

TEXAS INSTRUMENTS

LM5171-Q1

JAJSNC5A - APRIL 2023 - REVISED JULY 2024

LM5171-Q1 デュアル チャネル双方向コントローラ

1 特長

- 車載アプリケーション用に AEC-Q100 認定済み:
 - デバイス温度グレード 1:-40℃~+125℃の動作時 周囲温度範囲
 - デバイス HBM ESD 分類レベル 2
 - デバイス CDM ESD 分類レベル C4B
- 機能安全 対応
- 最大定格は HV ポート 85V、LV ポート 80V
- 双方向電流レギュレーションの標準精度 1%
- チャネル電流監視の標準精度 1%
- 監視および診断用の I²C インターフェイス
- 3.5V 1%の基準電圧を内蔵
- 5V 10mA バイアス電源を内蔵
- ピーク 5A のハーフ ブリッジ ゲートドライバ
- プログラム可能またはアダプティブ デッドタイム制御
- 最大 1MHz まで、発振器の周波数をプログラム可能 で、オプションとして外部クロックへの同期も可能
- 独立したチャネル イネーブル制御入力
- 電流と電圧の両方のループ制御機能を内蔵
- ピーク電流制限をサイクル単位でプログラム可能
- 過熱シャットダウン
- HV および LV ポートの過電圧保護
- 動的に選択可能なダイオード エミュレーション モード と強制 PWM 動作モード
- ソフトスタートタイマをプログラム可能
- マルチフェーズと独立チャネルの両方の動作をサポー
- 緊急シャットダウン ラッチをサポート

2 アプリケーション

- 車載用デュアル バッテリシステム
- バッテリテストシステム (BTS)
- スーパー キャパシタまたはバッテリ バックアップ電力コ ンバータ
- スタッカブルな大電力降圧または昇圧アプリケーション

3 概要

LM5171-Q1 コントローラは、高電圧かつ高精度なデュア ル チャネル双方向コンバータを実現するための基本的な 構成要素を備えています。 例として、 デュアル バッテリシ ステムがあります。LM5171-Q1 はマルチフェーズの並列 動作をサポートし、各位相で平衡な電流共有を行います。 また、LM5171-Q1 は独立チャネルの双方向動作もサポ ートしているため、多相の昇降圧、または独立した昇降圧 として動作するスタンドアロンのコントローラとして多用途に 使用できます。

デュアル チャネルの差動電流センシング アンプと、専用 のチャネル電流モニタにより、標準値で1%の精度が得ら れます。 堅牢な 5A ハーフブリッジ ゲート ドライバは、 並 列 MOSFET を駆動して、チャネルあたりの電力をより大き くできます。コントローラは、ダイオード エミュレーション モ ード (DEM) または強制 PWM (FPWM) モードで動作す るように動的にプログラムできます。多用途な保護機能とし て、サイクル単位の電流制限、HV とLV の両方のポート における過電圧保護、および過熱保護と緊急シャットダウ ンラッチがあります。

製品情報(1)

部品番号		パッケージ	本体サイズ (公称)		
	LM5171-Q1	TQFP (48)	7.00mm × 7.00mm		

利用可能なすべてのパッケージについては、データシートの末尾 (1)にある注文情報を参照してください。

Horizontal: 50µs/div ANAAAA 1.01V V ⁴W:20 1MΩ ⁸W:500M 50Ω ⁴W(1.0G

方向変更によるインダクタ電流のトラッキング

このリソースの元の言語は英語です。翻訳は概要を便宜的に提供するもので、自動化ツール (機械翻訳)を使用していることがあり、TI では翻訳の正確性および妥当 M 性につきましては一切保証いたしません。実際の設計などの前には、ti.com で必ず最新の英語版をご参照くださいますようお願いいたします。

Table of Contents

1 特長	1
2 アプリケーション	1
3 概要	1
4 Pin Configuration and Functions	3
5 Specifications	5
5.1 Absolute Maximum Ratings	5
5.2 ESD Ratings	<mark>5</mark>
5.3 Recommended Operating Conditions	<mark>6</mark>
5.4 Thermal Information	<mark>6</mark>
5.5 Electrical Characteristics	<mark>6</mark>
5.6 Timing Requirements	11
5.7 Typical Characteristics	13
6 Detailed Description	14
6.1 Overview	14
6.2 Functional Block Diagram	16
6.3 Feature Description	17
6.4 Programming	42

6.5 Registers	44
7 Application and Implementation	53
7.1 Application Information	<mark>53</mark>
7.2 Typical Application	65
7.3 Power Supply Recommendations	83
7.4 Layout	84
8 Device and Documentation Support	88
8.1 Device Support	<mark>88</mark>
8.2ドキュメントの更新通知を受け取る方法	<mark>88</mark>
8.3 サポート・リソース	<mark>88</mark>
8.4 Trademarks	88
8.5 静電気放電に関する注意事項	88
8.6 用語集	
9 Revision History	
10 Mechanical. Packaging, and Orderable	
Information	89

4 Pin Configuration and Functions

図 4-1. PHP Package 48-Pin TQFP Top View

表 4-1. Pin Functions

PIN			DESCRIPTION
NO.	NAME		DESCRIPTION
1	VREF	Р	Output of the built-in 3.5V +/- 1% reference voltage.
2	FBLV	I	The inverting input pin for the buck error voltage amplifier.
3	ERRLV	0	Output pin of the buck error voltage amplifier.
4	IMON2	0	CH-2 current monitor pin.
5	CSA2	I	CH 2 differential ourrant cance inpute
6 CSB2		I	
7	ISET2	I	CH-2 analog current programming pin.
8	COMP2	0	Output of the CH-2 transconductance (gm) error amplifier and the inverting input of the CH-2 PWM comparator.
9	SS/DEM2	I	The soft-start programming pin for CH-2 controller. It also sets CH-2 in either DEM or FPWM.
10	EN2	I	CH-2 enable pin.
11	DIR2	I	CH-2 direction command input.
12	VDD	Р	Output of 5V internal LDO.
13	HV2	I	The input pin connecting to the HV-Port line voltage for CH-2 controller.
14	HB2	I	CH-2 high-side gate driver bootstrap supply input.
15	HO2	0	CH-2 high-side gate driver output.
16	SW2	Р	CH-2 switch node.
17	LO2	0	CH-2 low-side gate driver output.

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信 3

表 4-1. Pin Functions (続き)

PIN			DESCRIPTION	
NO.	NAME	1.0(.,	DESCRIPTION	
18	PGND	G	Power ground connection pin.	
19	VCC	Р	VCC bias supply pin.	
20	LO1	0	CH-1 low-side gate driver output.	
21	SW1	Р	CH-1 switch node.	
22	HO1	0	CH-1 high-side gate driver output.	
23	HB1	I	CH-1 high-side gate driver bootstrap supply input.	
24	HV1	I	The input pin connecting to the HV-Port line voltage for CH-1 controller.	
25	LDODRV	0	Control pin for the external VCC LDO MOSFET.	
26	DIR1	I	CH-1 direction command input.	
27	EN1	I	CH-1 enable pin.	
28	SS/DEM1	1	The soft-start programming pin for CH-1 controller. It also sets CH-1 in either DEM or FPWM.	
29	COMP1	0	Output of the CH-1 trans-conductance (gm) error amplifier and the inverting input of the CH-1 PWM comparator.	
30	ISET1	I	CH-1 analog current programming pin.	
31	CSB1	I	CH 1 differential ourrent conce inpute	
32	CSA1	I		
33	IMON1	0	CH-1 current monitor pin.	
34	ERRHV	0	Output pin of the boost error voltage amplifier.	
35	FBHV	I	The inverting input pin for the boost error voltage amplifier.	
36	OVP	I	Input of the built-in over-voltage comparator.	
37	SDA	I/O	Data of I ² C interface.	
38	SCL	I	Clock of I ² C interface.	
39	SYNCO	0	Clock synchronization output pin.	
40	SYNCI	I	Clock synchronization input pin.	
41	OPT	I	Multiphase configuration pin.	
42	OSC	I	The internal oscillator frequency programming pin.	
43	AGND	G	Analog ground reference.	
44	CFG	I	The I ² C address setting and current monitor mode selection pin.	
45	UVLO	I	The UVLO pin, which also serves as the Controller-Peripheral enable pin.	
46	DT/SD	I	Dead-time programming and emergent latched shutdown pin.	
47	IPK	I	Peak current limit programming pin.	
48	VSET	I	Voltage error amplifier reference input pin.	
—	EP	_	Exposed pad of the package.	

(1) Note: G = Ground, I = Input, O = Output, P = Power

5 Specifications

5.1 Absolute Maximum Ratings

Over the recommended operating junction temperature range⁽¹⁾

		MIN	MAX	UNIT
	HV1, HV2 to AGND	-0.3	85	
	HV1, HV2 to AGND (50ns Transient)		90	
	SW1, SW2 to PGND	-5	85	
	SW1, SW2 to PGND (20ns Transient)		90	
	SW1, SW2 to PGND (50ns Transient)	-16		
	HB1 to SW1, HB2 to SW2	-0.3	14	
	HO1 to SW1, HO2 to SW2	-0.3	HB+0.3	
	HO1 to SW1, HO2 to SW2 (20ns Transient)	-2		
	LO1, LO2 to PGND	-0.3	VCC+0.3	
Input	LO1, LO2 to PGND (20ns Transient)	-2		V
mput	CSA1, CSB1,CSA2,CSB2 to PGND	-0.3	80	v
	CSA1 to CSB1, CSA2 to CSB2	-0.3	0.3	
	CFG, DIR1, DIR2, EN1, EN2, FBHV, FBLV, IPK, ISET1, ISET2, OPT, OVP, SCL, SDA, SYNCI, UVLO, VDD, VSET to AGND	-0.3	5.5	
	COMP1, COMP2, DT/SD, ERRHV, ERRLV, IMON1, IMON2, OSC, SS/DEM1, SS/DEM2, SYNCO, VREF to AGND	-0.3	VDD+0.3	
	LDODRV TO VCC	-0.3	5	
	VCC to PGND	-0.3	14	
	PGND to AGND	-0.3	0.3	
Junction temper	ature, T _J ⁽²⁾	-40	150	°C
Storage temperature, T _{stg}		-55	150	C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.

5.2 ESD Ratings

				VALUE	UNIT
	Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-00 HBM ESD Classification Charged device model (CDM) per V ANSI/ESDA/JEDEC JS-002 ⁽²⁾	1)	±2000		
V _(ESD)		Charged device model (CDM) per V ANSVESDA/JEDEC	All pins	±500	V
		Corner pins (1,12,13,24,25,36,37,48)	±750		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.

5.3 Recommended Operating Conditions

Over the recommended operating junction temperature range of -40°C to 150°C (unless otherwise specified)⁽¹⁾

		MIN	NOM MAX	UNIT
HV-Port (HV1, HV2)	Buck Mode	3	80	V
HV-Port (HV1, HV2)	HV-Port (HV1, HV2) Boost Mode		80	V
LV-Port	Buck Mode	0	75	V
LV-Port	Boost Mode	1	75	V
VCC	Applicable External Voltage to VCC Pin	9.5	12	V
TJ	Operating Junction Temperature ⁽²⁾	-40	150	°C
F _{OSC}	Oscillator Frequency	50	1000	kHz
F _{EX_CLK}	Synchronization to External Clock Frequency (Minimal 50kHz)	0.8x F _{OSC}	1.2x F _{OSC}	kHz
F _{EX_CLK}	SYNCI Pulse	50	0.8/ F _{OSC}	ns
t _{DT}	Programmable Dead Time Range	15	200	ns

(1) Operating Ratings are conditions under the device is intended to be functional. For specifications and test conditions, see *Electrical Characteristics*.

(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.

5.4 Thermal Information

		LM5171		
	THERMAL METRIC ⁽¹⁾	PHP (TQFP)	UNIT	
		48 PINS		
R _{θJA}	Junction-to-ambient thermal resistance	30.7	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	18.8	°C/W	
R _{θJB}	Junction-to-board thermal resistance	13.5	°C/W	
Ψյт	Junction-to-top characterization parameter	0.3	°C/W	
Ψјв	Junction-to-board characterization parameter	13.4	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	2.5	°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.5 Electrical Characteristics

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over $T_J = -40^{\circ}$ C to 150°C. Unless otherwise stated, $F_{OSC} = 100 \text{ kHz}$; $V_{VCC} = 10 \text{ V}$; $V_{HV1} = V_{HV2} = V_{HV-Port} = 48V$ and $V_{LV-Port} = 12 \text{ V}$.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
HV Port (HV1	IV Port (HV1, HV2)									
I _{SHUTDOWN1}	HV1 pin current in shutdown mode	V _{UVLO} = 0V			10	μA				
I _{SHUTDOWN2}	HV2 pin current in shutdown mode	V _{UVLO} = 0V			10	μA				
IOPERATING	HV1 and HV2 pin current in operating	V _{UVLO} > 2.6V, V _{VCC} > 9V		1		mA				
VCC Bias Su	pply (VCC)									
V _{VCC_reg}	VCC LDO regulation setting point	V _{HV1} > 10V	8.55	9	9.45	V				
V _{CCUVLO}	VCC under voltage detection	VCC falling	7.7	8	8.2	V				
V _{CCHYS}	VCC UVLO hysteresis	VCC rising	8.2	8.5	8.7	V				
I _{VCC_SD}	VCC sink current in shutdown mode	V _{UVLO} = 0V, V _{VCC} =10V			25	μA				
I _{VCC_SB}	VCC sink current in standby: no switching	V _{UVLO} > 2.6V, V _{VCC} > 9V, EN1=EN2=0V			10	mA				
VDD Analog I	Bias Supply (VDD)									

6 資料に関するフィードバック (ご意見やお問い合わせ)を送信

Typical values correspond to T _J = 25°C. Minimum and maximum limits apply over T _J = -40°C to 150°C. Unless otherwis	е
stated, F_{OSC} = 100 kHz; V_{VCC} = 10 V; V_{HV1} = V_{HV2} = $V_{HV-Port}$ = 48V and $V_{LV-Port}$ = 12 V.	

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{VDD}	VDD voltage	V _{UVLO} > 2.6V, V _{VCC} > 9V	4.75	5	5.25	V
V _{DDUV}	VDD undervoltage detection	VDD falling	4.25	4.5	4.75	V
V _{DDHYS}	VDD UVLO hysteresis	VDD rising above V _{DDUV}	0.1	0.2	0.3	V
I _{VDD}	VDD source current limit	V _{VDD} = 4.6V	10			mA
VOLTAGE RE	FERENCE (VREF)					
V _{REF}	Voltage reference	$V_{UVLO} > 2.6V, V_{VCC} > 9V, V_{VDD} > V_{DDUV}$	3.465	3.500	3.535	V
I _{VREF}	VREF source current limit	V _{VREF} = 3.5V	2			mA
Master ON/O	FF Control (UVLO)				·	
V _{UVLO_TH}	UVLO release threshold	UVLO voltage rising	2.4	2.5	2.6	V
I _{HYS}	UVLO hysteresis current	UVLO source current when V _{UVLO} > 2.6V	21	25	29	μA
V _{RES}	UVLO shutdown and IC reset voltage threshold	UVLO voltage falling	1	1.25	1.5	V
	UVLO shutdown release	UVLO voltage rising above V _{RES}	0.15	0.25	0.35	V
t _{UVLO}	UVLO 2.5V threshold glitch filter	UVLO voltage both rising and falling		2.5		μs
t _{VRES}	UVLO 1.25V V _{RES} threshold glitch filter			5	10	μs
	UVLO internal pull-down current			100		nA
Enable Inputs	s EN1 and EN2	· · · · · · · · · · · · · · · · · · ·				
V _{IL}	Enable input low state	The driver outputs disabled			1.0	V
V _{IH}	Enable input high state	The driver outputs enabled	2.0			V
	Internal pulldown impedance	EN1, EN2 logic inputs internal pulldown resistor		1		MegΩ
	EN glitch filter time (the rising and falling edges)			2.5		μs
DIRECTION O	COMMANDS (DIR1, DIR2)					
V _{DIR1} , V _{DIR2}	Command for current flowing from LV- Port to HV-Port (boost mode 12 V to 48 V), for CH-1 and CH-2, respectively	Actively pulled low by external circuit			1	V
V _{DIR1} , V _{DIR2}	Command for current flowing from HV- Port to LV-Port (buck mode 48 V to 12 V), for CH-1 and CH-2, respectively	Actively pulled high by external circuit	2			V
V_{DIR1}, V_{DIR2}	Standby (invalid DIR command)	DIR pin (DIR1 or DIR2) neither active High nor active Low		1.5		V
	DIR glitch filter (the rising and falling edges)	Both Rising and Falling Edges		10		μs
ISET INPUTS	(ISET1, ISET2)	· · · · · ·				
	ISET DC Offset Voltage			1.0		V
G _{ISET}	Gain of the regulated inductor DC current sense voltage to ISET voltage	$ V_{CSA} - V_{CSB} = 50 \text{mV}$		25		mV/V
	ISET internal pull-down current sink			75	200	nA
Output Curre	nt Monitor (IMON1, IMON2)					
	Gain of IMON1 and IMON2 current source versus channel current sense voltage	CSA-CSB = 50mV, CONFIG = 'Inductor current monitor'', V _{DIR} > 2V		2		µA/mV
	Gain of IMON1 and IMON2 current source versus channel current sense voltage	CSA-CSB = 50mV, CONFIG = 'Inductor current monitor'', V _{DIR} < 1V		2		uA/mV

Typical values correspond to T _J = 25°C. Minimum and maximum limits apply over T _J = -40°C to 150°C. Unless otherwis	se
stated, F _{OSC} = 100 kHz; V _{VCC} = 10 V; V _{HV1} = V _{HV2} = V _{HV-Port} = 48V and V _{LV-Port} = 12 V.	

	= 100 kHz,	TEST CONDITIONS	MIN	ТҮР	ΜΔΧ	UNIT
STMDOL	Gain of IMON1 and IMON2 current				NIAA	UNIT
	source versus channel current sense voltage	'Output current monitor", V _{DIR} < 1V, Duty cycle = 0.75	0.475	0.5	0.525	uA/mV
	Gain of IMON1 and IMON2 current source versus channel current sense voltage	CSA-CSB = 10mV, CONFIG = 'Inductor current monitor", V _{DIR} > 2V		2		uA/mV
	Gain of IMON1 and IMON2 current source versus channel current sense voltage	CSA-CSB = 10mV, CONFIG = 'Inductor current monitor", V _{DIR} < 1V	1.96	2	2.04	uA/mV
	Gain of IMON1 and IMON2 current source versus channel current sense voltage	CSA-CSB = 10mV, CONFIG = 'Output current monitor", V _{DIR} < 1V, Duty cycle = 0.75	0.475	0.5	0.525	uA/mV
	IMON1 and IMON2 DC offset current	CSA-CSB = 0mV		50		μA
CURRENT SE	NSE AMPLIFIER (BOTH CHANNELS)					
G _{CS_BK1}	Gain of amplifier output to current sense voltage in buck mode	$ V_{CSA} - V_{CSB} = 50$ mV, $V_{DIR} > 2V$		40		V/V
G _{CS_BST1}	Gain of amplifier output to current sense voltage in boost mode	$ V_{CSA} - V_{CSB} = 50$ mV, $V_{DIR} < 1$ V		40		V/V
G _{CS_BK2}	Gain of amplifier output to current sense voltage in buck mode	V _{CSA} – V _{CSB} = 10mV, V _{DIR} > 2V		40		V/V
G _{CS_BST2}	Gain of amplifier output to current sense voltage in boost mode	$ V_{CSA} - V_{CSB} = 10mV, V_{DIR} < 1V$		40		V/V
TRANSCOND	UCTION AMPLIFIER (COMP1, COMP2)			·	
Gm	Transconductance			100		μA/V
	Output source current limit	$V_{ISET} = 4V, V_{CSA} - V_{CSB} = 0mV$		250		μA
I _{COMP}	Output sink current limit	V_{ISET} = 0V, $V_{CSA} - V_{CSB}$ = 50mV in the buck mode, or $V_{CSA} - V_{CSB}$ = -50mV in the boost mode		-250		μA
VOLTAGE LO	OP ERROR AMPLIFIERS (VSET, LVFB	, LVERR, HVFB, HVERR)				
A _{OL}	Open loop gain	$V_{VCC} > 9 V, V_{VDD} > V_{DDUV}$		80		dB
F _{BW}	Unity gain bandwidth			2.1		MHz
V _{OS}	Input offset voltage				5	mV
V _{ERR_MIN}	Minimum amplifier output voltage	Sourcing 2mA	4			V
V _{ERR_MAX}	Maximum amplifier output voltage	Sinking 2mA			0.5	V
PWM Compa	rator					
	COMP to output delay			50		ns
	COMP to PWM comparator offset			1		V
T _{OFF MIN}	Minimum off time			100	150	ns
PEAK CURRE	ENT LIMIT (IPK)				I	
G _{IPK_BK1}	Gain from current sense voltage to cycle-by-cycle limit threshold voltage given at IPK pin, in buck mode	V _{IPK} = 3V, V _{DIR} >2V	45	50	55	mV/V
G _{IPK_BK2}	Gain from current sense voltage to cycle-by-cycle limit threshold voltage given at IPK pin, in buck mode	V _{IPK} = 1V, V _{DIR} >2V	45	50	55	mV/V
G _{IPK_BST1}	Gain from current sense voltage to cycle-by-cycle limit threshold voltage given at IPK pin, in boost mode	V _{IPK} = 3V, V _{DIR} <1V	45	50	55	mV/V
G _{IPK_BST2}	Gain from current sense voltage to cycle-by-cycle limit threshold voltage given at IPK pin, in boost mode	V _{IPK} = 1V, V _{DIR} <1V	45	50	55	mV/V

8 資料に関するフィードバック (ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

TEXAS INSTRUMENTS www.ti.com/ja-jp

Typical values correspond to T _J = 25°C. Minimum and maximum limits apply over T _J = -40°C to 150°C. Unless otherwise
stated, F_{OSC} = 100 kHz; V_{VCC} = 10 V; V_{HV1} = V_{HV2} = $V_{HV-Port}$ = 48V and $V_{LV-Port}$ = 12 V.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OVER VOLTA	AGE PROTECTION (OVP)					
	OVP threshold		0.99	1	1.01	V
OVP _{HYS}	OVP Hysteresis			100		mV
t _{OVP}	OVP Glitch Filter			5		us
OSCILLATOR	R (OSC)					
E	Oscillator frequency 1	R_{OSC} = 41.5k Ω , no external clock signal at SYNCI pin	90	100	110	kHz
FOSC	Oscillator frequency 2	$R_{OSC} = 4.15k\Omega$, no external clock signal at SYNCI pin	900	1000	1100	kHz
V _{OSC}	OSC pin DC voltage	OSC DC Level		1		V
SYNCHRONIZATION CLOCK INPUT (SYNCI)						
V _{SYNIH}	SYNCI input threshold for high state		2			V
V _{SYNIL}	SYNCI input threshold for low state				1	V
	Delay to establish synchronization	0.8 x F _{OSC} < F _{SYNCI} < 1.2 x Fosc		200		us
	Internal pull-down impedance	V _{SYNCI} = 2.5V		1000		kΩ
SYNCHRONI	ZATION CLOCK OUTPUT (SYNCO)					
V _{SYNOH}	SYNCO high state		2.5			V
V _{SYNOL}	SYNCO low state				0.4	V
	Sourcing current when SYNCO in high state	V _{SYNCO} = 2.5V		1		mA
	Sinking current when SYNCO in low state	V _{SYNCO} = 0.5V		1		mA
	SYNCO pulse width		60	90	120	ns
	SYNCO pulse delay for multiphase	V_{OPT} > 2V, R_{SYNCO} > 61.9k Ω		90		Degree
	daisy chain connection	$V_{OPT} < 1V_{,}R_{SYNCO} > 61.9k\Omega$		120		Degree
BOOTSTRAF	P (HB1, HB2)					
V _{HB-UV}	Bootstrap undervoltage threshold	(V _{HB} – V _{SW}) voltage rising	6	6.5	7	V
V _{HB-UV-HYS}	Bootstrap undervoltage hysteresis			0.5		V
I _{HB_LK}	Bootstrap quiescent current	$V_{HB} - V_{SW}$ = 10V, $V_{HO} - V_{SW}$ = 0V			100	μΑ
HIGH SIDE G	ATE DRIVERS (HO1, HO2)					
V _{OLH}	HO low-state output voltage	I _{HO} = 100mA		0.1		V
V _{OHH}	HO high-state output voltage	I_{HO} = -100mA, V_{OHH} = V_{HB} - V_{HO}		0.15		V
	HO rise time (10% to 90% pulse magnitude)	C _{LD} = 1000pF		5		ns
	HO fall time (90% to 10% pulse magnitude	C _{LD} = 1000pF		4		ns
I _{ОНН}	HO peak source current	$V_{HB} - V_{SW} = 10V$		4		А
I _{OLH}	HO peak sink current	$V_{HB} - V_{SW} = 10V$		5		А
LOW SIDE G	ATE DRIVERS (LO1, LO2)			·		
V _{OLL}	LO low-state output voltage	I _{LO} = 100mA		0.1		V
V _{OHL}	LO high-state output voltage	I_{LO} = -100mA, V_{OHL} = V_{VCC} - V_{LO}		0.15		V
	LO rise time (10% to 90% pulse magnitude)	C _{LD} = 1000pF		5		ns
	LO fall time (90% to 10% pulse magnitude)	C _{LD} = 1000pF		4		ns
I _{OHL}	LO peak source current	V _{VCC} = 10V		4		А
I _{OLL}	LO peak sink current	V _{VCC} = 10V		5		Α

資料に関するフィードバック(ご意見やお問い合わせ)を送信 9

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over $T_J = -40^{\circ}$ C to 150	0°C. Unless otherwise
stated, F_{OSC} = 100 kHz; V_{VCC} = 10 V; V_{HV1} = V_{HV2} = $V_{HV-Port}$ = 48V and $V_{LV-Port}$ = 12 V.	

SYMBOL			MIN	TYP	MAX	UNIT
	PHASE DELAY FROM CH-2 To CH-1 (OPT)				
Verr	OPT Input I ow State	OPT-"0"			1 0	V
V OPTL	OPT Input Ligh State	OPT-"1"	2.0		1.0	V
VOPTH	HO2 HO1 in the buck mode		2.0			V
	or LO2 _{rising} -LO1 _{rising} in the boost mode	OPT = "0" for 3 Phases in Daisy Chain Interleaving Operation		240		Degree
	HO2 _{rising} -HO1 _{rising} in the buck mode, or LO2 _{rising} -LO1 _{rising} in the boost mode	OPT= "1" for 1, 2, or 4 phases in Daisy Chain Interleaving Operation		180		Degree
	Internal Pull down impedance			1		MegΩ
DEAD TIME a	nd LATCHED SHUTDOWN (DT/SD)					
+	LO falling edge to HO rising edge delay	R _{DT} = 19.1kΩ		50		ns
DT	HO falling edge to LO rising edge delay	R _{DT} = 19.1kΩ		50		ns
V _{DT}	DC voltage level for dead time programming			1.2		V
	DC voltage level for adaptive dead time programming		3.1			V
V _{ADPT}	HO-SW or LO-GND voltage threshold to enable cross output for adaptive dead time scheme	V_{VCC} > 9V, (V _{HB} – V _{SW}) > 8V, HO or LO voltage falling		1.5		V
+	LO falling edge to HO rising edge delay	V _{DT} = V _{VDD}		40		ns
'ADPT	HO falling edge to LO rising edge delay	V _{DT} = V _{VDD}		40		ns
t _{SD}	Latched shutdown glitch filter		1.875	2.5	3.125	μs
R _{SD}	Shutdown latch pulldown resistance	Resistor in series with an external pull- down NFET			2	kΩ
SOFT START	and FORCED PWM and DIODE EMUL	ATION PRGRAMMING (SS/DEM1, SS/D	DEM2)			
I _{SS}	SS charging current source during startup	$\label{eq:VSS} \begin{split} V_{SS} &\leq 3.3 \text{V}, \ V_{EN} > 2 \text{V}, \ V_{UVLO} > 2.5 \text{V}, \\ \text{DIR} &< 1 \ \text{or DIR} > 2 \end{split}$		70		μA
I _{SS}	SS charging current source after startup	$V_{SS} \ge 3.9V, V_{EN} > 2V, V_{UVLO} > 2.5V,$ DIR < 1 or DIR > 2		50		μA
	SS to gm input offset			1		V
R _{SS}	SS discharge device Rds(ON)	V _{SS} = 2V		20		Ω
V _{SS_LOW}	SS discharge completion threshold	Once it is discharged by internal logic		0.3		V
CONFIGURAT	TIONS (CFG)	· · · · · ·				
R _{CFG1}	I2C Address: b0100000. IMON = Inductor Current			0		kΩ
R _{CFG2}	I2C Address: b0100001. IMON = Inductor Current		0.316		0.324	kΩ
R _{CFG3}	I2C Address: b0100010. IMON = Inductor Current		0.649		0.665	kΩ
R _{CFG4}	I2C Address: b0100011. IMON = Inductor Current		1.1		1.13	kΩ
R _{CFG5}	I2C Address: b0100100. IMON = Inductor Current		1.65		1.69	kΩ
R _{CFG6}	I2C Address: b0100101. IMON = Inductor Current		2.43		2.49	kΩ

Typical values correspond to T _J = 25°C. Minimum and maximum limits apply over T _J = -40°C to 150°C. Unless other	wise
stated, F_{OSC} = 100 kHz; V_{VCC} = 10 V; V_{HV1} = V_{HV2} = $V_{HV-Port}$ = 48V and $V_{LV-Port}$ = 12 V.	

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
R _{CFG7}	I2C Address: b0100110. IMON = Inductor Current		3.32	3.4	kΩ
R _{CFG8}	I2C Address: b0100111. IMON = Inductor Current		4.53	4.64	kΩ
R _{CFG9}	I2C Address: b0100111. IMON = Output Current		6.65	6.81	kΩ
R _{CFG10}	I2C Address: b0100110. IMON = Output Current		10.2	10.5	kΩ
R _{CFG11}	I2C Address: b0100101. IMON = Output Current		13.7	14.0	kΩ
R _{CFG12}	I2C Address: b0100100. IMON = Output Current		18.7	19.1	kΩ
R _{CFG13}	I2C Address: b0100011. IMON = Output Current		26.1	26.7	kΩ
R _{CFG14}	I2C Address: b0100010. IMON = Output Current		37.4	38.3	kΩ
R _{CFG15}	I2C Address: b0100001. IMON = Output Current		60.4	61.9	kΩ
R _{CFG16}	I2C Address: b0100000. IMON = Output Current		95.3	97.6	kΩ
12C INTERFA	CE (SLC, SDA)				
V _{SDAL}	SDA input low state			1.0	V
V _{SDAH}	SDA input high state		2.0		V
V _{SCLL}	SCL input low state			1.0	V
V _{SCLH}	SCL input high state		2.0		V
Thermal Shut	down				
T _{J_SD}	Thermal shutdown		155	175	°C
	Thermal shutdown hysteresis			15	°C

5.6 Timing Requirements

Over operating junction temperature range and recommended supply voltage range (unless otherwise noted)

			MIN	NOM MAX	UNI T
I ² C INTER	FACE		· · · · ·		
		Standard mode	0	100	
f _{SCL}	SCL clock frequency	Fast mode	0	400	kHz
		Fast mode plus ⁽¹⁾	0	1000	
		Standard mode	4.7		
t _{LOW}	LOW period of the SCL clock	Fast mode	1.3		μs
		Fast mode plus ⁽¹⁾	0.5		
		Standard mode	4.0		
t _{HIGH}	HIGH period of the SCL clock	Fast mode	0.6		μs
		Fast mode plus ⁽¹⁾	0.26		
		Standard mode	4.7		
t _{BUF}	Bus free time between a STOP and a START condition	Fast mode	1.3		μs
		Fast mode plus ⁽¹⁾	0.5		
		Standard mode	4.7		
t _{SU:STA}	Set-up time for a repeated START	Fast mode	0.6		μs
		Fast mode plus ⁽¹⁾	0.26		

Product Folder Links: LM5171-Q1

Over operating junction	temperature range and	t recommended supp	olv voltage range	(unless otherwis	se noted)
Over operating junction	temperature range and	i recommended supp	ny vonayo range		se noteu)

			MIN	NOM	мах	UNI T
		Standard mode	4.0			
t _{HD:STA}	condition	Fast mode	0.6			μs
		Fast mode plus ⁽¹⁾	0.26			
		Standard mode	0			
t _{HD:DAT}	Data hold time	Fast mode	0			μs
		Fast mode plus ⁽¹⁾	0			
t _r F		Standard mode			1000	
	Rise time of both SDA and SCL signals	Fast mode	20		300	ns
		Fast mode plus ⁽¹⁾			20	
		Standard mode			300	
t _f	Fall time of both SDA and SCL signals	Fast mode	20×V _{DD} / 5.5		300	ns
		Fast mode plus ⁽¹⁾	20×V _{DD} / 5.5		120	
		Standard mode	4.0			
t _{su:STO}	Set-up time for STOP condition	Fast mode	0.6			μs
		Fast mode plus ⁽¹⁾	0.26			
		Standard mode			3.45	
t _{VD;DAT}	Data valid time	Fast mode			0.9	μs
		Fast mode plus ⁽¹⁾			0.45	
		Standard mode			3.45	
t _{VD;ACK}	Data valid acknowledge time	Fast mode			0.9	μs
		Fast mode plus ⁽¹⁾			0.45	
C	Capacitive load for each hus line	Standard mode			400	рF
Op .	Capacitive load for each bus life	Fast mode			400	Ы

(1) Fast mode plus is supported but not fully compliant with I^2C standard

5.7 Typical Characteristics

 V_{VIN} = 48V, V_{VCC} = 10V, V_{UVLO} = 3.3V, T_J = 25°C, unless otherwise stated.

6 Detailed Description

6.1 Overview

The LM5171-Q1 device is a high performance, dual-channel bidirectional PWM controller intended to manage power transfer between a Higher Voltage Port (HV-Port) and a Lower Voltage Port (LV-Port) . LM5171-Q1 integrates essential analog functions that enable the design of high-power converters with a minimal number of external components. Depending on the operating mode, device can regulate both the output port voltages, or currents, in either direction designated by the DIR input signal.

The dual-channel differential current sense amplifiers and dedicated channel current monitors achieve typical accuracy of 1%. The robust 5A half-bridge gate drivers are capable of controlling parallel MOSFET switches delivering higher power per channel. The device offers dynamically selectable Diode Emulation Mode (DEM) and Forced PWM (FPWM). With DEM, the buck or boost synchronous rectifiers enables discontinuous mode operation for improved efficiency under light load conditions, and it also prevents negative current. With FPWM, the synchronous rectifier allows negative current and hence helps achieving fast dynamic response under large circuit transients. Versatile protection features include the cycle-by-cycle peak current limit, overvoltage protection of both HV and LV Ports, detection and protection of MOSFET switch failures, and overtemperature protection.

The LM5171-Q1 uses an innovative average current mode control technology which simplifies the inner current loop compensation by maintaining a constant loop gain regardless of the power flow direction and the operating voltages and load level. The device also integrates two error amplifiers and a 1% accurate voltage reference to facilitate the bi-directional output voltage regulation. The free-running oscillator is adjustable up to 1000kHz and can be synchronized to an external clock within ±20% of the free running oscillator frequency. The stackable multiphase parallel operation is achieved by connecting two LM5171-Q1 controllers in parallel for 3 or 4 phase operation, or by synchronizing multiple LM5171-Q1 controllers to external multiphase clocks for a higher number of phases. In addition, the two channels of the LM5171-Q1 can implement two independent bi-directional converters. The UVLO pin provides commander ON/OFF control that disables the LM5171-Q1 in a low quiescent current shutdown state when the pin is held low.

The LM5171-Q1 also features the I2C port, through which the status of operation and alarms of the device can be monitored.

6.1.1 Device Configurations (CFG) and I2C Address

A single resistor placed across the CFG and AGND pins sets the IMON1 and IMON2 of the LM5171-Q1 to monitor each inductor current or load current of a channel, and it also programs the I2C address as listed in $\frac{1}{5}$ 6-1.

CFG Resistor Select	ion (kΩ) (1% Resistor)	ISC Address	MON4 and MON2 Exaction
Min	Max	- IZC Address	IMON I and IMON2 Function
0	0.1	0x00	Inductor Current
0.316	0.324	0x01	Inductor Current
0.649	0.665	0x02	Inductor Current
1.10	1.13	0x03	Inductor Current
1.65	1.69	0x04	Inductor Current
2.43	2.49	0x05	Inductor Current
3.32	3.40	0x06	Inductor Current
4.53	4.64	0x07	Inductor Current
6.65	6.81	0x07	Load Current
10.2	10.5	0x06	Load Current
13.7	14.0	0x05	Load Current
18.7	19.1	0x04	Load Current
26.1	26.7	0x03	Load Current
37.4	38.3	0x02	Load Current
60.4	61.9	0x01	Load Current
95.3	97.6	0x00	Load Current

表 6-1. CFG Programming for IMONs and I2C Address

6.1.2 Definition of IC Operation Modes

- Shutdown Mode: When the UVLO pin is < 1.25V, the LM5171-Q1 is in the shutdown mode with all gate drivers in the low state, and all internal logic reset. When UVLO < 1.25V, the device draws < 10µA through each of the HV1, HV2 and VCC pins.
- Initialization Mode: When the UVLO pin is > 1.5V but < 2.5V, and DT/SD > 0.5V, the LM5171-Q1 establishes proper internal logic states, and the LDODRV is turned on to control the external MOSFET to produce the VCC, and LM5171-Q1 prepares for circuit operation. Once VCC voltage is >8.5V, VDD and VREF are also established at approximately 5.0V and 3.5V, respectively.
- Standby Mode: When the UVLO pin is > 2.5V, and VCC > 8.5V, VDD> 4.5V, and DT/SD > 0.5V, the LM5171-Q1 is ready to operate. The oscillator is activated and the SYNCO is firing phase-shifted clock signals, but the four gate drive outputs remain off until the EN1 or EN2 initiate the power delivery mode.
- **Power Delivery Mode:** When the UVLO pin > 2.5V, VCC > 8.5V, VDD > 4.5V, DT/SD > 0.5V, EN1 or EN2 > 2V, DIR1 and/or DIR2 is valid (> 2V or < 1V), the SS capacitor is released. Once the SS voltage rises above 1V, the LM5171-Q1 gate drivers start to switch and start the power delivery.
- Latch-ed Shutdown mode serves as an emergency shutdown function, and it is achieved by pulling DT/SD pin below 1V for at least 2.5µs by an external circuit during operation. In latched shutdown mode, all gate drivers remain in the low state, and both SS/DEM1 and SS/DEM2 pins are held low. The latch can be reset by pulling the UVLO to below 1.25V for at least 10µs.

6.2 Functional Block Diagram

Copyright © 2024 Texas Instruments Incorporated

6.3 Feature Description

6.3.1 Bias Supplies and Voltage Reference (VCC, VDD, and VREF)

The LM5171-Q1 integrates a LDO driver to drive an external N-channel MOSFET to generate a 9V bias supply at the VCC pin. The VCC pin can also accept an external supply of 9.5V to 12V and the device turns off the LDO driver to save the power dissipation in the external LDO MOSFET. \boxtimes 6-1 shows typical connections of the bias supply.

When external supply is used, it is recommended to add a block diode to prevent from discharging the VCC during transient in the external supply. If an external supply voltage is greater than 12V, a 10V LDO or switching regulator must be used to produce 10V for VCC. The VCC voltage is directly fed to the low-side MOSFET drivers. A 1 μ F to 2.2 μ F ceramic capacitance must be placed between the VCC and PGND pins to bypass the driver switching currents. For the LDO MOSFET, it is recommended to have the C_{iss} around 300pF or below.

The internal VCC undervoltage (UV) detection circuit monitors the VCC voltage. When the VCC voltage falls below 8V on the falling edge, the LM5171-Q1 is held in the shutdown state. For normal operation, the VCC voltage must be greater than 8.5V on the rising edge.

Once the VCC voltage is above the VCC_UV, the VDD and VREF regulator turns on to establish 5.0V and 3.5V, respectively. The VDD regulator can supply up to 10 mA to the external circuit. The VREF is a 1% accurate reference voltage for the external circuit to use, and it has a loading capability of 2mA. A ceramic capacitance between 0.5μ F to 2.0uF must be placed between VDD and AGND pins, and 0.1 μ F between VREF and AGND pins, respectively.

6.3.2 Undervoltage Lockout (UVLO) and Controller Enable or Disable

The UVLO pin serves as the Controller enable or disable pin. To use the UVLO pin to program undervoltage lockout control for the HV-port, LV-port, or VCC rail, see セクション 6.4.2 for details.

There are two UVLO voltage thresholds. When the pin voltage is externally pulled below 1.25V, the LM5171-Q1 is in shutdown mode, in which all gate drivers are in the OFF state, all internal logic resets, and the IC draws less than 10μ A through each of the HV and VCC pins.

When the UVLO pin voltage is pulled higher than 1.5V but lower than 2.5V, the LM5171-Q1 is in the initialization mode in which LDODRV pin turns on to control the external MOSFET to establish the VCC voltage at 9.0V, and the VDD at 5.0V and VREF at 3.5V. The DT/SD pin is pulled up to 1.2V, but the rest of the LM5171-Q1 remains off as long as EN1, EN2 are less than 1V, and/or DIR1 and DIR2 are invalid signals.

When the UVLO pin is pulled higher than 2.5V, which is the UVLO release threshold and the controller enable threshold, the LM5171-Q1 oscillator is activated, and the SYNCO pin gives out the phase shifted clock at the oscillator frequency, and the LM5171-Q1 is ready to operate. The SS/DEM1 and SS/DEM2 as well as LO1, LO2, HO1, and HO2 drivers remain off until the EN1, EN2, and DIR inputs command them to operate.

6.3.3 High Voltage Inputs (HV1, HV2)

⊠ 6-2 shows the external and internal configuration for the HV1 and HV2 pins. Both pins are rated at 85V_{DC}. For independent channel operation, the HV1 and HV2 must be directly connected to the HV-port voltage rails for each channel, respectively, which are not necessarily the same HV-port. When operating in parallel dual phase configuration to support high power, the two HV pins can be tied together and connect to the same HV-port. As shown in ⊠ 6-2, a small RC filter like 10Ω and 0.1µF can be applied at these two pins to bypass high frequency noises.

図 6-2. HV1 and HV2 Pins Configuration

6.3.4 Current Sense Amplifier

Each channel of the LM5171-Q1 has an independent bidirectional, high accuracy, and high-speed differential current sense amplifier. The differential current sense polarity is determined by the DIR command. The amplifier gain is 40, such that a smaller current sense resistor can be used to reduce power dissipation. The amplified current sense signal is used to perform the following functions:

- Applied to the inverting input of the trans-conductance amplifier for the current loop regulation.
- Used to reconstruct the channel current monitor signal at the IMON1 and IMON2 pins.
- Monitored by the cycle-by-cycle peak current limit comparator for the instantaneous overcurrent protection.
- Sensed by the current zero cross detector to operate the synchronous rectifiers in the diode emulation mode.

The current sense resistor Rcs must be selected for 50mV current sense voltage when the channel DC current reaches the rated level. The CSA1, CSB1, CSA2, and CSB2 pins must be Kelvin connected for accurate sensing.

It is very important that the current sense resistors are non-inductive. Otherwise the sensed current signals are distorted even if the parasitic inductance is only a few nH. Such inductance may not affect the current regulation during continuous conduction mode, but it does affect current zero cross detection, and hence the performance of diode emulation mode under light load. As a consequence, the synchronous rectifier gate pulse is truncated much earlier than the inductor current zero crossing, causing the body diode of the synchronous rectifier to conduct unnecessarily for a longer time. See the *Diode Emulation* for details.

If the selected current sense resistor has parasitic inductance, see the $\frac{d}{d} \frac{\partial 2}{\partial 2} \frac{\partial 2}{\partial 1}$ for methods to compensate for this condition and achieve optimal performance.

LM5171-Q1 JAJSNC5A – APRIL 2023 – REVISED JULY 2024

6.3.5 Control Commands

6.3.5.1 Channel Enable Commands (EN1, EN2)

These pins are two state function pins. EN1 and EN2 are independent command signals. EN1 controls CH-1, and EN2 controls CH-2.

- 1. When the EN1 pin voltage is pulled above 2V (logic state of 1), the HO1 and LO1 outputs of the same channel are enabled through soft start programmed by SS/DEM1.
- 2. When the EN1 pin voltage is pulled below 1V (logic state of 0), CH-1 controller is disabled and both HO1 and LO1 outputs are turned off, and SS/DEM1 is discharged.
- 3. Similar behaviors for EN2, HO2 and LO2, and SS/DEM2 of CH-2.
- 4. When the EN1 and EN2 pins are left open, an internal $1000k\Omega$ pulldown resistor sets them to the low state.
- 5. The built-in 2.5µs glitch filters prevent errant operation due to the noise on the EN1 and EN2 signals.

6.3.5.2 Direction Command (DIR1 and DIR2)

These pins are tri-state function pins. DIR1 controls CH-1, and DIR2 controls CH-2.

- 1. When the DIR1 pin is actively pulled above 2V (logic state of 1), CH-1 operates in buck mode, and current flows from the HV-Port to the LV-Port.
- 2. When the DIR1 pin is actively pulled below 1V (logic state of 0), CH-1 operates in boost mode, and current flows from the LV-Port to the HV-Port.
- 3. When the DIR1 pin is in the third state that is different from the above two, it is considered an invalid command and CH-1 remains in standby mode regardless of the EN1 states. This tri-state function prevents faulty operation when losing the DIR signal connection to the MCU.
- 4. When DIR1 changes the logic state between 1 and 0 dynamically during operation, the transition causes the SS/DEM1 pin to discharge first to below 0.3V, then the SS/DEM1 pin pulldown is released and CH-1 goes through a new soft-start process to produce the current in the new direction. This eliminates the surge current during the direction change.
- 5. Similar behaviors for DIR2, CH-2, EN2, and SS/DEM2.
- 6. The built-in 10µs glitch filter prevents errant operation by noise on the DIR1 and DIR2 signals.

6.3.5.3 Channel Current Setting Commands (ISET1 and ISET2)

Each channel of the LM5171-Q1 has the independent current setting pin, ISET1 and ISET2, for independent channel operation. For multiphase in parallel operation, connect all ISET pins together to achieve balanced power sharing among multiphases.

Each ISET pin accepts an analog voltage to program the channel dc current, as shown in \boxtimes 6-3. The ISET pin signal feeds directly to one of the two non-inverting inputs of the gm amplifier. The other non-inverting pin is controlled by the soft-start. The current sense signal internally has an 1V dc offset voltage before it feeds to the inverting input of the gm amplifier. The channel DC current that flows through the current sense resistor is determined by \vec{x} 1 in the closed loop operation.

$$V_{CS_{dc}} = 0.025 \times (V_{ISET} - 1V)$$
 (1)

Or by 式 2,

I_channel_dc =
$$\frac{V_{CS}_{dc}}{Rcs}$$

Or by 式 3,

$$I_channel_dc = \frac{0.025 \times (V_{ISET} - 1V)}{Rcs}$$
(3)

Where

• Rcs is the channel current sensing resistor value.

(2)

If a PWM signal is provided to control the channel current but no DAC is available, it is recommend to use a twostage RC filter to convert it to the analog voltage at the ISET, as shown in \boxtimes 6-4. The corner frequency of the filter must be set to at least 1 decade below the PWM frequency in order to attenuate the ripple voltage to less than 1% at the ISET pin, namely, the RC selection satisfies \neq 4, and the PWM to analog voltage conversion is given by \neq 5.

図 6-3. Analog Voltage Channel Current Programming

6-4. PWM Channel Current Programming

$$6.28 \times R_{ISETA} \times C_{ISETA} \le 10 \times F_{PWM}$$
(4)

$$V_{\rm ISET} = \frac{R_{\rm PD}}{R_{\rm PD} + 2 \times R_{\rm ISET}} \times V_{\rm PWMH} \times D_{\rm PWM}$$
(5)

Where

- F_{PWM} is the PWM command frequency.
- R_{PD} is the internal pulldown resistor, which is 1000k Ω typical.
- V_{PWMH} is the PWM signal magnitude.
- D_{PWM} is the PWM signal duty cycle.

Note that the internal pulldown resistor R_{PD} has some tolerances. If $R_{ISET} << R_{PD}$, the effects of the tolerance on V_{ISET} accuracy can be greatly reduced.

6.3.6 Channel Current Monitor (IMON1, IMON2)

The LM5171-Q1 monitors the real time inductor current in each channel by converting the current sense voltage to small current sources at the IMON1 and IMON2 pins. These monitors can be set to monitor the inductor current which in Buck mode is output current or input current in Boost mode. By programming at the CFG pin the HS- FET inductor current cycle can be monitored to measure output current in Boost mode.

6.3.6.1 Individual Channel Current Monitor

The monitors are set to monitor the inductor current in power path. With R-C filter on IMON1 or IMON2 average inductor current can be monitored, which in boost mode can be set to Load current based on CFG setting and in Buck mode is the Load current irrespective of CFG setting. The monitor current source is determined by \neq 6 and \neq 7:

$$IMON1 = \frac{V_{CS1}}{500} + 50 \, uA \tag{6}$$

$$IMON2 = \frac{V_{CS2}}{500} + 50\mu A$$

Where

- V_{CS1} and V_{CS2} are the real time current sense voltage of CH-1 and CH-2, respectively.
- the 50 µA is a DC offset current superimposed on to the IMON signals (refer to ⊠ 6-5).

The 50- μ A DC offset current is introduced to raise the no-load signal above the possible ground noise floor. Because the monitor signal is in the form of current, an accurate reading can be obtained across a termination resistor even if the resistor is located far from the LM5171-Q1 but close to the MCU, thus rejecting potential ground differences between the LM5171-Q1 and the MCU. 🗵 6-7 shows a typical channel current monitor through a 20-K Ω termination resistor and a 10-nF to 100-nF ceramic capacitor in parallel. The RC network converts the current monitor signal into a DC voltage proportional to the channel DC current. For example, when the current sense voltage DC component is 50 mVdc, namely V_{CS_dc} = 50 mV, the termination RC network produces a DC voltage of 3 V. Note that the maximum active operating voltage of the IMON pin is 3 V.

When the monitors are set to monitor the output DC current, which is the channel load current flowing out of the LV-port in the buck mode, or flowing out of the HV-port in the boost mode, the monitor current source is determined by ± 8 through ± 11 :

$$IMON1_{BK} = \frac{R_{CS1} \times I_{O1}_{BK}}{500} + 50\mu A$$
(8)

$$IMON2_{BK} = \frac{R_{CS2} \times I_{O2}_{BK}}{500} + 50\mu A$$
(9)

$$IMON1_{BST} = \frac{R_{CS1} \times I_{O1}BST}{500} + 50\mu A$$
(10)

資料に関するフィードバック(ご意見やお問い合わせ)を送信 21

(7)

 $IMON2_{BST} = \frac{R_{CS2} \times I_{O2}_BST}{500} + 50 \mu A$

(11)

Where

- I_{O1 BK} and I_{O2 BK} are the buck mode inductor current of CH-1 and CH-2, respectively.
- I_{O1_BST} and I_{O2_BST} are the boost mode output current of CH-1 and CH-2, respectively.
- R_{CS1}^{-} and R_{CS2}^{-} are current sense resistor in power path.

Obviously, the buck mode channel load current is the same as shown in \boxtimes 6-5. However, the boost load current can be shown as in \boxtimes 6-6.

6-6. IMON Current Source vs Boost Load Current

図 6-7. Channel Current Monitor

6.3.6.2 Multiphase Total Current Monitoring

For multiphase parallel operation, all LM5171-Q1 IMON pins can be combined to serve as a total current monitor. This also helps save the monitor single lines. \boxtimes 6-8 shows an example of total current monitor of a three-phase system in which the unused fourth phase monitor (U2-IMON2) is grounded.

2 6-8. An Example of the 3-Phase Total Inductor Current Monitor

6.3.7 Cycle-by-Cycle Peak Current Limit (IPK)

An external resistor divider as shown in \boxtimes 6-9 establishes a voltage at the IPK pin to program the cycle-by-cycle current limit threshold. The threshold applies to both CH-1 and CH-2 controller circuits. During operation, each controller circuit has a real time detection circuit to monitor the channel current sense signal. Once the current sense voltage reaches the programmed threshold, the controller terminates the main switch duty cycle, thereby preventing the peak current from exceeding the threshold, and this function is fulfilled in each switching cycle. Device register faults when 9 peak current limit switching cycles occured in operation and resumes itself when 4 non peak current limit cycles occur.

図 6-9. Cycle-by-Cycle Peak Current Limit Programming

To set the inductor peak current limit threshold, the programming voltage at the IPK pin must satisfy \pm 12:

$$V_{IPK} = \frac{I_{PK} \times R_{CS}}{50 \text{mV/V}} \tag{12}$$

Where VIPK is determined by \neq 13

$$V_{IPK} = \frac{R_{IPKB}}{R_{IPKT} + R_{IPKB}} \times 3.5V$$
(13)

 I_{PK} must be greater than the inductor peak current at full load, and lower than the rated saturation current I_{sat} of the inductor.

It is recommended to select R_{IPKT} and R_{IPKB} such that they do not draw more than 0.1mA from VREF pin, in order to keep the overall VREF current consumption low.

Note that when the IPK pin voltage is greater than 3.3V, owing to an open R_{IPKB} or a short R_{IPKT} or some other reasons, an internal monitor circuit shuts down the switching off both controllers of the LM5171-Q1 by pulling SS1 and SS2 low internally, preventing the LM5171-Q1 from operating with erroneous peak current limit threshold.

6.3.8 Inner Current Loop Error Amplifier

Each channel of the LM5171-Q1 has an independent gm error amplifier for the inner current loop control. The output of the gm amplifier is connected to the COMP pin, allowing the loop compensation network to be applied between the COMP pins and AGND.

Because the LM5171-Q1 employs the averaged current mode control scheme, the inner current loop is basically a first order system. As shown in \boxtimes 6-10, a Type-II compensation network consisting of R_{COMP}, C_{COMP}, and C_{HF} is adequate to stabilize the LM5171-Q1 inner current loop. The compensation applies to both the buck and boost operating modes. Refer to $\forall 2 \neq 2 \neq 7.1$ for details of the compensation network selection criteria.

2 6-10. Inner Loop GM Amplifier, Soft-Start, and PWM Comparator, and DEM/FPWM Control

6.3.9 Outer Voltage Loop Error Amplifier

The LM5171-Q1 also integrates two Op-Amps serving as the outer voltage loop error amplifiers, one for the buck mode operation, the other for the boost mode operation. For the channel independent operation, these two Op-Amps can be used for CH-1, and the users need to use two external Op-Amps for CH-2. Once the inner current loop is closed, the outer voltage loop is also a first order system and a Type-II compensation network can be used to stabilize the LM5171-Q1 output voltage loop. Refer to the $\pm 2 \times 3 \times 7.1$ section for details of the compensation network selection criteria.

6.3.10 Soft Start, Diode Emulation, and Forced PWM Control (SS/DEM1 and SS/DEM2)

The SS/DEM1 and SS/DEM2 are multifunction pins. They serve as the soft-start timer, and they can also dynamically program each channel to operate in the Diode Emulation Mode (DEM) or Forced PWM Mode (FPWM). In addition, the SS/DEM pin also fulfills the function of a restart timer in an Over Voltage Protection (OVP) event or following a dynamic DIR command change.

6.3.10.1 Soft-Start Control by the SS/DEM Pins

Place a ceramic capacitor C_{SS1} between the SS/DEM1 pin and AGND to program the CH-1 soft-start time. When the EN1 voltage is < 1 V, an internal pulldown FET holds the SS/DEM1 pin at AGND. When the EN1 pin voltage is > 2 V, the SS pulldown FET is released, and C_{SS} is charged up slowly by the internal 70-µA/50-µA current source, as shown in \boxtimes 6-10. The slow ramping SS voltage overrides the ISET1 signal at the non-inverting input voltage of the gm amplifier until it reaches the ISET1 pin voltage. Once the SS/DEM1 voltage exceeds the 1-V offset voltage, the CH-1 PWM duty cycle starts to increase gradually from zero.

When EN1 is pulled below 1 V, C_{SS1} is discharged by the internal pulldown FET. Once this pulldown FET is turned on, it remains on until the SS/DEM1 voltage falls below 0.3 V, which is the threshold voltage indicating the completion of SS/DEM1 discharge.

Similar behaviors apply to SS/DEM2 for CH-2.

When the LM5171-Q1 operates in multiphase parallel operation, the two SS/DEM pins can be tied together.

6.3.10.2 DEM Programming

Each SS/DEM pin is monitored in real time by an internal comparator. If the pin voltage is less than 4V, which can be the result of placing a 60 k Ω resistor across the SS/DEM and AGND pins, the corresponding channel of the LM5171-Q1 operates in DEM. Each channel has a real time current zero crossing detector to monitor instantaneous V_{CS}. When V_{CS} is detected to cross zero, the LM5171-Q1 turns off the gate drive of the synchronous rectifier (Sync FET) to prevent negative current. In this way, the negative current is prevented and the light load efficiency is improved. \boxtimes 6-11 shows key waveforms of a typical operation transiting into the diode emulation mode.

To obtain optimal diode emulation performance, it requires the VCS signal to be accurate in real time. Any signal distortion caused by parasitic inductances in the current sense resistor or sensing traces may lead to erroneous zero crossing detection and cause non-optimal diode emulation operation, and the Sync FET may be turned off while the current is still high in the positive direction. See the Application Information section for coping with current sense parasitic inductances for optimal diode emulation operation.

6-11. Diode Emulation Operation

6.3.10.3 FPWM Programming and Dynamic FPWM and DEM Change

If the SS/DEM pin does not have an external pulldown resistor, or if the external pulldown resistor is large enough, the pin voltage eventually raises above 4V by the SS current source that charges the C_{SS} , and this sets the corresponding channel of the LM5171-Q1 to operate in FPWM.

To dynamically change the operating mode between the FPWM and DEM modes, the programming resistor can be switched in and off by controlling the series FET, as shown in \boxtimes 6-10. When the FET is turned on, it sets the channel in DEM. When the FET is turned off, it sets the channel in FPWM. There are 128 switching cycles transition time to gradually change from one mode to the other.

6.3.10.4 SS Pin as the Restart Timer

The SS pin also fulfills the function of a restart timer in an OVP event or following a DIR command change:

6.3.10.4.1 Restart Timer in OVP

When OVP catches an overvoltage event (refer to $\frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{6}$), C_{SS1} of CH-1 is discharged immediately by the internal pulldown FET, and this FET remains ON as long as the overvoltage condition persists. When the overvoltage condition is removed and after the SS/DEM1 voltage is discharged to below 0.3 V, the pulldown is released, setting off a new soft-start cycle. The circuit may run in retry or hiccup mode if the overvoltage condition reappears. The retry frequency is determined by the C_{SS1} as well as the nature of the overvoltage condition.

Note that OVP only affects SS/DEM1 but not SS/DEM2. For multiphase parallel operation, connect SS/DEM1 and SS/DEM2 to enable the same hiccup mode in CH-2 as shown in \boxtimes 6-12. For independent channel operation, an external OVP protection circuit is needed for CH-2, and that circuit must be configured to discharge SS/DEM2 to achieve OVP and also the hiccup mode operation. \boxtimes 6-13 shows an example of such an external OVP implementation for CH-2. See \boxtimes 6-22 and \boxtimes 6-23 for other examples.

図 6-12. OVP Implementation for SS-DEM Pins Connection for Parallel Operation

6.3.10.4.2 Restart Timer after a DIR Change

When DIR dynamically flips its state from 0 to 1, or 1 to 0 during operation, C_{SS} is first discharged to 0.3V by the internal pulldown FET, then the pulldown is released to set off a new soft-start cycle to gradually build up the channel current in the new direction. In this way, the channel current overshoot is eliminated.

For independent channel operation, DIR1 and DIR2 can be independently controlled. For multiphase parallel operation, DIR1 and DIR2 must be tied together, and the user may also consider tying the SS/DEM1 and SS/ DEM2 together.

6.3.11 Gate Drive Outputs, Dead Time Programming and Adaptive Dead Time (HO1, HO2, LO1, LO2, DT/SD)

Each channel of the LM5171-Q1 has a robust 5A (peak) half bridge driver to drive external N-channel power MOSFETs. As shown in \boxtimes 6-14, the low-side drive is directly powered by VCC, and the high-side driver by the bootstrap capacitor C_{BT}. During the on-time of the low-side driver, the SW pin is pulled down to PGND and C_{BT} is charged by VCC through the boot diode D_{BT}. TI recommends selecting a 0.1µF or larger ceramic capacitor for C_{BT}, and an ultra-fast diode of 1A and 100V ratings for D_{BT}. TI also strongly recommends users to add a 2Ω to 5Ω resistor (R_{BT}) in series with D_{BT} to limit the surge charging current and improve the noise immunity of the high-side driver.

図 6-14. Bootstrap Circuit for High-Side Bias Supply (Only One Channel is Shown)

During start-up in buck mode, C_{BT} may not be charged initially; the LM5171-Q1 then holds off the high-side driver outputs (HO1 and HO2) and sends LO pulses of 100ns width in consecutive cycles to pre-charge C_{BT} . When the boot voltage is greater than the 6.5V boot UV threshold, the high-side drivers output PWM signals at the HO1 and HO2 pins for normal switching action. If the boot voltage becomes lower than the boot UV threshold voltage on the falling edge, the corresponding HO output pulls low until the boot voltage recovers to assume normal HO switching pulses. During normal buck mode operation, when the CBT voltage falls below the 6.5V boot UV threshold, the same precharge function starts by interrupting the normal switching until the boot voltage restores above the UV threshold. This helps prevent the power MOSFETs from running into linear mode by inadequate gate voltage. Note that the gate threshold voltage of the MOSFETs may raise to as high as 6V due to degradation over aging.

During start-up and normal operation in boost mode, C_{BT} is naturally charged by the normal turnon of the low side MOSFET, therefore there is no such 100-ns pre-charge pulse at the LO pins.

To prevent shoot-through between the high-side and low-side power MOSFETs on the same half bridge leg, two types of dead time schemes can be chosen with the DT pin: the programmable dead time or built-in adaptive dead time.

To program the dead time, place a resistor R_{DT} across the DT/SD and AGND pins as shown in \boxtimes 6-15.

The dead time t_{DT} as depicted in 🗵 6-16 is determined by \neq 14:

$$t_{\rm DT} = R_{\rm DT} \times 2.625 \frac{\rm ns}{\rm k\Omega}$$

Note that this equation is valid for programming t_{DT} between 15ns and 200ns. When the power MOSFET is connected to the gate drive, its gate input capacitance C_{ISS} becomes a load of the gate drive output, and the HO and LO slew rate are reduced, leading to a reduced effective t_{DT} between the high- and low-side MOSFETs. The

user must evaluate the effective t_{DT} to make sure it is adequate to prevent shoot-through between the high- and low-side MOSFETs.

When the DT programmability is not used, simply connect the DT/SD pin to VDD as shown in \boxtimes 6-17, to activate the built-in adaptive dead time. The adaptive dead time is implemented by real time monitoring of the output of a driver (either HO or LO) by the other driver (LO or HO) of the same half bridge switch leg, as shown in \boxtimes 6-17 and \boxtimes 6-18. Only when the output voltage of a driver falls below 1.5V does the other driver starts turnon. The effectiveness of adaptive dead time is greatly reduced if a series gate resistor is used, or if the PCB traces of the gate drive have excessive impedance due to poor layout design.

G-15. Dead Time Programming With DT Pin (Only One Channel is Shown)

図 6-16. Gate Drive Dead Time (Only One Channel is Shown)

図 6-17. Dead Time without external Programming (Only One Channel is Shown)

図 6-18. Adaptive Dead Time (Only One Channel is Shown)

6.3.12 Emergency Latched Shutdown (DT/SD)

The DT/SD pin also serves as an emergency latched shutdown pin. During the operation the DT/SD pin is monitored by an internal circuit. The pin is normally regulated at 1.2V with a sourcing current limit of 300μ A. Once the pin is externally pulled down below 0.5V for more than 2.5µs, the LM5171-Q1 shuts down and the state is latched until the UVLO is pulled below 1.25V to unlatch. 🖾 6-19 shows an example of implementing the emergency latched shutdown function

When the LM5171-Q1 sets for adaptive dead time scheme, DT/SD pin needs to be pulled up to VDD. In order to implement the emergency latched shutdown control in this case, a $20k\Omega$ limiting resistor must be placed across the VDD and DT/SD pin, as shown in \boxtimes 6-20.

図 6-19. Emergency Latched Shutdown

G-20. Emergency Latched Shutdown with Adaptive Deadtime Scheme

6.3.13 PWM Comparator

Each channel of the LM5171-Q1 has a pulse width modulator (PWM) employing a high-speed comparator. It compares the internal ramp signal and the COMP pin signal to produce the PWM duty cycle. Note that the COMP signal passes through a 1V DC offset before it is applied to the PWM comparator, as shown in \boxtimes 6-10. Owing to this DC offset, the duty cycle can reduce to zero when the COMP pin or SS pin is pulled lower than 1V. The maximum duty cycle is limited by the 100ns typical minimum off-time, with the worst case max limit of 150ns. Note that the programmed dead time may reduce the maximum duty cycle because it is additional to the minimum off-time. Therefore, the maximum duty cycle, for both buck and boost mode operation, is determined by \vec{x} 15.

$$D_{MAX} = 1 - (150ns + t_{DT}) \times F_{sw}$$
 (15)

Where

- t_{DT} is the dead time given by \pm 14 or the adaptive dead time, whichever applicable.

This maximum duty cycle limits the minimum voltage step-down ratio in buck mode operation, and the maximum step-up ratio in boost mode operation.

6.3.14 Oscillator (OSC)

The LM5171-Q1 oscillator frequency is set by the external resistor R_{OSC} connected between the OSC pin and AGND, as shown in \boxtimes 6-21. The OSC pin must never be left open whether or not an external clock is present. To set a desired oscillator frequency F_{OSC} , R_{OSC} is approximately determined by \neq 16:

$$R_{OSC} = \frac{41.5k\Omega \times 100 \text{ kHz}}{F_{OSC}}$$
(16)

R_{OSC} must be placed as close as possible to the OSC and AGND pins. Take the tolerance of the external resistor and the frequency tolerance indicated in *Electrical Characteristics* into account when determining the worst-case operating frequency.

The LM5171-Q1 also includes a Phase-Locked Loop (PLL) circuit to manage multiphase interleaving phase angle as well as the synchronization to the external clock applied at the SYNCI pin. When no external clock is present, the converter operates at the oscillator frequency given by $\overrightarrow{\pi}$ 16. If an external clock signal of a frequency within ±20% of F_{SW} is applied (see $t/2/2 \times 6.3.15$), the converter switches at the frequency of the external clock F_{EX CLK}, namely $\overrightarrow{\pi}$ 17:

$$F_{SW} = \begin{cases} F_{OSC} & \text{(in Standalone)} \\ \\ F_{EX_CLK} & \text{(in Synchronization)} \end{cases}$$

Two internal clock signals CLK1 and CLK2 are produced to control the interleaving operation of CH-1 and CH-2, respectively. The third clock signal is output at the SYNCO pin. All these three clock signals run at the same frequency of F_{SW} . The phase angles among these three clock signals are controlled by the state of the OPT pin. See $\frac{t}{2}\frac{3}{2}\frac{3}{4}\frac{3}{2}\frac{3}{4}$.

(17)

図 6-21. Oscillator and Interleaving Clock Programming

6.3.15 Synchronization to an External Clock (SYNCI, SYNCO)

The LM5171-Q1 can synchronize to an external clock if F_{EX_CLK} is within ±20% of F_{OSC} . The SYNCIN clock pulse width must be in the range of 100ns to 0.8/ F_{OSC} , with a high voltage level > 2V and low voltage level < 1V.

 F_{EX_CLK} can be adjusted dynamically. However the LM5171-Q1 PLL takes approximately 150µs to settle down to the newly asserted frequency. During the PLL transient, the instantaneous F_{SW} may temporarily drop by 25%. To avoid overstress during the transient, TI recommends the user to reduce the load current to less than 50% by lowering the ISET voltage, or to simply turn off the dual-channels by setting EN1 = EN2 = 0 when making an the external clock change.

6.3.16 Overvoltage Protection (OVP)

As shown in \boxtimes 6-22, the LM5171-Q1 includes the over voltage protection function, which can be used to monitor either the HV-port, or the LV-port, or a user defined voltage rail, through a resistor divider at the OVP pin.

A resistor divider at the OVP pin sets the OVP threshold. When the OVP pin voltage exceeds the 1.0V threshold on the rising edge, both HO1 and LO1 are turned off. At the same time C_{SS1} is discharged, and the C_{SS1} remains discharged as long as the OVP event lasts. When the OVP voltage falls 105mV below the 1.0V threshold on the falling edge, the OVP alarm is removed, the SS/DEM1 pulldown is released, and CH-1 resumes operation through a soft-start. See the Soft Start description for details.

Note that OVP alarm only affects CH-1, but not CH-2, and it only protects one voltage rail. Additional OVP functions can be implemented with simple external circuits.

- For multiphase parallel operation, connect SS/DEM1 and SS/DEM2 to enable OVP for both channels as shown in ⊠ 6-22.
- For additional voltage rail OVP, employ an external circuit as shown in \boxtimes 6-23, in which an open drain comparator can discharge C_{SS1} and C_{SS2} once the protected railed voltage exceeds the OVP threshold.
- For independent channel operation, an external OVP protection circuit is needed for CH-2 as shown in ⊠ 6-24, in which CH-1 OVP is implemented with the internal circuit, and the CH-2 OVP is fulfilled by the external open-drain comparator at SS/DEM2. Note the C_{SS2} also serves as the OVP hiccup mode timer for CH-2.

図 6-22. OVP for CH-1 or Multiphase Parallel Operation

図 6-24. Independent Channel Operation OVP Implementation

6.3.17 Multiphase Configurations (SYNCO, OPT)

There are various options to make multiphase configurations.

6.3.17.1 Multiphase in Star Configuration

Each LM5171-Q1 synchronizes to an external clock, and the clock signals must have appropriate phase delays among them for proper multiphase interleaving operation. The interleave angle between the two phases of each LM5171-Q1 can be programmed to 180° or 240° by the OPT pin. The SYNCIN and SYNCOUT are phase shifted by 90° with each other. Higher stage phases (More than 8) can be implemented using HOST MCU generating SYNCIN pulses for set of each 8 phase block. \gtrsim 6-2 summarizes the settings of the external clocks and the OPT pin state for multiphase configurations.

NUMBER OF PHASES	PHASE SHIFT BETWEEN EXTERNAL CLOCKS FOR MULTIPHASE INTERLEAVING	OPT LOGIC STATE ⁽¹⁾	CH-2 PHASE LAGGING VS CH-1	NUMBER OF LM5171 CONTROLLERS NEEDED	NUMBER OF EXTERNAL CLOCKS NEEDED
2	180°	1	180°	1	1 or 0
3	120°	0	240°	2	2
4	90°	1	180°	2	2
6	60° or 120°	1	180°	3	3
8	45°	1	180°	4	2

表 6-2. Multiphase Configurations With Individual External Clock

(1) OPT State = 0 when the pin connects to AGND, and 1 when the pin voltage is VDD.

6.3.17.2 Daisy-Chain Configurations for 2, 3, or 4 Phases parallel operations

This can be used to achieve 1, 2, 3, or 4 phases without using an external clock. $\underline{\times}$ 6-3 summarizes the OPT settings for the daisy-chain multiphase configurations. $\underline{\boxtimes}$ 6-25 shows an example of daisy-chain connection for three and four phases interchangeable operation.

NUMBER OF PHASES	OPT LOGIC STATE ⁽¹⁾	CH-2 PHASE LAGGING VS CH-1	SYNCOUT PHASE LAGGING VS CH-1	NUMBER OF LM5171 CONTROLLERS NEEDED	NUMBER OF EXTERNAL CLOCKS NEEDED
2	1	180°	90°	1	0 or 1
3	0	240°	120°	2	0 or 1
4	1	180°	90°	2	0 or 1

表 6-3. Multiphase Configurations With Built-In Daisy-Chain Controller - Responder Configuration

(1) OPT State = 0 when the pin connects to AGND, and 1 when the pin voltage is VDD.

図 6-25. Three or Four Phases Interchangeable Configuration

6.3.17.3 Daisy-Chain configuration for 6 or 8 phases parallel operation

To configure 6 phases, it requires daisy chain as shown in \boxtimes 6-26 and for 8 phases, it requires daisy chain as shown in Eight Phases 45° Interleaving Configuration using External Clock Shift.

Note that two phase-shifted external clock signals are required for proper interleaving operation

図 6-26. Six Phases 60° Interleaving Configuration using External Clock Shift

図 6-27. Eight Phases 45° Interleaving Configuration using External Clock Shift

When external clock signals are not available, the 6-phase can be configured in 120° interleaving as shown in Six Phases 120° Interleaving Configuration using Internal Clock Shift.

6.3.18 Thermal Shutdown

An internal thermal shutdown is provided to protect the device in case that the junction temperature exceeds 175°C typical. During thermal shutdown, the device is forced into a low power state with the MOSFET drivers disabled, and SS/DEM1 and SS/DEM2 pin internally pulled down and held low. After the junction temperature is reduced (typical hysteresis is 15°C), the device steps out of the thermal shutdown mode, and it restarts through soft-start by releasing the SS/DEM1 and SS/DEM2 pulldown.

6.4 Programming

6.4.1 Dynamic Dead Time Adjustment

In addition to a fixed dead time programming by R_{DT} , the dead time can be dynamically adjusted either by applying an analog voltage or a PWM signal as shown in \boxtimes 6-29. Varying the analog voltage or the duty ratio of the PWM signal adjusts the DT programming. For analog adjustment, a single stage RC filter is recommended to filter out any possible noise. For PWM adjustment, a two-stage RC filter is recommended to minimize the ripple voltage resulted on the DT pin.

図 6-29. Dynamic Dead Time Adjustment a

図 6-30. Dynamic Dead Time Adjustment b

When an analog voltage is applied, the resulted dead time is determined by $\neq 18$:

$$t_{DT}(V_{ADJ}) = \left(\frac{1}{R_{DT}} + \frac{1}{R_{ADJ1} + R_{AJD2}} - \frac{0.8 \times V_{ADJ}}{R_{ADJ1} + R_{AJD2}}\right)^{-1} \times 2.625 \frac{ns}{k\Omega}$$
(18)

where

• V_{ADJ} is the analog voltage used to adjust the dead time

When a PWM signal is applied, the resulted dead time is determined by \pm 19:

$$t_{DT}(D_{ADJ}) = \left(\frac{1}{R_{DT}} + \frac{1}{R_{ADJ1} + R_{AJD2} + R_{AJD3}} - \frac{0.8 \times \left[(V_{HI} - V_{LO}) \times D_{ADJ} + V_{LO}\right]}{R_{ADJ1} + R_{AJD2} + R_{AJD3}}\right)^{-1} \times 2.625 \frac{ns}{k\Omega}$$
(19)

where

• V_{HI} and V_{LO} are the high and low voltage levels of the PWM signal, respectively,

• D_{ADJ} is the duty factor of the PWM signal.

Note that in dynamic dead time programming, to equivalent impedance at the DT /SD pin seen by the IC must be greater than 5 k Ω to prevent unintended shutdown latch. See 22/2=26.3.12 for details.

(20)

6.4.2 UVLO Programming

The UVLO pin is the enable pin of the LM5171-Q1 controller. It can be directly controlled by an external control unit like an MCU.

Nevertheless, the UVLO pin can also fulfill the undervoltage lockout function of a particular power rail. The rail can be either the HV-Port, or the LV-Port, or VCC. Use a resistor divider to set the UVLO threshold, as shown in \boxtimes 6-31. The divider must satisfy \neq 20:

$$\frac{R_{UVLO2}}{R_{UVLO1} + R_{UVLO2}} \times V_{UVLO} = 2.5 \text{ V}$$

The UVLO hysteresis is accomplished with an internal 25- μ A current source. When UVLO > 2.5 V, the current source is activated to instantly raise the voltage at the UVLO pin. When the UVLO pin voltage falls below the 2.5-V threshold the current source is turned off, causing the voltage at the UVLO pin to fall. The UVLO hysteresis is determined by \neq 21:

$$V_{HYS} = R_{UVLO1} \times 25 \ \mu A \tag{21}$$

An optional ceramic capacitor C_{UVLO} can be placed in parallel with R_{UVLO2} to improve the noise immunity. C_{UVLO} is usually between 1 nF to 10 nF. A large C_{UVLO} may cause excessive delay to respond to a real UVLO event.

If \ddagger 21 does not provide adequate hysteresis voltage, the user can add R_{UVLO3} as shown in \boxtimes 6-32. The hysteresis voltage is thus given by \ddagger 22:

$$V_{HYS} = \left[R_{UVLO1} + R_{UVLO3} \times \left(1 + \frac{R_{UVLO1}}{R_{UVLO2}} \right) \right] \times 25 \ \mu A$$
(22)
$$V_{HYS} = \left[R_{UVLO1} + R_{UVLO3} \times \left(1 + \frac{R_{UVLO1}}{R_{UVLO2}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO1} + R_{UVLO3} \times \left(1 + \frac{R_{UVLO2}}{R_{UVLO1}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO1} + R_{UVLO3} \times \left(1 + \frac{R_{UVLO1}}{R_{UVLO1}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO1} + R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO1}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO1} + R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO1}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO1} + R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO1}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO1} + R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO1}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO1}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{HYS} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO3}} \right) \right] \times 25 \ \mu A$$

$$V_{US} = \left[R_{UVLO3} \times \left(1 + \frac{R_{UVLO3}}{R_{UVLO$$

6.5 Registers

6.5.1 I²C Serial Interface

In LM5171-Q1, I²C communication is available when the UVLO pin is > 1.5V and the configuration is complete. VDD pin voltage falling below 4.5V VDDUV disables the communication, but as long as it stays above 2.5V (the lower threshold), it does not require reconfiguring to enter the I²C communication when VDD goes out of VDDUV.

6.5.2 I²C Bus Operation

The I² C bus is a communications link between a Controller and a series of Peripheral devices. The link is established using a two-wired bus consisting of a serial clock signal (SCL) and a serial data signal (SDA). The serial clock is sourced from the Controller in all cases where the serial data line is bi-directional for data communication between the Controller and the Peripheral terminals. Each device has an open-drain output to transmit data on the serial data line (SDA). An external pull-up resistor must be placed on the serial data line to pull the drain output high during data transmission. The device hosts a Peripheral I² C interface that supports standard-mode, fast-mode and fast-mode plus operation with data rates up to 100kbit/s, 400 kbit/s and 1000 kbit/s respectively and auto-increment addressing compatible to I² C standard 3.0.

Data transmission is initiated with a start bit from the controller as shown in the figure below. The start condition is recognized when the SDA line transitions from high to low during the high portion of the SCL signal. Upon reception of a start bit, the device receives serial data on the SDA input and check for valid address and control information. If the peripheral address bits are set for the device, then the device issues an acknowledge pulse and prepares to receive the register address and data. Data transmission is completed by either the reception of a stop condition or the reception of the data word sent to the device. A stop condition is recognized as a low to high transition of the SDA input during the high portion of the SCL signal. All other transitions of the SDA line must occur during the low portion of the SCL signal. An acknowledge is issued after the reception of valid address, sub-address and data words. The I ² C transmission.

🛛 6-34. I² C Data Transmission Timing

2 6-35. I² C Data Transmission Timing for maximum rise/fall times.

6.5.3 Clock Stretching

Clock stretching is not supported. If the device is addressed while busy and not able to process the received data, it does not acknowledge the transaction.

6.5.4 Data Transfer Formats

The device supports four different read/write operations:

- Single read from a defined register address.
- Single write to a defined register address.
- Sequential read starting from a defined register address
- · Sequential write starting from a defined register address

6.5.5 Single READ From a Defined Register Address

 \boxtimes 6-36 shows the format of a single read from a defined register address. First, the Controller issues a start condition followed by a seven-bit I ² C address. Next, the Controller writes a zero to signify that a write operation is conducted. Upon receiving an acknowledge from the Peripheral the Controller sends the eight-bit register address across the bus. Following a second acknowledge the device sets the internal I ² C register number to the defined value. Then the Controller issues a repeat start condition and the seven-bit I ² C address followed by a one to signify that a read operation has conducted. Upon receiving a third acknowledge, the Controller releases the bus to the device. The device then returns the eight-bit data value from the register on the bus. The Controller does not acknowledge (nACK) and issues a stop condition. This action concludes the register read.

write							read	ł			
		♦						ᡟ			
S	7-bit Slave Address	0	A	8-bit Register Address	Α	S	7-bit Slave Address	1	A		ĀΡ
	From master to slave	F	From	slave to master	S] Sta	rt P Stop		/	A Acknowlege A No	ot Acknowlege

6.5.6 Sequential READ Starting From a Defined Register Address

A sequential read operation is an extension of the single read protocol and shown in \boxtimes 6-37. The Controller acknowledges the reception of a data byte, the device auto increments the register address and returns the data from the next register. The data transfer is stopped by the Controller not acknowledging the last data byte and sending a stop condition.

図 6-37. Sequential READ Starting From A Defined Register Address

6.5.7 Single WRITE to a Defined Register Address

 \boxtimes 6-38 shows the format of a single write to a defined register address. First, the Controller issues a start condition followed by a seven-bit I ² C address. Next, the Controller writes a zero to signify that it wishes to conduct a write operation. Upon receiving an acknowledge from the Peripheral, the Controller sends the eight-bit register address across the bus. Following a second acknowledge the device sets the I ² C register address to the defined value and the Controller writes the eight-bit data value. Upon receiving a third acknowledge the device auto increments the I ² C register address by one and the Controller issues a stop condition. This action concludes the register write.

		WILLE	9						
		Ţ							
S	7-bit Slave Address	0	A	8-bit Register Address	A		DATAREGADDR	AP	
	From master to slave	F	rom	slave to master	S	Start	P Stop	A Acknowlege	Ā Not Acknowlege
	図 6-38. Single WRITE to Defined Register Address								

6.5.8 Sequential WRITE Starting From A Defined Register Address

A sequential write operation is an extension of the single write protocol and shown in \boxtimes 6-39. If the Controller does not send a stop condition after the device has issued an ACK, the device auto increments the register address by one and the Controller can write to the next register.

	v	vrite	9						
		ᡟ							
S	7-bit Slave Address	0	A 8-b	oit Register Address	Α	DATAREGADDR	Α –		
	-		DATA _{REG}	ADDR+1 A		DATA _{REGADDR+n-1}	A	DATA _{REGADDR+n}	A P
	From master to slave	F	From slave to	o master	S	Start P Stop		A Acknowlege Ā No	ot Acknowlege
	27	6	20 600	uantial WDITE St	orti	ing At A Defined Regi	into	r Addroop	

図 6-39. Sequential WRITE Starting At A Defined Register Address

6.5.9 REGFIELD Registers

 $\frac{1}{5}$ 6-4 lists the memory-mapped registers for the REGFIELD registers. All register offset addresses not listed in $\frac{1}{5}$ 6-4 should be considered as reserved locations and the register contents should not be modified.

表 6-4. REGFIELD Registers							
Address	Acronym	Register Name	Section				
3h	CLEAR_FAULTS	CLEAR_FAULTS	セクション 6.5.9.1				
78h	FAULT_STATUS	FAULT_STATUS	セクション 6.5.9.2				
D0h	DEVICE_STATUS_1	DEVICE_STATUS_1	セクション 6.5.9.3				
D1h	DEVICE_STATUS_2	DEVICE_STATUS_2	セクション 6.5.9.4				

Complex bit access types are encoded to fit into small table cells. $\frac{1}{5}$ 6-5 shows the codes that are used for access types in this section.

Access Type	Code	Description					
Read Type							
R	R	Read					
Write Type							
W	W	Write					
Reset or Default	Value						
-n		Value after reset or the default value					

表 6-5. REGFIELD Access Type Codes

6.5.9.1 CLEAR_FAULTS Register (Address = 3h) [Reset = 00h]

CLEAR_FAULTS is shown in 表 6-6.

Return to the 表 6-4.

Clear all latched status flags in 0x78 register

表 6-6. CLEAR_FAULTS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7-0	CLEAR_FAULTS	R/W	0h	Accessing the address is enough to clear fault

6.5.9.2 FAULT_STATUS Register (Address = 78h) [Reset = 00h]

FAULT_STATUS is shown in 表 6-7.

Return to the \pm 6-4.

Fault status

表 6-7. FAULT_STATUS Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	IPK_FAULT	R	0h	IPK float detection 0h = no fault 1h = fault
6	VREF_FAULT	R	0h	VREF to VDD short detection 0h = no fault 1h = fault
5	BOOTUV1	R	0h	Boot UV (HB-SW undervoltage) Channel 1 0h = no fault 1h = fault
4	BOOTUV2	R	0h	Boot UV (HB-SW undervoltage) Channel 2 0h = no fault 1h = fault
3	ILIM1	R	0h	Current limit Channel 1 0h = no fault 1h = fault
2	ILIM2	R	0h	Current limit Channel 2 0h = no fault 1h = fault
1	OVP	R	0h	Over voltage fault 0h = no fault 1h = fault
0	TSD	R	0h	Thermal shutdown fault 0h = no fault 1h = fault

6.5.9.3 DEVICE_STATUS_1 Register (Address = D0h) [Reset = 00h]

DEVICE_STATUS_1 is shown in 表 6-8.

Return to the \pm 6-4.

Informational bits about the part status

表 6-8. DEVICE_STATUS_1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	EN1	R	0h	Channel 1 enable status 0h = Channel 1 disabled 1h = Channel 1 enabled
6	EN2	R	Oh	Channel 2 enable status 0h = Channel 2 disabled 1h = Channel 2 enabled
5	DEM1	R	Oh	Channel 1 DEM status 0h = Channel 1 FPWM 1h = Channel 1 DEM
4	DEM2	R	0h	Channel 2 DEM status 0h = Channel 2 FPWM 1h = Channel 2 DEM
3	DIR1	R	0h	DIR 1 status 0h = DIR1 low 1h = DIR1 high
2	DIR2	R	0h	DIR 2 status 0h = DIR2 low 1h = DIR2 high
1	DIR_INVALID1	R	0h	Invalid DIR1 command 0h = Valid DIR1 command 1h = Invalid DIR1 command
0	DIR_INVALID2	R	0h	Invalid DIR2 command 0h = Valid DIR2 command 1h = Invalid DIR2 command

6.5.9.4 DEVICE_STATUS_2 Register (Address = D1h) [Reset = 00h]

DEVICE_STATUS_2 is shown in 表 6-9.

Return to the $\frac{1}{2}$ 6-4.

Informational bits about the part status

表 6-9. DEVICE_STATUS_2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
7	OSC_FAULT	R	0h	OSC short detection 0h = No OSC fault 1h = OSC fault
6	UVLO	R	0h	UVLO status 0h = Not in UVLO 1h = In UVLO (UVLO<2.5V)
5	OPT	R	0h	OPT pin status 0h = OPT low 1h = OPT high
4	SS1_DONE	R	0h	SS channel 1 completion status 0h = SS1 not done 1h = SS1 done
3	SS2_DONE	R	0h	SS channel 2 completion status 0h = SS2 not done 1h = SS2 done
2	SD	R	0h	SD/DT pin status 0h = Part not in SD 1h = Part in SD
1	ADAPT_DT	R	0h	Adaptive deadtime status 0h = No adaptive deadtime 1h = Adaptive deadtime
0	VCC_UV	R	0h	VCC UV status 0h = VCC not in UV 1h = VCC in UV

7 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

LM5171-Q1 is suitable for the bidirectional DC-DC converters for dual battery systems, and battery backup systems. It can also create stackable, high power, unidirectional buck or boost converters with balanced current sharing among multiphases.

LM5171-Q1 uses average current mode control which is a two-loop system. LM5171-Q1 integrates two operational amplifiers to achieve HV voltage regulation and LV voltage regulation. Please note only one operational amplifier is enabled according to DIR1. External operational amplifiers may be necessary for CH-2 in case of independent operation. The interface signals between the inner current loop and outer voltage loop are basically the DIR and ISET signals, of which the DIR signal controls the current direction, and the ISET signal carries the error information of the outer voltage loop.

7.1.1 Small Signal Model

The following describes the small signal model of inner current loop and outer voltage loop of LM5171-Q1. Some simplifications are made for better insight. And the compensation for the loops are also introduced.

LM5171-Q1 Design Calculator is also provided for the loop compensation.

7.1.1.1 Current Loop Small Signal Model

 \boxtimes 7-1 shows the current loop block diagram of each phase in buck mode. V_{HV} is the input while V_{LV} is the output.

図 7-1. Buck Loop Block Diagram

The inner current loop should be designed first. The average current-mode control loop of buck mode can be modeled as \boxtimes 7-2

図 7-2. Current Loop Block Diagram

The buck mode duty cycle (d) to channel inductor current (i_{Lm}) transfer function is determined by the following:

$$G_{id_BK}(s) = \frac{\widehat{i}_{Lm}}{\widehat{d}} = \frac{V_{HV}}{R_{OUT_BK}} \times \frac{1 + \frac{s}{\omega_{Z_il_BK}}}{1 + \frac{s}{\omega_{0_BK} \times Q_{BK}} + \frac{s^2}{\omega_{0_BK}^2}}$$
(23)

$$R_{OUT_BK} = \frac{V_{LV}}{n_p \times I_{Lmax}}$$
(24)
$$\omega_{Z_il_BK} = \frac{1}{R_{OUT_BK} \times C_{OUT_BK}}$$
(25)

.

(27)

$$\omega_{0_{BK}} = \frac{1}{\sqrt{L_{m} \times C_{OUT_{BK}}}}$$
(26)

$$Q_{BK} = \frac{1}{\omega_{0}_{BK}} \times \frac{1}{\frac{L_{m}}{R_{OUT}_{BK}} + (R_{ESR}_{BK} + R_{CS} + R_{S}) \times C_{OUT}_{BK}}$$

- L_m is the power inductor,
- R_{CS} is the current sense resistor,
- R_S is the equivalent total resistance along the current path excluding R_{CS},
- C_{OUT BK} is the total output capacitance in buck mode.
- R_{ESR BK} is the total output capacitor equivalent series resistance (ESR).

 \boxtimes 7-3 shows the current loop block diagram in boost mode. V_{LV} is the input while V_{HV} is the output.

図 7-3. Boost Loop Block Diagram

The average current-mode control loop of boost mode is the same as buck as shown in \boxtimes 7-2. But the transfer function of the boost power stage $G_{id}(s)$ and $G_{vd}(s)$ is different from that of buck power stage.

The boost mode duty cycle (d) to channel inductor current (i_{Lm}) transfer function is determined by the following:

$$G_{id_BST}(s) = \frac{\hat{i}_{Lm}}{\hat{d}} = \frac{2 \times V_{LV}}{{D'}^3 \times R_{OUT_BST}} \times \frac{1 + \frac{s}{\omega_{Z_il_BST}}}{1 + \frac{s}{\omega_{0_BST} \times Q_{BST}} + \frac{s^2}{\omega_{0_BST}^2}}$$
(28)

where

 $D' = \frac{V_{LV}}{V_{HV}}$ (29)

$$R_{OUT_BST} = \frac{V_{HV}^2}{V_{LV} \times I_{Lmax}}$$
(30)

$$\omega_{Z_{il}BST} = \frac{2}{R_{OUT_{BST}} \times C_{OUT_{BST}}}$$
(31)

D′

Copyright © 2024 Texas Instruments Incorporated

$$\omega_{0_BST} = \frac{D'}{\sqrt{L_m \times C_{OUT_BST}}}$$
(32)
$$Q_{BST} = \frac{D'}{\omega_{0_BST}} \times \frac{1}{\frac{L_m}{D' \times R_{OUT_BST}} + \frac{(R_{CS} + R_S) \times C_{OUT_BST}}{D'} + R_{ESR_BST} \times C_{OUT_BST}}$$
(33)

- $C_{\text{OUT_BST}}$ is the total output capacitance for each phase in boost mode.
- R_{ESR} BST is the total output capacitor equivalent series resistance (ESR) for each phase in boost mode.

When we select the current loop cross over frequency at 1/6 of switching frequency, Gid BK(s) can be simplified. For the numerator, $s R_{OUT_BK} C_{OUT_BK}$ dominates. And for the denominator, $s^2/\omega_{0_BK}^2$ dominates. $\ddagger 23$ can be simplified as:

$$G_{id_BK}(s) = \frac{V_{HV}}{R_{OUT_BK}} \times \frac{1 + \frac{s}{\omega_{Z_il_BK}}}{\frac{s^2}{\omega_{0_BK}^2}} = \frac{V_{HV}}{s \times L_{m}}$$
(34)

Similarly, 式 28 can be simplified as:

$$G_{id_BST}(s) = \frac{2 \times V_{LV}}{{D'}^3 \times R_{OUT_BST}} \times \frac{\frac{s}{\omega Z__il_BST}}{\frac{s^2}{\omega_0 BST^2}} = \frac{V_{HV}}{s \times L_m}$$
(35)

It can be observed that the same duty cycle (d) to channel inductor current (i_{Lm}) transfer function is shared by both buck and boost mode:

$$G_{id}(s) = \frac{V_{HV}}{s \times L_{m}}$$
(36)

So compensator for buck current loop and boost current loop can also be shared.

(32)

7.1.1.2 Current Loop Compensation

 \pm 36 indicates that the power plant is basically a first-order system. A Type-II compensator as shown in \boxtimes 7-1 is adequate to stabilize the loop for both buck and boost mode operations.

Assuming the output impedance of the gm amplifier is R_{GM} , the current loop compensation gain is determined by :

$$G_{ci}(s) = G_m \times \left[R_{GM} \| Z_{comp}(s) \right]$$
(37)

where

- A_{CS} is the current sense amplifier gain, that is 40;
- G_m is the trans-conductance of the gm error amplifier, which is 100µA/V;
- Z_{COMP}(s) is the equivalent impedance of the compensation network seen at the COMP pin (see 図 7-1)

$$Z_{\text{COMP}}(s) = \frac{1}{C_{\text{HF}} + C_{\text{COMP}}} \times \frac{1 + s \times R_{\text{COMP}} \times C_{\text{COMP}}}{s \times \left(1 + s \times R_{\text{COMP}} \times \frac{C_{\text{HF}} \times C_{\text{COMP}}}{C_{\text{HF}} + C_{\text{COMP}}}\right)}$$
(38)

Considering $C_{HF} \ll C_{COMP}$, \overrightarrow{t} 38 can be simplified to :

$$Z_{\text{COMP}}(s) = \frac{1}{C_{\text{COMP}}} \times \frac{1 + s \times R_{\text{COMP}} \times C_{\text{COMP}}}{s \times (1 + s \times R_{\text{COMP}} \times C_{\text{HF}})}$$
(39)

Because R_{GM} is > 5Meg Ω , and the frequency range for loop compensation is usually above a few kHz, the effects of R_{GM} on the loop gain in the interested frequency range becomes negligible. Therefore, substituting \neq 39 into \neq 37, and neglecting R_{GM} , one can get the following:

$$G_{ci}(s) = \frac{G_m}{C_{COMP}} \times \frac{1 + s \times R_{COMP} \times C_{COMP}}{s \times (1 + s \times R_{COMP} \times C_{HF})}$$
(40)

From \boxtimes 7-2, the open-loop gain of the inner current loop can be found as:

$$T_{i}(s) = G_{ci}(s) \times \frac{1}{V_{M}} \times G_{id}(s) \times R_{f}$$
(41)

where

,

$$V_{\rm M} = V_{\rm HV} \times K_{\rm FF} \tag{42}$$

$$R_{f} = R_{CS} \times A_{CS} \tag{43}$$

 K_{FF} is the ramp generator coefficient. For LM5171-Q1, K_{FF} =0.03125. •

Substituting \pm 40 and \pm 36 into \pm 41, T_i(s) can be written as:

$$T_{i}(s) = \frac{1}{s \times K_{FF} \times L_{m}} \times \frac{R_{f} \times G_{m}}{C_{COMP}} \times \frac{1 + s \times R_{COMP} \times C_{COMP}}{s \times (1 + s \times R_{COMP} \times C_{HF})}$$
(44)

The poles and zeros of the total loop transfer function are determined by:

$$f_{p1} = 0$$
 (45)

$$f_{p2} = \frac{1}{2\pi \times R_{COMP} \times C_{HF}}$$
(46)

$$f_z = \frac{1}{2\pi \times R_{COMP} \times C_{COMP}}$$
(47)

To tailor the total inner current loop gain to crossover at f_{Cl}, select the components of the compensation network according to the following guidelines, then fine tune the network for optimal loop performance.

- 1. The zero f_z is placed at around 1/5 of target crossover frequency f_{CI} ,
- 2. The pole fp2 is placed at approximately 1/2 of switching frequency fSW,
- 3. The total open-loop gain is set to unity at f_{CI}, namely,

$$|T_i(2i \times \pi \times f_{CI})| = 1$$
(48)

Therefore, the compensation components can be derived from the above equations, as shown in \pm 49.

$$\begin{cases} R_{COMP} = \frac{K_{FF}}{A_{CS} \times R_{CS} \times G_{m}} \times |2i \times \pi \times f_{CI} \times L_{m}| \\ C_{COMP} = \frac{1}{|2i \times \pi \times \frac{f_{CI}}{5} \times R_{COMP}|} \\ C_{HF} = \frac{1}{|2i \times \pi \times \frac{f_{SW}}{2} \times R_{COMP}|} \end{cases}$$
(49)

7.1.1.3 Voltage Loop Small Signal Model

When the current loop compensator is designed, the outer voltage loop can then be analyzed.

A system with n_p phases is shown in \boxtimes 7-4.

図 7-4. np phases system

The equavilent inductance and resistance are determined by

$$L_{mnp} = \frac{L_m}{n_p}$$
(50)

$$R_{\text{Snp}} = \frac{R_{\text{S}}}{n_{\text{p}}}$$
(51)

$$R_{\rm CSnp} = \frac{R_{\rm CS}}{n_{\rm p}}$$
(52)

$$R_{fnp} = \frac{R_f}{n_p}$$
(53)

The buck mode duty cycle (d) to n_p phases inductor current transfer function is determined by the following:

$$G_{idnp_BK}(s) = \frac{n_p \times \hat{i}_{Lm}}{\hat{d}} = \frac{V_{HV}}{R_{OUT_BK}} \times \frac{1 + \frac{s}{\omega_{Z_il_BK}}}{1 + \frac{s}{\omega_{0np_BK} \times Q_{npBK}} + \frac{s^2}{\omega_{0np_BK}^2}}$$
(54)

$$R_{OUT_BK} = \frac{V_{LV}}{n_p \times I_{Lmax}}$$
(55)

$$\omega_{\text{Z}_{i}\text{I}_{BK}} = \frac{1}{\text{R}_{\text{OUT}_{BK}} \times \text{C}_{\text{OUT}_{BK}}}$$
(56)

$$\omega_{0np_BK} = \frac{1}{\sqrt{L_{mnp} \times C_{OUT_BK}}}$$
(57)

$$Q_{npBK} = \frac{1}{\omega_{0np_BK}} \times \frac{1}{\frac{L_{mnp}}{R_{OUT_BK}} + (R_{ESR_BK} + R_{CSnp} + R_{Snp}) \times C_{OUT_BK}}$$
(58)

For n_p phase, the equivalent open loop gain $T_{inp}(s)$ can be obtained as

$$T_{inp}(s) = G_{ci}(s) \times \frac{1}{V_M} \times G_{id}(s) \times R_{fnp}$$
(59)

where

☑ 7-5 shows the outer voltage control loop and inner current loop.

We can get ISET to output voltage (v_0) close loop transfer function as:

$$G_{vs}(s) = \frac{\widehat{v}_{LV}}{\widehat{v}_{ISET}} = \frac{G_{ci}(s) \times \frac{1}{V_M} \times G_{vd}(s)}{1 + T_{inp}(s)}$$
(60)

When selecting the crossover frequency of the buck voltage loop lower than the current loop crossover frequency, $G_{vs}(s)$ can be simplified. For the denominator, $T_{inp}(s)$ dominates, ± 60 can be written as:

$$G_{\rm vs}(s) = \frac{\widehat{v}_{\rm LV}}{\widehat{v}_{\rm ISET}} = \frac{G_{\rm ci}(s) \times \frac{1}{V_{\rm M}} \times G_{\rm vd}(s)}{T_{\rm inp}(s)} = \frac{G_{\rm vd}(s)}{G_{\rm id}(s) \times R_{\rm fnp}}$$
(61)

The buck power plant duty cycle (d) to output voltage (v_{LV}) transfer function is determined by :

$$G_{vd_BK}(s) = \frac{\widehat{v}_{LV}}{\widehat{d}} = V_{HV} \times \frac{1 + \frac{s}{\omega_{Z_vl_BK}}}{1 + \frac{s}{\omega_{0np_BK} \times Q_{npBK}} + \frac{s^2}{\omega_{0np_BK}^2}}$$
(62)

where

$$\omega_{Z_vl_BK} = \frac{1}{R_{ESR_BK} \times C_{OUT_BK}}$$
(63)

Substituting \neq 62 into \neq 61, a simplified ISET to output voltage (V_{LV}) transfer function is determined by the following:

$$G_{vs_BK}(s) = \frac{\widehat{v}_{LV}}{\widehat{v}_{ISET}} = K_{dc_BK} \times \frac{1 + \frac{s}{\omega_{Z_vl_BK}}}{1 + \frac{s}{\omega_{Z_il_BK}}}$$
(64)

$$K_{dc_BK} = \frac{R_{OUT_BK}}{R_{fnp}}$$
(65)

Similarly, the boost power plant duty cycle (d) to output voltage (v_{HV}) transfer function is determined by :

$$G_{vd_BST}(s) = \frac{\widehat{v}_{HV}}{\widehat{d}} = \frac{V_{LV}}{{D'}^2} \times \frac{\left(1 + \frac{s}{\omega_{Z_vl_BST}}\right) \left(1 - \frac{s}{\omega_{RHPZ}}\right)}{1 + \frac{s}{\omega_{0np_BST}} \times Q_{npBST}} + \frac{s^2}{\omega_{0np_BST}^2}}$$
(66)

where

$$\omega_{Z_vl_BST} = \frac{1}{R_{ESR_BST} \times C_{OUT_BST}}$$
(67)

$$\omega_{\rm RHPZ} = \frac{R_{\rm OUT_BST} \times {D'}^2}{L_{\rm mnp}}$$
(68)

Substituting \neq 66 into \neq 61, a simplified ISET to output voltage (V_{HV}) transfer function is determined by the following:

$$G_{vs_BST}(s) = \frac{\widehat{v}_{HV}}{\widehat{i}_{set}} = K_{dc_BST} \times \frac{\left(1 + \frac{s}{\omega_{Z_vl_BST}}\right) \left(1 - \frac{s}{\omega_{RHPZ}}\right)}{1 + \frac{s}{\omega_{Z_vl_BST}}}$$
(69)

$$K_{dc_BST} = \frac{R_{OUT_BST} \times D'}{2 \times R_{fnp}}$$
(70)

7.1.1.4 Voltage Loop Compensation

The typical bi-directional application with HV voltage regulation and LV voltage regulation is shown in \boxtimes 7-6. Connect the error voltage of the outer voltage loop error amplifiers (ERRHV and ERRLV) to ISETx as the reference for the inner current loop.

It is advised that the outer voltage loop crossover frequency f_{CV} should be one decade below that of the inner current loop crossover frequency f_{CI} . And boost outer voltage loop crossover frequency should also be below 1/5 of the Right-Half-Plane Zero (RHPZ).

図 7-6. Outer Voltage Loop Control

Type-II compensator as shown in \boxtimes 7-6 is recommended to stabilize the voltage loop for both buck and boost mode operations.

Buck mode compensation will be analyzed as an example. The transfer function of the compensator of buck mode can be found as:

$$G_{\rm cv}(s) = \frac{\hat{v}_{\rm ISET}}{\hat{v}_{\rm LV}} \approx \frac{A_{\rm VM} \times \omega_{\rm ZEA}}{s} \times \frac{1 + \frac{s}{\omega_{\rm ZEA}}}{1 + \frac{s}{\omega_{\rm HF}}} \times K_{\rm ISET}$$
(71)

where

 $A_{\rm VM} \approx \frac{R_{\rm LCOMP}}{R_{\rm LFBT}}$ (72)

$$\omega_{\text{ZEA}} = \frac{1}{R_{\text{LCOMP}} \times C_{\text{LCOMP}}}$$
(73)

$$\omega_{\rm HF} \approx \frac{1}{R_{\rm LCOMP} \times C_{\rm LHF}}$$
(74)

$$K_{ISET} = \frac{R_{ISETB}}{R_{ISETT} + R_{ISETB}}$$
(75)

The total open-loop gain of the outer voltage loop of buck mode $T_{v BK}(s)$ is the product of $G_{vs BK}(s)$ and $G_{cv}(s)$:

$$T_{v_BK}(s) = G_{vs_BK}(s) \times G_{cv}(s)$$
(76)

Or:

$$T_{v_BK}(s) = K_{dc_BK} \times \frac{1 + \frac{s}{\omega_{Z_vl}}}{1 + \frac{s}{\omega_{Z_il}}} \times \frac{A_{VM} \times \omega_{ZEA}}{s} \times \frac{1 + \frac{s}{\omega_{ZEA}}}{1 + \frac{s}{\omega_{HF}}} \times K_{ISET}$$
(77)

To tailor the total outer voltage loop gain to crossover at f_{CV} , select the components of the compensation network according to the following guidelines, then fine tune the network for optimal loop performance.

- 1. Choose a value for R_{LFBT} based on the bias current and power dissipation,
- 2. The zero ω_{ZEA} is placed around 1/5 of target crossover frequency f_{CV} ,
- 3. The pole ω_{HF} is placed at approximately 10 times of f_{CV} ,
- 4. The total open-loop gain is set to unity at f_{CV}, namely,

$$\left| \mathsf{T}_{\mathsf{v}_{\mathsf{B}}\mathsf{K}}(2\mathsf{i} \times \pi \times \mathsf{f}_{\mathsf{C}}\mathsf{V}) \right| = 1 \tag{78}$$

Therefore, the compensation components can be derived from the above equations as:

$$\begin{cases} R_{LCOMP} = \frac{R_{LFBT}}{K_{dc_BK} \times \left| \frac{1 + \frac{2i \times \pi \times f_{CV}}{\omega_{Z_vl}}}{1 + \frac{2i \times \pi \times f_{CV}}{\omega_{Z_il}}} \right| \times K_{ISET} \\ C_{LCOMP} = \frac{1}{\left| 2i \times \pi \times \frac{f_{CV}}{5} \times R_{COMP} \right|} \\ C_{LHF} = \frac{1}{\left| 2i \times \pi \times 10 \times f_{CV} \times R_{COMP} \right|} \end{cases}$$
(79)

The compensator of boost voltage loop can be designed similarly. Please note that boost voltage loop crossover frequency should also be below 1/5 of the Right-Half-Plane Zero (RHPZ).

7.2 Typical Application

7.2.1 60A, Dual-Phase, 48V to 12V Bidirectional Converter

A typical application example is a 60A, dual-phase bidirectional converter as shown in \boxtimes 7-7. The HV-Port voltage range is 32V to 70V and the LV-Port 0V to 23V. Each phase is able to deliver $30A_{DC}$ current through the inductor.

資料に関するフィードバック(ご意見やお問い合わせ)を送信 65

7.2.1.1 Design Requirements

 \pm 7-1 lists the design parameters for this example.

表	7-1.	Design	Parameters
---	------	--------	------------

PARAMETER	EXAMPLE VALUE	NOTE
V _{LV_min}	6V	LV-Port minimum operating voltage
V _{LV_reg}	14V	LV-Port nominal voltage
V _{LV_max}	23V	LV-Port maximum operating voltage
V _{HV_min}	32V	HV-Port minimum operating voltage
V _{HV_reg}	50V	HV-Port nominal operating voltage
V _{HV_max}	70V	HV-Port maximum operating voltage
F _{SW}	100kHz	Switching frequency
I _{Lmax}	30A	Maximum average inductor current for each channel
I _{total}	60A	Total bidirectional DC at the LV-Port

7.2.1.2 Detailed Design Procedure

7.2.1.2.1 Determining the Duty Cycle

Obviously, the duty cycles are determined by ± 80 through ± 83 :

$$D_{BK_min} = \frac{V_{LV_reg}}{V_{HV max}} = \frac{14 V}{70 V} = 0.2$$
(80)

$$D_{BK_max} = \frac{V_{LV_reg}}{V_{HV\,min}} = \frac{14}{32} \frac{V}{V} = 0.438$$
(81)

$$D_{BST_min} = \frac{V_{HV_reg} - V_{LV_max}}{V_{HV_reg}} = \frac{50 \text{ V} - 23 \text{ V}}{50 \text{ V}} = 0.54$$

$$D_{BST_max} = \frac{V_{HV_reg} - V_{LV_min}}{V_{HV_reg}} = \frac{50 \ V - 6 \ V}{50 \ V} = 0.88$$
(83)

(82)

7.2.1.2.2 Oscillator Programming

To operate the converter at the desired switching frequency F_{SW} , select the R_{OSC} by satisfying \neq 16:

$$R_{osc} = \frac{41.5k\Omega \times 100kHz}{F_{osc}} = 41.5k\Omega$$
(84)

Choose standard resistor $R_{OSC} = 41.2k\Omega$.

7.2.1.2.3 Power Inductor, RMS and Peak Currents

The inductor current has a triangle waveform, as shown in Effects of Parasitic Inductance on the Current Sense Signal and Zero Crossing Detection. TI recommends selecting an inductor such that its peak-to-peak ripple current is less than 80% of the channel inductor full load DC current. Therefore, the inductor must satisfy \neq 85:

$$L_{m} \geq \frac{V_{LV_reg} \times (1 - D_{BK_min})}{80\% \times I_{max} \times F_{sw}} = \frac{14 \text{ V} \times (1 - 0.2)}{0.8 \times 30 \text{ A} \times 100 \text{ kHz}} = 4.67 \text{ }\mu\text{H}$$
(85)

Select $L_m = 4.7 \mu H$.

Then, the actual inductor peak to peak inductor current is determined by ± 86 :

$$I_{pk-pk} = \frac{V_{LV_reg} \times (1 - D_{BK_min})}{L_m \times F_{sw}} = \frac{14 \text{ V} \times (1 - 0.2)}{4.7 \text{ }\mu\text{H} \times 100 \text{ }\text{kHz}} = 23.83 \text{ A}$$
(86)

The peak inductor current is determined by \neq 87:

$$I_{\text{peak}} = I_{\text{max}} + \frac{I_{\text{pk}-\text{pk}}}{2} = 30 \text{ A} + \frac{23.83}{2} = 41.9 \text{ A}$$
 (87)

Select an inductor that has a saturation current I_{sat} at least 20% greater than I_{peak} to ensure full power with adequate margin. In this example, TI recommends selecting an inductor of $I_{sat} > 49A$.

The power inductor full load Root Mean Square (RMS) current I_{LM_RMS} determines its conduction losses. The RMS current is given by $\neq 88$:

$$I_{Lm_RMS} = \sqrt{I_{max}^2 + \frac{1}{12} \times I_{pk-pk}^2} = 30.8 \text{ A}$$
(88)

(90)

7.2.1.2.4 Current Sense (R_{CS})

To achieve the highest regulation accuracy over wider load range, the user must target to create 50mV of V_{CS} at full current. Therefore, R_{CS} must be selected as \neq 89:

$$R_{CS} \le \frac{50 \text{ mV}}{I_{max}} = \frac{50 \text{ mV}}{30 \text{ A}} = 1.667 \text{ m}\Omega$$
(89)

Ideally, a $1.5m\Omega$ current sense resistor must be chosen for this example. However, owing to availability, a standard non-inductive $1m\Omega$ current sense resistor is selected, namely,

$$R_{CS} = 1.0 \text{ m}\Omega$$

Wide terminal chip resistors are recommended for minimized parasitic inductance. For low ohmic value resistors, 4-terminal current sense resistors are suggested for best accuracy.

It is a good practice to reserve room for some ceramic capacitors for possible noise filtering as shown in \boxtimes 7-8. C_{CS1} and C_{CS2} filter out differential-mode noise, 100pF ceramic capacitors at each current sense pin filter out common-mode noise.

図 7-8. Current Sense With RC filter

7.2.1.2.5 Current Setting Limits (ISETx)

TI recommends setting a hard limit of the maximum current programming signal such that the converter cannot be over driven by an errant current programming signal. Assume the converter is allowed up to 10% overloading current. Refer to Channel Current Setting Commands (ISET1 and ISET2), the analog current setting signal ISETx must be limited by the following voltage level:

$$V_{\text{ISET}_\text{max}} = \frac{110\% \times \text{Imax} \times \text{R}_{\text{CS}}}{G_{\text{ISET}}} + 1\text{V} = \frac{110\% \times 30\text{A} \times 1\text{m}\Omega}{0.025} + 1\text{V} = 2.32\text{V}$$
(91)

As shown in \boxtimes 7-6, R_{ISETT} and R_{ISETB} are used to limit the maximum voltage on ISETx.

7.2.1.2.6 Peak Current Limit

One purpose of the peak current limit is to protect the power inductor from saturation. Program V_{IPK} such that the peak current limit threshold is 5% greater than I_{peak} . According to $\neq 12$, one gets:

$$V_{IPK} = \frac{105\% \times I_{peak} \times R_{CS}}{G_{IPK}} = \frac{105\% \times 41.9A \times 1m\Omega}{0.05} = 0.880V$$
(92)

Select $R_{IPKB} = 10k\Omega$ and $R_{IPKT} = 30.1k\Omega$ which results in $V_{IPK} = 0.873V$, corresponding to a nominal peak inductor current limit of 43.6A per channel.

7.2.1.2.7 Power MOSFETS

The power MOSFETs must be chosen with a V_{DS} rating capable of withstanding the maximum HV-port voltage plus transient spikes (ringing). 100V rated MOSFETs is selected in this application.

When the voltage rating is determined, select the MOSFETs by making tradeoffs between the MOSFET $R_{ds(ON)}$ and total gate charge Qg to balance the conduction and switching losses. For high power applications, parallel MOSFETs to share total power and reduce the dissipation on any individual MOSFET, hence relieving the thermal stress. The conduction losses in each MOSFET is determined by \neq 93.

$$P_{Q_cond} = \frac{1.8 \times R_{ds(ON)}}{N} \times I_{Q_RMS}^2$$
(93)

where

- N is the number of MOSFETs in parallel
- 1.8 is the approximate temperature coefficient of the R_{ds(ON)} at 125 °C
- and the total RMS switch current I_{Q RMS} is approximately determined by m cm 394

$$I_{Q_RMS} \approx \sqrt{D_{max}} \times I_{max} = \sqrt{D_{max}} \times I_{max}$$
 (94)

where

• D_{max} is the maximum duty cycle, either in the buck mode or boost mode.

The switching transient rise and fall times are approximately determined by:

$$\Delta t_{\text{rise}} \approx \frac{N \times Q_{\text{g}}}{4 \text{ A}}$$
(95)

$$\Delta t_{fall} \approx \frac{N \times Q_g}{5 A}$$
(96)

And the switching losses of each of the paralleled MOSFETs are approximately determined by:

$$P_{Q_sw} = \frac{1}{2} \times C_{oss} \times V_{HV}^2 \times F_{sw} + \frac{1}{2} \times \frac{I_{peak}}{N} \times V_{HV} \times (\Delta t_{rise} + \Delta t_{fall}) \times F_{sw}$$
(97)

where

C_{oss} is the output capacitance of the MOSFET.

70 資料に関するフィードバック(ご意見やお問い合わせ)を送信

The power MOSFET usually requires a gate-to-source resistor of $10k\Omega$ to $100k\Omega$ to mitigate the effects of a failed gate drive. When using parallel MOSFETs, a good practice is to use 1 to 2Ω gate resistor for each MOSFET, as shown in \boxtimes 7-9.

図 7-9. Paralleled MOSFET Configuration

If the dead time is not optimal, the body diode of the power synchronous rectifier MOSFET causes losses in reverse recovery. Assuming the reverse recovery charge of the power MOSFET is Q_{rr} , the reverse recovery losses are thus determined by $\neq 98$:

$$P_{Q_{rr}} = Q_{rr} \times V_{HV_{max}} \times F_{sw}$$
(98)

To reduce the reverse recovery losses, an optional Schottky diode can be placed in parallel with the power MOSFETs. The diode must have the same voltage rating as the MOSFET, and it must be placed directly across the MOSFETs drain and source. The peak repetitive forward current rating must be greater than I_{peak} , and the continuous forward current rating must be greater than the following \neq 99:

$$I_{SD_avg} = I_{peak} \times t_{DT} \times F_{sw}$$

(99)

ADVANCE INFORMATION

7.2.1.2.8 Bias Supply

The total load current of the bias supply is mainly determined by the total MOSFET gate charge Qg. Assume the system employs multiple LM5171-Q1s to implement M number of phases, and each phase uses N number of MOSFETs in parallel as one switch. There are 2× N MOSFETs per phase to drive. Then the total current to drive these MOSFETs through VCC bias supply is determined by 式 100.

$$I_{VCC} = 2 \times M \times N \times Q_a \times F_{sw} + M \times 5 \text{ mA}$$
(100)

where

• 5mA is the worst case maximum current used by the control logic circuit of each phase.

In an example of a four-phase system employing two parallel MOSFETs for one switch, where M = 4, N = 2, Q_g = 100nC, and F_{sw} = 100KHz, the bias supply must be able to support at least the following total load current:

$$I_{VCC} \ge 2 \times 4 \times 2 \times 100 \text{ nC} \times 100 \text{ kHz} + 4 \times 5 \text{ mA} = 180 \text{ mA}$$
(101)

In an example of an eight-phase system employing the same parallel MOSFETs for one switch, the bias supply must be able to support the following total load current:

$$I_{VCC_8ph} = 2 \times 8 \times 2 \times 100 \text{ nC} \times 100 \text{ kHz} + 8 \times 5 \text{ mA} = 360 \text{ mA}$$
(102)

As described in Bias Supplies and Voltage Reference (VCC, VDD, and VREF) The LM5171-Q1 integrates a LDO driver to drive an external N-channel enhancement MOSFET to generate 9V bias supply at the VCC pin. PMT560ENEAX is selected in this application.

However, the loss of the external MOSFET may be quite high especially in high load current and high input voltage conditions. External 10 to 12V VCC bias supply may be preferred. If not available in the system, the user can generate it from the LV-port using a buck-boost or SEPIC converter, or from the HV-port using a buck converter. Refer to the Texas Instruments LM25118 and LM5118 to implement a buck-boost converter, or LM5158 to implement a SEPIC converter, or the LM5160 and LM5161 to implement a buck converter.

A bypass capacitor must be placed close to the VCC and PGND pins. In this application, 2.2μ F, 16V ceramic capacitor is selected.

Copyright © 2024 Texas Instruments Incorporated

(100)
7.2.1.2.9 Boot Strap

Select a ceramic capacitor $C_{HB1} = C_{HB2} = 0.1$ to approximately 0.22μ F, placed close to the HB and SW pins. The fast switching diode of the forward current rated at 1A and reverse voltage not lower than $V_{HV_{max}}$ must be selected as the boot strap diode, through which the boot capacitor C_{HB1} or C_{HB2} is charged by VCC. To reduce the noise caused by the fast charging current, a 2Ω to 5Ω current limiting resistor must be placed in series with each boot diode.

7.2.1.2.10 OVP

As described in Overvoltage Protection (OVP), LM5171-Q1 has a built in comparator with 1V internal reference and 100mV hysteresis to fulfill overvoltage protection.

In this application, We select LV-prot OVP voltage V_{OVP} = 24V. Here we select R_{OVPB} = 1k Ω thus the current through R_{OVPB} is 1mA. R_{OVPT} can be found according to:

$$R_{OVPT} = \frac{V_{OVP} - V_{OVPTH}}{V_{OVPTH}} \times R_{OVPB} = \frac{24V - 1V}{1V} \times 1k\Omega = 23k\Omega$$
(103)

Choose standard resistor $R_{OVPT} = 23.2k\Omega$.

7.2.1.2.11 Dead Time

Pull DT pin to VDD via a $20k\Omega$ resistor to enable built-in adaptive dead time,.

To program the dead time, follow \neq 14 to select the resistor R_{DT}. To dynamically adjust the dead time with an external analog voltage signal, follow \boxtimes 6-29. To dynamically adjust the dead time with an external PWM signal, follow \boxtimes 6-30.

In this application, the nominal dead time is selected to be 50ns. According to \pm 14, the programming resistor must be:

$$R_{\rm DT} = \frac{t_{\rm DT}}{2.625} \frac{k\Omega}{\rm ns} = 19.05 \rm k\Omega$$
(104)

Select standard value $R_{DT} = 20k\Omega$.

7.2.1.2.12 Channel Current Monitor (IMONx)

For best current monitor accuracy, choose IMONx resistor that the maximum operating voltage on the IMONx pin is less than 3V.

Considering two phase current monitoring with maximum 50A for each channel, and make sure IMONx voltage no more than 3V, R_{IMONx} can be find as:

$$R_{\rm IMONx} = 10k\Omega \tag{105}$$

Choose CIMONx considering delay and voltage ripple. Here we select:

Then the delay of the monitor is determined by the following time constant:

$$\tau_{\rm IMONx} = R_{\rm IMONx} \times C_{\rm IMONx} = 10k\Omega \times 10ns = 100\mu s$$
(107)

At full load, the DC component of the monitor voltage is:

$$V_{\rm IMONx} = 2 \times \left(\frac{I_{\rm max} \times R_{\rm CS}}{500\Omega} + 50\mu A\right) \times R_{\rm IMONx} = 2 \times \left(\frac{30A \times 1m\Omega}{500\Omega} + 50\mu A\right) \times 10k\Omega = 2.2V$$
(108)

Considering the inductor ripple current, according to 式 6, the IOUT peak to peak ripple current is:

$$\Delta IMONx = \frac{I_{pk} - pk \times R_{CS}}{500\Omega} = \frac{23.8A \times 1m\Omega}{500\Omega} = 47.6\mu A$$
(109)

The RC filter corner frequency is thus given by:

$$f_{\rm IMONx} = \frac{1}{2\pi \times R_{\rm IMONx} \times C_{\rm IMONx}} = \frac{1}{6.28 \times 10 k\Omega \times 10 nF} = 1.59 \rm kHz$$
(110)

The resulting peak-to-peak monitor ripple voltage is approximately determined by:

$$\Delta V_{\rm IMONx} = \Delta IMONx \times \left(R_{\rm IMONx} \| \frac{1}{2i \times \pi \times F_{\rm SW} \times C_{\rm IMONx}} \right) = 47.6 \mu A \times \left(10 k\Omega \| \frac{1}{2i \times \pi \times 100 \text{kHz} \times 10 \text{nF}} \right) = 7.5 \text{mV}$$
(111)

The peak-to-peak monitor ripple voltage is approximately 0.34% of the full load DC monitor voltage. Increasing C_{IMONx} attenuates the ripple voltage at the cost of higher monitor delay.

7.2.1.2.13 UVLO Pin Usage

The example circuit uses UVLO pin as the Controller enable pin of LM5171-Q1. However, UVLO pin can also fulfill the function of undervoltage lockout, either the 48V rail UVLO, or 12V rail UVLO, or VCC UVLO.

Assume the user implements the 48V rail UVLO, and the low-side resistor $R_{UVLO2} = 10k\Omega$, the 48V UVLO release threshold $V_{UVLO} = 24V$, and UVLO hysteresis is $V_{HYS} = 2.4V$. Referring to \boxtimes 6-32 and \ddagger 20, one can find that R_{UVLO1} is given by:

$$R_{UVLO1} = \frac{V_{UVLO} - 2.5 V}{2.5 V} \times R_{UVLO2} = \frac{24 V - 2.5 V}{2.5 V} \times 10 \text{ k}\Omega = 86 \text{ k}\Omega$$
(112)

The final selection must select the closest standard resistor of R_{UVLO1} = 86.6k Ω .

And R_{UVLO3} must satisfy 式 22, namely,

$$R_{UVLO3} = \frac{\frac{V_{HYS}}{25 \ \mu A} - R_{UVLO1}}{1 + \frac{R_{UVLO1}}{R_{UVLO2}}} = \frac{\frac{2.4 \ V}{25 \ \mu A} - 86.6 \ k\Omega}{1 + \frac{86.6 \ k\Omega}{10 \ k\Omega}} = 0.973 \ k\Omega$$
(113)

Select the closest standard resistor, $R_{UVLO1} = 976\Omega$.

If the user chooses to add the capacitor C_{UVLO} = 1nF, it leads to a delay time constant of 10µs to filter possible noise at the at the UVLO pin.

7.2.1.2.14 HVx Pin Configuration

The HVx pin must always be connected to the HV voltage rail. It is good practice to add a small RC filter to improve the HVx noise immunity, as shown in \boxtimes 7-10. Usually the filter resistor is 10 Ω , and the bypass capacitor is 0.1µF.

図 7-10. HVx Pin Configuration

7.2.1.2.15 Loop Compensation

Select current loop cross over frequency f_{CI} to 1/6 of the switching frequency. According to \neq 49, the compensation network for the inner current loop is determined by:

$$\begin{pmatrix}
R_{\text{COMP}} = \frac{K_{\text{FF}}}{A_{\text{CS}} \times R_{\text{CS}} \times G_{\text{m}}} \times |2i \times \pi \times f_{\text{CI}} \times L_{\text{m}}| = \frac{0.03125}{40 \times 1 \text{m}\Omega \times 100 \mu\text{A/V}} \times |2i \times \pi \times 15 \text{kHz} \times 4.7 \mu\text{H}| = 3.5 k\Omega \\
C_{\text{COMP}} = \frac{1}{\left|2i \times \pi \times \frac{f_{\text{CI}}}{5} \times R_{\text{COMP}}\right|} = \frac{1}{\left|2i \times \pi \times \frac{15 \text{kHz}}{5} \times 3.5 k\Omega\right|} = 15 nF$$

$$C_{\text{HF}} = \frac{1}{\left|2i \times \pi \times \frac{f_{\text{SW}}}{2} \times R_{\text{COMP}}\right|} = 0.9 nF$$
(114)

Selecting the closest standard values for the compensation network, namely,

 $R_{COMP1} = R_{COMP2} = 3.65 kΩ$ $C_{COMP1} = C_{COMP2} = 15 nF$ $C_{HF1} = C_{HF2} = 1 nF$ $\nabla I = 7.11$ shows the hode pla

 \boxtimes 7-11 shows the bode plots of the power plant $\frac{1}{V_M} \times G_{id}(s) \times A_{CS} \times R_{CS}$, the current loop compensation gain $G_{ci}(s)$, and the resulting total open loop gain $T_i(s)$.

図 7-11. Bode Plots of the Current Loop

For buck mode, select the voltage loop crossover frequency at 1/10 of the current loop crossover frequency. According to $\neq 115$, the compensation network for the voltage current loop is determined by:

$$\begin{pmatrix}
R_{LCOMP} = \frac{R_{LFBT}}{K_{dc_BK} \times \left| \frac{1 + \frac{2i \times \pi \times f_{CV}}{\omega_{Z_vl}}}{1 + \frac{2i \times \pi \times f_{CV}}{\omega_{Z_il}}} \right| \times \kappa_{ISET} = \frac{26.7 k\Omega}{40 \times 1 m\Omega} \times \left| \frac{1 + \frac{2i \times \pi \times 1.5 kHz}{250 kHz}}{1 + \frac{2i \times \pi \times 1.5 kHz}{6.25 kHz}} \right| \times 0.8 \\
\begin{pmatrix}
C_{LCOMP} = \frac{1}{\left| 2i \times \pi \times \frac{f_{CV}}{5} \times R_{COMP} \right|} = \frac{1}{\left| 2i \times \pi \times \frac{1.5 kHz}{5} \times 6.1 k\Omega \right|} = 86nF \\
C_{LHF} = \frac{1}{\left| 2i \times \pi \times 10 \times f_{CV} \times R_{COMP} \right|} = 1.7nF
\end{cases}$$
(115)

Selecting the closest standard values for the compensation network, namely,

 $R_{LCOMP} = 6.2k\Omega$

 $C_{COMP1} = 100nF$

 $C_{HF1} = 1.5nF$

 \boxtimes 7-12 shows the bode plots of the power plant $G_{vs_BK}(s)$, the voltage loop compensation gain $G_{cv}(s)$, and the resulting total open loop gain $T_{vs_BK}(s)$.

図 7-12. Bode Plots of the Voltage Loop

7.2.1.2.16 Soft Start

Soft start is used to ramp the current slowly. For applications with outer loop, the current soft start is not desired, C_{SS} should be minimized. Typically we can select 0.1nF for C_{SS} .

For applications where current soft start is required, place a ceramic capacitor C_{SS} to programmed the soft start time. The soft start completes when the SS pin voltage reaches approximately 3V. If full load current soft start time ΔT_{SS} = 1ms is chosen, the capacitor C_{SS} can be calculated as :

$$C_{SS} = \frac{I_{SS} \times \Delta T_{SS}}{3V} = \frac{70\mu A \times 1ms}{3V} = 23nF$$
(116)

When SS/DEM1 and SS/DEM2 are connected together, double the capacitance to maintain the same soft start time.

7.2.1.2.17 PWM to ISET Pins

For digital solutions using PWM signals, an external two-stage RC filter is recommended to convert the PWM signal to a DC voltage feeding the ISET pin as shown in 🗵 7-13. A two stage RC filter requires much smaller capacitance, and has a shorter delay time compared to a single stage filter. Please note, conversion errors occur if the PWM signal voltage levels are not well regulated.

図 7-13. Two-Stage RC Filter to Convert the PWM into an Analog Voltage at the ISETx Pin

7.2.1.2.18 Proper Termination of Unused Pins

In aplications where the error amplifier, LDODRV or I2C is not used, follow below diagram 2 7-14 for proper termination of unused pins.

図 7-14. Proper Termination of Unused Pins

7.2.1.3 Application Curves

7.2.1.3.1 Efficiency

7.2.1.3.2 Step Load Response

7.2.1.3.3 Dual-Channel Interleaving Operation

7.2.1.3.4 Typical Start Up and Shutdown

ADVANCE INFORMATION

7.2.1.3.5 DEM and FPWM

7.2.1.3.6 Mode transition between DEM and FPWM

7.2.1.3.7 ISET Tracking and PreCharge

7.2.1.3.8 Protections

7.3 Power Supply Recommendations

The LM5171-Q1-based converter is designed to operate with two differential voltage rails like the 48V and 12V dual battery system, or a storage system having a battery on one end and the Super-Cap on the other end. When operating with bench power supplies, each supply must be capable of sourcing and sinking the maximum operating current. This may require to parallel an Electronic load (E-Load) with the bench power supply (PS) to emulate the batteries, as shown in $\boxed{2}$ 7-32.

It can also be used with a voltage source on one end and a load on the other end if the outer voltage control loop is closed.

図 7-32. Emulated Dual Battery System With Bench Power Supplies and E-Loads

7.4 Layout

7.4.1 Layout Guidelines

Careful PCB layout is critical to achieve low EMI and stable power supply operation as well as optimal efficiency. Make the high frequency current loops as small as possible, and follow these guidelines of good layout practices:

- 1. For high power board design, use at least a 4-layer PCB of 2oz or thicker copper planes. Make the first inner layer a ground plane that is adjacent to the top layer on which the power components are installed, and use the second inner layer for the critical control signals including the current sense, gate drive, commands, and so forth. The ground plane between the signal and top layers helps shield switching noises on the top layer away from affecting the control signals.
- 2. Optimize the component placements and orientations before routing any traces. Place the power components such that the power flow from port to port is direct, straight and short. Avoid making the power flow path zigzag on the board.
- 3. Identify the high frequency AC current loops. In the bidirectional converter, the AC current loop of each channel is along the path of the HV-port rail capacitors, high-side MOSFET, low-side MOSFET, and back to the return of the HV-port rail capacitor. Place these components such that the current flow path is short, direct and the special area enclosed by the loop is minimized.
- 4. Place the power circuit symmetrically between CH-1 and CH-2. Split the HV-port rail capacitors and LV-port rail capacitors evenly between CH-1 and CH-2.
- 5. If more than one LM5171-Q1 is used on the same PCB for multi phases, place the circuits of each LM5171-Q1 in the similar pattern.
- 6. Use adequate copper for the power circuit, so as to minimize the conduction losses on high-current PCB tracks. Adequate copper can also help dissipate the heat generated by the power components, especially the power inductors, power MOSFETs, and current sense resistors. However, pay attention to the polygon of the switch node, which connects the high-side MOSFET source, low-side MOSFET drain, power inductor, and the controller SW pin. The switch node polygon sees high dv/dt during switching operation. To minimize the EMI emission by the switch node polygon, make its size sufficient but not excessive to conduct the switched current.
- 7. Use appropriate number of via holes to conduct current to, and heat through, the inner layers.
- 8. Always separate the power ground from the analog ground, and make a single point connection of the power ground, analog ground, and the EP pad, at the location of the PGND pin.
- 9. Minimize current-sensing errors by routing each pair of CSA and CSB traces using a kelvin-sensing directly across the current sense resistors. The pair of traces must be routed closely side by side for good noise immunity.
- 10. Route sensitive analog signals of the CS, FBLV, FBHV, IPK, VSET, IMON, COMP and OVP pins away from the high-speed switching nodes (HB, HO, LO, and SW).
- 11. Route the paired gate drive traces, namely the pairs of HO1 and SW1, HO2 and SW2, LO1 and return, and LO2 and return, closely side by side. Route CH-1 gate drive traces in symmetry with that of CH-2.
- Place the device setting, programming and controlling components as close as possible to the corresponding pins, including the following component: R_{OSC}, R_{CFG}, R_{DT}, , C_{COMP1}, R_{COMP2}, C_{COMP1}, C_{COPM2}, C_{HF1}, C_{HF2}, R_{HVC}, R_{LVC}, C_{HVC}, C_{LVC}, C_{HVHF} and C_{LVHF}.
- Place the bypass capacitors as close as possible to the corresponding pins, including C_{HV}, C_{VCC}, C_{VDD}, C_{VREF}, C_{VSET}, C_{HB1}, C_{HB2}, C_{OVP}, C_{IPK}, C_{ISET}, C_{CS1}, C_{CS2} as well as the 100-pF current sense commonmode bypassing capacitors.
- 14. Flood each layer with copper to take up the empty areas for optimal thermal performance.
- 15. Apply heat sink to components as necessary according to the system requirements.

7.4.2 Layout Examples

The following figures are some examples illustrating these layout guidelines. For the detailed PCB layout artwork of the LM5171-Q1 Evaluation Module (LM5171EVM-BIDIR), please refer to the LM5171 EVM User's Guide.

図 7-33. A Layout Example of Dual-Channel Power Circuit Placement

図 7-34. A Layout Example of MOSFET Gate Drive Routing

(a) Kelvin Connect of Resistor without Sense Pins

(b) Kelvin Connect of Resistor with Sense Pins

2 7-35. A Layout Example of Current Sense Routing

2 7-36. A Layout Example of LM5171-Q1 Critical Signal Routing

8 Device and Documentation Support

8.1 Device Support

8.1.1 Development Support

For development support, see the following:

- LM5170
- LM25118
- LM5118
- LM5158
- LM5160
- LM5161

8.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jpのデバイス製品フォルダを開いてください。[通知] をク リックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細に ついては、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

8.3 サポート・リソース

テキサス・インスツルメンツ E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツ ルメンツの使用条件を参照してください。

8.4 Trademarks

テキサス・インスツルメンツ E2E^m is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

8.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

8.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

9 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision * (April 2023) to Revision A (July 2024)						
•	Updated I2C address	44				

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンスデザインを含みます)、アプリケーショ ンや設計に関する各種アドバイス、Webツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性 および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否しま す。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種 規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているテキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
XLM5171QPHPRQ1	Active	Preproduction	HTQFP (PHP) 48	2500 LARGE T&R	-	Call TI	Call TI	-40 to 150	
XLM5171QPHPRQ1.A	Active	Preproduction	HTQFP (PHP) 48	2500 LARGE T&R	-	Call TI	Call TI	-40 to 150	

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM5171-Q1 :

Catalog : LM5171

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PHP 48

7 x 7, 0.5 mm pitch

GENERIC PACKAGE VIEW

TQFP - 1.2 mm max height

QUAD FLATPACK

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PHP0048E

PACKAGE OUTLINE

PowerPAD[™] HTQFP - 1.2 mm max height

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. Reference JEDEC registration MS-026. 5. Feature may not be present.

PHP0048E

EXAMPLE BOARD LAYOUT

PowerPAD[™] HTQFP - 1.2 mm max height

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package, Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.
- 10. Size of metal pad may vary due to creepage requirement.

PHP0048E

EXAMPLE STENCIL DESIGN

PowerPAD[™] HTQFP - 1.2 mm max height

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みま す)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある 「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証 も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様 のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様の アプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任 を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツル メンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらの リソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権の ライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、 費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは 一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ ースを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated