LM7480-Q1 ## LM7480-Q1 負荷ダンプ保護を備えた理想ダイオード・コントローラ ## 1 特長 - 車載アプリケーション用に AEC-Q100 認定済み - デバイス温度グレード 1: -40℃~+125℃の動作時周囲温度範囲 - デバイス HBM ESD 分類レベル 2 - デバイス CDM ESD 分類レベル C4B - 3V~65V の入力範囲 - 最低 -65V までの逆入力保護 - 共通ドレインと共通ソースの構成で外付けのバッ ク・ツー・バック N チャネル MOSFET を駆動 - アノードからカソードへ 10.5mV の順方向電圧降 下レギュレーションを行う理想ダイオード動作 (LM74800-Q1) - 低いスレッショルド (-4.5mV) と高速応答 (0.5µs) の逆電流検出 - 20mA のピーク・ゲート (DGATE) ターンオン電流 - 2.6A のピーク DGATE ターンオフ電流 - 調整可能な過電圧保護機能 - 低シャットダウン電流 (EN/UVLO = LOW): 2.87μA - 適切な TVS ダイオードにより車載用 ISO7637 過 渡要件に適合 - 省スペースの 12 ピン WSON パッケージで供給 #### 2 アプリケーション - ・ 車載用バッテリ保護 - ADAS ドメイン・コントローラ - カメラ ECU - ヘッド・ユニット - USB ハブ - 冗長化電源用のアクティブ OR スイッチ出力を備えた理想ダイオード #### 3 概要 LM7480x-Q1 理想ダイオード・コントローラは外付け のバック・ツー・バック N チャネル MOSFET を駆動 および制御し、電力パスの ON/OFF 制御と過電圧保護 により理想ダイオード整流器をエミュレートします。 入力電源電圧範囲が 3V~65V と広いため、12V およ び 24V 車載用バッテリ駆動 ECU を保護および制御で きます。このデバイスは最低 -65V の負の電源電圧に 耐え、この電圧から負荷を保護できます。内蔵の理想 ダイオード・コントローラ (DGATE) は第 1 の MOSFET を駆動し、逆電流保護および出力電圧保持用 のショットキー・ダイオードを置き換えます。電力パ スの第2の MOSFET により、HGATE 制御を使用した 負荷の切断 (ON/OFF 制御) と過電圧保護が可能です。 このデバイスには可変の過電圧カットオフ保護機能が あります。LM7480-Q1 には LM74800-Q1 LM74801-Q1 という 2 つのバリエーションがありま す。LM74800-Q1 は、リニア・レギュレーションおよ びコンパレータ方式を使用した逆電流ブロックを採用 しています。一方、LM74801-Q1 はコンパレータに基 づく方式をサポートしています。共通ドレイン構成の パワー MOSFET の場合、もう 1 つの理想ダイオード を使用した OR 接続設計のために中間点を利用でき ます。LM7480x-Q1 は 65V の最大電圧定格を持って います。本デバイスと外付け MOSFET を共通ソー ス・トポロジに構成することで、24V バッテリ・シス テムの 200V 非抑制負荷ダンプのような大きな過電圧 過渡からも負荷を保護できます。 #### 製品情報 | 型番 | パッケージ ⁽¹⁾ (1ペ
ージ) | 本体サイズ (公称) | | | |---------------------------|---------------------------------|---------------|--|--| | LM74800-Q1、
LM74801-Q1 | WSON (12) | 3.0mm × 3.0mm | | | 利用可能なすべてのパッケージについては、このデータシー トの末尾にある注文情報を参照してください。 200V 負荷ダンプ保護機能を備えた理想ダイオード ## **Table of Contents** | 1 特長 | 1 | 10.1 Application Information | 19 | |--------------------------------------|----------------|---|--------------------| | 2 アプリケーション | | 10.2 Typical 12-V Reverse Battery Protection | | | 3 概要 | | Application | 19 | | 4 Revision History | | 10.3 200-V Unsuppressed Load Dump Protection | | | 5 Device Comparison Table | <mark>3</mark> | Application | 29 | | 6 Pin Configuration and Functions | 3 | 10.4 Do's and Don'ts | | | 7 Specifications | 4 | 11 Power Supply Recommendations | 33 | | 7.1 Absolute Maximum Ratings | 4 | 11.1 Transient Protection | | | 7.2 ESD Ratings | | 11.2 TVS Selection for 12-V Battery Systems | 34 | | 7.3 Recommended Operating Conditions | 4 | 11.3 TVS Selection for 24-V Battery Systems | 34 | | 7.4 Thermal Information | 5 | 12 Layout | 35 | | 7.5 Electrical Characteristics | 5 | 12.1 Layout Guidelines | 35 | | 7.6 Switching Characteristics | <mark>6</mark> | 12.2 Layout Example | 35 | | 7.7 Typical Characteristics | 8 | 13 Device and Documentation Support | 37 | | 8 Parameter Measurement Information | | 13.1 Receiving Notification of Documentation Update | es <mark>37</mark> | | 9 Detailed Description | 12 | 13.2 Support Resources | 37 | | 9.1 Overview | 12 | 13.3 Trademarks | 37 | | 9.2 Functional Block Diagram | | 13.4 Electrostatic Discharge Caution | 37 | | 9.3 Feature Description | 13 | 13.5 Glossary | | | 9.4 Device Functional Modes | 16 | 14 Mechanical, Packaging, and Orderable | | | 9.5 Application Examples | 17 | Information | 37 | | 10 Applications and Implementation | 19 | | | | | | | | 4 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています | 質科番号木尾の央子は改訂を表しています。ての改訂複歴は央語版に準しています。 | | |--|------| | Changes from Revision B (October 2020) to Revision C (December 2020) | Page | | • LM74800-Q1 のステータスを「プレビュー」から「アクティブ」に変更 | 1 | | Updated Functional Block Diagram | 13 | | Changed "V _{AC(REV)} " to "V _(AC_REV) " | | | Changes VAC(REV) to V(AC_REV) | | | Changes from Revision A (May 2020) to Revision B (October 2020) | Page | | | Page | | DATE | REVISION | NOTES | |------------|-------------|----------------------------------| | May 2020 | A is APL/AI | 2nd Advance Information release. | | April 2020 | * | Advance Information release. | Product Folder Links: LM7480-Q1 ## **5 Device Comparison Table** | | LM74800-Q1 | LM74801-Q1 | |--------------------------|--|------------------------------------| | Reverse Current Blocking | $V_{(A-C)}$ linear regulation and comparator | V _(A-C) comparator only | ## **6 Pin Configuration and Functions** 図 6-1. WSON 12-Pin DRR Transparent Top View 表 6-1. Pin Functions | | PIN | | | |---------|---------------|------|--| | NAME. | LM7480x-Q1 | TYPE | DESCRIPTION | | NAME | DRR-12 (WSON) | | | | DGATE | 1 | 0 | Diode Controller Gate Drive Output. Connect to the GATE of the external MOSFET. | | Α | 2 | ı | Anode of the ideal diode. Connect to the source of the external MOSFET. | | VSNS | 3 | ı | Voltage sensing input. | | SW | 4 | ı | Voltage sensing disconnect switch terminal. VSNS and SW are internally connected through a switch. Use SW as the top connection of the battery sensing or OV resistor ladder network. When EN/UVLO is pulled low, the switch is OFF disconnecting the resistor ladder from the battery line thereby cutting off the leakage current. If the internal disconnect switch between VSNS and SW is not used then short them together and connect to VS pin. | | OV | 5 | ı | Adjustable overvoltage threshold input. Connect a resistor ladder across SW to OV terminal. When the voltage at OVP exceeds the overvoltage cut-off threshold then the HGATE is pulled low turning OFF the HSFET. HGATE turns ON when the sense voltage goes below the OVP falling threshold. | | EN/UVLO | 6 | I | EN/UVLO Input. Connect to VS pin for always ON operation. Can be driven externally from a micro controller I/O. Pulling it low below V _(ENF) makes the device enter into low Iq shutdown mode. For UVLO, connect an external resistor ladder to EN/UVLO to GND. | | GND | 7 | G | Connect to the system ground plane. | | HGATE | 8 | 0 | GATE driver output for the HSFET. Connect to the GATE of the external FET. | | OUT | 9 | I | Connect to the output rail (external MOSFET source). | | VS | 10 | I | Input power supply to the IC. Connect VS to middle point of the common drain back to back MOSFET configuration. Connect a 100nF capacitor across VS and GND pins. | | CAP | 11 | 0 | Charge pump output. Connect a 100-nF capacitor across CAP and VS pins. | | С | 12 | I | Cathode of the ideal diode. Connect to the drain of the external MOSFET. | | RTN | Thermal Pad | _ | Leave exposed pad floating. Do Not connect to GND plane. | ## 7 Specifications ## 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |---------------------------------------|---|------------------|------------------|------| | | A to GND | -65 | 70 | | | | VS to GND | -1 | 70 | | | | VSNS, SW, EN/UVLO, C, OV, OUT to GND, V(A) > 0 V | -0.3 | 70 | V | | Input Ding | VSNS, SW, EN/UVLO, C, OV, OUT to GND, $V_{(A)} \le 0 \text{ V}$ | V _(A) | $(70 + V_{(A)})$ | | | Input Pins | RTN to GND | -65 | 0.3 | | | | I _{VSNS} , I _{SW} | -1 | 10 | mA | | | I _{EN/UVLO} , I _{OV,} V _(A) > 0 V | -1 | | mA | | | $I_{EN/UVLO}$, I_{OV} , $V_{(A)} \le 0 \text{ V}$ | Internally I | imited | | | Output Pins | OUT to VS | -65 | 16.5 | V | | | CAP to VS | -0.3 | 15 | | | Output Pins | CAP to A | -0.3 | 85 | | | Output Pilis | DGATE to A | -0.3 | 15 | V | | | HGATE to OUT | -0.3 | 15 | | | Output to Input Pins | C to A | -5 | 85 | | | Operating junction tempera | Operating junction temperature, T _j ⁽²⁾ | | 150 | °C | | Storage temperature, T _{stg} | | -40 | 150 |) | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 7.2 ESD Ratings | | | | | VALUE | UNIT | |--|---------------------------------|---------------------------------|-------------------------|-------|------| | | | Human body model (HBM), per AEC | Q100-002 ⁽¹⁾ | ±2000 | | | V _(ESD) Electrostatic discharge | Charged device model (CDM), per | Corner pins (DGATE, OV, and C) | ±750 | V | | | | | AEC Q100-011 | Other pins | ±500 | | ⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. ## 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | NOM MAX | UNIT | |---|-------------------------------|-----|---------|------| | | A to GND | -60 | 65 | V | | Input Pins | VS to GND | 0 | 65 | V | | | EN/UVLO to GND | 0 | 65 | V | | External
Capacitanc
e | CAP to A, VS to GND, A to GND | 0.1 | | μF | | External
MOSFET
max VGS
rating | DGATE to A and HGATE to OUT | 15 | | V | Product Folder Links: LM7480-Q1 ⁽²⁾ High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C. ## 7.3 Recommended Operating Conditions (continued) over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | NOM MAX | UNIT | |----|---|-----|---------|------| | Tj | Operating Junction temperature ⁽²⁾ | -40 | 150 | °C |
⁽¹⁾ Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test conditions, see Electrical Characteristics. #### 7.4 Thermal Information | | | LM7480x-Q1 | | |------------------------|--|------------|------| | | THERMAL METRIC ⁽¹⁾ | DRR (WSON) | UNIT | | | | 12 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 60.9 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 48 | °C/W | | R _{θJB} | Junction-to-board thermal resistance | 31.5 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 1.2 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 31.4 | °C/W | | R ₀ JC(bot) | Junction-to-case (bottom) thermal resistance | 7.1 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. #### 7.5 Electrical Characteristics T_J = -40° C to +125°C; typical values at T_J = 25°C, $V_{(A)}$ = $V_{(OUT)}$ = $V_{(VS)}$ = $V_{(VSNS)}$ = 12 V, $V_{(AC)}$ = 20 mV, $V_{(VCAP)}$ = 0.1 μ F, $V_{(EN/UVLO)}$ = 2 V, over operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|---|---|-------|-------|-------|------| | SUPPLY VOLT | rage . | | | | | | | V _(VS) | Operating input voltage | | 3 | | 65 | V | | V _(VS_PORR) | VS POR threshold, rising | | 2.4 | 2.6 | 2.85 | V | | V _(VS_PORF) | VS POR threshold, falling | | 1.9 | 2.1 | 2.3 | V | | I _(SHDN) | SHDN current, I _(GND) | V _(EN/UVLO) = 0 V | | 2.87 | 5 | μΑ | | 1 | Total System Ouisseent surrent I | V _(EN/UVLO) = 2 V | | 397 | | μA | | $I_{(Q)}$ | Total System Quiescent current, I _(GND) | V _(A) = V _(VS) = 24 V, V _(EN/UVLO) = 2 V | | 413 | 495 | μΑ | | | I _(A) leakage current during Reverse Polarity, | | | 19 | 112 | μΑ | | I _(REV) | I _(OUT) leakage current during Reverse
Polarity | $0 \text{ V} \leq \text{V}_{(A)} \leq -65 \text{ V}$ | | | 1 | μA | | ENABLE AND | UNDERVOLTAGE LOCKOUT (EN/UVLO) | NPUT | | | ' | | | V _(UVLOR) | EN/UVLO threshold voltage, rising | | 1.195 | 1.231 | 1.267 | V | | V _(UVLOF) | EN/UVLO threshold voltage, falling | | 1.091 | 1.132 | 1.159 | V | | V _(ENF) | Enable threshold voltage for low Iq shutdown, falling | | 0.3 | 0.67 | 0.93 | V | | V _(EN_Hys) | Enable Hysteresis | | 37 | 72 | 95 | mV | | I _(EN/UVLO) | | 0 V ≤ V _(EN/UVLO) ≤ 65 V | | 52 | 200 | nA | | OVERVOLTAG | GE PROTECTION AND BATTERY SENSING | (VSNS, SW, OV) INPUT | | | | | | R _(SW) | Battery sensing disconnect switch resistance | 3 V ≤ V _(SNS) ≤ 65 V | 10 | 19.5 | 46 | Ω | | V _(OVR) | Overvoltage threshold input, rising | | 1.195 | 1.231 | 1.267 | V | | V _(OVF) | Overvoltage threshold input, falling | | 1.091 | 1.13 | 1.159 | V | ⁽²⁾ High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C. ## 7.5 Electrical Characteristics (continued) T_J = -40°C to +125°C; typical values at T_J = 25°C, $V_{(A)}$ = $V_{(OUT)}$ = $V_{(VS)}$ = $V_{(VSNS)}$ = 12 V, $V_{(AC)}$ = 20 mV, $V_{(VCAP)}$ = 0.1 μ F, $V_{(EN/UVLO)}$ = 2 V, over operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--|---|---|------|------|------|------| | I _(OV) | OV Input leakage current | 0 V ≤ V _(OV) ≤ 65 V | | 53 | 200 | nA | | CHARGE PUMP | (CAP) | | | | | | | I _(CAP) | Charge Pump source current (Charge pump on) | $V_{(CAP)} - V_{(A)} = 7 \text{ V}, 6 \text{ V} \le V_{(S)} \le 65 \text{ V}$ | 1.3 | 2.7 | | mA | | VCAP – VS | Charge Pump Turn ON voltage | | 11 | 12.2 | 13.2 | V | | VCAP – VS | Charge Pump Turnoff voltage | | 11.9 | 13.2 | 14.1 | V | | V | Charge Pump UVLO voltage threshold, rising | | 5.4 | 6.6 | 7.9 | V | | V _(CAP UVLO) | Charge Pump UVLO voltage threshold, falling | | 4.4 | 5.5 | 6.6 | V | | IDEAL DIODE (A | A, C, DGATE) | | | | | | | V _(A_PORR) | V _(A) POR threshold, rising | | 2.2 | 2.35 | 2.6 | V | | V _(A_PORF) | V _(A) POR threshold, falling | | 2 | 2.2 | 2.4 | V | | V _(AC_REG) | Regulated Forward V _(A) –V _(C)
Threshold | For LM74800-Q1 Only | 6.8 | 10.5 | 13.4 | mV | | V _(AC_REV) | V _(A) –V _(C) Threshold for Fast Reverse
Current Blocking | | -6.4 | -4.5 | -1.3 | mV | | V _(AC_FWD) | V _(A) –V _(C) Threshold for Reverse to Forward transition | | 150 | 177 | 200 | mV | | | Cata Drive Voltage | 3 V < V _(S) < 5 V | 7 | | | V | | $V_{(DGATE)} - V_{(A)}$ | Gate Drive Voltage | 5 V < V _(S) < 65 V | 10 | 11.5 | 13 | V | | | Peak Gate Source current | V _(A) – V _(C) = 100 mV, V _(DGATE) – V _(A) = | | 20 | | mA | | I _(DGATE) | Peak Gate Sink current | $V_{(A)} - V_{(C)} = -12 \text{ mV}, V_{(DGATE)} - V_{(A)} = 11 \text{ V}$ | | 2670 | | mA | | | Regulation sink current | V _(A) – V _(C) = 0 V, V _(DGATE) – V _(A) = 11
V, LM74800-Q1 Only | 8.4 | 12.3 | | μΑ | | | Cathoda lagicaga Current | V _(A) = -14 V, V _(C) = 12 V, LM74801-
Q1 | 0.1 | 2.84 | 15 | μA | | I _(C) Cathode leakage Current | | V _(A) = -14 V, V _(C) = 12 V, LM74800-
Q1 | 4 | 8.77 | 32 | μA | | HIGH SIDE CON | ITROLLER (HGATE, OUT, SNS, SW, OV) | | | , | l | | | | Cata Driva Valtaga | 3 V < V _(S) < 5 V | 7 | | | V | | $V_{(HGATE)} - V_{(OUT)}$ | Gate Drive Voltage | 5 V < V _(S) < 65 V | 10 | 11.1 | 14.5 | V | | 1 | Source Current | | 39 | 55 | 75 | μΑ | | (HGATE) | Sink Current | $V_{(OV)} > V_{(OVR)}$ | 168 | 260 | | mA | ## 7.6 Switching Characteristics T_J = -40°C to +125°C; typical values at T_J = 25°C, $V_{(A)}$ = $V_{(C)}$ = $V_{(OUT)}$ = $V_{(VS)}$ = 12V, $V_{(AC)}$ = 20 mV, $V_{(VCAP)}$ = 0.1 μ F, $V_{(EN/UVLO)}$ = 2 V, over operating free-air temperature range (unless otherwise noted) | (EN/OVED) 2 v, ever operating need an temperature range (amost existivine need) | | | | | | | | | | | |---|--|--|-----|-----|-------|------|--|--|--|--| | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | | | | t _{DGATE_OFF(dly)} | DGATE Turnoff Delay during reverse voltage detection | $V_{(A)} - V_{(C)} = +30 \text{ mV to } -100 \text{ mV}$
to $V_{(DGATE-A)} < 1 \text{ V, } C_{(DGATE-A)} = 10 \text{ nF}$ | | 0.5 | 0.875 | μs | | | | | | t _{DGATE_ON(dly)} | DGATE Turnon Delay during forward voltage detection | $V_{(A)} - V_{(C)} = -20$ mV to +700
mV to $V_{(DGATE-A)} > 5$ V, $C_{(DGATE-A)} = 10$
nF | | 2.8 | 3.8 | μs | | | | | | t _{EN(dly)_DGATE} | DGATE Turnon Delay during EN/
UVLO | EN/UVLO \uparrow to V _(DGATE-A) > 5V,
C _(DGATE-A) = 10 nF | 98 | 175 | 270 | μs | | | | | Product Folder Links: LM7480-Q1 $T_{J} = -40^{\circ}\text{C to } + 125^{\circ}\text{C}; \text{ typical values at } T_{J} = 25^{\circ}\text{C}, \ V_{(A)} = V_{(C)} = V_{(OUT)} = V_{(VS)} = 12\text{V}, \ V_{(AC)} = 20 \text{ mV}, \ C_{(VCAP)} = 0.1 \ \mu\text{F}, \ V_{(EN/UVLO)} = 2 \text{ V}, \text{ over operating free-air temperature range (unless otherwise noted)}$ **PARAMETER TEST CONDITIONS** TYP UNIT MIN MAX DGATE Turnoff Deglitch during EN/ EN/UVLO ↓ to DGATE ↓ $t_{\text{EN_OFF(deg)_DGATE}}$ 8.1 μs UVLO HGATE Turnoff Deglitch during EN/ EN/UVLO ↓ to HGATE ↓ 3 4.6 6 μs $t_{EN_OFF(deg)_HGATE}$ UVLO OV ↑ to HGATE ↓, For LM74800-Q1 3.98 5.4 μs $t_{\mathsf{OVP_OFF}(\mathsf{deg})_\mathsf{HGAT}}$ HGATE Turnoff Deglitch during OV OV ↑ to HGATE ↓, For LM74801-Q1 3.2 4.7 μs only $t_{\text{OVP_ON(deg)_HGATE}} \left| \text{HGATE Turnon Deglitch during OV} \right|$ OV ↓ to HGATE ↑ 2.95 μs ## 7.7 Typical Characteristics ## 7.7 Typical Characteristics (continued) ## 7.7 Typical Characteristics (continued) ## **8 Parameter Measurement Information** 図 8-1. Timing Waveforms ## 9 Detailed Description #### 9.1 Overview The LM7480x-Q1 ideal diode controller drives and controls external back to back N-Channel MOSFETs to emulate an ideal diode rectifier with power path ON/OFF control, inrush current limiting and overvoltage protection. The wide input supply of 3 V to 65 V allows protection and control of 12-V and 24-V automotive battery powered ECUs. The device can withstand and protect the loads from negative supply voltages down to – 65 V. An integrated ideal diode controller (DGATE) drives the first MOSFET to replace a Schottky diode for reverse input protection and output voltage holdup. A strong charge pump with 20-mA peak GATE source current driver stage and short turn ON and turn OFF delay times ensures fast transient response ensuring robust performance during automotive testing such as ISO16750 or LV124 where an ECU is subjected to AC superimpose input signals. With a second MOSFET in the power path the device allows load disconnect (ON/OFF control) and overvoltage protection using HGATE control. The device features an adjustable overvoltage cut-off protection feature using a programming resistor across SW and OVP terminal. The LM7480x-Q1 controller can drive the external MOSFETs in Common Drain and Common Source configurations. With Common Drain configuration of the power MOSFETs, the mid-point can be utilized for ORing designs using an another ideal diode. The LM7480x-Q1 has a maximum voltage rating of 65 V. The loads can be protected from extended overvoltage transients like 200-V Unsuppressed Load Dumps in 24-V Battery systems by configuring the device with external
MOSFETs in Common Source topology. The LM74800-Q1 controls the DGATE of the MOSFET to regulate the forward voltage drop at 10.5 mV. The linear regulation scheme in these devices enables graceful control of the GATE voltage and turns off of the MOSFET during a reverse current event and ensures zero DC reverse current flow. The LM74801-Q1 features a comparator based scheme to turn ON/OFF the MOSFET GATE. The device features enable control. With the enable pin low during the standby mode, both the external MOSFETs and controller is off and draws a very low 2.87 µA of current. The high voltage rating of LM7480x-Q1 helps to simplify the system designs for automotive ISO7637 protection. The LM74800-Q1 is also suitable for ORing applications Product Folder Links: 1 M7480-Q1 #### 9.2 Functional Block Diagram #### 9.3 Feature Description #### 9.3.1 Charge Pump The charge pump supplies the voltage necessary to drive the external N-channel MOSFET. An external charge pump capacitor is placed between CAP and VS pins to provide energy to turn on the external MOSFET. In order for the charge pump to supply current to the external capacitor, the EN/UVLO pin voltage must be above the specified input high threshold, $V_{(ENR)}$. When enabled the charge pump sources a charging current of 2.7-mA typical. If EN/UVLO pin is pulled low, then the charge pump remains disabled. To ensure that the external MOSFET can be driven above its specified threshold voltage, the CAP to VS voltage must be above the undervoltage lockout threshold, typically 6.6 V, before the internal gate driver is enabled. Use \pm 1 to calculate the initial gate driver enable delay. $$T_{\left(DRV_EN\right)} = 175\mu s + C_{\left(CAP\right)} x \frac{V_{\left(CAP_UVLOR\right)}}{2.7mA} \tag{1}$$ #### where - C_(CAP) is the charge pump capacitance connected across VS and CAP pins - V_(CAP UVLOR) = 6.6 V (typical) To remove any chatter on the gate drive approximately 1 V of hysteresis is added to the VCAP undervoltage lockout. The charge pump remains enabled until the CAP to VS voltage reaches 13.2 V, typically, at which point the charge pump is disabled decreasing the current draw on the VS pin. The charge pump remains disabled until the CAP to VS voltage is below to 12.2 V typically at which point the charge pump is enabled. The voltage between CAP and VS continue to charge and discharge between 12.2 V and 13.2 V as shown in \boxtimes 9-1. By enabling and disabling the charge pump, the operating quiescent current of the LM7480x-Q1 is reduced. When the charge pump is disabled it sinks 15 μ A. 図 9-1. Charge Pump Operation ## 9.3.2 Dual Gate Control (DGATE, HGATE) The LM7480x-Q1 feature two separate gate control and driver outputs i.e DGATE and HGATE to drive back to back N-channel MOSFETs. #### 9.3.2.1 Reverse Battery Protection (A, C, DGATE) A, C, DGATE comprises of Ideal Diode stage. Connect the Source of the external MOSFET to A, Drain to C and Gate to DGATE. The LM7480x-Q1 has integrated reverse input protection down to –65 V. Before the DGATE driver is enabled, following conditions must be achieved: - The EN/UVLO pin voltage must be greater than the specified input high voltage. - The CAP to VS voltage must be greater than the undervoltage lockout voltage. - Voltage at A pin must be greater than VA POR Rising threshold. - Voltage at Vs pin must be greater than Vs POR Rising thershold. If the above conditions are not achieved, then the DGATE pin is internally connected to the A pin, assuring that the external MOSFET is disabled. In LM74800-Q1 the voltage drop across the MOSFET is continuously monitored between the A and C pins, and the DGATE to A voltage is adjusted as needed to regulate the forward voltage drop at 10.5 mV (typ). This closed loop regulation scheme enables graceful turn off of the MOSFET during a reverse current event and ensures zero DC reverse current flow. This scheme ensures robust performance during slow input voltage ramp down tests. Along with the linear regulation amplifier scheme, the LM74800-Q1 also integrates a fast reverse voltage comparator. When the voltage drop across A and C reaches $V_{(AC_REV)}$ threshold then the DGATE goes low within 0.5-µs (typ). This fast reverse voltage comparator scheme ensures robust performance during fast input voltage ramp down tests such as input micro-shorts. The external MOSFET is turned ON back when the voltage across A and C hits $V_{(AC_FWD)}$ threshold within 2.8 µs (typ). In LM74801-Q1, reverse current blocking is by fast reverse voltage comparator only. When the voltage drop across A and C reaches $V_{(AC_REV)}$ threshold then the DGATE goes low within 0.5 μ s (typ). This fast reverse voltage comparator scheme ensures robust performance during fast input voltage ramp down tests such as input micro-shorts. The external MOSFET is turned ON back when the voltage across A and C hits V_(AC FWD) threshold within 2.8 µs (typ). For Ideal Diode only designs, connect LM7480x-Q1 as shown in ■ 9-2 図 9-2. Configuring LM7480x-Q1 for Ideal Diode Only | 表 9-1. [| 表 9-1. Performance with 'C' Terminal Left Floating | | | | | | | |----------|--|--------------------|--|--|--|--|--| | | LM74800-Q1 | LM74 | | | | | | | | DOATE water will alto A MOOFFT Of toward | DOATE to A follows | | | | | | | Feature | LM74800-Q1 | LM74801-Q1 | | | |-----------------------------|---|---|--|--| | DGATE drive | DGATE gets pulled to A. MOSFET Q1 turned OFF. | DGATE to A fully enhanced. MOSFET Q1 turned ON. | | | | Reverse Polarity Protection | Yes. | Yes. | | | | Reverse Current Blocking | Yes. | No. Allows bi-directional current flow. | | | ## 9.3.2.2 Load Disconnect Switch Control (HGATE, OUT) HGATE and OUT comprises of Load disconnect switch control stage. Connect the Source of the external MOSFET to OUT and Gate to HGATE. Before the HGATE driver is enabled, following conditions must be achieved: - The EN/UVLO pin voltage must be greater than the specified input high voltage. - The CAP to VS voltage must be greater than the undervoltage lockout voltage. - Voltage at Vs pin must be greater than Vs POR Rising thershold. If the above conditions are not achieved, then the HGATE pin is internally connected to the OUT pin, assuring that the external MOSFET is disabled. For Inrush Current limiting, connect C_{dVdT} capacitor and R_1 as shown in \boxtimes 9-3. 図 9-3. Inrush Current Limiting The C_{dVdT} capacitor is required for slowing down the HGATE voltage ramp during power up for inrush current limiting. Use ± 2 to calculate C_{dVdT} capacitance value . $$C_{dVdT} = \frac{I_{HGATE_DRV}}{I_{INRUSH}} x C_{OUT}$$ (2) where I_{HATE_DRV} is 55 μA (typ), I_{INRUSH} is the inrush current and C_{OUT} is the output load capacitance. An extra resistor, R_1 , in series with the C_{dVdT} capacitor improves the turn off time. #### 9.3.3 Overvoltage Protection and Battery Voltage Sensing (VSNS, SW, OV) Connect a resistor ladder as shown in 29-4 for overvoltage threshold programming. 図 9-4. Programming Overvoltage Threshold and Battery Sensing A disconnect switch is integrated between VSNS and SW pins. This switch is turned OFF when EN/UVLO pin is pulled low. This helps to reduce the leakage current through the resistor divider network during system shutdown state (IGN_OFF state). #### 9.3.4 Low Iq Shutdown and Under Voltage Lockout (EN/UVLO) The enable pin allows for the gate driver to be either enabled or disabled by an external signal. If the EN/UVLO pin voltage is greater than the rising threshold, the gate driver and charge pump operates as described in Charge Pump section. If EN/UVLO pin voltage is less than the input low threshold, $V_{(ENF)}$, the charge pump and both the gate drivers (DGATE and HGATE) are disabled placing the LM7480x-Q1 in shutdown mode. If $V_{(ENF)} < V_{(EN/UVLO)} < V_{(UVLOF)}$ then only HGATE is disabled disconnecting the load from the supply, DGATE remains ON. The EN/UVLO pin can withstand a maximum voltage of 65 V. For always ON operation connect EN/UVLO pin to VS. #### 9.4 Device Functional Modes #### **Shutdown Mode** The LM7480x-Q1 enters shutdown mode when the EN/UVLO pin voltage is below the specified input low threshold $V_{(ENF)}$. Both the gate drivers and the charge pump are disabled in shutdown mode. During shutdown mode the LM7480x-Q1 enters low IQ operation with a total input quiescent consumption of 2.87 μ A (typ). When the LM7480x-Q1 is in shutdown mode, forward current flow to always ON loads connected to the common drain point of the back to back MOSFETs is not interrupted but is conducted through the MOSFET's body diode. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated #### 9.5 Application Examples # 9.5.1 Redundant Supply OR-ing with Inrush Current Limiting, Overvoltage Protection and ON/OFF Control 図 9-5. Redundant Supply OR-ing with Overvoltage Protection and ON/OFF Control ☑ 9-5 shows the implementation of Dual OR-ing with Inrush Current Limiting, overvoltage Protection and power path ON/OFF control. The input side SMBJ36CA TVS across the ideal diodes is required for ISO7637 Pulse 1 transient suppression to limit the input voltage within the device max voltage rating of –65V. R1 and R2 are the programming resistors for over voltage protection (OVP) threshold. When the voltage at OV pin exceeds OV cut-off reference threshold then the HGATE driver turns OFF the FET Q3, disconnecting the power path and protecting the downstream load. HGATE goes high once the OVP pin voltage goes below the OVP falling hysteresis threshold. Use 0.1-µF to 1-µF capacitor across VS to CAP pins of the LM7480x-Q1. This is the charge pump capacitor and acts as the supply for both the DGATE and HGATE driver stages. The DGATE driver of the LM7480x-Q1 is equipped with 20-mA peak source current and 2.6-A peak sink
current capability resulting in fast and efficient transient responses during the ISO16750 or LV124 short interruptions as well as AC superimpose testing. Pull EN low during the sleep/standby mode. With EN low, both the DGATE and HGATE drivers are pulled low turning OFF both the power FETs. VOUT1 gets disconnected from the input supply rail reducing the system I_Q . VOUT2 is gets power through the body diode of the MOSFET Q2 and this supply can be utilized for always ON loads. The LM7480x-Q1 draws a 2.87- μ A (typ) current during this mode. #### 9.5.2 Ideal Diode with Unsuppressed Load Dump Protection 図 9-6. Ideal Diode with 200-V Unsupressed Load Dump Protection ## 10 Applications and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. #### 10.1 Application Information LM7480x-Q1 controls two N-channel power MOSFETs with DGATE used to control diode MOSFET to emulate an ideal diode and HGATE controlling second MOSFET for power path cut-off when disabled or during an overvoltage protection. HGATE controlled MOSFET can be used to clamp the output during overvoltage or load dump conditions. LM7480x-Q1 can be placed into low quiescent current mode using EN/UVLO, where both DGATE and HGATE are turned OFF. The device has a separate supply input pin (Vs). The charge pump is derived from this supply input. With the separate supply input provision and separate GATE control architecture, the LM7480x-Q1 device offers flexibility in system design architectures and enables circuit design with various power path control topologies like common drain, common source, ORing and Power MUXing. With these various topologies, the system designers can design the front-end power system to meet various system design requirements. For more information, see the Six System Architectures With Robust Reverse Battery Protection Using an Ideal Diode Controller Application Report. ## 10.2 Typical 12-V Reverse Battery Protection Application A typical application circuit of LM74800-Q1 configured in **common-drain topology** to provide reverse battery protection with overvoltage protection is shown in 2 10-1. 図 10-1. Typical Application Circuit - 12-V Reverse Battery Protection and Overvoltage Protection #### 10.2.1 Design Requirements for 12-V Battery Protection The system design requirements are listed in 表 10-1. 表 10-1. Design Parameters - 12-V Reverse Battery Protection and Overvoltage Protection | DESIGN PARAMETER | EXAMPLE VALUE | |-------------------------------|--| | Operating Input Voltage Range | 12-V battery, 12-V nominal with 3.2-V Cold Crank and 35-V Load Dump | | Output Power | 50 W | | Output Current Range | 4-A Nominal, 5-A maximum | | Input Capacitance | 0.1-μF minimum | Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback #### 表 10-1. Design Parameters - 12-V Reverse Battery Protection and Overvoltage Protection (continued) | DESIGN PARAMETER | EXAMPLE VALUE | |--|---| | Output Capacitance | 0.1-μF minimum, (optional 220 μF for E-10 functional class A performance) | | Overvoltage Cut-off | 37.0 V, output cut-off > 37.0 V | | AC Super Imposed Test | 2-V Peak-Peak 30 KHz, extendable to 6-V Peak-Peak 30 KHz | | Automotive Transient Immunity Compliance | ISO 7637-2, ISO 16750-2 and LV124 | | Battery Monitor Ratio | 8:1 | #### 10.2.2 Automotive Reverse Battery Protection The LM7480x-Q1 feature two separate gate control and driver outputs i.e DGATE and HGATE to drive back to back N-channel MOSFETs. This enables LM7480x-Q1 to provide comprehensive immunity with robust system protection during various automotive transient tests as per ISO 7637-2 and ISO 16750-2 standard as well as other automotive OEM standards. For more information, see the *Automotive EMC-compliant reverse-battery protection with ideal-diode controllers* article. LM7480x-Q1 gate drive output DGATE controls MOSFET Q1 to provide reverse battery protection and true reverse current blocking functionality. HGATE controls MOSFET Q2 to turn off the power path during input overvoltage condition. Resistor network R1, R2 and R3 connected to OV and SW can be configured for overvoltage protection and also for battery monitoring under normal operating conditions as well as reverse battery conditions. Bi-directional TVS D1 clamps the automotive transient input voltages on the 12-V battery, both positive and negative transients, to voltage levels safe for MOSFET Q1 and LM7480x-Q1. Fast reverse current blocking response and quick reverse recovery enables LM7480x-Q1 to turn ON/OFF MOSFET Q1 during AC super imposed input specified by ISO 16750-2 and LV124 E-06 and provide active rectification of the AC input superimposed on DC battery voltage. Fast reverse current blocking response of LM7480x-Q1 helps to turn off MOSFET Q1 during negative transients inputs such as -150-V 2-ms Pulse 1 specified in ISO 7637-2 and input micro short conditions such as LV124 E-10 test. #### 10.2.2.1 Input Transient Protection: ISO 7637-2 Pulse 1 ISO 7637-2 Pulse 1 specifies negative transient immunity of electronic modules connected in parallel with an inductive load when the battery is disconnected. A typical pulse 1 specified in ISO 7637-2 starts with battery disconnection where supply voltage collapses to 0 V followed by -150 V 2 ms applied with a source impedance of 10 Ω at a slew rate of 1 μ s on the supply input. LM7480x-Q1 blocks reverse current and prevents the output voltage from swinging negative, protecting the rest of the electronic circuits from damage due to negative transient voltage. MOSFET Q1 is quickly turned off within 0.5 μ s by fast reverse comparator of LM7480x-Q1. A single bi-directional TVS is required at the input to clamp the negative transient pulse within the operating maximum voltage across cathode to anode of 85 V and does not violate the MOSFET Q1 drain-source breakdown voltage rating. ISO 7637-2 Pulse 1 performance of LM74800-Q1 is shown in ☑ 10-2. Product Folder Links: LM7480-Q1 図 10-2. ISO 7637-2 Pulse 1 #### 10.2.2.2 AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06 Alternators are used to power the automotive electrical system and charge the battery during normal runtime of the vehicle. Rectified alternator output contains residual AC ripple voltage superimposed on the DC battery voltage due to various reasons which includes engine speed variation, regulator duty cycle with field switching ON/OFF and electrical load variations. On a 12-V battery supply, alternator output voltage is regulated by a voltage regulator between 14.5 V to 12.5 V by controlling the field current of alternator's rotor. All electronic modules are tested for proper operation with superimposed AC ripple on the DC battery voltage. AC super imposed test specified in ISO 16750-2 and LV124 E-06 requires AC ripple of 2-V Peak-Peak on a 13.5-V DC battery voltage, swept from 15 Hz to 30 KHz. LM7480x-Q1 rectifies the AC superimposed voltage by turning the MOSFET Q1 OFF quickly to cut-off reverse current and turning the MOSFET Q1 ON quickly during forward conduction. Active rectification of 2-V peak-peak 5-KHz AC input by LM7480x-Q1 is shown in 2 10-3. Fast turn off and quick turn ON of the MOSFET reduces power dissipation in the MOSFET Q1 and active rectification reduces power dissipation in the output hold-up capacitor's ESR by half. Active rectification of 2-V peak-peak 30-KHz AC input is shown in 2 10-4. #### 10.2.2.3 Input Micro-Short Protection: LV124 E-10 E-10 test specified in LV124 standard checks for immunity of electronic modules to short interruptions in power supply input due to contact issues or relay bounce. During this test (case 2), micro-short is applied on the input for a duration as low as 10 μ s to several ms. For a functional pass status A, electronic modules are required to run uninterrupted during the E-10 test (case 2) with 100- μ s duration. Dual-Gate drive architecture of LM7480x-Q1 - DGATE and HGATE - enables to achieve a functional pass status A with optimum hold up capacitance on the output when compared to a single gate drive controller. When input micro-short is applied for 100 μ s, LM7480x-Q1 quickly turns off MOSFET Q1 by shorting DGATE to ANODE (source of MOSFET) within 0.5 μ s to prevent the output from discharging and the HGATE remains ON keeping MOSFET Q2 ON, enabling fast recovery after the input short is removed. Performance of LM74800-Q1 during E10 input power supply interruption test case 2 is shown in 🗵 10-5. After the input short is removed, input voltage recovers and MOSFET Q1 is turned back ON within 130 μs. Note that dual-gate drive topology allows MOSFET Q2 to remain ON during the test and helps in restoring the input power faster. Output voltage remains unperturbed during the entire duration, achieving functional status A. ## 10.2.3 Detailed Design Procedure #### 10.2.3.1 Design Considerations 表 10-1 summarizes the design parameters that must be known for designing an automotive reverse battery protection circuit with overvoltage cut-off. During power up, inrush current through MOSFET Q2 needs to be limited so that the MOSFET operates well within its SOA. Maximum load current, maximum ambient temperature and thermal properties of the PCB determine the R_{DSON} of the MOSFET Q2 and maximum operating voltage determines the voltage rating of the MOSFET Q2. Selection of MOSFET Q2 is determined mainly by the maximum operating load current, maximum ambient temperature, maximum frequency of AC super imposed
voltage ripple and ISO 7637-2 pulse 1 requirements. overvoltage threshold is decided based on the rating of downstream DC/DC converter or other components after the reverse battery protection circuit. A single bidirectional TVS or two back-back uni-directional TVS are required to clamp input transients to a safe operating level for the MOSFETs Q1, Q2 and LM7480x-Q1. #### 10.2.3.2 Charge Pump Capacitance VCAP Minimum required capacitance for charge pump VCAP is based on input capacitance of the MOSFET Q1, $C_{ISS(MOSFET\ Q1)}$ and input capacitance of Q2 $C_{ISS(MOSFET)}$. Charge Pump VCAP: Minimum 0.1 μ F is required; recommended value of VCAP (μ F) \geq 10 x ($C_{ISS(MOSFET_Q1)} + C_{ISS(MOSFET_Q2)}$) (μ F) #### 10.2.3.3 Input and Output Capacitance A minimum input capacitance C_{IN} of 0.1 μ F and output capacitance C_{OUT} of 0.1 μ F is recommended. #### 10.2.3.4 Hold-Up Capacitance Usually bulk capacitors are placed on the output due to various reasons such as uninterrupted operation during power interruption or micro-short at the input, hold-up requirements for doing a memory dump before turning of the module and filtering requirements as well. This design considers minimum bulk capacitors requirements for meeting functional status "A" during LV124 E10 test case 2 100-µs input interruption. To achieve functional pass status A, acceptable voltage droop in the output of LM7480x-Q1 is based on the UVLO settings of downstream DC-DC converters. For this design, 2.5-V drop in output voltage for 100 µs is considered and the minimum hold-up capacitance required is calculated by $$C_{HOLD_UP_MIN} = \frac{I_{LOAD_MAX}}{dV_{OUT}} x 100 \,\mu s \tag{3}$$ Minimum hold-up capacitance required for 2.5-V drop in 100 μs is 200 μF. Note that the typical application circuit shows the hold-up capacitor as optional because not all designs require hold-up capacitance. #### 10.2.3.5 Overvoltage Protection and Battery Monitor Resistors R_1 , R_2 and R_3 connected in series are used to program the overvoltage threshold and battery monitor ratio. The resistor values required for setting the overvoltage threshold V_{OV} to 37.0 V and battery monitor ratio V_{BATT_MON} : V_{BATT} to 1:8 are calculated by solving Equation 3 and Equation 4. $$V_{OVR} = \frac{R_3}{R_1 + R_2 + R_3} x V_{OV} \tag{4}$$ $$V_{BAT_MON} = \frac{R_2 + R_3}{R_1 + R_2 + R_3} x V_{BATT}$$ (5) For minimizing the input current drawn from the battery through resistors R_1 , R_2 and R_3 , it recommended to use higher value of resistance. Using high value resistors will add error in the calculations because the current through the resistors at higher value will become comparable to the leakage current into the OV pin. Maximum leakage current into the OV pin is 1 μ A and choosing (R₁ + R₂ + R₃) < 120 k Ω ensures current through resistors is 100 times greater than leakage through OV pin. Based on the device electrical characteristics, V_{OVR} is 1.23 V and battery monitor ratio (V_{BATT_MON} / V_{BATT}) is designed for a ratio of 1/8. To limit ($R_1 + R_2 + R_3$) < 120 k Ω , select ($R_1 + R_2$) = 100 k Ω . Solving Equation 3 gives R_3 = 3.45 k Ω . Solving Equation 4 for R2 using ($R_1 + R_2$) = 100 k Ω and R_3 = 3.45 k Ω , gives R_2 = 9.48 k Ω and R_1 = 90.52 k Ω . Standard 1% resistor values closest to the calculated resistor values are R1 = 90.9 k Ω , R2 = 9.09 k Ω and R3 = 3.48 k Ω . #### 10.2.4 MOSFET Selection: Blocking MOSFET Q1 For selecting the blocking MOSFET Q1, important electrical parameters are the maximum continuous drain current I_D , the maximum drain-to-source voltage $V_{DS(MAX)}$, the maximum drain-to-source voltage $V_{GS(MAX)}$, the maximum source current through body diode and the drain-to-source ON resistance R_{DSON} . The maximum continuous drain current, ID, rating must exceed the maximum continuous load current. The maximum drain-to-source voltage, $V_{DS(MAX)}$, must be high enough to withstand the highest differential voltage seen in the application. This would include all the automotive transient events and any anticipated fault conditions. It is recommended to use MOSFETs with V_{DS} voltage rating of 60 V along with a single bidirectional TVS or a V_{DS} rating 40-V maximum rating along with two unidirectional TVS connected back-back at the input. The maximum V_{GS} LM7480x-Q1 can drive is 14 V, so a MOSFET with 15-V minimum V_{GS} rating should be selected. If a MOSFET with < 15-V V_{GS} rating is selected, a zener diode can be used to clamp V_{GS} to safe level, but this would result in increased I_{O} current. To reduce the MOSFET conduction losses, lowest possible $R_{DS(ON)}$ is preferred, but selecting a MOSFET based on low $R_{DS(ON)}$ may not be beneficial always. Higher $R_{DS(ON)}$ will provide increased voltage information to LM7480x-Q1's reverse comparator at a lower reverse current. Reverse current detection is better with increased $R_{DS(ON)}$. Choosing a MOSFET with < 50-mV forward voltage drop at maximum current is a good starting point. For active rectification of AC super imposed ripple on the battery supply voltage, gate-source charge Q_{GS} of Q1 must be selected to meet the required AC ripple frequency. Maximum gate-source charge Q_{GS} (at 4.5-V V_{GS}) for active rectification every cycle is $$Q_{GS_MAX} = \frac{1.3mA}{F_{AC_RIPPLE}}$$ (6) Where 1.3 mA is minimum charge pump current at 7-V V_{DGATE} - V_A , F_{AC_RIPPLE} is frequency of the AC ripple superimposed on the battery and Q_{GS_MAX} is the Q_{GS} value specified in manufacturer datasheet at 6-V V_{GS} . For active rectification at F_{AC_RIPPLE} = 30 KHz, Q_{GS_MAX} = 43 nC. Based on the design requirements, BUK7Y4R8-60E MOSFET is selected and its ratings are: - 60-V V_{DS(MAX)} and ±20-V V_{GS(MAX)} - $R_{DS(ON)}\,5.0\text{-m}\Omega$ typical at 5-V V_{GS} and 2.9-m Ω rated at 10-V V_{GS} - MOSFET Q_{GS} 17.4 nC Thermal resistance of the MOSFET should be considered against the expected maximum power dissipation in the MOSFET to ensure that the junction temperature (T_J) is well controlled. #### 10.2.5 MOSFET Selection: Hot-Swap MOSFET Q2 The V_{DS} rating of the MOSFET Q2 should be sufficient to handle the maximum system voltage along with the input transient voltage. For this 12-V design, transient overvoltage events are during suppressed load dump 35 V 400 ms and ISO 7637-2 pulse 2 A 50 V for 50 μ s. Further, ISO 7637-2 Pulse 3B is a very fast repetitive pulse of 100 V 100 ns that is usually absorbed by the input and output ceramic capacitors and the maximum voltage on the 12-V battery can be limited to < 40 V the minimum recommended input capacitance of 0.1 μ F. The 50-V SO 7637-2 Pulse 2 A can also be absorbed by input and output capacitors and its amplitude could be reduced to 40-V peak by placing sufficient amount of capacitance at input and output. However for this 12-V design, maximum system voltage is 50 V and a 60-V V_{DS} rated MOSFET is selected. The VGS rating of the MOSFET Q2 should be higher than that maximum HGATE-OUT voltage 15 V. Inrush current through the MOSFET during input hot-plug into the 12-V battery is determined by output capacitance. External capacitor on HGATE, CDVDT is used to limit the inrush current during input hot-plug or startup. The value of inrush current determined by 式 2 need to be selected to ensure that the MOSFET Q2 is operating well within its safe operating area (SOA). To limit inrush current to 250 mA, value of C_{DVDT} is 10.43 nF, closest standard value of 10.0 nF is chosen. Duration of inrush current is calculated by $$dT_{INRUSH} = \frac{12}{I_{INRUSH}} x C_{OUT} \tag{7}$$ Calculated inrush current duration is 2.36 ms with 250-mA inrush current. MOSFET BUK7Y4R8-60E having 60-V V_{DS} and ±20-V V_{GS} rating is selected for Q2. Power dissipation during inrush is well within the MOSFET's safe operating area (SOA). #### 10.2.6 TVS Selection A 600-W SMBJ TVS such as SMBJ33CA is recommended for input transient clamping and protection. For detailed explanation on TVS selection for 12-V battery systems, refer to TVS Selection for 12-V Battery Systems. ### 10.2.7 Application Curves 図 10-8. Startup 12 V showing Charge Pump VCAP ## 10.3 200-V Unsuppressed Load Dump Protection Application Independent gate drive topology of LM74800-Q1 enables to configure the LM74800-Q1 in to provide unsuppressed load dump or surge protection along with reverse battery protection. LM74800-Q1 configured in **common-source topology** to provide 200-V unsuppressed load dump protection with reverse battery protection is 200-V. 図 10-25. Typical Application Circuit - 200-V Unsuppressed Load Dump Protection with Reverse Battery Protection ## 10.3.1 Design Requirements for 200-V Unsuppressed Load Dump Protection 表 10-2. Design Parameters - 24-V Unsuppressed Load Dump Protection | 20 To 21 Docigii i didinotoro 24 i Onouppi occou 2000 Damp i rotoction | | | | | | | | |--|--|--|--|--|--|--|--| | DESIGN PARAMETER | EXAMPLE VALUE | | | | | | | | Operating Input Voltage Range | 24-V battery, 6 V during cold crank 200-V unsuppressed load lump | | | | | | | | Output Voltage | 6 V during cold crank and 37.0 V during load dump | | | | | | | | Output Power | 25 W | | | | | | | | Output Current Range | 2-A Nominal, 2.5-A Peak | | | | | | | | Input Capacitance | 0.1-μF minimum | | | | | | | | Output Capacitance | 0.1-μF minimum, 220-μF typical hold-up capacitance | | | | | | | | Overvoltage Cut-Off Threshold | 37.0 V | | | | | | | | Overvoltage Clamp | Output clamped between 34.5 V and 37.5 V | | | | | | | | Automotive Transient Immunity Compliance | ISO 7637-2 and
ISO 16750-2 including 200-V unsuppressed load dump Pulse 5 A and –600-V 50-Ω ISO-7637 Pulse 1 | | | | | | | #### 10.3.2 Design Procedure Load dump transients occurs on loads connected to the alternator when a discharged battery is disconnected from alternator while it is still generating charging current. Load dump amplitude and duration depends on alternator speed and field current into the rotor. The pulse shape and parameter are specified in ISO 7637-2 5A where a 200-V pulse lasts maximum 350 ms on 24-V battery system. Circuit topology and MOSFET ratings are important when designing a 200-V unsuppressed load dump protection circuit using LM74800-Q1. Dual gate drive enables LM74800-Q1 to be configured in common source topology in \boxtimes 10-25 where MOSFET Q1 is used to turn off or clamp output voltage to acceptable safe level and protect the MOSFET Q2 and LM74800-Q1 from 200 V. Note that only the V_S pin is exposed to 200 V through a 10-k Ω resistor. A 60-V rated zener diode is used to clamp and protect the V_S pin. Rest of the circuit is not exposed to higher voltage as the MOSFET Q1 can either be turned off completely or output voltage clamped to safe level. MOSFET Q1 selection, input TVS selection and MOSFET Q2 selection for ISO 7637-2 and ISO 16750-2 compliance are discussed in this section. ## 10.3.2.1 Charge Pump Capacitance VCAP Minimum required capacitance for charge pump VCAP is based on input capacitance of the MOSFET Q1, $C_{ISS(MOSFET\ Q1)}$ and input capacitance of Q2 $C_{ISS(MOSFET\ Q2)}$. Charge Pump VCAP: Minimum 0.1 μ F is required; recommended value of VCAP (μ F) \geq 10 x ($C_{ISS(MOSFET_Q1)} + C_{ISS(MOSFET_Q2)}$) (μ F) #### 10.3.2.2 Input and output capacitance A minimum input capacitance C_{IN} of 0.1 μF and output capacitance C_{OUT} of 0.1 μF is recommended. #### 10.3.2.3 V_S Capacitance, Resistor and Zener Clamp Minimum of 1- μ F C_{VS} capacitance is required. During 200-V load dump, resistor R₁ and zener diode D₁ are used to protect VS pin from exceeding the maximum ratings by clamping V_{VS} to 60 V. Choosing R₁ = 10 k Ω , the peak power dissipated in zener diode D1 = 60 V * (200 V - 60 V) / 10 k Ω = 0.840 W of peak power dissipation. SMA package diode such as BZG03B62-M can handle 840mW peak power dissipation. Peak power dissipated in R1 = (200 V - 60 V)² / 10 k Ω = 1.96 W. One 10-k Ω resistor in 1210 package with 0.5-W DC power rating and 200-V rating can withstand 200 Load Dump for 350 ms. #### 10.3.2.4 Overvoltage Protection and Output Clamp Resistors R_2 and R_3 connected in series is used to program the overvoltage threshold. Connecting R2 to VBATT provides overvoltage cut-off and switching the connection to VOUT provides overvoltage clamp. The resistor values required for setting the overvoltage threshold V_{OV} to 37.0 V is calculated by solving Equation 7. $$V_{OVR} = \frac{R_3}{R_2 + R_3} x V_{OV}$$ (8) For minimizing the input current drawn from the battery through resistors R_2 and R_3 , it recommended to use higher value of resistance. Using high value resistors will add error in the calculations because the current through the resistors at higher value will become comparable to the leakage current into the OV pin. Maximum leakage current into the OV pin is 1 μ A and choosing ($R_2 + R_3$) < 120 k Ω ensures current through resistors is 100 times greater than leakage through OV pin. Based on the device electrical characteristics, V_{OVR} is 1.233V V. To limit $(R_2 + R_3) < 120 \text{ k}\Omega$, select $(R_2) = 100 \text{ k}\Omega$. Solving Equation 7 gives $R_3 = 3.45 \text{ k}\Omega$. Closest standard 1% resistor values are R2 = 100 k Ω and R3 = 3.48 k Ω . #### 10.3.2.5 MOSFET Q1 Selection The V_{DS} rating of the MOSFET Q1 should be minimum 200 V for a output cutoff design where output can reach 0 V while the load dump transient is present and should be a minimum of 164.5 V when output is clamped to 37 V (±1.5 V). The V_{GS} rating is based on HGATE-OUT maximum voltage of 15 V. A 20-V V_{GS} rated MOSFET is recommended. Power dissipation on MOSFET Q1 on a design where output is clamped is critical and SOA characteristics of the MOSFET need to be considered with sufficient design margin for reliable operation. #### 10.3.2.6 Input TVS Selection Two TVS diodes D3 and D4 are required at the input. The breakdown voltage of TVS in the positive side should be higher than the maximum system voltage 200 V. On the negative side clamping, diode D4 is used to clamp ISO 7637-2 pulse 1 and its selection is similar to procedure in TVS selection for 24-V Battery Systems. SMBJ150A for D3 and SMBJ33CA for D4 are recommended. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated #### 10.3.2.7 MOSFET Q2 Selection Design requirements for selecting Q2 is similar to MOSFET Q1 selection in 表 10-1 and hence the procedure for selecting MOSFET Q2 is same as outlined in *MOSFET Selection: Blocking MOSFET Q1*. MOSFET BUK7Y4R8-60E is selected based on the design requirements. #### 10.3.3 Application Curves ## 10.4 Do's and Don'ts Leave exposed pad (RTN) of the IC floating. Do not connect it to the GND plane. Connecting RTN to GND disables the Reverse Polarity protection feature. ## 11 Power Supply Recommendations #### 11.1 Transient Protection When the external MOSFETs turn OFF during the conditions such as overvoltage cut-off, reverse current blocking, EN/UVLO causing an interruption of the current flow, the input line inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the input or output of the device. These transients can exceed the *Absolute Maximum Ratings* of the device if steps are not taken to address the issue. Typical methods for addressing transients include: - · Minimizing lead length and inductance into and out of the device. - · Using large PCB GND plane. - Use of a Schottky diode across the output and GND to absorb negative spikes. - A low value ceramic capacitor (C_(IN) to approximately 0.1 μF) to absorb the energy and dampen the transients The approximate value of input capacitance can be estimated with Equation 8. $$V_{\text{spike}(\text{Absolute})} = V_{\text{(IN)}} + I_{\text{(Load)}} \times \sqrt{\frac{L_{\text{(IN)}}}{C_{\text{(IN)}}}}$$ (9) #### where - V_(IN) is the nominal supply voltage - I_(LOAD) is the load current - L_(IN) equals the effective inductance seen looking into the source - C_(IN) is the capacitance present at the input Some applications may require additional Transient Voltage Suppressor (TVS) to prevent transients from exceeding the *Absolute Maximum Ratings* of the device. These transients can occur during EMC testing such as automotive ISO7637 pulses. The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is shown in ☑ 11-1 ^{*} Optional components needed for suppression of transients 図 11-1. Circuit Implementation with Optional Protection Components for LM7480x-Q1 #### 11.2 TVS Selection for 12-V Battery Systems In selecting the TVS, important specifications are breakdown voltage and clamping voltage. The breakdown voltage of the TVS+ should be higher than 24-V jump start voltage and 35-V suppressed load dump voltage and less than the maximum ratings of LM7480x-Q1 (65 V). The breakdown voltage of TVS- should be beyond than maximum reverse battery voltage –16 V, so that the TVS- is not damaged due to long time exposure to reverse connected battery. Clamping voltage is the voltage the TVS diode clamps in high current pulse situations and this voltage is much higher than the breakdown voltage. In the case of an ISO 7637-2 pulse 1, the input voltage goes up to -150 V with a generator impedance of 10 Ω . This translates to 15 A flowing through the TVS - and the voltage across the TVS would be close to its clamping voltage. The next criterion is that the absolute maximum rating of cathode to anode voltage of the LM7480x-Q1 (85 V) and the maximum V_{DS} rating MOSFET are not exceeded. In the design example, 60-V rated MOSFET is chosen and maximum limit on the cathode to anode voltage is 60 V. During ISO 7637-2 pulse 1, the anode of LM7480x-Q1 is pulled down by the ISO pulse, clamped by TVS- and the MOSFET Q1 is turned off quickly to prevent reverse current from discharging the bulk output capacitors. When the MOSFET turns off, the cathode to anode voltage seen is equal to (TVS Clamping voltage + Output capacitor voltage). If the maximum voltage on output capacitor is 16 V (maximum battery voltage), then the clamping voltage of the TVS- should not exceed, (60 V - 16) V = -44 V. The SMBJ33CA TVS diode can be used for 12-V battery protection application. The breakdown voltage of 36.7 V meets the jump start, load dump requirements on the positive side and 16-V reverse battery connection on the negative side. During ISO 7637-2 pulse 1 test, the SMBJ33CA clamps at -44 V with 12 A of peak surge current as shown in and it meets the clamping voltage ≤ 44 V. SMBJ series of TVS' are rated up to 600-W peak pulse power levels and are sufficient for ISO 7637-2 pulses. #### 11.3 TVS Selection for 24-V Battery Systems For 24-V battery protection application, the TVS and MOSFET in 🗵 10-1 needs to be changed to suit 24-V battery requirements. The breakdown voltage of the TVS+ should be higher than 48-V jump start voltage, less than the absolute maximum ratings of anode and enable pin of LM7480x-Q1 (70 V) and should withstand 65-V suppressed load dump. The breakdown voltage of TVS- should be lower than maximum reverse battery voltage –32 V, so that the TVS- is not damaged due to long time exposure to reverse connected battery. During ISO 7637-2 pulse 1, the input voltage goes up to -600 V
with a generator impedance of 50 Ω . This translates to 12-A flowing through the TVS-. The clamping voltage of the TVS- cannot be same as that of 12-V battery protection circuit. Because during the ISO 7637-2 pulse, the Anode to Cathode voltage seen is equal to (-TVS Clamping voltage + Output capacitor voltage). For 24-V battery application, the maximum battery voltage is 32 V, then the clamping voltage of the TVS- should not exceed, 85 V - 32 V = 53 V. Single bi-directional TVS cannot be used for 24-V battery protection because breakdown voltage for TVS+ \geq 65V, maximum clamping voltage is \leq 53 V and the clamping voltage cannot be less than the breakdown voltage. Two un-directional TVS connected back-back needs to be used at the input. For positive side TVS+, SMBJ58A with the breakdown voltage of 64.4 V (minimum), 67.8 (typical) is recommended. For the negative side TVS-, SMBJ28A with breakdown voltage close to 32 V (to withstand maximum reverse battery voltage -32 V) and maximum clamping voltage of 42.1 V is recommended. For 24-V battery protection, a 75-V rated MOSFET is recommended to be used along with SMBJ28A and SMBJ58A connected back-back at the input. Product Folder Links: LM7480-Q1 ## 12 Layout ## 12.1 Layout Guidelines - For the ideal diode stage, connect A, DGATE and C pins of LM7480x-Q1 close to the MOSFET's SOURCE, GATE and DRAIN pins. - For the load disconnect stage, connect HGATE and OUT pins of LM7480x-Q1 close to the MOSFET's GATE and SOURCE pins. - The high current path of for this solution is through the MOSFET, therefore it is important to use thick and short traces for source and drain of the MOSFET to minimize resistive losses. - The DGATE pin of the LM7480x-Q1 must be connected to the MOSFET GATE with short trace. - Place transient suppression components close to LM7480x-Q1. - Place the decopuling capacitor, C_{VS} close to VS pin and chip GND. - The charge pump capacitor across CAP and VS pins must be kept away from the MOSFET to lower the thermal effects on the capacitance value. - Obtaining acceptable performance with alternate layout schemes is possible, however the layout shown in the *Layout Example* is intended as a guideline and to produce good results. ## 12.2 Layout Example 図 12-1. PCB Layout Example for Common Drain Configuration 図 12-2. PCB Layout Example for Common Source Configuration ## 13 Device and Documentation Support ## 13.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ## 13.2 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 13.3 Trademarks TI E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 13.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 13.5 Glossary **TI Glossary** This glossary lists and explains terms, acronyms, and definitions. ## 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ | MSL rating/ | Op temp (°C) | Part marking | |-----------------------|--------|---------------|-----------------|-----------------------|------|-------------------|---------------------|--------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow | | (6) | | | | | | | | (4) | (5) | | | | LM74800QDRRRQ1 | Active | Production | WSON (DRR) 12 | 3000 LARGE T&R | Yes | NIPDAU NIPDAUAG | Level-2-260C-1 YEAR | -40 to 125 | L74800 | | LM74800QDRRRQ1.A | Active | Production | WSON (DRR) 12 | 3000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | L74800 | | LM74801QDRRRQ1 | Active | Production | WSON (DRR) 12 | 3000 LARGE T&R | Yes | NIPDAU NIPDAUAG | Level-2-260C-1 YEAR | -40 to 125 | L74801 | | LM74801QDRRRQ1.A | Active | Production | WSON (DRR) 12 | 3000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | L74801 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF LM7480-Q1: ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. ## **PACKAGE OPTION ADDENDUM** www.ti.com 23-May-2025 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product ## **PACKAGE MATERIALS INFORMATION** www.ti.com 12-Nov-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---|----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | ı | LM74800QDRRRQ1 | WSON | DRR | 12 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | | ĺ | LM74801QDRRRQ1 | WSON | DRR | 12 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | www.ti.com 12-Nov-2023 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | LM74800QDRRRQ1 | WSON | DRR | 12 | 3000 | 367.0 | 367.0 | 35.0 | | LM74801QDRRRQ1 | WSON | DRR | 12 | 3000 | 367.0 | 367.0 | 35.0 | 3 x 3, 0.5 mm pitch PLASTIC SMALL OUTLINE - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. INSTRUMENTS www.ti.com PLASTIC QUAD FLAT PACK- NO LEAD #### NOTES: - All
linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. PLASTIC QUAD FLAT PACK- NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLAT PACK- NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated