Current consumption at 0-A load	Critical: Need to ensure low current consumption to reduce battery drain
Switching frequency at 0-A load	Not critical: Need fixed frequency operation at high load only


表 5. List of Components for Design 2

V _{OUT}	FREQUENCY	R _{FBB}	C _{OUT}	L	U1
5 V	2100 KHz	24.9 kΩ	1 × 15 μF	10 μH, 21 m Ω	LMR36006CRNXR
3.3 V	2100 kHz	43.2 kΩ	1 × 15 μF	$7.8~\mu H$, $13.6~m \Omega$	LMR36006CRNXR



10.2.3.2 Application Curves


Unless otherwise specified the following conditions apply: $V_{IN} = 24 \text{ V}$, $T_A = 25^{\circ}\text{C}$. The circuit is shown in \boxtimes 18, with the appropriate BOM from $\frac{1}{5}$.

10.3 What to Do and What Not to Do

- Don't: Exceed the Absolute Maximum Ratings.
- Don't: Exceed the ESD Ratings.
- Don't: Allow the EN input to float.
- **Don't:** Allow the output voltage to exceed the input voltage, nor go below ground.
- Don't: Use the thermal data given in the *Thermal Information* table to design your application.
- **Do:** Follow all the guidelines and/or suggestions found in this data sheet before committing the design to production. TI application engineers are ready to help critique your design and PCB layout to help make your project a success (see *Support Resources*).

11 Power Supply Recommendations

The characteristics of the input supply must be compatible with the *Specifications* found in this data sheet. In addition, the input supply must be capable of delivering the required input current to the loaded regulator. The average input current can be estimated with 式 12.

$$I_{IN} = \frac{V_{OUT} \cdot I_{OUT}}{V_{IN} \cdot \eta}$$

where

• η is the efficiency (12)

If the regulator is connected to the input supply through long wires or PCB traces, special care is required to achieve good performance. The parasitic inductance and resistance of the input cables can have an adverse effect on the operation of the regulator. The parasitic inductance, in combination with the low-ESR, ceramic input capacitors, can form an underdamped resonant circuit, resulting in overvoltage transients at the input to the regulator. The parasitic resistance can cause the voltage at the VIN pin to dip whenever a load transient is applied to the output. If the application is operating close to the minimum input voltage, this dip may cause the regulator to momentarily shutdown and/or reset. The best way to solve these kind of issues is to reduce the distance from the input supply to the regulator and/or use an aluminum or tantalum input capacitor in parallel with the ceramics. The moderate ESR of these types of capacitors help to damp the input resonant circuit and reduce any overshoots. A value in the range of 20 μ F to 100 μ F is usually sufficient to provide input damping and help to hold the input voltage steady during large load transients.

Sometimes, for other system considerations, an input filter is used in front of the regulator. This can lead to instability, as well as some of the effects mentioned above, unless it is designed carefully. The AN-2162 Simple Success With Conducted EMI From DCDC Converters User's Guide provides helpful suggestions when designing an input filter for any switching regulator.

In some cases a transient voltage suppressor (TVS) is used on the input of regulators. One class of this device has a *snap-back* characteristic (thyristor type). The use of a device with this type of characteristic is not recommended. When the TVS fires, the clamping voltage falls to a very low value. If this voltage is less than the output voltage of the regulator, the output capacitors discharge through the device back to the input. This uncontrolled current flow may damage the device.

12 Layout

12.1 Layout Guidelines

The PCB layout of any DC/DC converter is critical to the optimal performance of the design. Poor PCB layout can disrupt the operation of an otherwise good schematic design. Even if the converter regulates correctly, bad PCB layout can mean the difference between a robust design and one that cannot be mass produced. Furthermore, to a great extent the EMI performance of the regulator is dependent on the PCB layout. In a buck converter the most critical PCB feature is the loop formed by the input capacitor(s) and power ground, as shown in \boxtimes 56. This loop carries large transient currents that can cause large transient voltages when reacting with the trace inductance. These unwanted transient voltages disrupt the proper operation of the converter. Because of this, the traces in this loop must be wide and short, and the loop area as small as possible to reduce the parasitic inductance. \boxtimes 57 shows a recommended layout for the critical components of the LMR36006.

- 1. Place the input capacitor(s) as close as possible to the VIN and GND terminals. VIN and GND pins are adjacent, simplifying the input capacitor placement.
- 2. Place bypass capacitor for VCC close to the VCC pin. This capacitor must be placed close to the device and routed with short, wide traces to the VCC and GND pins.
- 3. Use wide traces for the C_{BOOT} capacitor. Place C_{BOOT} close to the device with short/wide traces to the BOOT and SW pins. Route the SW pin to the N/C pin and used to connect the BOOT capacitor to SW.
- 4. Place the feedback divider as close as possible to the FB pin of the device. Place R_{FBB}, R_{FBT}, and C_{FF}, if used, physically close to the device. The connections to FB and GND must be short and close to those pins on the device. The connection to V_{OUT} can be somewhat longer. However, this latter trace must not be routed near any noise source (such as the SW node) that can capacitively couple into the feedback path of the regulator.
- 5. Use at least one ground plane in one of the middle layers. This plane acts as a noise shield and also act as a heat dissipation path.
- 6. Provide wide paths for VIN, VOUT, and GND. Making these paths as wide and direct as possible reduces any voltage drops on the input or output paths of the converter and maximizes efficiency.
- 7. Provide enough PCB area for proper heat-sinking. As stated in the Maximum Ambient Temperature section, enough copper area must be used to ensure a low R_{0JA}, commensurate with the maximum load current and ambient temperature. The top and bottom PCB layers must be made with two ounce copper; and no less than one ounce. If the PCB design uses multiple copper layers (recommended), these thermal vias can also be connected to the inner layer heat-spreading ground planes.
- 8. Keep switch area small. Keep the copper area connecting the SW pin to the inductor as short and wide as possible. At the same time the total area of this node must be minimized to help reduce radiated EMI.

See the following PCB layout resources for additional important guidelines:

- Layout Guidelines for Switching Power Supplies Application Report
- Simple Switcher PCB Layout Guidelines Application Report
- Construction Your Power Supply- Layout Considerations Seminar
- Low Radiated EMI Layout Made Simple with LM4360x and LM4600x Application Report

Layout Guidelines (continued)

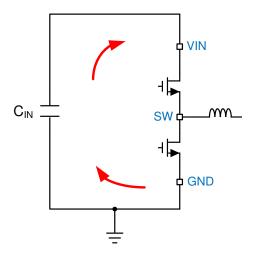
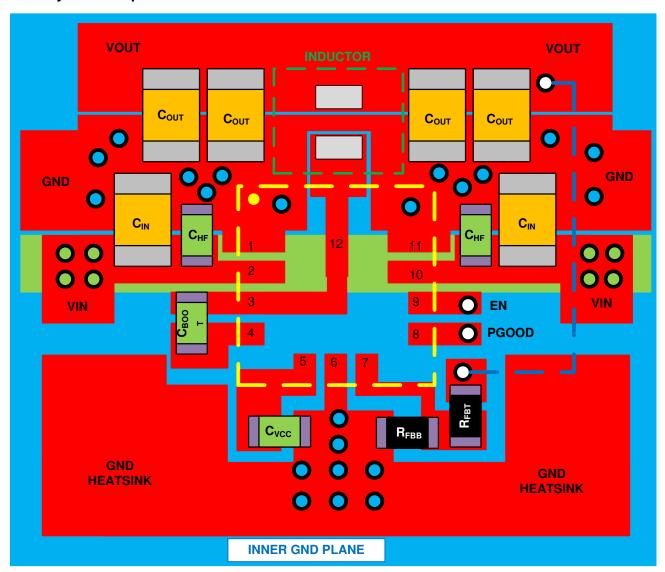


図 56. Current Loops with Fast Edges


12.1.1 Ground and Thermal Considerations

As previously mentioned, TI recommends using one of the middle layers as a solid ground plane. A ground plane provides shielding for sensitive circuits and traces as well as a quiet reference potential for the control circuitry. Connect the AGND and PGND pins to the ground planes using vias next to the bypass capacitors. PGND pins are connected directly to the source of the low side MOSFET switch and also connected directly to the grounds of the input and output capacitors. The PGND net contains noise at the switching frequency and may bounce due to load variations. The PGND trace, as well as the VIN and SW traces, must be constrained to one side of the ground planes. The other side of the ground plane contains much less noise; use for sensitive routes.

Use as much copper as possible, for system ground plane, on the top and bottom layers for the best heat dissipation. Use a four-layer board with the copper thickness for the four layers, starting from the top as: 2 oz / 1 oz / 2 oz. A four-layer board with enough copper thickness, and proper layout, provides low current conduction impedance, proper shielding and lower thermal resistance.

12.2 Layout Example

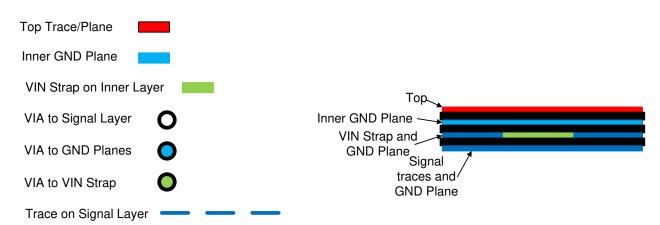


図 57. Example Layout

13 デバイスおよびドキュメントのサポート

13.1 デバイス・サポート

13.1.1 開発サポート

- 『フィールド・トランスミッタ向け2段電源のリファレンス・デザイン』
- 『スペースに制約のある産業用センサ向けの広い入力電圧範囲(Vin)電源のリファレンス・デザイン』
- 『ソリューション・サイズと低ノイズのために最適化済み、 車載 ADAS カメラ電源のリファレンス・デザイン』
- 『DC/DCコンバータのパッケージおよびピン配置設計により車載EMI性能を強化する方法』
- 『降圧コンバータの機能の概要: UVLO、イネーブル、ソフト・スタート、パワー・グッド』
- 『降圧コンバータの概要: モード遷移について』
- 『降圧コンバータの概要: 最小オン時間および最大オン時間動作』
- 『降圧コンバータの概要: 静止電流の仕様について』
- 『DC/DCコンバータの熱性能とソリューション・サイズ縮小とのトレードオフ』
- 『HotRodパッケージ採用でEMI低減とソリューション・サイズの縮小を両立』

13.1.1.1 WEBENCH®ツールによるカスタム設計

ここをクリックすると、WEBENCH® Power Designerにより、LMR36006デバイスを使用するカスタム設計を作成できます。

- 1. 最初に、入力電圧(V_{IN})、出力電圧(V_{OUT})、出力電流(I_{OUT})の要件を入力します。
- 2. オプティマイザのダイヤルを使用して、効率、占有面積、コストなどの主要なパラメータについて設計を最適化します。
- 3. 生成された設計を、テキサス・インスツルメンツが提供する他の方式と比較します。

WEBENCH Power Designerでは、カスタマイズされた回路図と部品リストを、リアルタイムの価格と部品の在庫情報と併せて参照できます。

通常、次の操作を実行可能です。

- 電気的なシミュレーションを実行し、重要な波形と回路の性能を確認する。
- 熱シミュレーションを実行し、基板の熱特性を把握する。
- カスタマイズされた回路図やレイアウトを、一般的なCADフォーマットで出力する。
- 設計のレポートをPDFで印刷し、設計を共有する。

WEBENCHツールの詳細は、www.ti.com/WEBENCHでご覧になれます。

13.2 ドキュメントのサポート

13.2.1 関連資料

関連資料については、以下を参照してください。

- テキサス・インスツルメンツ、『Designing High-Performance, Low-EMI Automotive Power Supplies』アプリケーション・レポート (英語)
- テキサス・インスツルメンツ『AN-1229 SIMPLE SWITCHER® PCB Layout Guidelines』アプリケーション・レポート (英語)
- テキサス・インスツルメンツ『Constructing Your Power Supply Layout Considerations』アプリケーション・レポート (英語)
- テキサス・インスツルメンツ、『Low Radiated EMI Layout Made Simple with LM4360x and LM4600x』アプリケーション・レポート (英語)
- テキサス・インスツルメンツ、『Semiconductor and IC Package Thermal Metrics』アプリケーション・レポート (英語)
- テキサス・インスツルメンツ、『Thermal Design made Simple with LM43603 and LM46002』アプリケーション・レポート (英語)

13.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の「アラートを受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

13.4 サポート・リソース

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.5 商標

HotRod, Hotrod, E2E are trademarks of Texas Instruments. WEBENCH is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.6 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

13.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	(1)	(2)			(3)	(4)	(5)		(0)
LMR36006BRNXR	Active	Production	VQFN-HR (RNX) 12	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 150	NH06B
LMR36006BRNXR.A	Active	Production	VQFN-HR (RNX) 12	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 150	NH06B
LMR36006BRNXT	Active	Production	VQFN-HR (RNX) 12	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 150	NH06B
LMR36006BRNXT.A	Active	Production	VQFN-HR (RNX) 12	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 150	NH06B
LMR36006CRNXR	Active	Production	VQFN-HR (RNX) 12	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 150	NH06C
LMR36006CRNXR.A	Active	Production	VQFN-HR (RNX) 12	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 150	NH06C
LMR36006CRNXT	Active	Production	VQFN-HR (RNX) 12	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 150	NH06C
LMR36006CRNXT.A	Active	Production	VQFN-HR (RNX) 12	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 150	NH06C

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

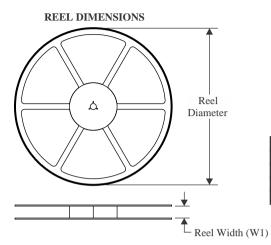
PACKAGE OPTION ADDENDUM

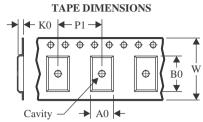
www.ti.com 10-Nov-2025

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LMR36006:

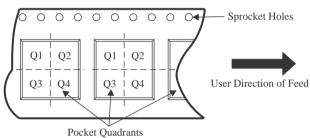
Automotive : LMR36006-Q1


NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

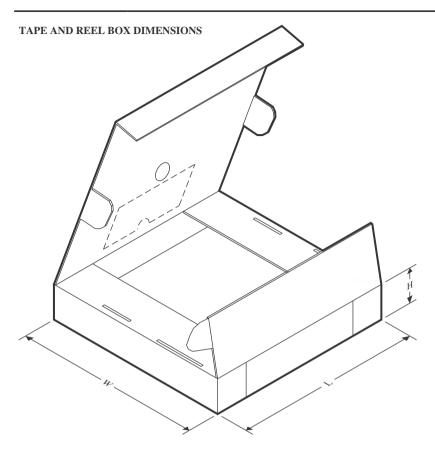
PACKAGE MATERIALS INFORMATION

www.ti.com 8-Sep-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

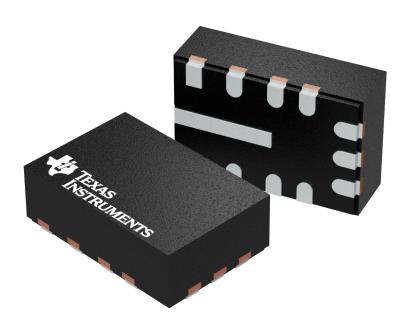


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMR36006BRNXR	VQFN- HR	RNX	12	3000	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1
LMR36006BRNXT	VQFN- HR	RNX	12	250	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1
LMR36006CRNXR	VQFN- HR	RNX	12	3000	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1
LMR36006CRNXT	VQFN- HR	RNX	12	250	180.0	8.4	2.25	3.25	1.05	4.0	8.0	Q1
LMR36006CRNXT	VQFN- HR	RNX	12	250	180.0	8.4	2.3	3.2	1.0	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Sep-2023

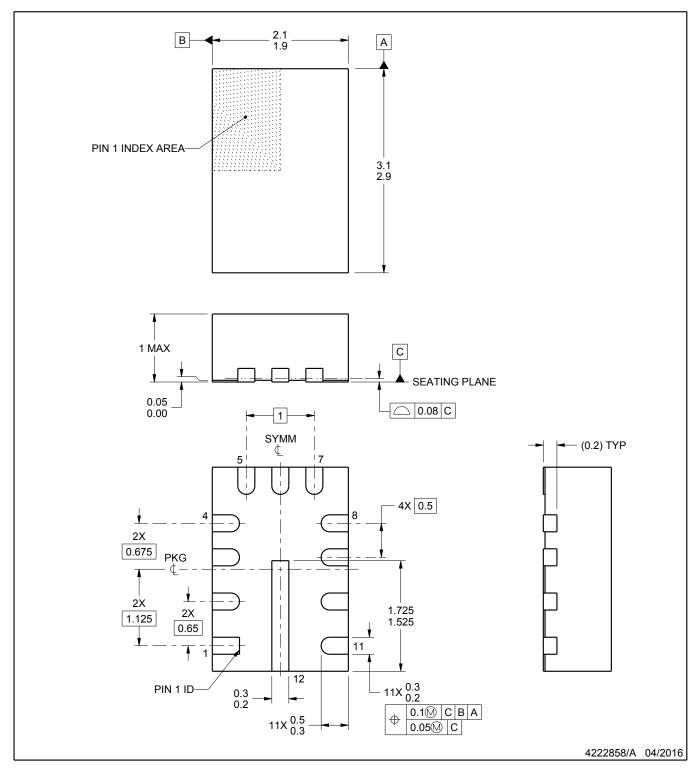


*All dimensions are nominal

7 111 41111011010110 41 0 11011111141							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMR36006BRNXR	VQFN-HR	RNX	12	3000	210.0	185.0	35.0
LMR36006BRNXT	VQFN-HR	RNX	12	250	210.0	185.0	35.0
LMR36006CRNXR	VQFN-HR	RNX	12	3000	210.0	185.0	35.0
LMR36006CRNXT	VQFN-HR	RNX	12	250	210.0	185.0	35.0
LMR36006CRNXT	VQFN-HR	RNX	12	250	213.0	191.0	35.0

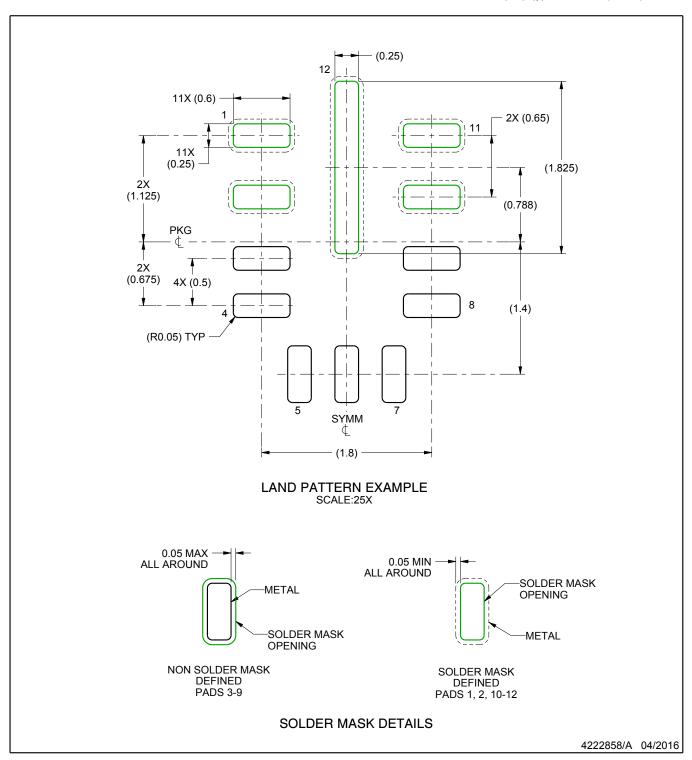
2 x 3 mm, 0.5 mm pitch

PLASTIC QUAD FLATPACK-NO LEAD



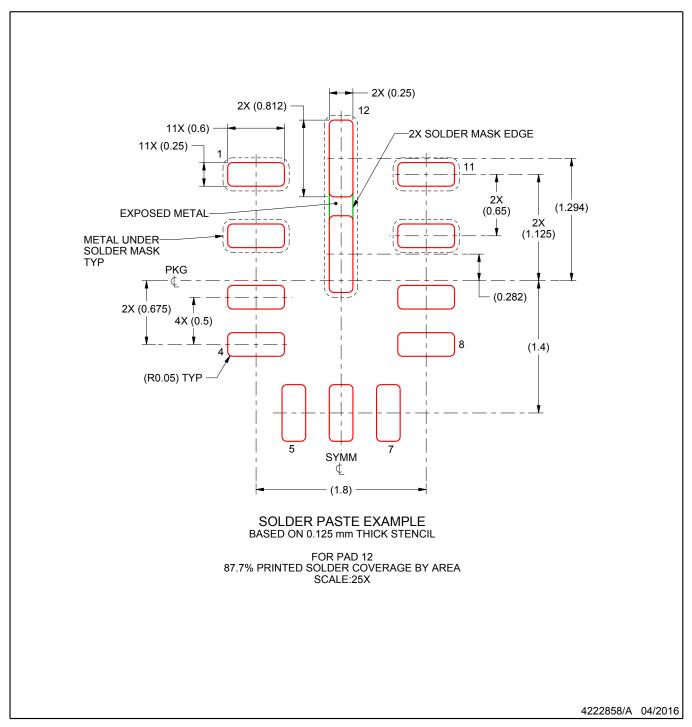
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224286/A



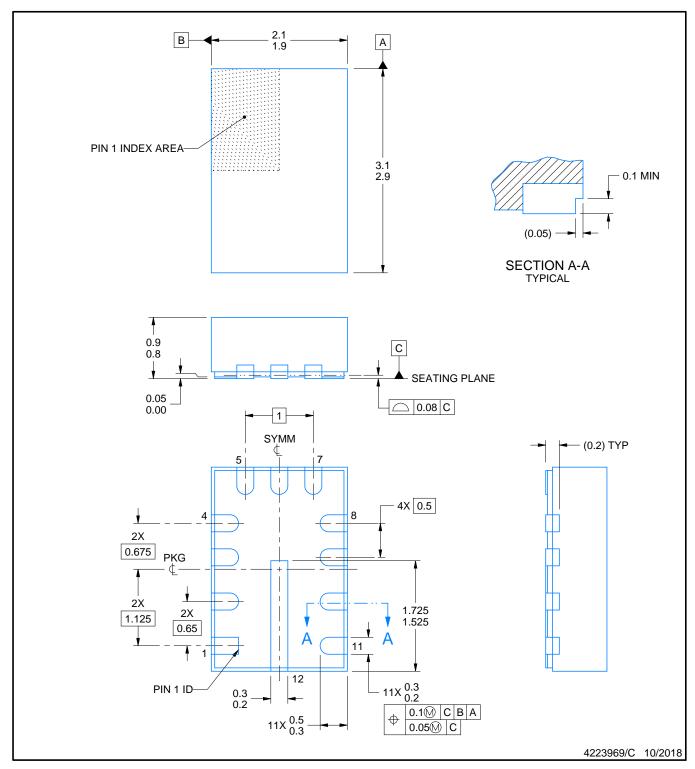
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



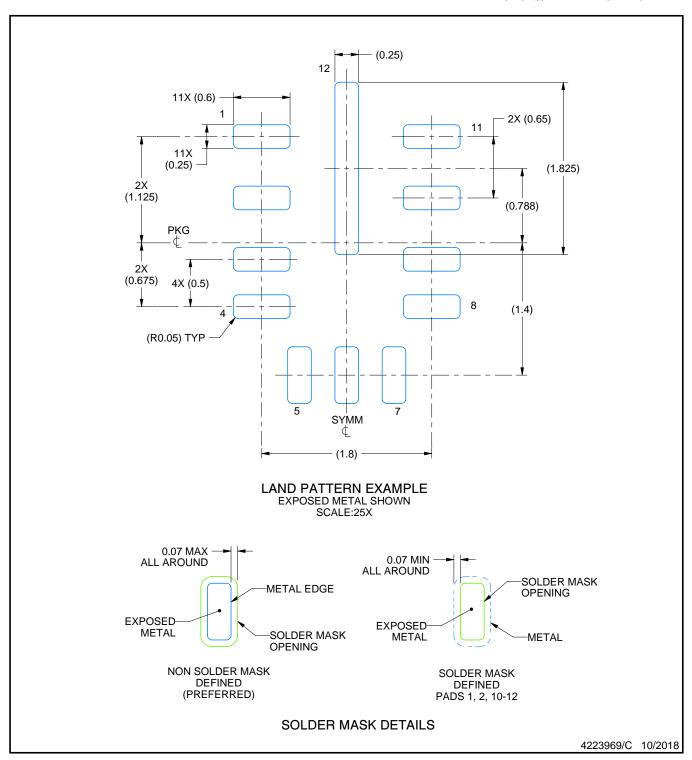
NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



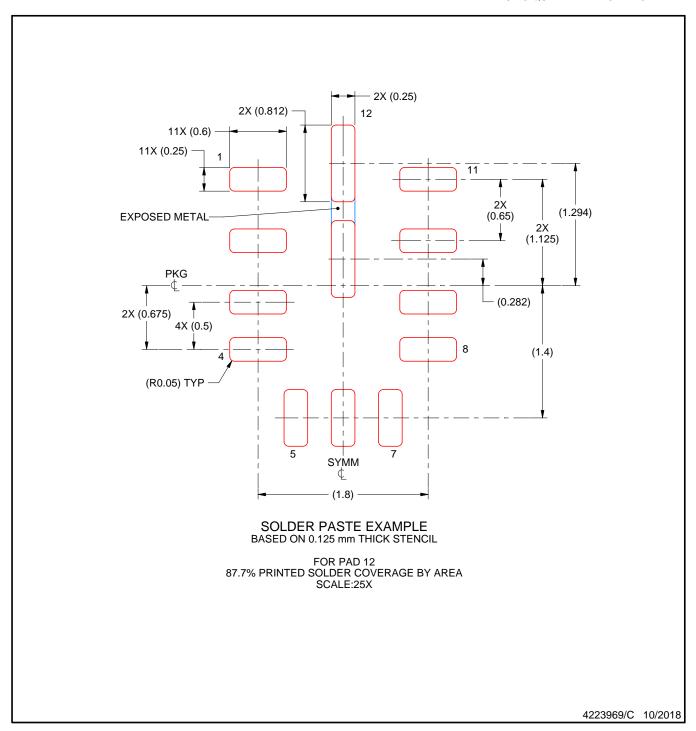
NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日:2025 年 10 月