LMK1D2102, LMK1D2104 JAJSMZ1B - SEPTEMBER 2021 - REVISED JUNE 2023 # LMK1D210x 低付加ジッタ LVDS バッファ # 1 特長 - 高性能 LVDS クロック・バッファ・ファミリ:最大 2GHz - デュアル 1:2 差動バッファ - デュアル 1:4 差動バッファ - 電源電圧:1.71V~3.465V - フェイルセーフ入力動作 - 小さい付加ジッタ:156.25MHz 時、12kHz~ 20MHz の範囲で最大 60fs RMS - 非常に小さい位相ノイズフロア:-164dBc/Hz (標準 - 非常に小さい伝播遅延:575ps (最大値) - 出力スキューは最大 20ps - ユニバーサル入力は LVDS、LVPECL、LVCMOS、 HCSL、CML の信号レベルを受け入れ可能 - LVDS リファレンス電圧 V_{AC REF} は、容量性結合入力 に使用可能 - 産業用温度範囲:-40℃~105℃ - 以下に示すパッケージで供給 - LMK1D2102:3mm × 3mm、16 ピン VQFN - LMK1D2104:5mm×5mm、28ピン VQFN # 2 アプリケーション - テレコミュニケーションおよびネットワーク機器 - 医療用画像処理 - 試験/測定機器 - ワイヤレス・インフラ - 業務用オーディオ、ビデオ、サイネージ # 3 概要 LMK1D210x クロック・バッファは、2 つのクロック入力 (INO および IN1) を、合計で最大 8 ペアの差動 LVDS ク ロック出力 (OUTO、OUT7) に分配します。このとき、クロッ ク分配のスキューを最小限に抑えます。各バッファ・ブロッ クは 1 つの入力と最大 4 つの LVDS 出力で構成されて います。入力は LVDS、LVPECL、HCSL、CML、 LVCMOS のいずれかに対応可能です。 LMK1D210x は、50Ω の伝送経路を駆動するように特化 して設計されています。シングルエンド・モードで入力を駆 動する場合には、図 9-6 に示す適切なバイアス電圧を未 使用の負入力ピンに印加する必要があります。 制御ピン (EN) を使用して、出力バンクをイネーブルまた はディセーブルできます。このピンがオープンのままの場 合、すべての出力に対する 2 つのバッファがイネーブル になり、ロジック「0」の場合は、すべての出力に対する両 方のバンクがディセーブル (静的ロジック「O」) になります。 ロジック「1」の場合は、一方のバンクとその出力がディセー ブルになりますが、他のバンクとその出力はイネーブルに なります。このデバイスは、フェイルセーフ機能をサポート しています。さらに、このデバイスは入力ヒステリシスを備え ており、入力信号が存在しないときに出力がランダムに発 振することを防止します。 このデバイスは、1.8V、2.5V、または 3.3V 電源で動作 し、-40℃~105℃ (周囲温度) で動作が規定されていま す。LMK1D210x のパッケージ・バリアントを以下の表に 示します。 ### パッケージ情報 | 部品番号 | パッケージ ⁽¹⁾ | パッケージ・サイズ (公
称) ⁽²⁾ | |-----------|----------------------|-----------------------------------| | LMK1D2102 | VQFN (16) | 3.00mm × 3.00mm | | LMK1D2104 | VQFN (28) | 5.00mm × 5.00mm | - 利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。 - パッケージ・サイズ (長さ×幅) は公称値であり、該当する場合は ピンも含まれます。 アプリケーションの例 # **Table of Contents** | 1 特長 1 | 9.3 Feature Description | 13 | |---------------------------------------|-----------------------------------|------------------| | 2 アプリケーション1 | | | | 3 概要 | 10 Application and Implementation | 16 | | 4 Revision History3 | 10.1 Application Information | 16 | | 5 Device Comparison4 | 40 0 T! A!:+! | 16 | | 6 Pin Configuration and Functions5 | | 19 | | 7 Specifications | | <mark>2</mark> 0 | | 7.1 Absolute Maximum Ratings6 | | 21 | | 7.2 ESD Ratings | 44.4.5 | 21 | | 7.3 Recommended Operating Conditions6 | | <mark>2</mark> 1 | | 7.4 Thermal Information7 | | <mark>2</mark> 1 | | 7.5 Electrical Characteristics7 | | 21 | | 7.6 Typical Characteristics10 | | 21 | | 8 Parameter Measurement Information11 | 11.6 用語集 | | | 9 Detailed Description13 | | | | 9.1 Overview | | 21 | | 9.2 Functional Block Diagram13 | | | | - | | | # **4 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Changes from Revision A (February 2022) to Revision B (June 2023) | Page | |--|-------------------------| | 「製品情報」表を「パッケージ情報」に変更 | 1 | | • Added the Device Comparison table for the LMK1Dxxxx buffer device family | | | Moved the Power Supply Recommendations and Layout sections to the Applica | tion and Implementation | | section | | | | Page | | Changes from Revision * (September 2021) to Revision A (February 2022) | Page | | Changes from Revision * (September 2021) to Revision A (February 2022) ■ 「特長」にフェイルセーフ入力の箇条書き項目を追加 | 1 | | Changes from Revision * (September 2021) to Revision A (February 2022) | 1 | # **5 Device Comparison** 表 5-1. Device Comparison | DEVICE | DEVICE
TYPE | FEATURES | OUTPUT
SWING | PACKAGE | BODY SIZE | | |----------------|----------------|--|--|------------|---------------------------|--| | LMK1D2108 | Dual 1:8 | Global output enable and swing | 350 mV | VQFN (48) | 7.00 mm × 7.00 mm | | | LIVIN 1D2 100 | Dual 1.0 | control through pin control | 500 mV | VQFN (40) | 7.00 111111 ~ 7.00 111111 | | | LMK1D2106 | Dual 1:6 | Global output enable and swing | 350 mV | VQFN (40) | 6.00 mm × 6.00 mm | | | LIVIN 1D2 100 | Dual 1.0 | control through pin control | 500 mV | VQFN (40) | 0.00 111111 ^ 0.00 111111 | | | LMK1D2104 | Dual 1:4 | Global output enable and swing | 350 mV | VQFN (28) | 5.00 mm × 5.00 mm | | | LIVIN 1D2 104 | Dual 1.4 | control through pin control | 500 mV | VQFN (20) | 5.00 11111 × 5.00 11111 | | | LMK1D2102 | Dual 1:2 | Global output enable and swing | 350 mV | VQFN (16) | 3.00 mm × 3.00 mm | | | LIVIN 1D2 102 | Dual 1.2 | control through pin control | 500 mV | VQFN (10) | | | | LMK4D4046 | 2:16 | Global output enable control through pin control | 350 mV | \/OFN (49) | 7.00 mm × 7.00 mm | | | LMK1D1216 | | | 500 mV | VQFN (48) | | | | LMK1D1212 | 0.40 | Global output enable control | 350 mV | \/OFN (40) | 6.00 mm × 6.00 mm | | | LIMIKTUTZTZ | 2:12 | through pin control | 500 mV | VQFN (40) | 6.00 mm × 6.00 mm | | | L MICADAGOOD | 2.0 | Individual output enable control | 350 mV | VOCN (40) | 0.00 11.0.00 | | | LMK1D1208P | 2:8 | through pin control | 500 mV | VQGN (40) | 6.00 mm × 6.00 mm | | | L MICA DA 2001 | 2:8 | Individual output enable control | 350 mV | \/OFN (40) | 0.00 11.0.00 | | | LMK1D1208I | 2:8 | through I ² C | 500 mV | VQFN (40) | 6.00 mm × 6.00 mm | | | LMK1D1208 | 2:8 | Global output enable control through pin control | ' 350 m\/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 5.00 mm × 5.00 mm | | | LMK1D1204P | 2:4 | Individual output enable control through pin control | 350 mV | VQGN (28) | 5.00 mm × 5.00 mm | | | LMK1D1204 | 2:4 | Global output enable control through pin control | 350 mV | VQFN (16) | 3.00 mm × 3.00 mm | | # **6 Pin Configuration and Functions** 図 6-1. LMK1D2102: RGT Package 16-Pin VQFN Top View 図 6-2. LMK1D2104: RHD Package 28-Pin VQFN Top View 表 6-1. Pin Functions | | PIN | | TYPE(1) | DESCRIPTION | |--|--------------|-----------|---------|--| | NAME | LMK1D2102 | LMK1D2104 | ITPE(") | DESCRIPTION | | DIFFERENTIAL/SINGLE | -ENDED CLOCK | INPUT | | | | IN0_P, IN0_N | 6, 7 | 9, 10 | I | Primary: Differential input pair or single-ended input | | | | | | Secondary: Differential input pair or single-ended input. | | IN1_P, IN1_N | 3, 4 | 5, 6 | I | Note that INP0, INN0 are used indistinguishably with IN0_P, IN0_N. | | OUTPUT BANK CONTR | OL | | | | | EN | 2 | 4 | I | Output bank enable/disable with an internal 500-k Ω pullup and 320-k Ω pulldown, selects input port; (See $\frac{1}{2}$ 9-1) | | BIAS VOLTAGE OUTPU | İT | | | | | V _{AC_REF0} ,V _{AC_REF1} | 8 | 11, 7 | 0 | Bias voltage output for capacitive coupled inputs. If used, TI recommends using a 0.1-µF capacitor to GND on this pin. | | DIFFERENTIAL CLOCK | OUTPUT | | 1 | | | OUT0_P, OUT0_N | 9, 10 | 12, 13 | 0 | Differential LVDS output pair number 0 | | OUT1_P, OUT1_N | 11, 12 | 16, 17 | 0 | Differential LVDS output pair number 1 | | OUT2_P, OUT2_N | 13, 14 | 18, 19 | 0 | Differential LVDS output pair number 2 | | OUT3_P, OUT3_N | 15, 16 | 20, 21 | 0 | Differential LVDS output pair number 3 | | OUT4_P, OUT4_N | | 22, 23 | 0 | Differential LVDS output pair number 4 | | OUT5_P, OUT5_N | | 24, 25 | 0 | Differential LVDS output pair number 5 | | OUT6_P, OUT6_N | | 26, 27 | 0 | Differential LVDS output pair number 6 | | OUT7_P, OUT7_N | | 2, 3 | 0 | Differential LVDS output pair number 7 | | SUPPLY VOLTAGE | | | | | | V _{DD} | 5 | 8, 15, 28 | Р | Device Power Supply (1.8V or 2.5V or 3.3V) | | GROUND | | | | | | GND | 1 | 1, 14 | G | Ground | | DAP | DAP | DAP | G | Die Attach Pad. Connect to the PCB ground plane for heat dissipation. | (1) G = Ground, I = Input, O = Output, P = Power # 7 Specifications # 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |------------------|------------------------------------|------|-----------------------|------| | V_{DD} | Supply voltage | -0.3 | 3.6 | V | | V _{IN} | Input voltage | -0.3 | 3.6 | V | | Vo | Output voltage | -0.3 | V _{DD} + 0.3 | V | | I _{IN} | Input current | -20 | 20 | mA | | Io | Continuous output current | -50 | 50 | mA | | T _J | Junction temperature | | 135 | °C | | T _{stg} | Storage temperature ⁽²⁾ | -65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. (2) Device unpowered ## 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V | | Human body model (HBM), per ANSI/ESDA/
JEDEC JS-001, all pins ⁽¹⁾ | ±3000 | \/ | | V _(ESD) | Electrostatic discharge | Charged device model (CDM), per ANSI/ESDA/
JEDEC JS-002, all pins ⁽²⁾ | ±1000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ## 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | | MIN | NOM | MAX | UNIT | |----------------|--------------------------------|---|-------|-------|-------|------| | | 3.3-V supply | 3.135 | 3.3 | 3.465 | | | | V_{DD} | Core supply voltage | 2.5-V supply | 2.375 | 2.5 | 2.625 | V | | | | 1.8-V supply | 1.71 | 1.8 | 1.89 | | | Supply
Ramp | Supply voltage ramp | Requires monotonic ramp (10-90% of V_{DD}) | 0.1 | | 20 | ms | | T _A | Operating free-air temperature | | -40 | | 105 | °C | | TJ | Operating junction temperature | | -40 | | 135 | °C | ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ### 7.4 Thermal Information | | | LMK1D2102 | LMK1D2104 | | |-----------------------|--|-----------|-----------|------| | | THERMAL METRIC (1) | VQFN | VQFN | UNIT | | | | 16 PINS | 28 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 48.7 | 38.9 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 56.4 | 32.1 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 23.6 | 18.7 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 1.6 | 1 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 23.6 | 18.7 | °C/W | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | 8.6 | 8.2 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ### 7.5 Electrical Characteristics V_{DD} = 1.8 V ± 5 %, -40°C ≤ T_A ≤ 105°C. Typical values are at V_{DD} = 1.8 V, 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------------|---|--|-----------------------|---------------------|-----------------------|-------------| | POWER SUI | PPLY CHARACTERISTICS | | | | | | | IDD _{STAT} | LMK1D2102 | All-outputs enabled and unterminated, f = 0 Hz | | 50 | | mA | | IDD _{STAT} | LMK1D2104 | All-outputs enabled and unterminated, f = 0 Hz | | 55 | | mA | | IDD _{100M} | LMK1D2102 | All-outputs enabled, R_L = 100 Ω , f = 100 MHz | | 70 | 80 | mA | | IDD _{100M} | LMK1D2104 | All-outputs enabled, RL = 100 Ω , f = 100 MHz | | 84 | 110 | mA | | OUTPUT BA | NK CONTROL (EN) INPUT CHARACTER | RISTICS (Applies to V _{DD} = 1.8 V ± 5° | %, 2.5 V ± 5% a | nd 3.3 V : | ± 5%) | | | Vd _{I3} | 3-state input | Open | 0 | 4 × V _{CC} | | V | | V _{IH} | Input high voltage | Minimum input voltage for a logical "1" state | 0.7 × V _{CC} | | V _{CC} + 0.3 | V | | V _{IL} | Input low voltage | Maximum input voltage for a logical "0" state | -0.3 | | 0.3 × V _{CC} | V | | I _{IH} | Input high current | V_{DD} can be 1.8V/2.5V/3.3V with V_{IH} = V_{DD} | | | 30 | μΑ | | I _{IL} | Input low current | V_{DD} can be 1.8V/2.5V/3.3V with V_{IH} = V_{DD} | -30 | | | μΑ | | R _{pull-up(EN)} | Input pullup resistor | | | 500 | | kΩ | | R _{pull-down(EN)} | Input pulldown resistor | | | 320 | | kΩ | | SINGLE-ENI | DED LVCMOS/LVTTL CLOCK INPUT (Ap | plies to $V_{DD} = 1.8 \text{ V} \pm 5\%, 2.5 \text{ V} \pm 5\%$ | % and 3.3 V ± 5 | 5%) | • | | | f _{IN} | Input frequency | Clock input | DC | | 250 | MHz | | V _{IN_S-E} | Single-ended Input Voltage Swing | Assumes a square wave input with two levels | 0.4 | | 3.465 | V | | dVIN/dt | Input Slew Rate (20% to 80% of the amplitude) | | 0.05 | | | V/ns | | I _{IH} | Input high current | V _{DD} = 3.465 V, V _{IH} = 3.465 V | | | 50 | μA | | I _{IL} | Input low current | V _{DD} = 3.465 V, V _{IL} = 0 V | -30 | , | | μA | | C _{IN_SE} | Input capacitance | at 25°C | | 3.5 | | pF | | DIFFERENT | IAL CLOCK INPUT (Applies to V _{DD} = 1.8 | V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%) | | | | | | f _{IN} | Input frequency | Clock input | | | 2 | GHz | | Valore | Differential input voltage peak-to-peak | V _{ICM} = 1 V (V _{DD} = 1.8 V) | 0.3 | | 2.4 | V_{PP} | | $V_{IN,DIFF(p-p)}$ | $\{2*(V_{INP}-V_{INN})\}$ | V _{ICM} = 1.25 V (V _{DD} = 2.5 V/3.3 V) | 0.3 | | 2.4 | 4 PP | V_{DD} = 1.8 V ± 5 %, -40°C ≤ T_A ≤ 105°C. Typical values are at V_{DD} = 1.8 V, 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|---|--|------|------|-------|-----------------| | V _{ICM} | Input common mode voltage | V _{IN,DIFF(P-P)} > 0.4 V (V _{DD} = 1.8 V/2.5/3.3 V) | 0.25 | | 2.3 | V | | Ін | Input high current | V _{DD} = 3.465 V, V _{INP} = 2.4 V, V _{INN}
= 1.2 V | | | 30 | μΑ | | lıL | Input low current | V _{DD} = 3.465 V, V _{INP} = 0 V, V _{INN} = 1.2 V | -30 | | | μΑ | | C _{IN_S-E} | Input capacitance (Single-ended) | at 25°C | | 3.5 | | pF | | LVDS DC OL | JTPUT CHARACTERISTICS | | | | | | | VOD | Differential output voltage magnitude V _{OUTP} - V _{OUTN} | $V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ | 250 | 350 | 450 | mV | | ΔVOD | Change in differential output voltage magnitude. Per output, defined as the difference between VOD in logic hi/lo states. | $V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ Ω | -15 | | 15 | mV | | V _{OC(SS)} | Steady-state common mode output | $V_{IN,DIFF(P-P)} = 0.3 \text{ V, R}_{LOAD} = 100$
$\Omega \text{ (V}_{DD} = 1.8 \text{ V)}$ | 1 | | 1.2 | V | | VOC(SS) | voltage | $V_{IN,DIFF(P-P)} = 0.3 \text{ V, R}_{LOAD} = 100$
$\Omega \text{ (V}_{DD} = 2.5 \text{ V/3.3 V)}$ | 1.1 | | 1.375 | v | | $\Delta_{VOC(SS)}$ | Change in steady-state common mode output voltage. Per output, defined as the difference in VOC in logic hi/lo states. | $V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$
Ω | -15 | | 15 | mV | | LVDS AC OL | JTPUT CHARACTERISTICS | | | | | | | V_{ring} | Output overshoot and undershoot | $V_{IN,DIFF(P-P)} = 0.3 \text{ V, R}_{LOAD} = 100$
$\Omega, f_{OUT} = 491.52 \text{ MHz}$ | -0.1 | | 0.1 | V _{OD} | | V _{OS} | Output AC common mode | $V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$
Ω | | 50 | 100 | mV_{pp} | | los | Short-circuit output current (differential) | V _{OUTP} = V _{OUTN} | -12 | | 12 | mA | | I _{OS(cm)} | Short-circuit output current (common-mode) | V _{OUTP} = V _{OUTN} = 0 | -24 | | 24 | mA | | t _{PD} | Propagation delay | $V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ $\Omega^{(2)}$ | 0.3 | | 0.575 | ns | | t _{sk, o} | Output skew | Skew between outputs with the same load conditions (4 and 8 channel) (3) | | | 20 | ps | | t _{SK, b} | Output bank skew | Skew between the outputs within the same bank (2102/2104) (4) | | | 15 | ps | | t _{SK, PP} | Part-to-part skew | Skew between outputs on different parts subjected to the same operating conditions with the same input and output loading. | | | 250 | ps | | t _{SK, P} | Pulse skew | 50% duty cycle input, crossing point-to-crossing-point distortion (4) | -20 | | 20 | ps | | [‡] RJIT(ADD) | Random additive Jitter (rms) | f_{IN} = 156.25 MHz with 50% duty-cycle, Input slew rate = 1.5V/ns, Integration range = 12 kHz – 20 MHz, with output load R _{LOAD} = 100 Ω | | 50 | 60 | fs, RMS | | | | PN _{1kHz} | | -143 | | | | | Phase Noise for a carrier frequency of | PN _{10kHz} | | -152 | | | | Phase noise | 156.25 MHz with 50% duty-cycle, Input slew rate = 1.5V/ns with output load | PN _{100kHz} | | -157 | | dBc/Hz | | | $R_{LOAD} = 100 \Omega$ | PN _{1MHz} | | -160 | | | | | | PN _{floor} | | -164 | | | V_{DD} = 1.8 V ± 5 %, -40°C ≤ T_A ≤ 105°C. Typical values are at V_{DD} = 1.8 V, 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | |--|--|--|-----|-------------|-------|------|--| | MUX _{ISO} | Mux Isolation | ${\rm f_{IN}}$ = 156.25 MHz. The difference in power level at ${\rm f_{IN}}$ when the selected clock is active and the unselected clock is static versus when the selected clock is inactive and the unselected clock is active. | | 80 | | dB | | | SPUR | Spurious suppression between dual | Differential inputs with F _{IN0} = 491.52 MHz, F _{IN1} = 61.44 MHz; Measured between neighboring outputs | | -60 | | dB | | | | banks | Different inputs with F _{IN0} = 491.52
MHz, F _{IN1} = 15.36 MHz;
Measured between neighboring
outputs | | –70 | | αв | | | ODC | Output duty cycle | With 50% duty cycle input | 45 | | 55 | % | | | t _R /t _F | Output rise and fall time | 20% to 80% with R_{LOAD} = 100 Ω | | | 300 | ps | | | V _{AC_REF} | Reference output voltage | VDD = 2.5 V, I _{LOAD} = 100 μA | 0.9 | 1.25 | 1.375 | V | | | POWER SUPPLY NOISE REJECTION (PSNR) V _{DD} = 2.5 V/ 3.3 V | | | | | | | | | PSNR | Power Supply Noise Rejection (f _{carrier} = | 10 kHz, 100 mVpp ripple injected on V _{DD} | | – 70 | | dBc | | | JUNIX | 156.25 MHz) | 1 MHz, 100 mVpp ripple injected on V _{DD} | | -50 | | UDC | | ⁽¹⁾ Measured between single-ended/differential input crossing point to the differential output crossing point. ⁽²⁾ For the dual bank devices, the inputs are phase aligned and have 50% duty cycle. ⁽³⁾ Defined as the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output. ### 7.6 Typical Characteristics The ☑ 7-1 captures the variation of the LMK1D2104 current consumption with input frequency and supply voltage. The LMK1D2102 follows a similar trend. ☑ 7-2 shows the variation of the differential output voltage (VOD) swept across frequency. This result is applicable to LMK1D2102 as well. It is important to note that \boxtimes 7-1 and \boxtimes 7-2 serve as a guidance to the users on what to expect for the range of operating frequency supported by LMK1D210x. It is crucial to note that these graphs were plotted for a limited number of frequencies and load conditions which may not represent the customer system. 図 7-1. LMK1D2104 Current Consumption vs. Frequency 図 7-2. LMK1D2104 VOD vs. Frequency # **8 Parameter Measurement Information** 図 8-1. LVDS Output DC Configuration During Device Test 図 8-2. LVDS Output AC Configuration During Device Test 図 8-3. DC-Coupled LVCMOS Input During Device Test 図 8-4. Output Voltage and Rise/Fall Time - A. Output skew is calculated as the greater of the following: the difference between the fastest and the slowest t_{PLHn} or the difference between the fastest and the slowest t_{PHLn} (n = 0, 1, 2, ...7) - B. Part to part skew is calculated as the greater of the following: the difference between the fastest and the slowest t_{PLHn} or the difference between the fastest and the slowest t_{PHLn} across multiple devices (n = 0, 1, 2, ..7) ### 図 8-5. Output Skew and Part-to-Part Skew 図 8-6. Output Overshoot and Undershoot 図 8-7. Output AC Common Mode ## 9 Detailed Description ### 9.1 Overview The LMK1D210x LVDS drivers use CMOS transistors to control the output current. Therefore, proper biasing and termination are required to ensure correct operation of the device and to maximize signal integrity. The proper LVDS termination for signal integrity over two $50-\Omega$ lines is $100~\Omega$ between the outputs on the receiver end. Either DC-coupled termination or AC-coupled termination can be used for LVDS outputs. TI recommends placing a termination resistor close to the receiver. If the receiver is internally biased to a voltage different than the output common-mode voltage of the LMK1D210x, AC-coupling must be used. If the LVDS receiver has internal $100-\Omega$ termination, external termination must be omitted. #### 9.2 Functional Block Diagram #### 9.3 Feature Description The LMK1D210x is a low additive jitter LVDS fan-out buffer that can generate up to four copies of a single input which can be either LVPECL, LVDS, or LVCMOS on each of its banks. Since the device has two banks, this translates to a total of eight pairs of outputs (LMK1D2104). The reference clock frequencies can go up to 2 GHz. Apart from providing a very low additive jitter and low output skew, the LMK1D210x has a control pin (EN), which controls the enabling/disabling of the output banks. #### 9.3.1 Fail-Safe Inputs The LMK1D210x family of devices is designed to support fail-safe input operation. This feature allows the user to drive the device inputs before VDD is applied without damaging the device. Refer to to 7.1 for more information on the maximum input supported by the device. The device also incorporates an input hysteresis that prevents random oscillation in absence of an input signal, allowing the input pins to be left open. #### 9.4 Device Functional Modes The output banks of the LMK1D210x can be selected through the control pin (see 表 9-1). Unused inputs and outputs can be left floating to reduce overall component cost. Both AC- and DC-coupling schemes can be used with the LMK1D210x to provide greater system flexibility. 表 9-1. Output Control Table | EN | CLOCK OUTPUTS | | | | | |------|---|--|--|--|--| | 0 | All outputs disabled (static "0") | | | | | | 1 | OUT0, OUT1 OUT[(N/2)-1]
enabled and OUT[N/2]OUT[-1]
disabled. Example: LMK1D2102
(OUT0, OUT1 enabled, OUT2,
OUT3 disabled | | | | | | Open | All outputs enabled | | | | | #### 9.4.1 LVDS Output Termination TI recommends unused outputs to be terminated differentially with a $100-\Omega$ resistor for optimum performance, although unterminated outputs are also okay but will result in slight degradation in performance (Output AC common-mode V_{OS}) in the outputs being used. The LMK1D210x can be connected to LVDS receiver inputs with DC- and AC-coupling as shown in ⊠ 9-1 and ⊠ 9-2 (respectively). 図 9-1. Output DC Termination 図 9-2. Output AC Termination (With the Receiver Internally Biased) ### 9.4.2 Input Termination The LMK1D210x inputs can be interfaced with LVDS, LVPECL, HCSL or LVCMOS drivers. LVDS drivers can be connected to LMK1D210x inputs with DC- and AC-coupling as shown 🗵 9-3 and 🗵 9-4 (respectively). 図 9-3. LVDS Clock Driver Connected to LMK1D210x Input (DC-Coupled) 図 9-4. LVDS Clock Driver Connected to LMK1D210x Input (AC-Coupled) \boxtimes 9-5 shows how to connect LVPECL inputs to the LMK1D210x. The series resistors are required to reduce the LVPECL signal swing if the signal swing is >1.6 V_{PP}. 図 9-5. LVPECL Clock Driver Connected to LMK1D210x Input ☑ 9-6 illustrates how to couple a LVCMOS clock input to the LMK1D210x directly. 図 9-6. 1.8-V/2.5-V/3.3-V LVCMOS Clock Driver Connected to LMK1D210x Input Unused inputs can be left floating thus reducing the need for additional components. # 10 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 10.1 Application Information The LMK1D210x is a low additive jitter universal to LVDS fan-out buffer with dual inputs which fan-out to dual outputs banks. Each input can fan-out to a maximum of four outputs (LMK1D2104). The small package, 1.8 V power supply operation, low output skew, and low additive jitter makes this device suitable for applications that require high performance clock distribution as well as for low power and space constraint applications. ### 10.2 Typical Application 図 10-1. Fan-Out Buffer for ADC Device clock and SYSREF distribution #### 10.2.1 Design Requirements The LMK1D210x shown in 🗵 10-1 is configured to fan-out an ADC clock on the first output bank and SYSREF clock on the second output bank for a system utilizing the JESD204B/C ADC. The low output to output skew, very low additive jitter and superior spurious suppression between dual banks makes the LMK1D210x a simple, robust and low-cost solution for distributing various clocks to JESD204B/C AFE systems. The configuration example can drive up to 4 ADC clocks and 4 SYSREF clocks for a JESD204B/C receiver with the following properties: - The ADC clock receiver module is typically AC coupled with an LVDS driver such as the LMK1D210x due to differences in common-mode between the driver and receiver. Depending on the receiver, there maybe an option for internal 100-Ω differential termination in which case an external termination would not be required for the LMK1D210x. - The SYSREF clock receiver module is typically DC coupled provided the common-mode voltage of the LMK1D210x outputs match with the receiver. An external termination may not be needed in case of an internal termination in the receiver. - Unused outputs of the LMK1D device are terminated differentially with a $100-\Omega$ resistor for optimum performance. #### 10.2.2 Detailed Design Procedure See セクション 9.4.2 for proper input terminations, dependent on single-ended or differential inputs. See セクション 9.4.1 for output termination schemes depending on the receiver application. TI recommends unused outputs to be terminated differentially with a $100-\Omega$ resistor for optimum performance, although unterminated outputs are also okay but will result in slight degradation in performance (Output AC common-mode V_{OS}) in the outputs being used. In the application example described in the previous section 🗵 10-1, the ADC clock and SYSREF clocks require different output interfacing schemes. Power supply filtering and bypassing is critical for low-noise applications. In case of common-mode mismatch between the output voltage of the LMK1D210x and the receiver, one can use AC coupling to get around this, however, in certain applications, it might not be possible to AC couple the LMK1D210x outputs to the receiver due to the settling time associated with this AC coupling network (High-pass filter) which can result in non-deterministic behavior during the initial transients. For such applications, it becomes necessary to DC couple the outputs and thus requires a scheme which can overcome the inherent mismatch between the common-mode of the driver and receiver. The application report *Interfacing LVDS Driver With a Sub-LVDS Receiver* discusses how to interface between a LVDS driver and sub-LVDS receiver. Same concept can be applied to interface the LMK1D210x outputs to a receiver which has lower common-mode. 図 10-2. Schematic for DC coupling LMK1D21xx with lower common-mode receiver The 🗵 10-2 illustrates the resistor divider network for stepping down the common mode as explained in the above application report. The resistors R1, R2 and R3 are chosen according to the input common mode requirements of the receiver. As highlighted before, user needs to make sure that the reduced swing is able to meet the requirements of the receiver. #### 10.2.3 Application Curves The LMK1D2104's low additive noise is shown below. The low noise 156.25-MHz source with 24-fs RMS jitter shown in ☑ 10-3 drives the LMK1D2104, resulting in 46.4-fs RMS when integrated from 12 kHz to 20 MHz (☑ 10-4). The resultant additive jitter is a low 39.7-fs RMS for this configuration. Note that this result applies to the LMK1D2102 device as well. A. Reference signal is low-noise Rohde and Schwarz SMA100B 図 10-3. LMK1D2104 Reference Phase Noise, 156.25 MHz, 24-fs RMS (12 kHz to 20 MHz) 図 10-4. LMK1D2104 Output Phase Noise, 156.25 MHz, 46.4-fs RMS (12 kHz to 20 MHz) The 🗵 10-5 captures the low close-in phase noise of the LMK1D2104 device. The LMK1D2102 and LMK1D2104 have excellent flicker noise as a result of superior process technology and design. This enables their use for clock distribution in radar systems, medical imaging systems etc which require ultra-low close-in phase noise clocks. 図 10-5. LMK1D2104 Output Phase Noise, 100 MHz, 1 kHz offset: -147 dBc/Hz ### 10.3 Power Supply Recommendations High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when jitter or phase noise is critical to applications. Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass capacitors provide the low impedance path for high-frequency noise and guard the power-supply system against the induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the device and must have low equivalent series resistance (ESR). To properly use the bypass capacitors, they must be placed close to the power-supply pins and laid out with short loops to minimize inductance. TI recommends adding as many high-frequency (for example, 0.1-µF) bypass capacitors as there are supply pins in the package. TI recommends, but does not require, inserting a ferrite bead between the board power supply and the chip power supply that isolates the high-frequency switching noises generated by the clock driver; these beads prevent the switching noise from leaking into the board supply. Choose an appropriate ferrite bead with low DC-resistance because it is imperative to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper operation. 図 10-6. Power Supply Decoupling ## 10.4 Layout # 10.4.1 Layout Guidelines For reliability and performance reasons, the die temperature must be limited to a maximum of 135°C. The device package has an exposed pad that provides the primary heat removal path to the printed-circuit board (PCB). To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must be incorporated into the PCB within the footprint of the package. The thermal pad must be soldered down to ensure adequate heat conduction to of the package. 10-7 shows a recommended land and via pattern for the 16-pin package (LMK1D2102). ### 10.4.2 Layout Example 図 10-7. Recommended PCB Layout # 11 Device and Documentation Support ## 11.1 Documentation Support #### 11.1.1 Related Documentation For related documentation see the following: - Low-Additive Jitter, Four LVDS Outputs Clock Buffer Evaluation Board (SCAU043) - Power Consumption of LVPECL and LVDS (SLYT127) - Semiconductor and IC Package Thermal Metrics (SPRA953) - Using Thermal Calculation Tools for Analog Components (SLUA556) # 11.2 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、ti.com のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。 ### 11.3 サポート・リソース TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。 TI の使用条件を参照してください。 #### 11.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ### 11.5 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 11.6 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 17-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | LMK1D2102RGTR | Active | Production | VQFN (RGT) 16 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LD2102 | | LMK1D2102RGTR.B | Active | Production | VQFN (RGT) 16 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LD2102 | | LMK1D2102RGTRG4 | Active | Production | VQFN (RGT) 16 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LD2102 | | LMK1D2102RGTRG4.B | Active | Production | VQFN (RGT) 16 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LD2102 | | LMK1D2102RGTT | Active | Production | VQFN (RGT) 16 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LD2102 | | LMK1D2102RGTT.B | Active | Production | VQFN (RGT) 16 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LD2102 | | LMK1D2104RHDR | Active | Production | VQFN (RHD) 28 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LMK1D
2104 | | LMK1D2104RHDR.B | Active | Production | VQFN (RHD) 28 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LMK1D
2104 | | LMK1D2104RHDRG4 | Active | Production | VQFN (RHD) 28 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LMK1D
2104 | | LMK1D2104RHDRG4.B | Active | Production | VQFN (RHD) 28 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LMK1D
2104 | | LMK1D2104RHDT | Active | Production | VQFN (RHD) 28 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LMK1D
2104 | | LMK1D2104RHDT.B | Active | Production | VQFN (RHD) 28 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 105 | LMK1D
2104 | ⁽¹⁾ Status: For more details on status, see our product life cycle. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. # **PACKAGE OPTION ADDENDUM** www.ti.com 17-Jun-2025 (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 18-Jun-2025 ### TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | LMK1D2102RGTR | VQFN | RGT | 16 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | | LMK1D2102RGTRG4 | VQFN | RGT | 16 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | | LMK1D2102RGTT | VQFN | RGT | 16 | 250 | 180.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | | LMK1D2104RHDR | VQFN | RHD | 28 | 3000 | 330.0 | 12.4 | 5.3 | 5.3 | 1.1 | 8.0 | 12.0 | Q2 | | LMK1D2104RHDRG4 | VQFN | RHD | 28 | 3000 | 330.0 | 12.4 | 5.3 | 5.3 | 1.1 | 8.0 | 12.0 | Q2 | | LMK1D2104RHDT | VQFN | RHD | 28 | 250 | 180.0 | 12.4 | 5.3 | 5.3 | 1.1 | 8.0 | 12.0 | Q2 | www.ti.com 18-Jun-2025 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | LMK1D2102RGTR | VQFN | RGT | 16 | 3000 | 367.0 | 367.0 | 35.0 | | LMK1D2102RGTRG4 | VQFN | RGT | 16 | 3000 | 367.0 | 367.0 | 35.0 | | LMK1D2102RGTT | VQFN | RGT | 16 | 250 | 210.0 | 185.0 | 35.0 | | LMK1D2104RHDR | VQFN | RHD | 28 | 3000 | 367.0 | 367.0 | 35.0 | | LMK1D2104RHDRG4 | VQFN | RHD | 28 | 3000 | 367.0 | 367.0 | 35.0 | | LMK1D2104RHDT | VQFN | RHD | 28 | 250 | 210.0 | 185.0 | 35.0 | Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 5 x 5 mm, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. NOTES: (continued) ^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated